
On the Security of the Core of PRINCE Against Biclique and

Differential Cryptanalysis

Farzaneh Abed, Eik List, Stefan Lucks

Bauhaus-University Weimar, Germany
{farzaneh.abed,eik.list,stefan.lucks}@uni-weimar.de

Abstract. PRINCE is a modern involutive lightweight cipher which was proposed by Rechberger
et al. in 2012. PRINCE uses 64-bit core cipher, PRINCEcore, which holds the major encryption
logic and is wrapped by two key additions. Thus, the security of the cipher is mainly depending
on the security properties of the core. In this paper, we present an independent-biclique attack
on the full version and also a differential inside-out cryptanalysis on the round-reduced version of
PRINCEcore.

Keywords: block ciphers, lightweight, biclique, differential cryptanalysis

1 Specification of PRINCE

PRINCE is a lightweight cipher with a state size of 64 bits and a key length of 128 bits. Its
structure follows the so-called FX construction principle [4], where one part of the key is used
for a core cipher F , which contains the major encryption process, and the remaining parts are
used for whitenings before and after the core: FXk,k1,k2 = k2 ⊕ Fk(x ⊕ k1). In PRINCE, the
128-bit key k is split into two 64-bit words, first

k = k0||k1,

before it is expanded to 192 bits by the mapping

k = (k0||k1)→ (k0||k
′
0||k1) := (k0||(k0 ≫ 1)⊕ (k0 ≫ 63)||k1)

k1 is then used for the core; the remaining words, k0 and the derived value k′0, are used to wrap
the core with two key additions, the pre- and post-whitening.
The core cipher, PRINCEcore, is a block cipher of its own with key and state lengths of 64 bits
each. It employs an involutive structure which, in the beginning, consists of two XORs with the
key and a round constant, followed by five forward rounds, a middle layer, five backward rounds
and at the end, again two XORs with a round constant and a key. Figure 1 shows the schematic
view of the core. Every round in PRINCE contains five operations:

– An S-box-layer S: Every byte in the internal state is replaced by using a 4× 4-bit S-box.
– A linear layer M ′: In the linear layer, the state is multiplied by 64 × 64-matrix. More

precisely, there are two 16× 16 submatrices M0 and M1 which are arranged on the diagonal
of a bigger matrix, where every submatrix affects a 16-bit chunk xi of the 64-bit state
x = (x1‖x2‖x3‖x4):

M ′(x) =

M0 0 0 0
0 M1 0 0
0 0 M1 0
0 0 0 M0

·

x1
x2
x3
x4

= M0(x1)‖M1(x2)‖M1(x3)‖M0(x4)

R
1

RC
1

k
1

k
1
RC

0

RC
2

k
1

k
1

k
1

k
1

RC
5

RC
4

RC
3

R
2

R
3

R
4

R
5

k
1

k
1

k
1

k
1

k
1

S M' S −1 R
6

−1

RC
10

RC
9

RC
8

RC
7

RC
6

k
1

RC
11

R
7

−1 R
8

−1 R
9

−1 R
10

−1

S M‘

k
1

RC
i

M‘ S

k
1
RC

i

−1 −1SR SR−1

Fig. 1. Schematic view of the PRINCEcore cipher.

– A ShiftRows operation SR: Works exactly same as the one in the AES cipher.
– A bit-wise XOR with a round constant RCi, for i ∈ {0, . . . , 11}.
– A bit-wise XOR with the key k1.

The state of PRINCEcore can be visualized as a 4 × 4-matrix, where every cell represents a
nibble. One forward round of the cipher is depicted in Figure 2. In the backward rounds, the
order of operations is the inverse of the forward part, where only the round constants differ.
In the middle between the forward and backward rounds, there are three keyless operations: a
forward S-box layer, a matrix multiplication with M ′ and an inverse S-box layer. The matrix M ′

is the same as in the M operation in forward and backward rounds. To remain the involution
property in the middle part, M ′ was chosen to be self-inverting. Yet, in the round functions,
involution is not necessary. So, the operation M combines the matrix multiplication with an
AES-like ShiftRows operation in the round to ensure quick diffusion: M := SR ◦M ′. Like in
the AES, the combination of matrix multiplication and shifting provides full diffusion after only
two rounds.
The varying round constants RCi supplement the round transformation in order to prevent
slide attacks. The difference between RCi ⊕ RC11−i is always equal to a constant value α =
0xc0ac29b7c97c50dd. As a result of the involutive structure, software and hardware implemen-
tations can use the same encryption and decryption operations. The decryption only needs to
be parametrized with the key XOR and with the round constant difference α:

Dk0||k′0||k1⊕α(·) = Ek0||k′0||k1
(·).

S-Layer

S S S S

S S S S

S S S S

S S S S

M' SR k1RCi

M

Fig. 2. Overview of a single forward round in PRINCEcore.

2

2 Independent-Biclique Attack on the Full PRINCEcore

In this section, we describe an independent-biclique attack on the full version of PRINCEcore.
We suppose that most of our readers are familiar with biclique attacks, so we will concentrate
on the details which are necessary for this specific attack. For details of the technique, we refer
to the works by Khovratovich et al. [3] and Bogdanov et al. [1] which introduced bicliques for
cryptanalysis.

2.1 Key Space Partitioning

We partition the key space with respect to the secret key k1 and enumerate groups of 248 base
keys. The base keysK[0, 0] are all 248 16-nibble values with four nibbles fixed to 0, where all other
nibbles in the state take on all possible values. The keys in a group {K[i, j]} are enumerated by
all possible differences i = (i1‖i2) and j = (i1‖i2) with respect to K[0, 0].

K[0, 0] =

0

0

0

0

∆K
i (k1) = ∇K

j (k1) =

2.2 Single-Round Biclique of Dimension 8

We construct a biclique over the final round and over the final additions of the state with k1
and RC11, as shown in Figure 3. In both differentials, the two-nibble difference in k1 is injected
in the beginning of the round in the state, and spreads out to eight active nibbles after matrix
multiplication in the M ′-layer. In the forward trails, the key addition after the final round leads
to ten active nibbles in the ciphertexts Ci. Since we fix C0 for all key groups, the data complexity
is upper bounded by 240 ciphertexts.

Base computation

Round 10

Forward differential

Round 10

Backward differential

Round 10

S0 S0 Sj

C0 Ci C0

Fig. 3. Biclique for PRINCEcore in round 11 with ∆i- and ∇j-differentials.

2.3 Matching over 9 Rounds

For the remaining rounds 1-9, we use the matching-with-precomputations approach which was
introduced in [1]. We match in two nibbles of the state after the middle part, i.e., before round
6. In the precomputation step, first, in forward direction, we compute from the plaintexts Pi to
the matching state −→vi,0 under the keys K[i, 0]:

Pi
K[i,0]
−−−→ −→vi,0 ∀i ∈ {0, . . . , 28 − 1}.

3

Similarly, in backward direction, we compute from the states Sj in the beginning of the biclique
to the matching states ←−v0,j under the keys K[0, j]:

←−v0,j
K[0,j]
←−−−− Sj ∀j ∈ {0, . . . , 28 − 1}.

The 28 precomputed values −→vi,0 and 28 values ←−v0,j are then stored. For all further values −→vi,j
and ←−vi,j , we use the precomputed values and recompute only those parts which differ from the
stored one. The differences result from the usage of the keys K[i, j] instead of K[i, 0] or K[0, j],
respectively:

Pi
K[i,j]
−−−→ −→vi,j

?
=←−vi,j

K[i,j]
←−−− Sj ∀i, j ∈ {0, . . . , 28 − 1}.

If we could apply −→vi,j
?
=←−vi,j for some K[i, j], then K[i, j] yields a potential secret-key candidate.

These 216 − 29 recomputations make up the major summand in the total computational com-
plexity. The matching and the parts which need to be recomputed are illustrated in Figure 4.
As we can see from the figure, in forward part, the key injection has affected the full state after
two rounds. But since we match only in a portion of the state v, only three rounds, 3-5, have to
be considered.
The recomputation costs consist of the number of matrix multiplications, S-box calls, shifts
and some XOR operations. The matrix multiplications and S-boxes operations certainly have
the largest impact on the complexity. To represent this effort in the best way, we consider
a single number and concentrate on the S-boxes which need to be recomputed, following the
argumentation in [1].
In forward direction, one needs to recompute 2+5+16+16+16+4+2 = 61 S-boxes; Figure 4
shows the active nibbles in the S operations in the states directly after the key additions. There,
we need to include the S−1 operation at the end of the middle part. In backward direction, the
relevant states are also located directly after the key additions which means, 2 + 8 + 4 = 14
S-boxes need to be considered. So, in total, one has to recompute 61 + 16 = 77 S-boxes in the
matching part.

Backward matching Round 6 Round 7 Round 8 Round 9

Forward matching Round 1 Round 2

...

Round 5 Middle Part

v

v

Fig. 4. Recomputations for PRINCEcore in forward and backward direction.

2.4 Complexity of the Attack

PRINCEcore uses the S/S−1 layer twelve times in the round transformation, which sums up
to 12 · 16 = 192 S-boxes in the full cipher. For a key group of 216 keys, Crecomp is therefore

4

equal to 216 · 77
192 ≈ 214.68 full encryptions. The effort for constructing one biclique Cbiclique is

equivalent to 29 computations of one out of twelve rounds or 25.42 full encryptions. Further, the
complexity of precomputations is given by computing eleven out of eleven rounds 28 times or
27.88 encryptions. Thus, the total effort sums up to

248 · (25.42 + 27.88 + 214.68 + 28 + 28) = 262.72.

The data complexity of this attack is 240 and we need to store 28 texts per group for the
precomputations.

2.5 Discussion

The designers of PRINCE considered the resistance to manyfold classical attacks in their security
analysis [2], including meet-in-the-middle and biclique cryptanalysis. They argued that due to the
linear layer, the cipher achieves full diffusion after two rounds, which limits meet-in-the-middle
attacks to maximally four rounds (cf. [2, Appendix C.4]). Further, according to their studies,
the authors stated that independent bicliques could be constructed for up to two rounds which
limited biclique attacks without an exhaustive component to six rounds and, since biclique
attacks over the entire cipher had to cover four additional rounds, the exhaustive part of an
attack on the full PRINCEcore would be dominant and the advantage would not be significantly
more than a factor of 2.
In this work, our study confirms their statements regarding the length of bicliques as we could
construct bicliques over two rounds at most. For the shown biclique attack, we decided to
construct a biclique over a single round to lower the data complexity, since two applications of
the linear layer would make the entire state active. Though, a complete application of an attack
in this work is an essential help to better understanding. In the matching part, the key differences
lead to full diffusion after two rounds, but, due to the partial matching, we have to consider
only three rounds (3-5) in full. Further, our computation from rounds 10-7 in inverse direction
allows us to pass the full round 10 without any recomputations. By extending the biclique to two
rounds, the attack complexity could be reduced even further; in an optimal case, the matching
part would require one round or 16 S-boxes less which would decrease the recomputation effort
to about 216 · 61

192 ≈ 262.35 full encryptions.
The shown biclique attack is fairly a straight-forward application of the generic biclique approach
to PRINCE which does not violate the security claimed by designers.

3 Differential Cryptanalysis on Round-reduced PRINCEcore

We are interested in studying differences between the trail which propagate from the middle to
the plaintext P and the trail from the middle to the ciphertext C. We target only symmetrically
reduced versions of PRINCEcore. So, we call a reduced version of the cipher with

– a pre-whitening with k1 and RC0,
– n forward rounds,
– the middle part,
– n backward rounds and
– a post-whitening with k1 and RC11

an n-x-n construction. Prior, we note a few basic observations on which our analysis relies.

1. There are 28 out of the 216 16-bit values which pass the multiplication with M0 without
change. Equivalently, there are 28 16-bit values which pass the multiplication with M1 with-
out affect. Hence, there are (28)4 = 232 possible 64-bit values x = (x1‖x2‖x3‖x4) for which

5

the application of the entire M ′ layer has no effect:

M ′(x) = M ′(x1‖x2‖x3‖x4) = M0(x1)‖M1(x2)‖M1(x3)‖M0(x4) = (x1‖x2‖x3‖x4).

As a consequence, these 232 values, pass the entire middle part and the wrapping key addition
(AK ◦ S−1 ◦M ′ ◦ S ◦ AK) without any changes, since the inverse S-box layer and the key
additions at the end just reverse the actions of their forward applications.

2. As an adaptation, we studied if there are any input values x to the middle part

x
S−1◦M ′◦S
−−−−−−−→ x⊕ α,

where α = (c0ac‖29b7‖c97c‖50dd). We found that there are no such values x, because there
is no input value which has a difference with its output of 0x50dd in the last four nibbles.
So, we studied the number of values x′ which have a truncated difference α′ ≈ α with their
middle part outputs

x′
S−1◦M ′◦S
−−−−−−−→ x′ ⊕ α′,

where
– α′ = (c0a · ‖29 · 7‖c · 7c‖ · 0dd) has 17920 solutions,
– α′ = (·0ac‖29b · ‖c9 · c‖5 · dd) has 38720 solutions,
– α′ = (c · ac‖ · 9b7‖c97 · ‖50 · d) has 26880 solutions,
– α′ = (c0 · c‖2 · b7‖ · 97c‖50d·) has 92160 solutions,
and (·) can denote any 4-bit value.

3. The S-box of PRINCEcore has a bias of 2−1.27 (and so has its inverse). Each of the 16 possible
4-bit input differences β = a ⊕ b (a, b, β ∈ {0, 1}4) maps, depending on the value of β, only
to 1, 6, 7, or 8 possible output differences γ = S[a] ⊕ S[b]. These are summarized in Table
2 in the Appendix A. In total, the S-box allows 106 out of 256 possible input-output trails,
i.e., a given arbitrary 4-bit input difference β will lead to only 106

16 = 6.625 ≈ 22.73 output
differences in average. From the maximum of 8 solutions follows, that a given 64-bit input
difference δ can map to 816 = 248 output differences at most, and to (22.73)16 ≈ 243.65 in
average.

4. In the case we are given a valid S-box trail β
S−1

−−→ γ for unknown β, γ ∈ {0, 4}4, the number
of quartets (a, b, c, d ∈ {0, 4}4) which can built it,

a⊕ b = β
S−1

−−→ γ = c⊕ d,

is only 2.42 in average. From the Appendix A, we can see that there are either one, two or four
solutions per trail. There is once a single solution (β = 0 ⇔ γ = 0), 90 times two solutions
and 16 times four valid solutions, which is equivalent to 1+90·2+15·4

1+90+16 = 256
106 ≈ 2.42 ≈ 21.27

solutions in average.

3.1 Inside-Out Attack on Two Rounds of PRINCEcore

Here, we propose a differential trail for a 1-x-1 construction reduced to one forward round, the
middle part, and one backward round, as illustrated in Figure 5. The differential trail is given
by:

S−1◦M ′◦S
−−−−−−−→

p=2−32

0
(⊕k1)◦(⊕RC5/RC6)
−−−−−−−−−−−−→

p=1
α

M−1

−−−→
p=1

β
S−1

−−→
p=1

γ
(⊕RC0/RC11)◦(⊕k1)
−−−−−−−−−−−−−→

p=1
γ ⊕ α.

∆(#0) ∆(#1) ∆(#2) ∆(#3) ∆(#4)

The steps of the attack can be described as follows:

6

S M' S −1

M

k1

RC6

M −1

S −1S

RC5

k1
∆(#0)

∆(#1)

∆(#2)

∆(#3)

∆(#4)
k1

RC11RC0

k1

CP

Fig. 5. States in differential trails for PRINCEcore.

1. Preparation: It applies that the inverse matrix multiplication with M ′−1 transforms α =
(c0ac‖29b7‖c97c‖50dd) to β = (42a3‖356a‖5d3a‖0fe3) with probability 1:

Pr[α
M ′−1

−−−→
p=1

β] = 1

As we can see from Table 2 in Appendix A, for the difference β = (42a . . . e3) there are
6 · 8 · 7 · . . . · 7 · 6 ≈ 241.38 possible output differences γ. Since every 4-bit S-box operates
independently, we only need to store 6 + 8 + 7 + . . .+ 7 + 6 = 103 4-bit values.

2. Oracle queries: Choose 232 different plaintexts Pi and request the corresponding ciphertexts
Ci from an encryption oracle. From Observation (1) follows that we can expect to have one
pair (Pi, Ci) for which applies ∆(#0) = 0, i.e., that its values before and after the middle
part are equal.

3. Derive γi: For all pairs (Pi, Ci) derive γi = ∆(#3):

γi ⊕ α = Pi ⊕ Ci ❀ γi = Pi ⊕ Ci ⊕ α.

4. Discard mismatching pairs: Discard all pairs (Pi, Ci), if γi does not belong to the 241.38

valid differences. For any of our 64-bit differences γi, we can expect that it belongs to the
valid differences by random with a probability of 2−64 · 241.38, so we expect to have

232 · 2−64 · 241.38 ≈ 29.38

remaining pairs.
5. Derive solutions for the S-box trails: For every nibble in every remaining Pi, we lookup

all possible solutions a, b, c, d ∈ {0, 1}4 with a⊕ b = γi
S
−→ β = c⊕ d.

There are (21.27)16 ≈ 220.35 solutions in average for every Pi for state (#3)i, which we
enumerate by (#3)ji :

(#3)ji = Pi ⊕RC0 ⊕ k1.

So, we have 29.38 · 220.35 ≈ 229.73 potential values (#3)ji .

6. Derive key candidates: For every value (#3)ji , we can derive a key candidate (k1)
j
i :

(k1)
j
i = Pi ⊕RC0 ⊕ (#3)ji .

7

7. Eliminate false positives: For every key candidate (k1)
j
i , check if it is the correct key by

encrypting any plaintext Pj 6= Pi, from which we know the correct encryption result Cj from
the oracle:

E
(k1)

j
i
(Pj)

?
= Cj , j 6= i.

The computational complexity of the attack is composed by 232 encryptions of the oracle, 232

XORs to compute γi, 2
32 simple lookups if the difference is valid, 229.73 XORs to derive the

k1 candidates and finally, 229.73 full encryptions to identify the correct key. Since we have eight
XORs in our reduced 1-x-1 construction, we can overestimate the effort for one XOR- or lookup-
operation with 2−3 encryptions each. The full complexity is given by

232 + 232−3 + 229.73−3 + 229.73 ≤ 232.44

full encryptions. The memory complexity is given by storing 232 text pairs (P,C) and the data
complexity is given by 232 chosen plaintexts.

3.2 Inside-Out Attack on Four Rounds of PRINCEcore

In this section, we target to create a similar attack on a 2-x-2 construction, as shown in Figure
6. The differential trail is given by:

∆(#0) ∆(#1) ∆(#2) ∆(#3)
S−1◦M ′◦S
−−−−−−−→

p=1
?

(⊕k1)◦(⊕RC5/RC6)
−−−−−−−−−−−−→

p=1
?

M−1

−−−→
p=1

?
S−1

−−−−−→
p≤2−49

α′

(⊕k1)◦(⊕RC4/RC7)
−−−−−−−−−−−−→

p=1
α

′′ M−1

−−−→
p=1

β
S−1

−−→
p=1

γ
(⊕RC0/RC11)◦(⊕k1)
−−−−−−−−−−−−−→

p=1
γ ⊕ α,

∆(#4) ∆(#5) ∆(#6) ∆(#7)

with

α′ = (c0a · ‖29 · 7‖c · 7c‖ · 0dd)

α
′′

= (000 · ‖00 · 0‖0 · 00‖ · 000)

β = (000 · ‖000 · ‖000 · ‖000·)

γ = (000 · ‖000 · ‖000 · ‖000·)

The steps of the attack can then be described as follows:

1. Oracle queries: Choose 248 different plaintexts Pi and request the corresponding ciphertexts
Ci from an encryption oracle. Since 16 bits in α′ are not specified, we can expect to have
one pair (Pi, Ci) for which applies that ∆i(#3) = α′.

2. Derive γi: For all pairs (Pi, Ci) derive γi:

γi ⊕ α = Pi ⊕ Ci ❀ γi = Pi ⊕ Ci ⊕ α.

3. Discard mismatching pairs: Discard pair (Pi, Ci), if the three leftmost columns of γi are
not all zeroes. Since we match in 48 bits, we can expect to have only a few pairs for which this
criterion is fulfilled. Arguing with the cumulative binomial distribution with n = 248, p = 2−48

and k = 8, we can say that we expect X ≤ 8 matches with probability Pr[X ≤ 8] ≥ 0.999.
4. Derive solutions for the S-box trails: Again, for every remaining Pi, we can derive the

possible solutions a, b, c, d ∈ {0, 1}4 with a⊕ b = γi
S
−→ β = c⊕ d. For each of the 12 nibbles

in the three leftmost columns of the state (#6)ji , we need to consider all 16 possible values
per nibble. For the four nibbles in the rightmost column, there are (21.27)4 ≈ 25.08 solutions
per pair. So, we can estimate that we need to compute 23 ·248 ·25.08 ≈ 256.08 potential values
(#6)ji .

8

S M' S −1

M

k1

RC6

M −1

S −1S

RC5

k1
∆(#0)

∆(#1)

∆(#2)

∆(#3)

M

k1

RC7

M −1

S −1S

RC4

k1

∆(#4)

∆(#5)

∆(#6)

∆(#7)
k1

RC11RC0

k1

CP

Fig. 6. States in differential trails for PRINCEcore.

5. Derive key candidates: For each of the obtained values of the state (#6)ji , we can derive
a key candidate k1:

(k1)
j
i = Pi ⊕RC0 ⊕ (#6)ji .

6. Eliminate false positives: For every key candidate, check if it is the correct key by en-
crypting any plaintext Pj 6= Pi, from which we know the correct encryption result Cj from
the oracle:

E
(k1)

j
i
(Pj)

?
= Cj , j 6= i.

The attack requires 248 full encryptions, 248 XORs to compute γi, 2
48 lookups, and 256.08 XORs

to compute k1 and 256.08 encryptions to identify the correct key. Again, we upperbound the
effort for XORs and lookups with 2−3 two-round encryptions each. The full complexity is given
by

248 + 248−3 + 256.08−3 + 256.08 ≤ 256.26

full encryptions. The memory complexity is given by storing 248 text pairs (P,C) and the data
complexity is given by 248 chosen plaintexts.

4 Conclusion

The design of PRINCEcore combines the secure operations of the AES with a small footprint for
limited devices. Since 64 bits of the key material are only used in a wrapper, the security of the
cipher depends essentially on the security of the core. The core was the target in our attacks,
for which the results are summarized in Table 1. At the time of writing, these results are the
first ones for PRINCE.

9

Type Rounds Comp. Data Memory

complexity complexity (CP) complexity

Differential 2 232.44 232 232

Differential 4 256.26 248 248

Biclique 10 (full) 262.72 240 28

Table 1. Attacks on PRINCEcore in this work. CP = chosen plaintexts.

Our biclique analysis of PRINCEcore basically confirms the conceptual assumptions of the de-
signers, saying that independent bicliques are limited to two rounds and attacks will reduce the
effort for testing the whole search space to around one half. Though, our work in a complete
application of an attack can deliver some corrections: first, we gained an advantage of 2−1.28;
second, there are only three rounds which need to be fully considered in the recomputation
part; third, an adversary does not need to recompute the round which is next to the biclique.
Moreover, we only used a single-round biclique, so there may be more efficient bicliques which
can reduce the computational effort even further.
Regarding the field of differential cryptanalysis, the involution structure of the core seems at-
tractive for inside-out attacks which study trails from the middle to the ends. In our work, we
demonstrated two (though still very limited) differential trails over two and four rounds, respec-
tively. We highlighted that the current implementation of the multiplication matrix allows 232

values to pass the multiplication without affect. Further, we studied the S-box in detail and used
its bias to recover the key from given S-box trails. At the end, we note that, neither our biclique
nor our differential attacks can violate the claimed security by designers.

References

1. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique Cryptanalysis of the Full AES.
Cryptology ePrint Archive, Report 2011/449, 2011. http://eprint.iacr.org/.

2. Julia Borghoff, Anne Canteaut, Tim G”uneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R. Knudsen, Gregor
Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga
Yalcin. PRINCE – A Low-latency Block Cipher for Pervasive Computing Applications. Cryptology ePrint
Archive, Report 2012/591, 2012. http://eprint.iacr.org/.

3. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques for Preimages: Attacks on
Skein-512 and the SHA-2 Family. Cryptology ePrint Archive, Report 2011/286, 2011. http://eprint.iacr.
org/.

4. Joe Kilian and Phillip Rogaway. How to Protect DES Against Exhaustive Key Search (an Analysis of DESX).
J. Cryptology, 14(1):17–35, 2001.

10

A Differential Trails for the Inverse S-box of PRINCEcore

β ↓ / γ → 0 1 2 3 4 5 6 7 8 9 a b c d e f #solutions

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 solutions
1 0 4 2 0 2 0 0 0 0 0 0 2 4 2 0 0 6 solutions
2 0 0 0 0 2 2 2 2 2 2 0 0 0 0 2 2 8 solutions
3 0 0 4 0 4 2 2 0 0 2 2 0 0 0 0 0 6 solutions
4 0 2 0 0 2 0 0 0 4 0 2 4 0 0 0 2 6 solutions
5 0 0 0 2 2 2 2 0 2 0 4 0 2 0 0 0 7 solutions
6 0 2 0 2 0 0 2 2 0 0 0 0 2 0 4 2 7 solutions
7 0 0 2 0 0 2 0 0 0 0 4 2 0 2 2 2 7 solutions
8 0 4 2 2 2 0 0 2 2 0 2 0 0 0 0 0 7 solutions
9 0 2 0 2 0 2 2 0 2 2 0 0 0 4 0 0 7 solutions
a 0 0 0 2 2 0 0 4 0 2 0 0 2 2 0 2 7 solutions
b 0 2 0 2 0 2 2 0 2 0 0 2 2 0 2 0 8 solutions
c 0 0 0 2 0 2 0 0 0 4 0 2 2 0 2 2 7 solutions
d 0 0 4 0 0 2 0 2 2 2 0 0 0 2 2 0 7 solutions
e 0 0 2 0 0 0 4 2 0 0 0 2 2 2 0 2 7 solutions
f 0 0 0 2 0 0 0 2 0 2 2 2 0 2 2 2 8 solutions

Table 2. Summary of possible differential trails β
S−1

−−−→ γ for the inverse S-box of PRINCEcore.

11

