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Abstract. IDEA is an iterated block cipher proposed by Lai and Massey 
and is based on the design concept of %nixing operations from Merent 
algebraic groups". New arithmetic properties of the basic operations used 
in the round function are found and investigated with respect to the 
security of this block cipher. Evidence is given that these properties can 
be exploited in the cryptanalysis of the fist 2 rounds of IDEA but that 
they are of no asubtancc in the cryptanalyais of the full IDEA block 
cipher containing 8 rounds. 

1 Introduction 

In [3] J. Massey and X. Lai introduced a new iterated block cipher, the Pro- 
posed Encryption Standard (PES). The differential cryptanalysis of PES carried 
out in [4] suggested a minor modification, called Improved PES (IPES). It was 
shown in [4] that this modification of PES improves the security against differ- 
ential cryptanalysis. In recent work of Lai [5], the modified block cipher IPES is 
named IDEA (International Data Encryption Algorithm). The IDEA contains 8 
computationally identical rounds plus an output transformation. The plaintext 
and the ciphertext are 64 bit blocks, while the secret key is 128 bit long. The 
cipher is based on the design concept of "mixing (arithmetic) operations from 
different algebraic groups". 

Our aim is to contribute to a systematic investigation of arithmetic proper- 
ties of both the basic operations and the round function of IDEA with respect 
to the security of this block cipher. The basic operations used in the design are 
multiplication modulo 216 + 1 (where 0 is taken as 216), integer addition modulo 
216, and bit-by-bit exclusive-OR of two 16 bit subblocks. In [3] the interaction 
of these operations is studied as it contributes to the "confusion" required for a 
secure cipher. In particular, it is stated in [3], that the 3 operations are incompat- 
ible in the sense that no pair out of them satisfies a distributive law. In Section 3 
we shall show however, that the multiplication and the integer addition satisfy 
a "partial" distributive law, stemming trom arithmetic modulo 216 + 1. This 
fact made a detailed investigation necessary and may also be of interest for the 
construction of other cryptographic algorithms based on arithmetic operations. 
The interaction of the group operations is further studied in Section 4, where 
arithmetic properties in the context of a class of one-round differentials are in- 
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vestigated. Our considerations extend a result in [5] and are useful in the crypt- 
analysis of few rounds of IDEA in Section 5. We give estimates for the computa- 
tional complesity to break the first few rounds by combining results related to 
one-round differentials and the partial distributive law. We give evidence that 
the newly found arithmetic properties can be exploited in the cryptanalysis of 
the first 2 rounds of IDEA, but that they are of no assistance in the cryptyanal- 
ysis of a block cipher containing 3 or more rounds of IDEA. This estimate fits 
nicely with a conclusion drawn in [5] saying that IDEA will be secure against a 
differential cryptanalysis attack after only 4 of its 8 rounds. 

2 Description of IDEA 

For our analysis we r e d  the description of the IDEA-algorithm as given in [4] 
and [S]. In the block cipher IDEA (International Data Encryption Algorithm) 
plaintext and ciphertext are 64 bit blocks and the key is 128 bits long. The cipher 
is based on a novel design concept of mixing different arithmetic operations 
rather than using boolean functions (e.g., in terms of lookup tables). The cipher 
structure is chosen to provide confusion and diffusion and to facilitate both 
hardware and software implementation. For the latter aspect we refer to [2]. 

The IDEA-algorithm is an iterated cipher consisting of 8 computationally 
identical rounds followed by an output transbrmation. The complete first round 

well as the output transformation are depicted explicitly in the computational 
graph shown in Figure 1. 

2.1 Encryption 

In the encryption process, three different (arithmetic) group operations on pairs 
of 16-bit subblocks are used, namely 

bit-by-bit exclusive-OR of two 16 bit subblocks, denoted as $; 
addition ofintemrs modulo 216 where the 16 bit subblock is treated as the usual - 

radix-two representation of an integer; the resulting operation is denoted as 
Q3 

multiplication of integers modulo 216 + 1 where the 16 bit subblock is treated 
as the usual radix-two representation of an integer except that the all-rero 
subblock is treated as representing 2'"; the resulting operation is denoted as 
0. 

The 64 bit plaintext block X is partitioned into four 16 bit subblocks X l r X 2 , X 3 ,  
X4, i.e., X = ( X 1 , X a , X 3 , X 4 ) .  The four plaintext subblocks are transformed 
into the four 16 bit ciphertext subblocks Yl, Ya, Ys, Y4 under the control of 52 key 
subblockr of 16 bits that are formed from the 128 bit secret key to be described 
in the key dedu le .  For r = 1,2, ..., 8, the six key subblocks used in the r-th 
round are denoted M Zir),Z$), ..., Zt). Four 16 bit key subblocks are used in 
the output transformation; these subblocks are denoted as 2, (9) , 2, (9) , 2, (9) , Z4 (9) . 
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one round 

Xi : 16-bit plaintext subblock 
Y;: : 16-bit ciphatext subblock 
Z,(.) : 16-bit key rubblodr 
@ : bit-by-bit uclusivcOR of 16-bit subblocks 
I3 : addition modulo 2'' of 16-bit integers 
0 : multiplication modulo 216 + 1 of 16-bit integer8 

with the sero subblock corresponding to 2" 

Pig. 1. Computational graph for the encryption process of the IDEA cipher. 
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2.2 The decryption process 

The computational graph of the decryption process is essentially the same as 
that for encryption, the only change being that the decryption key subblocks 
KI‘) are computed from the encryption key subblocks Z,?’ as follows: 

where 2-’ denotes the multiplicative inverse (modulo 216 + 1) of 2, i. e., 
2 0 Z-l = 1 and -2 denotes the additive inverse (modulo 216) of 2, i. e., 
-2mz = 0. 

2.5 The key schedule 

The 52 key subblocks of 16 bits used in the encryption process are generated 
from the 128 bit user-selected key as follows: The 128 bit key is partitioned into 
8 subblocks that are directly used as the first eight key subblocks (leftmost bit 
= most significant bit), where the ordering of the key subblocks is defined as 
follows: 2, (1) , 2, (1) , ...) 2, (1) , 2, (2) , ...) 2, (2) , ..., 2, , ‘.., 2, (*) , A’(’) 1 ! ..., Zp). The 128 
bit user-selected key is then cyclic shifted to the left by 25 positions, after which 
the resulting 128 bit block is again partitioned into eight subblocks that are 
taken as the next eight key subblocks. The obtained 128 bit block is again cyclic 
shifted to the left by 25 positions to produce the next eight key subblocks, and . 
this procedure is repeated until all 52 key subblocks have been generated. 

3 A partial distributive law 

The basic operations used in the design of IDEA are: 0 : multiplication modulo 
216+ 1 of 16 bit integers, with the gero number corresponding to 216, Ql : addition 
modulo 216 of 16 bit integers and @ : bit-by-bit exclusive-OR of 16 bit integers. 
It is stated in [3] that the three operations are incompatible in the sense that no 
pair of these satisfies a distributive law. In this section we show however that the 
operations 0 and EEI satisfy a partial distributive law stemming from arithmetic 
modulo 2” + 1. This law also carries over to a partial arithmetic property of the 
MA structure in the round function (see Figure 2 in Section 4). 
In the ring of integers modulo 2n + 1 one has a distributive law, i.e., for any 
integers a, b, &ltac{(o, 1, ..., Zn} 

a - (a f delta) = a - b + a delta (mod 2” + 1) (1) 
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where addition and multiplication are taken modulo 2" + 1. Obviously, this law 
carries over to the operations 0 and + : 

u 0 (b  + delta) = a @ b + a @ delta (mod 2" + 1). ( 2 )  
We now ask whether this law even holds modulo 2" for some fraction of integers 
a, b, delta. For this we compare a 0 (bEl delta) with a 0 b EEl a 0 delta (mod 2"). 

Proposition I. ( I )  If a = O the equation a 0 ( b  EEI delta) = a 0 b El a 0 delta i s  
satisfied for no b and delta; 
(2) I f  a = 1 the equation a 0 ( b  I3 delta) = a 0 b El3 a@ delta is  satisfied for every 
b and delta; 
(3) I f  a # 0 , l  the equation a 0 (b Ql delta) = a 0 b I3 a @ delta is  satisfied f o r  no 
triple of the f o r m  (a, 0 ,  delta) or (a, b, 0); 
(4) I f a  # O , l ,  b # 0 and delta # 0, the equation a 0  ( b m d e l t a )  = a 0  b m a O  
delta is satisfied if and only af the two conditions 

b + delta 5 2" 
a @ b + a @ d e l t a < 2 "  

a= satisfied. 

Proof. Statement ( 1 )  follows easily by using the fact that 0 0 b = 1 - b (mod 
2") for any b. Staments (2) and (3) are trivial. For stament ( 4 )  observe that the 
equation a 0 (b  ffl delta) = a 0 b D3 a 0 delta mod 2" holds if b + delta 5 2", 
and a 0 b + a 0 delta 5 2". For a > 1 also the converse holds: If b + delta > 2", 
this leads to a calculation modulo 2", giving difference u (mod 2" + 1) between 
a 0 (b + delta) and 4 @ ( b  Ql delta),  which cannot be equalized by computing 
a 0 b + a 0 delta modulo 2" rather than 2" + 1. This also shows that for the 
equation in ( 4 )  to hold, the condition a 0 b Ql a 0 delta 5 2" is necessary. 

If b and delta are supposed to be random, one has b+delta 5 2" with probability 
1 /2  and similarly, a @ b + a 0 delta 5 2" with probability 1/2. 
If a is random, we heuristically assume that these two events may be considered 
to be independent. This will roughly be justified. Hence, for random a, b and 
delta we may expect the equation in Proposition 1 to hold with probability about 
1/4. 

We give first an exact relationship in two cases, where delta is fixed (namely 
the opposite cases delta = 1 and delta = 2" - 1 = -1 (mod 2")).  

Proposition 2. Let n 2 2 be an integer. Then for random integers a, bc  (0, 1,  ..., 
2" - 1 )  the distributive law 

a @  ( b E I 1 )  = a @  bEEla (mod 2") (3) 

holds with probability 1/2 - 2-"-l + 2-'" M 1/2,  and 
the distributive law 

4 0 ( b  D3 (2" - 1 ) )  = a b El a 0 (2" - 1)  (mod 2") (4) 
holds with probubility 2-" + 2-"-' - 2-2" NN 2-n. 
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Proof. According to Proposition 1 we can suppose a >_ 1, and for a = 1 the law 
always holds. As delta = 1 for the first part, one has b + delta = b + 1 5 2" for 
every b e  (0, ..., 2" - 1). Therefore, for every fixed a > 1 we count the number of 
cases, w h e r e a @ b + a <  2 " , o r a @ b <  2"-a. Asa@b(mod2*+1)forvarying 
b can take every value between 1 and 2", we thus have to exclude a values for 
b. Hence counting the number of possibilities for a = 1,2, ..., 2" - 1 we obtain 
2" + (2" - 2) + (2" - 3) + ... + 2 + 1 possibilities in which the law (3) holds. This 
number is 2" + (2" - 1)(2" - 2)/2 = 22n-1 - Zn-' + 1. Hence the probability for 
the law (3) to hold is (zzn-' - 2"-l+ 1) - 2-2" = 1 / 2  - 2-"-' + 2-'" as claimed. 
If delta = 2" - 1 we again have the case a = 1 where the law (4) always holds. 
For a > 1 we have 6 + delta = b + (2" - 1) < 2" only for 6 = 0 and b = 1. But 
for a > 1 and b = 0 the law doesn't hold. So let b = 1. Then (4) holds if and 
only if a@(2" - 1) = a@2" -a (mod 2"). This is true as long as 0 0 2 "  > a. As 
2.2" =2"- l  (mod2"+1) ,3-2"  =2"-2(mod2"+1) ,  ..., onecanseethat this  
is the case for a = 2, ...,a"-' . Hence we have 2" + 2"-' - 1 possibilities where 
(4) holds. Therefore the probability is 2-" + 2-"-l - 2-2n. 

Proposition 2 and the considerations made in this section show that, depend- 
ing on delta, the probability for the partial distributive law to hold strongly vanes 
between the values given in (3) and (4), and that this probability decreases for 
increasing delta. But even in the case delta = 2" - 1 with lowest probability, 
this value is slightly higher than the probability 2-" which one would expect 
if the validity of the distributive law (mod 2") would behave purely randomly. 
Experiments have shown that the decrease of probability is approximately linear 
in the increase of delta. In fact, for n = 4 and n = 8, the probability for the 
partial distributive law to hold for the "average" value delta = 2"-l is extremely 
near to the arithmetic mean of the two values given in (3) and (4). For n = 4 
and n = 8 these values are 0.28125 and 0.25195, respectively. As these d u e s  
(especially for n = 8) are only slightly higher than 1/4, this further confirms our 
heuristic considerations, that for random a, b, delta the distributive law holds 
with probability about 1/4. 

3.1 Applications of the partial distributive law 

As an immediate consequence of the previous results we give a relationship 
between a @ (b El delta) - a 0 b and a @ delta. 
We have a @ (b H delta) = a @ b EEI a @ delta (mod 2") with probability p 
depending on delta (as explained in Proposition 2). Thus we obtain 

a @ (bW delta) - a @ b = a @ delta (mod 2") (5) 

with the same probability. In particular, 

a @  (bH 1) - a @ b  = a (mod 2") (6) 

with probability x 1/2 if n is sufficiently large (e.g., n = 8 or n = 16). 
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In view of the IDEA-algorithm, the question will be whether the partial dis- 
tributive law is of any assistance for cryptanalysis. As a first observation in this 
direction, we obtain that a key block 2 which acts as multiplication 0 can be 
determined with a certain probability, provided the input and output differences 
(or sums) to this block are supposed to be known. This probability depends on 
the input difference and on the magnitude of 2 (see Proposition 2 and its proof). 
More importantly, consider the distributive law for differences (a  > 0, b > 0, 
c > 0) 

a @  ( b -  c )  = a @ b -  a @  c (mod 2" + 1). 

This holds also modulo 2" as long as b > c and a@b > aoc . Let delta = b-c > 0. 
Then there are 2" -delta pairs (b ,c)  = (delta+l, I), ..., (2", 2" -delta) for which 
"difference" modulo 2" and modulo 2" + 1 has the same meaning, and ordinary 
multiplication agrees with 0 modulo 2" + 1. If for a > 0 we take a b - a 0 c 
modulo 2" + 1 rather than modulo 2" (and interpreting products @ as 2" if they 
take the value 0), it is the correct difference. 
Suppose 2 > 0 and we know the outputs after multiplication with 2 (not only 
their difference). %ke their difference modulo 2" + 1. Then, knowing the input 
difference delta (mod 2") we can guess the key block Z with probability (2" - 
delta) 2-" = 1 - delta - 2-". Using considerations as in Proposition 1 we can 
also detect a subblock 2 = 0 from knowledge of input and output differences. 

Partially arithmetic properties of the MA structure As the MA struc- 
ture (see Figure (2)) is composed only of multiplications 0 (mod 2" + 1) and 
additions Q (mod 2"), the partial distributive law carries over to certain rela- 
tions holding between differences in the inputs p, q'and the outputs u,t .  

First suppose p is\ fixed and q1,qz are two different input values with gz = 
q1 EEl delta. Then si = q1 El r and 8 2  = qz EEI r = q1 EEl deltaw r = sl EEI delta. 
Hence t z  - t l  = 2 6  o 
As 26 0 (81 ffl delta) = 26 @ 8 1  

delta, we have 

- 2, 0 81 = 2, o (81  Eldelta) - z60 b l .  

26 @ delta with probability P depending on 

with this Probability P. 
If q is fired and p1 and pa are two different input values, one gets a more compli- 
cated but weaker relationship for the outputs u, t ,  which we omit to formulate. 
In the other direction, suppose the input difference delta = p2 - p1 and the 
output differences t 2  - tl and u z  - u1 are known. Then the difference t z  - rl = 

- t z  - (u1 - t l )  can be computed and thus 2 5  can be determined with a 
probability depending on delta. A similar conclusion also holds for z6 if both 
the input differences pa - p1 and qz - q1 are known. 
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4 A Class of High-Probability Differentials of IDEA 

In [5] various considerations lead to three candidate classes of differentials of 
potential interest for differential cryptanalysis of the IDEA-algorithm. We give 
a new derivation of the class having highest probability (under the condition of 
key independence). Our approach allows for a quite general analytic treatment 
of these differentials. The arguments give new insight into the interaction of the 
3 basic operations and will have consequences in the analysis of few rounds of 
IDEA in Section 5. 

In our discussion we use the notation in [4], [5]. In particular the "difference" 
AX is given by AX = X 8 X*-', where the operation 8 is defined on 64 bit 
blocks by 

and where X*-' denotes the inverse of X* under the group Operation @. 
The round function of IDEA is illustrated in Figure 2,where Xi, X denote 

16 bit subblocks of the 64 bit plaintext and ciphertext blocks respectively, and 
Z$l) l . . . lZ~l)  denote 16 bit key subblocks of the first round according to the key 
scheduling as described in [4], [5]. One can also consider "mini ciphers" where 
the subblocks are n = 2, 4 or 8 bit integers. 

For any two n-bit integers 0 and a*, write 6a = a 0 (a*)-', and aa = 
a - a* = aH(-a*). Then the differences AX and AY are expressed aa AX = 
(ha, db, dc, 6d) and AY = (6v, dw, tIq6y). From Figure 2 one has (ha, ab, ac, 
dd) = (6e, af, dg, 6h). 
The most probable one-round differentials (thus far known) which may be of use 
in differential cryptanalysis are of the form 

x @ x* = (XI 0 x; , xzmx; , xsmx;, x4 0 x;) (9) 

(a lp)  = (1 i%,oio;1ioiob,o)  or ( ~ ~ ~ i ~ a ~ ~ ; ~ ~ ~ b ~ ~ i ~ )  (10) 

Here 0, in the input difference Q denotes a (fixed) odd integer between 1 and 
2" - 1, i.e. 0, E {l, 3, ..., 2" - 1) and o b  in the output difference p is a (fixed) 
element of a subset of the odd integers, where this subset is dependent on 0, 

and will be specified. 
This class of differentials is referred to  in ([5], Ch. 5) aa "differentials based 

on the trivial transparency of the MA structure". The idea is to choose the input 
difference a such that the probability P((Cp,Bq) = ( 1 , O ) )  is maximired. This is 
achieved by fixing , e.g., XI,  X3 and choosing the difference of the other input 
blocks appropriately. 
In (151, Ch. 5 ,  Property 7) the values for a were determined by a direct compu- 
tational search: 
For n = 2,4,8 and 16 and for a of the fown (1, o,, 0,O) or (0, 0, oa, 1) where Oa 
is an odd integer between 1 and 2" - 1 

P((dp,dq) = (1,O)lAX = a) = maxP((dp,aq) = (1,O)lAX = cr) 
U 

- - 2-4-1). (11) 
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Fig. 2. The round function of IDEA and notation used for analysis. 

If we already restrict to input differences with 6d = 0, this computational fact 
can even be proved analytically for every integer n of interest. 

PropositionS. Let n 2 2 be an integer such that 2" + 1 is prime. Suppose the 
input diflerence AX b of the form AX = (1, ab, 0,O). Then the probability 

P((6Pl a!?.) = (1, o)lAx = a) (12) 

is maximized by  taking a = (l,oa,O,O), where 0, is any (fi2ed) odd integer 
between 1 and 2" - 1, and this probability is 2-(''-I). 

Proof. Denote by ii the bit-by-bit complement of the n-bit number a. We start 
with the fact that for any such a 

a = (A,  10 ... 0,e) 
a* = (A, 10 ... ole) 6 a = O w  
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where A is some [n - (I + I)]-bit number, I ~ { 0 , 1 ,  ...,n - l}, a, a* contain 1 
consecutive 0's in their binary representation and 8 c {O, 1). 
Moreover, 6a = 0 e aQa* = 1. 
For 8 given difference a b  we consider all possibilities such that 

Obviously, ab must be an odd number in order the least significant bits in (13) 
to be equal, so suppose 6% = 0, 2 1 fixed. 
We always get one (positive) solution (f,r) with (fly) = (h,h*)  by solving 
the system of equations 

h +  h* = 2" + 1 
f - f *  = o ,  

Hence f = h = 2Y-l + (oa + 1)/2, f* = 2*-1 - (oo - 1)/2. Every other pair 
(f, f*)  with condition (13) besides f - f *  = 0, satisfies the conditions 

Here Z is the number of consecutive 0's in the binary representation of h and f ,  
denotes the i-th bit in the binary representation o f f .  We show that the number 
I is uniquely determined by the difference 0,. Suppose, on the contrary, that we 
have pairs ( f  , f *), and ( k ,  k*) both having difference o. and satisfying conditions 
(15),(16),(17) for integers I and I ' ,  respectively, with I' < I ,  say. Then already 
ki = &* for Z+1 2 a > I'+l. Compared to the bitsin (f, f*),these bits necessarily 
contribute to a change in the difference k - k* of the form 21'+2 - 0, where o 
is an odd integer. But this change cannot be compensated by simultaneously 
complementing (some or all) bits k; ,  k: for a > I + 1 or i = 0, as such a change 
would be of the form 21 .01 + E , E  = 0 or f2, where 01 is odd and where j 2 
I + 2 > I' + 2. As a consequence we have 

- The number I can be determined out of the system of equations (14) 
- One gets all possibilities for (fl f*) out of the solution of (14) by either simul- 

taneously complementing some or all bits in f and f* which agree, i.e., for 
1 5 i 5 I + 1, or the most significant bit. 

As the number of equal bits in (f, f*) is 1 + 1, the number of possibilities for f 
is 2It2, or the probability to get an f of this form is 2-"t1+'. The probability to 
get a h fitting this I is 2-l-I. Hence, if we choose L and d (or f and h) randomly, 
the probability for f @ h = f' @ h' to hold is 2-n+'+2 - 2-'-l = 2-"+l. Note 
that this probability is independent of the initially chosen 0,. 
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As a consequence of Proposition 3 we get 

Proposition4. Let n >_ 2 be an integer such that 2" + 1 i s  prime. Suppose the 
input diffenence AX i s  of the form AX = (l,oa,O,O) where 0, i s  a fized odd 
integer between 1 and 2" - 1 .  Then 

P ( ( b v ,  dw)  = (1,O)) = 2-"+l (18) 

Proof. aw = 0 implies dt = 0, as d g  = 0. Hence dq = 0 as a s  = 0 and ar = 0. 
This means that (6u, d w )  = ( 1 , O )  (bp, dq)  = ( 1 , O ) .  Therefore Proposition 3 
applies. 

In order to get also a statement for 6% and by, we compare f @ u with f' GI u 
and similarly, h @ u with h' @ u. 
As observed in the proof of Proposition 3 the chosen difference on determines the 
number I of consecutive 0's in h in order to satisfy the equation f h* . 
We have by = 0 exactly if aU these consecutive 0's together with the subsequent 
bit 1 remain unchanged after XORing with u. This means that u, = 0 for 1 5 
i 5 I +  1. As I takes its values in (0,1,2, ..., 2" - 1) uniformly and independently 
off  and I s ,  this event happens with probability 2-I-l. 
On the other hand, the difference on may change into a difference az by XORing 
f with u. A change by i 2  happens if the least significant bit is complemented. 
Moreover, a change necessarily also happens, if some of the bits fi, I +  1 < a < n, 
are complemented. Note that the change in difference is always an even number. 
Therefore the output difference is always an odd number 4. The Probability 
that f @ u - f' @ u = o,, i.e., that u, = 0 for i = 0 and I + 1 < i < n - 1, 
is 2-"+'+l. As the bits of u causing changes in ax and 6y are disjoint ezcept 

the differences az and by remain unchanged simultaneously iff u = 0 or 
u = 2"-'. The probability for this event is 2-"+l. 
Depending on on (and therefore on i), output differences AY = (l,O,q,,O) for 
ob in a restricted set of odd numbers are possible. Hereby all differences AY 
for a realizable Ob have the same probability. In particular, Ob = on is always 
realisable. 
Thus our considerations together with Proposition 4 prove the following result: 

h = f' 

Theorem6. Let n 2 2 be an integer such that 2" + 1 is a prime number and 
let Oa denote an arbitrary odd integer between 1 and 2" - 1.  Then 

P(AY = (llO,0a,O)(AX = (1,0a,0,0)) = 2-'("-'). (19) 

This extends a result in ( [ 5 ] ,  Ch. 5 )  from on = 1 to arbitrary odd integers. 

Theorem 5 deserves some remarks: 
Instead of differentials (a, p) = (1, o,, 0,O; l , O , O b ,  0) one can also consider dif- 
ferentials of the form (Q, p )  = ( O , O ,  on, 1; 0, ob, 0,1) .  Analytic considerations as 
well as experiments show that a result equivalent to Theorem 5 also holds for 
this class of differentials. 
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In Proposition 4 we have seen that probabilities for output differences restricted 
to the first two output subblocks are much higher than the probability given in 
Theorem 5 for differences considered over all output subblocks simultaneously. 
Our considerations leading to Theorem 5 show that depending on the integer 1, 
and therefore on the input difference o,, a similar statement is still true, if we 
restrict to  differences in only three of the four output subblocks: 

P((6u,aw,6y)  = (l,O,O)lAX = (l,o,,,O,O)) = 2-"+' .2-'-' - - 2-"-' (21 j 
Here 1 is the number determined by equations (14) for given o,, e.g., for 0, = 1 
one has 1 = n - 2, and hence these two probabilities are 2-" and 2-2("-1) 
respectively. The other extreme case is 1 = 0, which occurs, e.g., if oa = 3. The 
probabilities in (20) and (21) are then 2-2(R-') and 2-", respectively. 

4.1 

The probability derived in Theorem 5 for the class of differentials (a ,@)  = 
(1, o,, 0,O; 1,0 ,  oh, 0) is independent of the subkeys Z:'), ..., Zil) of one round. 
Nevertheless, the known occurence of (part of) such a differential for a known 
plaintext pair (X, X') with difference a allows to derive considerable information 
on the subkeys ,Ti'), ,Ti'), 2:') and Zi') .  

Suppose a plaintext pair (X, X') with difference A X  = (1, o,, 0,O) is sub- 
mitted and produces the known (or anticipated) output difference Su = 1 (or 
equivalently aw = 0) after one round. Hence i = t'. As p = p' this implies 
u = u' as r = r*, and hence q = q'.  So we know that with this pair (X,X*) 
of plaintexts the event h @ f = h' f' has occured. (According to Proposition 
4 for IDEA we have to make 215 trials in the average until this event OCCUIS). 

Suppose now 0, = 1. Then the equations (14) give 1 = 7s - 2, so there remain 
only four possibilities for h, namely 0 = (0, ..., 0), 1 = (0, ..., l), 215 = (1,0,  ..., 0) 
and 215 + 1 = ( l , O ,  ... 0, 1). Hence for known X there remain only four possi- 
bilities for 2:'). (In addition, the least significant bit of ,Ti1) is determined). 
Similar (but slightly weaker) conclusions can also be drawn on the subkey Z $ l )  
for differentials of type (a ,P)  = (0, 0, o,, 1; O , O b , o ,  1). 

On the opposite side, suppose 0, is such that the equations (14) give 2 = 0. 
This is the case, e.g., for 0, = 3. Then there remain only four possibilities for f ,  
namely 2"-' + (0, + 1)/2, 2"-' - (0, - 1)/2, (0, + 1)/2 and -(oa - 1)/2. Thus, 

Information on Subkeys for Known Input-Output Differences 

if X is supposed to be known, there remain only four possibilities for 2, ( 1 )  . 

5 Analysis of IDEA with a reduced number of rounds 

The aim of this section is to give estimates for the computational complexity 
to break the first few rounds of IDEA by combining known results as well as 
the arithmetic properties we have found in previous sections. In our discussion 
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we are unable to break more than 2 rounds of IDEA but a (rough) estimate 
indicates the number of rounds that are at least needed so that a complete 
exhaustive search will be necessary in order to find the secret key. We outline 
first a proposal how to break a 2-round IDEA. 
2-round IDEA: The problem of analysing a 2-round IDEA is split up into 
determining the subkey blocks 2;') and Zf) (in the MA structure of the second 
round) under the assumption that the output (Y{2)l..,lY~2)) after the second 
round (without permutation PI and without "output transformation") is known, 
and then analysing a "one and a half' round IDEA (i.e., the first round with 
output transformation). 

The idea is to  make a search over Z P ) ,  Z F ) ,  by composing the 2-round IDEA 
block cipher, denoted by F ( x ,  k), with the involution In (see Figure 2) with a 
chosen pair ( Z p ) ,  Zf)) of key subblocks. Note that this composition In o F 
agrees with the one and a half round IDEA provided we have found the correct 
pair (ZP', Zf)). We further observe that the partial distributive law applied 
to the MA structure is of limited use to determine ZP), Zp), as this would 
need simuZtaneow knowledge of the differences - t(')* and d2) - &)* in the 
second round. But the final XOR's in the involution In leave many choices in 
general for these differences, even with some knowledge of input differences to  
In (e.g., using differentials in the first round). Therefore we make an exhaustive 
search over (Zf), .@I). A choice ( Z C ) ,  Zf)) could be tested for correctness by 
choosing plaintexts X, X' with AX = (1, 1,0,0), according to  the differentials 
studied in Section 4. A faster method appears to be based on a consideration in 
[5] and essentially going back to [4], namely that for n = 16 

~ ( 6 ~  = 1, bw = 0, b2 = 0, ay = 216 - 1 (AX = (o , i  , o,o)) = 2-9. (22) 

Thus we choose plaintexts X, X' with AX = (0, l , O ,  0). Then by (22) and by 
the (refined) partial distributive law applied to the key subblock Zc) and with 
negative input difference -ay = 1 we have, at the beginning of the second round 
(using notation similar as in Figure 2), 

P(he(2) = 1, f ( 2 )  f ( 2 ) *  = 22;') EE 1, g(2) g(2)* = 2 ~ p )  1, 

h(2)* - h(2) = ~ ( 2 ) )  4 2-9. (23) 

Although the (constant) key subblocks in (23) are unknown, and (22) is not a 
differential for IDEA in terms of difference as defined by (9), we may still use 
relation (23) as a test whether we have found the correct pair (Z~) ,Zf) )  in an 
exhaustive search. This is based on the (unproven but plausible) hypothesis that 
for chosen plaintexts X, X' with AX = ( O , l , O , O )  the outputs (u, 2, w,y) and 
(u' , z' , w' , y') of the cipher In o F satisfy: 

If the MA structure in the involution In has been loaded with the correct 
pair (Z5 (2) , 2, (2) ) of key subblocb there ezist odd integer numbers o,, ow and an 

P ( 6 v =  1,zEflz' =o , ,wmw*  =ow,y*  - y = c t r )  

integer c, (which in geneml am not unique) such that the probability 

(24) 
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is significantly higher than the corresponding probability for most other (incor- 
rect) pairs of key subblocka, 

This hypothesis has been tested and verified experimentally in the case of 
the IDEA mini-cipher with n = 4. The ambiguity of the constants o,, 0, and 
cv is due to the (experimental) fact that there exist key-dependent one-round 
differentials of high probability. However, our experiments suggest, that for most 
keys the cipher I n  o F has no such differentials. 
Informally, a pair (Zf),Zf)) is accepted to be correct if for this pair the corre- 
sponding expressions in the output subblocks of the composition In o F satisfy 
(24) for suitable 16 bit integer constants. According to (23) the computational 
complexity of this search is roughly of magnitude 2 . 29 . 232 = 242, which is 
on the verge of practical feasibility. We are thus reduced to find the other key 
blocks by breaking (part of) the one and a half rounds of IDEA. According to 
Section 4.1 the number of possible subkeys Z:'), ..., Zi') can be reduced to 256 
possibilities in less than 220 trials. In order to determine the other key subblocks 
of the first round we make explicit use of the key scheduling. Recall that the 128 
bit user-selected key is partitioned into 8 subblocks that are directly used as the 
first eight key subblocks, where the ordering of the key subblocks is defined as 

cyclic shifted to the left by 25 positions to give the next 8 key subblocks, and SO 

on. 
Suppose the key subblocks Zj2),Zf) have been determined by the procedure 
as described above. Then according to  the key scheduling Zp) agrees with the 
last 7 bits of 21') (which may reduce the uncertainty in the previous estimate 
of 21") and the first 9 bits of 2:'). Similarly, Zp) determines the last 7 bits of 
Zi') and the first 9 bits of 2:'). We complete our knowledge of the remaining 
key subblocks entering the one and a half rounds of IDEA by a search over 
the 7 unknown bits of Z:'). For this we choose one of the remaining 256 (or 

7 bits of 2:') for given input determines (u ,  w ,  2, y) and thus (2i2), ..., Zi"), as 
the output is supposed to be known. Hence the actual choice of the eight key 
subblocks can now be found by at most 2'. Z8 = 215 trials. This shows that the 
previous search for the pair (Zi" , ,ZC))  is more time consuming than breaking 
one and a half rounds of IDEA. Hence an optimistic estimate (from the point 
of view of a cryptanalyst!) predicts about 242 trials to  be necessary for breaking 
the first two rounds of IDEA. 
r-round IDEA, r 2 3: For the estimation of the computational complexity 
of more than 2 rounds we first note that to  date no key-independent 2-round 
differentials with high probability have been found (see [5]). This has also been 
confirmed by experiments with a mini-IDEA for n = 4. Moreover we have found 
no arithmetic property that might facilitate breaking more than two rounds. 
Thus to  find the subkeys Zp), ..., Z y )  we have no better method than exhaustive 
search. Therefore, the computational amount to break a two and a half round 
IDEA is at least 242 - 264 = 2". 

follows: Z;'), Z!jl), ..., 2, (1) , Z, (2) , ..., Zc), .... The 128 bit user-selected key is then 

less) possibilities of the quadruple (Z!'), ..., 2, (1) ). Then every choice of the last 
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Proceeding further, breaking ‘a 3-round IDEA needs a full exhaustive search. 
This suggests that the newly found arithmetic properties for random keys give 
no advantage in the cryptanalysis of the full IDEA block cipher containing 8 
rounds. However these properties show the importance of the fact that in the 
design of IDEA three different group operations have been chosen. 
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