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Abstract

Background: Clustering is crucial for gene expression data analysis. As an unsupervised exploratory procedure its

results can help researchers to gain insights and formulate new hypothesis about biological data from microarrays.

Given different settings of microarray experiments, clustering proves itself as a versatile exploratory tool. It can help

to unveil new cancer subtypes or to identify groups of genes that respond similarly to a specific experimental

condition. In order to obtain useful clustering results, however, different parameters of the clustering procedure

must be properly tuned. Besides the selection of the clustering method itself, determining which distance is going

to be employed between data objects is probably one of the most difficult decisions.

Results and conclusions: We analyze how different distances and clustering methods interact regarding their

ability to cluster gene expression, i.e., microarray data. We study 15 distances along with four common clustering

methods from the literature on a total of 52 gene expression microarray datasets. Distances are evaluated on a

number of different scenarios including clustering of cancer tissues and genes from short time-series expression

data, the two main clustering applications in gene expression. Our results support that the selection of an

appropriate distance depends on the scenario in hand. Moreover, in each scenario, given the very same clustering

method, significant differences in quality may arise from the selection of distinct distance measures. In fact, the

selection of an appropriate distance measure can make the difference between meaningful and poor clustering

outcomes, even for a suitable clustering method.

Background
Microarray development has enabled researchers to

gather huge amounts of data from the most diverse

biological phenomena. A single microarray is capable

of determining expression levels for virtually all the

genes of a particular biological sample of interest.

Once combined, related microarray experiments give

rise to what is usually referred to as gene expression

data, a highly dimensional dataset with measurements

over thousands of genes and few biological samples

(microarrays). Obtaining the data is, however, only the

first step towards the laborious path that comprehends

its analysis.

To transform gene expression data into knowledge,

efficient and effective computational methods are

required. Methods from Data Mining, Machine Learn-

ing, and Statistics have been applied since the birth of

the gene expression data analysis field [1-3]. A fre-

quently used method is clustering, as its unsupervised

nature, allows the creation of new hypothesis from gene

expression data. In the gene expression data domain

clustering has two distinct applications. The first one is

obtained when biological samples are clustered together.

In this application scenario the main objective is to

detect previously unknown clusters of biological sam-

ples, which are usually associated with unknown types

of cancer [4]. Since the seminal work presented by

Golub et al. [5], the clustering of cancer samples has

become a routine in high throughput cancer studies,

such as [6-9]. Once cancer signatures are identified on a
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genomic level, specific drugs can be developed, improv-

ing treatment efficacy while reducing its side effects.

The second clustering application concerning gene

expression data is found when genes that show similar

expression patterns are clustered together [2,10-12]. In

this particular application scenario, different microarray

experiments are usually performed with the same biologi-

cal sample in different time instants for a given process of

interest, e.g., cell cycle. Such experiments have also been

employed to study cell response to different types of

stress conditions, e.g., starvation, and to drug treatments,

e.g., [13,14]. Usually such time series are measured over

few time points, have distinct time scales and frequencies.

The clustering of gene time-series can help researchers to

determine genes that have similar function or are co-

regulated, just to mention a few of its applications

[10,11,15].

Taking into account the peculiarities of each one of the

aforementioned scenarios, several clustering methods

have been proposed for the problem of tissue clustering,

e.g., [16-19], and short gene time-series data, e.g.,

[15,20-22]. Moreover, classical methods from the cluster-

ing literature have been borrowed and employed with

success to analyze gene expression microarray data,

including, but not limited to, hierarchical methods [23],

k-means [24], and k-medoids [25]. Given the plethora of

clustering methods, a user usually faces the question:

which clustering method is more suited to my analysis?

To answer such a question numerous theoretical and

empirical studies have been conducted [4,10,11,26-30].

There is no doubt that a suitable clustering method is

needed to achieve good quality clustering results. However,

selecting a clustering method is one of several parameters

that comprise the clustering procedure. Provided that most

clustering methods are based on distance calculations, i.e.,

clusters are determined based on distances between

objects, selecting the distance between pairs of objects to

be employed by the clustering method is at least as impor-

tant as selecting the clustering method itself [1,23,31-33].

Yet, the distance parameter has often been overlooked in

what concerns the analysis of gene expression data, as

pointed by [1,31,32,34]. If on one hand diverse studies

addressed the issue of clustering method selection, on the

other hand just a few tried to provide guidelines regarding

the selection of distances for gene expression data. Thus,

when the question “which distance measure is more suited

to my analysis?” is asked by the user, there is still no pre-

cise answer to this date.

In view of gene expression data, objects are deemed

similar if they exhibit trend or shape similarity [15].

Although this somehow limits the number of choices

from the whole universe of distance measures, there is

still a considerable variety of measures capable of identi-

fying trend similarity available in the general clustering

literature. Additionally, some distances have been speci-

fically introduced aiming the clustering of gene time-

series, e.g., [15,35-37], taking into account its temporal

characteristic. Despite the variety of distances available

for gene expression data clustering, few previous works

have addressed the problem of distance evaluation.

Theoretical reviews highlighting the importance of

selecting appropriate distances for the clustering of gene

expression data have been conducted by [10] and [38].

Although such studies opened venues for further investi-

gation on the subject of distance measures, they do not

provide any guidelines on how to select a particular one.

Besides presenting and reviewing several different distance

measures these studies do not suggest which distance

measures should be preferred, favored, or avoided.

One of the first empirical studies concerned with the

comparison of distances for gene expression data was con-

ducted by [39]. The authors focused on the comparison of

three different distances for the clustering of short gene

time-series. Measures were compared considering three

different datasets. In [40] the authors considered five dif-

ferent distance measures during the comparison of clus-

tering methods for gene time-series clustering. Although

[39,40] focus specifically on the clustering of gene time-

series data, neither consider distance measures that were

specifically proposed to this scenario. In fact, most dis-

tance measures specifically designed for gene time-series

were introduced after such studies.

Considering the clustering of cancer samples, different

distances were evaluated by [4], [30], and [41]. In [4] the

authors consider the largest collection of datasets so far,

35 datasets from both cDNA and Affymetrix microarrays.

In both [4] and [30], however, the authors are primarily

interested in the comparison of clustering methods rather

than the distances themselves. Furthermore, we note that

even in the study performed by [41], in which the authors

are mainly concerned with the evaluation of different dis-

tance measures, only a small number of different distances

is taken into account.

Distance measures are also compared by [42] and [43]. It

is worth noticing, however, that in these two studies only a

small set of both distances and datasets are considered.

Furthermore, the authors take into account, without any

distinction, both the clustering of cancer samples and the

clustering of gene time-series, which are fairly different

problems by nature. In addition, distance measures specifi-

cally designed for gene time-series data are not considered

in these studies. Given that two quite different application

scenarios are combined into a single analysis we believe

that conclusions from these two works may be biased and

should thus be examined with care.

The first large study analyzing different distances regard-

ing gene expression microarray data was performed by

[34]. This was the first comprehensive empirical study that
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evaluated distance measures for both gene time-series and

cancer data independently. Differently from previous

studies such scenarios were considered separately for ana-

lysis, given their different characteristics. The authors also

reviewed and evaluated, for the first time, distances that

were explicitly introduced for short gene time-series

clustering.

This paper is complementary to our previous work

[34]. There, we evaluated distances without applying a

clustering method. This was possible due to the concept

of intrinsic separation ability, which compares directly a

distance measure against a desired ground truth solu-

tion, i.e., a reference partition. Therefore, there is no

guarantee that the distance measures that provided good

performance in [34] are going to behave well when

employed in conjunction with a particular clustering

method. In this paper we further explore the conjectures

raised in [34], filling the gap left by this particular work.

Along with [34] our work establishes a solid guidance

regarding the selection of distances for gene expression

data clustering.

Results
We take into account 15 different distance measures.

From this total, 6 are correlations, namely, Pearson (PE),

Goodman-Kruskal (GK), Spearman (SP), Kendall (KE),

Weighted Goodman-Kruskal (WGK) and, Rank-Magni-

tude (RM). We also include in our analysis four “tradi-

tional” proximity measures, i.e., Cosine similarity -

adapted as distance (COS), Euclidean distance (EUC),

Manhattan distance (MAN) and Supreme distance

(SUP), the last three being special cases of the Minkowski

Distance. Finally, we consider 5 measures that were tai-

lored for clustering short gene time-series, namely, Jack-

knife (JK), Short Time-Series Dissimilarity (STS), Local

Shape-based Similarity (LSS), YS1, and YR1. From now

on, we refer to all the aforementioned measures by the

term distances, since all of them are adapted to distances.

For their definitions, please refer to the Methods Section.

We evaluate the aforementioned measures with four

different clustering methods commonly employed to the

clustering of gene expression data [4,11,30,44,45], i.e.,

k-medoids (KM) [25] and three hierarchical clustering

methods [23]: Complete-Linkage (CL), Average-Linkage

(AL) and, Single-Linkage (SL). At this point, it is impor-

tant to explain our preference for k-medoids over the

more popular k-means. Considering k-means and the

well-known Euclidean distance, the arithmetical mean of

the objects that belong to a cluster defines its centroid.

For distance measures other than Squared Euclidean

distance, however, the centroid calculation must be

redefined to maintain k-means optimization and conver-

gence proprieties [46]. To avoid convergence problems,

we use k-medoids, a counterpart of k-means in which

the centroid is replaced by the medoid (most represen-

tative object in the cluster).

Our analysis is performed on a total of 52 real micro-

array datasets, comprising both the clustering of gene

time-series (17 datasets) and the clustering of cancer

samples (35 datasets). Datasets from gene time-series

and cancer samples come from two benchmark sets,

introduced in [34] and [4], respectively (see the Methods

Section for details). Different evaluation settings are

considered to provide a broad view of the general per-

formance of the distances under evaluation. Such sce-

narios are intimately related to the type of data under

evaluation, as we discuss in the following.

For the cancer datasets the number of clusters of each

dataset in known a priori, as well as the cluster mem-

berships for objects in these datasets, i.e., we have a

ground truth. In such a case, one can employ measures

such as the Adjusted Rand Index (ARI) [23,47]. This

index indicates the degree of concordance between a

partition obtained with the pair clustering method-

distance measure and the reference partition from the

dataset in question.

Note, however, that for gene time-series data no class

labels are available. That is, we do not know a priori

cluster memberships for the objects in these datasets. In

fact there are a few labeled or synthetic gene expression

time-series datasets proposed in the literature. We note,

however, that these datasets have a small number of

genes and do not represent a real scenario in which one

has at least one thousand genes to cluster. In this case,

a different evaluation procedure is needed. For instance,

one can evaluate results based on their agreement with

available biological knowledge, e.g., from the Gene

Ontology [48], as we describe during the discussion of

the gene time-series clustering results. We summarize in

Table 3 which evaluation scenarios are considered for

each type of data (# denotes number). Details for each

evaluation scenario are given along with the discussion

of its results.

Finally, our primary interest lies on the comparison of

distances rather than on the assessment of clustering

methods. Note, however, that distance measures are

always employed with a clustering method and not as a

single entity. It is clear, thus, that the clustering method

introduces a bias that is combined with the bias pro-

vided by each distance. Therefore, during our evaluation

we choose to comparatively evaluate distances solely

when considering the very same clustering method,

unless clearly stated otherwise. This way, we first set the

bias of the clustering method, providing a common

ground for which the biases of different distances can

be taken into account.
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Cancer sample clustering
In the following we present results for cancer datasets.

Fixed number of clusters

In the first evaluation scenario, we generate partitions

containing the same number of clusters as defined by the

reference partition, i.e., the original labeling of each data-

set. Resulting partitions are then compared based on

their Adjusted Rand Index (ARI) [23,47] values, which

evaluate the capability of each distance in recovering

partitions in conformity with the structure defined in the

ground truth. ARI is defined and described in the Meth-

ods Section.

Results for this scenario are presented in Figure 1(a).

Considering the Average-Linkage clustering method and

Affymetrix data, practically all the correlation coefficients

employed display similar mean ARI results, whereas the

best results are provided by COS. For cDNA datasets, JK

and RM present the best mean results, followed by COS.

Still regarding this type of data, WGK and PE provide the

worst results among the correlation coefficients. For both

data types, distances that are based solely on ranks,

namely, GK, SP and, KE, present similar behavior among

themselves, whereas “traditional” distances provide the

worst results.

For Complete-Linkage and k-medoids clustering meth-

ods JK, RM and PE stand out among the other correlation

coefficients, except for cDNA datasets with Complete-Link-

age, for which RM shows poorer results than JK and PE.

Regarding correlation coefficients that take into account

only ranks, both KE and GK, which are measures not

extensively adopted in gene expression analysis, show in

particular cases superior mean results when compared to

Table 1 Summary of the cancer benchmark data

employed in our evaluation.

Name nc no nf

armstrong-v1 2 72 1081

chowdary 2 104 182

golub-v1 2 72 1877

gordon 2 181 1626

laiho 2 37 2202

Affymetrix nutt-v2 2 28 1070

nutt-v3 2 22 1152

pomeroy-v1 2 34 857

shipp 2 77 798

singh 2 102 339

west 2 49 1198

yeoh-v1 2 248 2526

armstrong-v2 3 72 2194

dyrskjot 3 40 1203

golub-v2 3 72 1877

nutt-v1 4 50 1377

bhattacharjee 5 203 1543

pomeroy-v2 5 42 1379

yeoh-v2 6 248 2526

su 10 174 1571

ramaswamy 14 190 1363

alizadeh-v1 2 42 1095

cDNA chen 2 180 85

bittner 2 38 2201

bredel 3 50 1739

lapointe-v1 3 69 1625

liang 3 37 1411

alizadeh-v2 3 62 2093

tomlins-v2 4 92 1288

alizadeh-v3 4 62 2093

garber 4 66 4553

khan 4 83 1069

lapointe-v2 4 110 2496

risinger 4 42 1771

tomlins-v1 5 104 2315

Columns display name of the data, number of clusters (nc), number of objects

(no) and, number of features (nf ), respectively.

Table 2 Summary of the time-series benchmark data

employed in our evaluation.

Name Source noo nfo nf

1M sorbitol 1030 6152 7

diauxic shift 1016 6152 7

complete DTT 962 6152 7

heat shock 2 999 6152 7

1.5mM diamide 1038 6152 8

2.5mM DTT Gasch et al. (2000) 991 6152 8

heat shock 1 988 6152 8

1mM menadione 1050 6152 9

constant 32nM H2O2 976 6152 10

nitrogen depletion 1011 6152 10

YPD 2 1022 6152 10

YPD 1 1011 6152 12

elutriation 935 6178 14

cdc 28 1044 6178 17

alpha factor Spellman et al. (1998) 1099 6178 18

cdc 15 1086 6178 24

sporulation Chu et al. (1998) 1171 6118 7

Columns display name of the data, source, number of objects originally in the

dataset (noo), number of filtered objects (nfo) and, number of features (nf ),

respectively.

Table 3 Evaluation scenarios applied to each type of

data.

Data Type

Evaluation Scenario Cancer Sample Gene Time-Series

Fixed # of Clusters ✓ -

Variable # of Clusters ✓ -

Estimated # of Clusters ✓ ✓

Robustness to Noise ✓ -
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the also rank-based SP. Among the “traditional” distances,

SUP provides the worst results. For the k-medoids method,

COS, EUC and MAN provide competitive but slightly

worse results than the top distances (RM, JK and PE).

As reported in [4] and [41], the Single-Linkage clus-

tering method leads to the poorest recovery rates

among the clustering methods employed. Our results

support and reinforce the results presented in [4,41],

Figure 1 Cancer Datasets Results: Class recovery obtained for cancer datasets regarding the three evaluation scenarios under

consideration, subfigures (a), (b), and (c). Bars display mean results for each pair of clustering method and distance function in different

types of datasets: cDNA (left) and Affymetrix (right).
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because even with the use of different distance mea-

sures, the Single-Linkage method clearly does not stand

as a good choice for the sample clustering scenario.

We applied statistical tests (see Methods Section for

description) in separate for each clustering method to

detect which distances provided statistically superior

results regarding their ARI values. For both cDNA and

Affymetrix, considering AL, CL, and KM clustering

methods, PE, JK, and RM provide better results than

SUP in virtually all cases. For Single-Linkage no statisti-

cal differences are suggested.

Variable number of clusters

In the second evaluation scenario we choose for further

comparison partitions that provide the best ARI values,

regardless of their number of clusters. For a given data-

set we generate partitions within the interval [2,
⌈√

o
⌉

],

where o stands for the number of objects. Note that par-

titions with number of clusters different from those

found in the reference partition may, in certain cases,

contain more natural clusters than those found in a par-

tition with the “right” number of clusters, see, e.g., [49].

We depict in Figure 1(b) results for such evaluation

scenario. In comparison to the former scenario, there is

an improvement in the results for all the pairs of clus-

tering methods and distances. This behavior is in agree-

ment with the assumption that a partition with the

“wrong” number of clusters may be better than one par-

tition with the “right” number of clusters [49]. Based on

this fact, we believe that ARI values are more important

than the actual number of clusters in the partitions, and

choose not to analyze the latter.

For Average-Linkage, RM, COS, PE and, JK provide the

best results for both data types. All correlations based on

ranks, i.e., KE, SP and GK, provide similar results among

themselves. The worst results are displayed by SUP, MAN

and EUC. Note that even the correlation that provided the

worst mean results (WGK) stands as a better alternative

than the three “traditional” distances.

Regarding Complete-Linkage clustering method, for

cDNA data JK and PE provide the best mean results. Still

for this kind of data, all the other distances provide quite

similar mean results, except for SUP, which provides the

worst mean results. For Affymetrix, JK, RM and COS

stand out as the best distances. Once again, SUP provides

the worst mean results.

When considering the k-medoids clustering method,

RM, JK, PE, COS and EUC provided similar mean results

among themselves. For Affymetrix data, MAN performs

close to the aforementioned distances. Correlations based

on ranks provide, on average, worse accuracy than pre-

viously mentioned distances. Considering only correla-

tion coefficients, WGK provides the worst mean results.

Regardless of the kind of data, SUP provides the worst

results.

The Single-Linkage clustering method shows the over-

all worst results, regardless of the distance employed.

Indeed, for this particular clustering method, all correla-

tion coefficients display very similar results for cDNA

and Affymetrix datasets. In particular, EUC, MAN and

SUP provide the worst mean results for the Single-Link-

age clustering method.

Statistical evaluation for cDNA and KM suggests differ-

ence in favor of RM over WGK. Still regarding cDNA,

regardless of the clustering method, all correlations are

superior to SUP, whereas for the AL method RM, JK, and

PE are superior to MAN and EUC. Regarding Affymetrix

the tests suggest that RM, PE (only for KM), and JK

(except for KM) are statistically superior to SUP.

Estimated number of clusters

In this evaluation scenario we simulate a real application

in which the user has no knowledge on the number of

clusters in the data. For each dataset we generate parti-

tions within the interval [2,
⌈√

o
⌉

], where o stands for

the number of objects. Differently from the previous

scenario, however, the best partition for each pair of

cluster method and distance is chosen by the Silhouette

criterion [50] – defined in the Methods Section.

We proceed as follows: (i) the best partition for each

pair of clustering method and distance, as chosen by the

Silhouette, is selected for comparison; (ii) we compute the

Adjusted Rand Index (ARI) for the best partitions, i.e., we

compute the ARI for the best partition selected by the

Silhouette for each pair of clustering method and distance.

In this particular step, we are assessing how good are the

partitions selected by the Silhouette in step one, for each

pair of clustering method and distance, according to the

external criteria; (iii) finally, we compare the ARI values

for each of the partitions as computed in step (ii). Note

that, differently from the previous two scenarios, class

label information is employed only to validate the results,

i.e., it is not employed to select the best partition for each

pair clustering method-distance, which is not possible in a

real clustering application.

Results are displayed in Figure 1(c). Besides the com-

parison of the distances themselves, it is quite interest-

ing to observe that k-medoids does not provide, in real

applications (as simulated by this scenario), significant

differences when compared to hierarchical methods.

Note that differences among clustering methods are

more evident in the previous evaluation scenarios,

regardless of the distance employed. More striking than

the previous observation is the fact that, despite the

similar behavior shown by clustering methods in this

scenario, different distances do provide quite different
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results (in the remaining of the analysis we do not take

into account Single-Linkage, which produced, once

again, the worst results, regardless of the distance mea-

sure employed).

When considering cDNA datasets, JK and PE show

the best overall results, for all the clustering methods.

Considering results for Affymetrix datasets, it is reason-

able to suggest that four distances provide superior

results, namely, JK, RM, COS, and PE. In fact, for Affy-

metrix data, RM shows very competitive results in com-

parison to COS, PE and, JK. Correlations based on

ranks once again show inferior accuracy with respect to

other correlation measures, for both types of data.

When compared against other correlations WGK shows,

in some cases, smaller differences in accuracy (in the

former two scenarios this correlation coefficient pro-

duced, in a number of cases, the worst results among all

the correlations under evaluation). Finally, SUP, MAN

and, EUC appear with the lowest accuracy for all the

clustering methods considered.

Statistical evaluation suggests that for AL, regarding

cDNA, JK and PE are superior to SUP and MAN,

whereas for Affymetrix, SP, JK, COS, and PE are superior

to EUC. Considering CL, for both data types JK and PE

are superior to SUP. For KM and cDNA data, all correla-

tions and COS provide better results than MAN and

SUP, whereas for KM and Affymetrix, RM, JK, and PE

provide better results than EUC.

Robustness to noise

We also perform experiments to evaluate the robustness

of distances after noise injection. To perform these

experiments we choose four particular datasets, two

from cDNA and two from Affymetrix, in which all the

distances display the same (or at least close) ARI values

regarding the original data, i.e., without any noise addi-

tion. In such a manner we believe that an impartial

comparison of the distances is possible, given that they

behave similarly for the original data, i.e., data with no

noise.

We artificially introduce noise in the four selected

datasets by: (i) choosing a% expression values at ran-

dom (each point corresponds to the expression level of

a pair sample - gene) and; (ii) assigning random values

(between the maximum and minimum values from the

original data) to such points. We examine a values

between 1% and 20% with 100 noisy datasets for each a

value.

Results of such evaluation are shown in Figure 2

(cDNA top and Affymetrix bottom). We analyze results

for the distances that displayed a good accuracy (in

terms of ARI) in the preceding evaluation scenarios,

namely, RM, JK, COS, and PE. Given their popularity,

we also show results for SP and EUC.

Regardless of how much noise is introduced in the

datasets SP shows the best overall robustness. Given

that SP considers solely ranks in its formulation, larger

perturbations in the data are needed to cause a decrease

in its final accuracy. Although SP is more robust than

RM regarding noise, RM shows better overall results

when compared against the remaining distances. COS,

JK and PE show only small differences from each other.

EUC, in such experiments, appears with the worst

robustness to noise.

Even though it shows advantages over other measures

regarding robustness to noise, SP provides in the pre-

vious three evaluation scenarios, worse accuracy (in

terms of ARI) than COS, RM, JK, and PE. With this in

mind, we believe that RM should be the first choice for

cancer data, given that: (i) it is within the best distances

in the past evaluations and, (ii) although it is more sen-

sitive than SP in the presence of noise it shows

increased robustness when compared to COS, JK and,

PE. Overall, RM shows a reasonable balance between

robustness in the presence of different levels of noise

and accuracy, with respect to ARI.

Gene time-series clustering

For time series data, we consider only the third evalua-

tion scenario (estimated number of clusters) given that

class labels are not available. Performing noise experi-

ments in such datasets is also impractical, due to: (i)

lack of class labels, (ii) the type of evaluation employed

(pairwise), which makes comparison among measures

for different noise levels not straightforward, and (iii)

the amount of time required to biologically evaluate all

partitions. More exactly, for each dataset we generate

partitions within the interval [2,
⌈√

o
⌉

], where o stands

for the number of objects. The best partition for each

pair of cluster method and distance is chosen by the Sil-

houette criterion [50] – defined in the Methods Section.

Given that we do not have a reference partition for

time-series datasets we cannot employ an external cri-

terion to evaluate the quality of clustering results, i.e., in

this case we cannot employ ARI to validate the results.

To compare the results obtained with the different pairs

of clustering methods and distances, we adopt a heuris-

tic similar to the one used by [21] and [51]. In brief, the

evaluation methodology employs information available

from the Gene Ontology (GO) [48] to validate clustering

results. The validation is performed from a biological

point of view, with the best structured knowledge about

genes and their relationships available so far (as repre-

sented in the GO).

The validation procedure is as follows. For each clus-

tering result we perform a gene enrichment analysis [52]

and obtain the respective list of enriched terms that have

a p-value ≤ 0.05 within each cluster. The enrichment test

Jaskowiak et al. BMC Bioinformatics 2014, 15(Suppl 2):S2
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is based on the Fisher Exact Test, which indicates if the

overlap between genes in a cluster and in a GO term is

higher than expected by change [52]. To perform the

gene enrichment analysis we use the well-known GOstat

tool from [52]. For two result lists r1 and r2, we count the

number of times that r1 provided enrichments with smal-

ler p-values than r2 and the number of times that r2 pro-

vided enrichments with smaller p-value than r1, these are

then combined as given by Equation (1).

Comparison (r1, r2) = log

( �= (r1 < r2)

�= (r2 < r1)

)

(1)

Note that changing the order of the results under

comparison (r1,r2) or (r2,r1) changes only the sign of the

result, not its absolute value. For this comparison proce-

dure, positive values mean that r1 is better than r2,

whereas negative values means the opposite.

In brief, the evaluation procedure for gene time-series

data is as follows: (i) the best partition for each pair of clus-

tering method and distance (as chosen by the Silhouette) is

selected for further comparison; (ii) we evaluate all pairs of

results obtained based on the previous heuristic. Such an

evaluation is made on the basis of Equation (1); (iii) finally,

we compare the values obtained for all pairs of results

from step (ii).

Before comparing the distance measures themselves,

we assess the results of clustering methods, regardless of

the distance measure adopted. These results are shown

in Table 4, which summarizes results for SL, AL, CL

and KM regardless of the distance adopted for the 17

gene time-series datasets. In each table cell we show the

number of Wins/Ties/Losses for the row method with

respect to the column one. Each table cell comprises

3825 pairwise comparisons. For each cell we have two

clustering methods, each of which is evaluated with 15

distance measures in 17 datasets, i.e., 15*15*17 = 3825

pairwise comparisons between any two methods. In this

scenario the best results are displayed by KM, which is

Figure 2 Robustness to Noise for Cancer Datasets: ARI values for different noise levels (%) regarding PE, JK, SP, RM, COS and EUC.

Plots correspond to the mean ARI values for runs performed in 100 different noisy datasets with the same amount (%) of noise points. Bars

account for standard deviations.

Table 4 Wins/Ties/Losses for 15 distances and 17

datasets.

SL AL CL KM

SL – 531/370/2924 378/384/3063 385/323/3117

AL 2912/406/507 – 1903/93/1829 1710/80/2035

CL 3063/386/376 1821/106/1898 – 1803/17/2005

KM 3117/323/385 2032/80/1713 2001/18/1806 –
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closely followed by AL and CL. These three methods

provide quite competitive results among each other,

whereas the worst overall results are provided by SL.

Based on the poor results displayed by SL, we choose

not to further evaluate distances regarding it.

Figure 3(a) depicts results for AL. For this method JK,

PE and KE displayed similar results, providing better

enrichments than the remaining measures in 71% of the

cases under comparison. For AL, none of the measures is

consistently better than the others, with different measures

appearing as the top ones, depending on the dataset. It is

interesting to note that LSS and STS, two measures speci-

fically proposed for the gene clustering scenario, figured as

the worst choices (alongside SUP and MAN).

Results for CL are shown in Figure 3(b). For CL, dif-

ferences among distance measures become more evi-

dent. YR1 and YS1, which are tailored for short gene

time-series have the best enrichments in 87% and 94%

of the evaluated cases. Another distance that showed

good results for CL was RM, which provided better

enrichments than the other measures in 80% of the

cases. These results are better than the ones produced

by distances commonly employed for gene clustering,

such as PE, EUC, and SP, which provided better results

than other distances in 72%, 70% and 65% of the cases,

respectively.

We show in Figure 3(c) evaluation results regarding

KM. For this clustering method JK provided the best

results, showing better enrichments than other distance

measures in 77% of the cases under comparison, which is

12% above those found with the second ranked measure

(KE). Good results were also shown by MAN, which per-

formed better than other distances in 60% of the cases

under comparison. It is worth noting that popular

Figure 3 Gene Time-Series Results: Results for gene time-series data. Figures (a), (b) and (c) depict pairwise comparison of distances for

each clustering method. Figure (d) depicts an all against all pairwise comparison. Each cell account for the number of datasets in which the

method from the row obtained a better enrichment than the method from the column. The “hotter"/"colder” the cell the better/worst is the

row method in comparison to the column one.
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distances in the gene expression clustering literature,

namely, SP, EUC and, PE displayed inferior results to at

least five other distances under evaluation.

Statistical evaluation was conducted independently for

each clustering method. For AL and CL, all measures

(except for MAN and SUP) provided better results than

LSS and STS. Considering CL alone, YR1, YS1, and RM

also displayed better results than MAN and SUP. For KM,

all measures (except SUP) provided better results than

LSS whereas JK showed better results than STS.

To present an overview of clustering methods and dis-

tance measure pairs we conducted an all against all pair-

wise comparison shown in Figure 3(d). There, we take

into account the pair clustering method-distance mea-

sure to include both biases in the comparison. To give an

idea about the general quality of the results found we

also include two clustering methods proposed for cluster-

ing of gene time-series, i.e., Stem [53] and Model Based

clustering [20]. Regarding Stem, the number of clusters is

automatically determined, so we select for comparison

the significant clusters it finds. Considering Model Based

clustering, the Bayesian Information Criteria (BIC) [54]

statistics indicates the number of clusters.

As one might expect, Stem and Model based figured

among the top results for all 17 datasets. It is worth noti-

cing that CL, when employed with YS1 and YR1 distance

measures produced, in general, better enrichments than

Stem and in some cases Model Based. From this compari-

son it is possible to note that for a particular clustering

method, the choice of an appropriate distance measure

may provide the difference between an average result and a

result close (or better) than those produced by state of the

art clustering methods, such as Stem and Model Based.

Note that although the clustering method plays an

important role to the clustering outcome, selecting an

appropriate distance can significantly enhance its final

performance (in terms of clustering quality). To make

this clearer, let us take a careful look at Figure 3(d),

more specifically at the results produced by CL. For this

clustering method, the worst results are obtained in

conjunction with STS distance. In fact, results for CL

employing STS are as bad as results provided by the SL

method, the worst overall clustering method. However,

when CL is employed with YR1 or YS1 one can get

results as good as (or better) than those obtained with

Stem and Model Based clustering. Note that although

we are taking CL as an illustrative example, this obser-

vation also holds for other reasonable clustering meth-

ods, i.e., KM and AL (SL is an exception given the poor

quality of its results no matter the distance used).

Discussion
One of the first observations that should be made is that

the choice of distances is application dependent. Although

the problem of clustering gene expression data is some-

times considered to be a unique application scenario, this

is clearly not the case. As a matter of fact, distinct distance

measures stood out for the two different applications

under evaluation, i.e., the clustering of cancer samples and

the clustering of gene time-series data. Considering our

results, it is fair to say that some general trends were

observed. We discuss such trends in the sequel.

Cancer sample clustering

For this type of data Jackknife and Pearson displayed, in

most of the cases, the best accuracy in terms of ARI.

Cosine also figured amongst the best measures. It is

important to note here that Jackknife has quadratic com-

putational complexity, in contrast to linear time complex-

ity of Cosine and Pearson. The minor improvements

obtained with Jackknife over Cosine and Pearson do not

seem to compensate for its computational cost.

Another interesting alternative in this particular sce-

nario is Rank-Magnitude. In addition to the good results

provided for cancer datasets, Rank-Magnitude also

showed increased robustness to the presence of noise if

compared to Jackknife, Cosine, Pearson and Euclidean

distance, though it is more sensitive to noise than Spear-

man. Given that Rank-Magnitude displayed, in general, a

better accuracy than Spearman, we believe it is one of

the best alternatives for cancer datasets, with a balance

between robustness to noise and accuracy, with a rea-

sonably low running time. It is worth noticing that we

have detected little influence on the combination of the

clustering methods and distance measures in the results.

Overall, they are in agreement with the ones presented

in [34].

Gene time-series clustering

YS1 obtained along with Complete-Linkage the best

enrichments on gene expression time-series. These

results may be due to the fact that both YS1 (along with

YR1) combine a correlation coefficient with other infor-

mation extracted from the series under evaluation, thus

providing a comparison based on more information

than the ones performed by any of the other measures

considered. By internally employing Spearman, YS1

stands out as a better and more robust option than

YR1, which is based on Pearson. In this particular sce-

nario, given the small number of features, Jackknife

should be be preferred to both Cosine and Pearson, as it

provided better enrichments than both in most cases.

It is interesting to note that Local Shape-based Simi-

larity (LSS) and Short Time-Series dissimilarity (STS)

provided poor results for all methods, even though they

are tailored for the clustering of short gene expression

time-series. Regarding LSS, we believe that the short

size of the series under evaluation may prevent the
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measure to find significant time-shifts. In what concerns

the poor results displayed by STS, we believe that the

measure is hampered by its over-simplistic formulation.

We do not recommend the use of Local Shape-based

Similarity, Short Time-Series dissimilarity, and “tradi-

tional” distances (except for Cosine), given that better

distances are available as alternatives to them, as we

discussed.

Despite the fact that the overall trends are in accor-

dance with [34], we observe that the combination of

clustering methods and distances are important in the

time-series scenario. We speculate that the small dimen-

sionally of the time-series problem imposes the need of

a better coupling between the biases of the distance

measure and the clustering method.

Remarks on both clustering Scenarios

Given that a reasonable clustering method is selected,

one may note that the choice of an appropriate distance

measure has major impact in clustering results. By

employing different clustering methods, we do not have

exactly the same distance measures standing as best

choice. This is expected, since each clustering method

imposes a different bias (along with the bias of the dis-

tance). Therefore, for a particular clustering method a

specific set of distances may be more interesting than

another. For both the cancer and gene time-series sce-

narios results are in conformity with the ones presented

in [34]. Our study complements, therefore, our previous

work by showing that at least for the clustering methods

considered here consistent results are observed.

Remarks on clustering methods

Although our main focus is the performance of different

distances it is possible to observe some trends on the

behavior of the four particular clustering methods we

considered during our analysis. Some trends may also

be identified considering the biases of both clustering

methods and distance measures together. Regarding

cancer datasets, as a first choice, we recommend the use

of k-medoids. If the user would like to employ a hier-

archical method, Average-Linkage should be preferred

over Complete-Linkage. Considering these particular

three clustering methods and cancer data, results sug-

gest that Rank-Magnitude, Jackknife (with a higher com-

putational cost), Pearson, and Cosine are the best

alternatives, in this order. When considering time-series

datasets the scenario is more intricate. While there is no

clear indication of the best method, we have empirical

evidence suggesting the application of Complete-Linkage

with YS1 and YR1. Regarding the use of k-medoids and

Average-Linkage, Jackknife provides good results with

both clustering methods. Finally, we do not recommend

the use of the Single-Linkage clustering method in any

scenario whatsoever, regardless of the distance

employed.

Conclusions
We conducted a large scale analysis considering distance

measures from different classes and their suitability for

clustering gene expression microarray data. In total 15

different distances, 4 clustering methods, 4 evaluation

scenarios, and a total of 52 datasets were employed.

According to our results the scenario under evaluation

should be always considered during the selection of the

“right” distance. Finally, although results are dependent

of the clustering method employed, it is clear that once

a reasonable clustering method is selected large differ-

ences in quality can arise from the selection of different

distances. We believe that our work provides a compen-

dium of distance measures alternatives to field practi-

tioners as well as valuable guidelines regarding their

selection.

Methods
Distance measures

After selecting a clustering method one usually has to

determine which distance will be employed between

objects, given that most clustering methods are based

on distance calculations [55,56]. In gene expression one

usually seeks for similarity in shape or trend between

objects [15]. For such a reason, correlation coefficients

have been popular choices [3,10]. As a matter of fact,

the well-known Spearman and Pearson correlation coef-

ficients, alongside the traditional Euclidean distance,

have found great applicability in gene expression, as

highlighted by several authors, e.g., [1-3,10,32,34,57].

There is, however, a number of less-known distance

measures that remain practically unexplored to this

date. Bearing this in mind we describe the 15 distances

that we consider for evaluation in this study. We begin

by describing 6 correlation coefficients. Afterwards, we

review 4 measures which we refer to as traditional mea-

sures. Finally we review 5 distance that were tailored for

clustering short gene time-series.

Correlation coefficients

Correlation coefficients are popular choices for clus-

tering microarray data, with values in the [−1, 1] inter-

val. Since the sign of the correlation is important for

gene expression data, one minus the value of the cor-

relation provides the distance we use for clustering in

our experiments (as is usual in the gene expression lit-

erature). In the following, both x and y are sequences

of real numbers in the form x = (x1, . . . , xn) and

y = (y1, . . . , yn).

Pearson: Pearson [58], which is given by Equation (2),

is probably one of the most popular correlation coeffi-

cients in the literature, allowing one to identify linear

Jaskowiak et al. BMC Bioinformatics 2014, 15(Suppl 2):S2

http://www.biomedcentral.com/1471-2105/15/S2/S2

Page 11 of 17



relationships of variables. Previous studies have reported

that Pearson can display sensitivity when the variables

have outliers [3,15]. In such cases variables that are not

truly similar (i.e., variables that are similar just because

they contain outliers) can end up as false positives, i.e.,

with a large correlation. Its computation is straightfor-

ward, with linear running time.

PE(x, y) =

∑n
i=1 (xi − x̄)(yi − ȳ)

√

∑n
i=1 (xi − ¯)2

√

∑n
i=1 (yi − ȳ)2x

(2)

Goodman-Kruskal: The Goodman-Kruskal [59] corre-

lation coefficient is a rank-based correlation coefficient.

In order to introduce such correlation, let us define first

three different types of pairs of values with respect to

sequences x and y, namely: concordant, discordant and,

neutral pairs. We define as concordant, those pairs of

values that obey a same order, i.e., xi < xj and yi < yj or

xi > xj and yi > yj . We call discordant all the pairs for

which xi < xj and yi > yj or xi > xj and yi < yj . Pairs

that are neither concordant nor discordant are defined

as neutrals. Based on these three definitions, the Good-

man-Kruskal correlation coefficient is provided by Equa-

tion (3), for which P+ and P− correspond to the total

number of concordant and discordant pairs in

sequences x and y. The Goodman-Kruskal correlation

has O(n log n) running time [60].

GK(x, y) =
P+ − P−
P+ + P−

(3)

Kendall: Kendall [61], which is given by Equation (4),

is also a rank-based correlation coefficient. It follows the

same definitions previously introduced for Goodman-

Kruskal. In Equation (4), the denominator accounts for

the number of pairs of values in x and y. From this dif-

ferent normalization Kendall can achieve its maximum

values only when the sequences under evaluation have

no neutral pairs. It is easy to observe that Kendall has

the same time-complexity as Goodman-Kruskal, that is,

O(n log n).

KE(x, y) =
P+ − P−

n(n − 1)/2
(4)

Spearman: If the values of each sequence are replaced

by their respective ranks, the Spearman correlation coef-

ficient is also given by Equation (2). Given that the

actual values of the sequences are replaced by their

ranks, Spearman tends to be less sensitive to outliers

than its counterpart, Pearson [3]. Due to the need of

obtaining ranks for the values in each sequence (the

sequences need to be sorted) Spearman has a O(n log n)

running time.

Rank-Magnitude: In order to correlate sequences

with ranks and real values, [60] introduced the mea-

sure called Rank-Magnitude, which in its original ver-

sion is an asymmetric correlation coefficient. Its

asymmetric definition is given by Equation (5), for

which minrank =
∑n

i=1 yi(n − i + 1) and maxrank =
∑n

i=1 iyi,

given that y is sorted in increasing order of values.

r̂(x, y) =
2

∑n
i=1 Rank(xi)yi − maxrank − minrank

maxrank − minrank
(5)

Given that gene expression data is symmetric, i.e., we

deal only with real values, we use here a symmetric

adaption of Rank-Magnitude [41,62], which we call RM

for short. Such symmetric version is easily obtained with

RM(x, y) = (r̂(x, y) + r̂(y, x))/2. Note that although such

measure is symmetric, it captures both the behavior of

ranks and magnitudes of sequences. Both versions of

Rank-Magnitude have an O(n log n) running time.

Weighted Goodman-Kruskal: The measure referred to

as Weighted Goodman-Kruskal, introduced by [60], also

considers in its formulation both magnitudes and ranks

of the sequences under evaluation. It is defined by Equa-

tion (6), for which ω̂ij is given in Equation (7). From the

latter Equation, ω̂
x

ij and ω̂
y

ij account for the percentual

(signed) difference from the ith and jth elements in

their sequences and are given by Equation (8). Finally,

ωij is given by Equation (9), where ω
x

ij = sign(xi − xj) and

ω
y

ij = sign(yi − yj). Weighted Goodman-Kruskal running

time is O(n2).

WGK(x, y) =

∑n−1
i=1

∑n
j=i+1 ω̂ij

∑n−1
i=1

∑n
j=i+1 |ωij|

(6)

ω̂ij

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 if ω̂
x

ij and ω̂
y

ij = 0

max

{

ω̂
x
ij

ω̂
y
ij

,
ω̂

y
ij

ω̂
x
ij

}

if ω̂
x

ij ω̂
y

ij < 0

min

{

ω̂
x
ij

ω̂
y
ij

,
ω̂

y
ij

ω̂
x
ij

}

if ω̂
x

ij ω̂
y

ij > 0

0 otherwise

(7)

ω̂
x

ij =

{

xi−xj

maxx−minx
if maxx �= minx

0 otherwise
(8)

ωij =

⎧

⎨

⎩

1 if ω
x

ij = 0 and ω
y

ij = 0

ω
x

ij/ω
y

ij if ω
x

ij �= 0

0 otherwise

(9)

Traditional distance measures

In order to provide a broad view regarding distance mea-

sures we also review and evaluate “traditional” distances
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from the clustering literature. We consider four different

distance measures, all of which have linear running time,

i.e., O(n).

Minkowski: Distances measures known as Manhattan

(MAN), Supreme (SUP) and, Euclidean (EUC) are parti-

cular cases of the more general Minkowski family of

metric distances [23], defined in Equation (10). Such

distances are obtained with different configurations of l,

in Equation (10). For the three particular cases of the

Minkowski distance we consider in this work, i.e., MAN,

SUP and, EUC, we have l = 1, l = ∞ and, l = 2, respec-

tively.

Minkowshi(x, y) =

(

n
∑

i=1

|xi − yi|λ
)1/λ

(10)

Cosine: Cosine is a measure similar to the Pearson

correlation coefficient [10]. The only difference between

these two measures is due to the fact that Pearson con-

siders the mean of each variable, measuring the differ-

ence between their angles considering the origin,

whereas Cosine does not, measuring thus their differ-

ence based on the mean of the variables under compari-

son. Made such considerations, Cosine is given by

Equation (11).

cossim(x, y) =

∑n
i=1 xiyi

√

∑n
i=1 (xi)

2
√

∑n
i=1 (yi)

2
(11)

Note that Equation (11) defines a similarity. Cosine

dissimilarity, or simply COS, can be obtained by

1 minus the value produced by Equation (11).

Time-series specific measures

In the following distances tailored for short gene time-

series are reviewed. Before reviewing such measures let

us define the timestamps in which the values of the fea-

tures for each gene are measured as t = (t1, . . . , tn).

Son and Baek dissimilarities: Although correlation

coefficients can identify sequences with the same trend,

they are invariant to swaps in values of both sequences,

i.e., changing the ordering of features for both sequences

does not alter the final correlation value. Considering

such a fact [37] propose the use of two measures, called

YS1 and YR1, that consider correlation between

sequences but also take into account other relevant

information from the time-series under comparison (like

the position of their maximum and minimum or the

agreement among their slopes).

Given that a time-series with n features has n − 1

slopes, the slopes of two time-series can be compared

with the use of Equation (12), with Equation (13) provid-

ing the definition of Incl and I , in Equation (12), provid-

ing 1 for agreement and 0 in the remaining cases. The

slope of a given a time-series x and a feature number

(timestamp) can be readily obtained with Equation (14).

A(x, y) =

n−1
∑

i=1

I(Incl(x, i) = Incl(y, i))

n − 1
(12)

Incl(a, i) =

⎧

⎨

⎩

0 if slope(a, i) = 0

−1 if slope(a, i) < 0

1 if slope(a, i) > 0

(13)

slope(a, i) =
ai+1 − ai

ti+1 − ti
(14)

Along with the slope information previously defined,

the authors consider whether the minimum and maxi-

mum values of the time-series under comparison hap-

pen in the same feature (timestamp). Such concept is

defined in Equation (15).

M(x, y)

⎧

⎨

⎩

0 if maxtx �= maxty and mintx �= minty

0.5 if maxtx = maxty or mintx = minty

1 if maxtx = maxty and mintx = minty

(15)

YS1 and YR1 take into account Equations (12) and (15)

alongside information provided from two correlation

measures. YS1, which is given by Equation (16), com-

bines previously introduced information with Spearman

correlation coefficient, whereas YR1, Equation (17), takes

into account the Pearson correlation coefficient. In such

Equations Spearman and Pearson are adapted, respec-

tively, in the following forms: S(x, y) = (1 + SP (x, y))/2

and R(x, y) = (1 + P E(x, y))/2.

Y S1(x, y) = θ1A(x, y) + θ2M(x, y) + θ3S(x, y) (16)

Y R1(x, y) = θ1A(x, y) + θ2M(x, y) + θ3R(x, y) (17)

Note that Equations (16) and (17) are weighted sum-

mations, for which one should have θ1 + θ2 + θ3 = 1.

Given the high cost associated with the estimation of

such weights [37] we employed fixed values in order to

compare such measures. In all our experiments we

employed θ1 = 1/4, θ2 = 1/4, and θ3 = 1/2, as in [37]. The

running time for the measures is the same as the correla-

tion coefficient that they employ, i.e., it is O(n log n) for

YS1 and O(n) for YR1.

Short Time-Series dissimilarity: Taking into account

the fact that a time-series is composed by n − 1 slopes

(where n is the number of feature in the time-series)

[36] introduced a measure called Short Time-Series dis-

similarity (STS), which is defined in Equation (18). The

measure takes into account the time difference between

the biological collection os samples (timestamps). In this

sense, shorter intervals have greater impact in the final

value of the measure. STS has O(n) running time.
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STS(x, y) =

√

√

√

√

n−1
∑

i=1

(

yi+1 − yi

ti+1 − ti
− xi+1 − xi

ti+1 − ti

)2

(18)

Jackknife: The so-called Jackknife correlation coeffi-

cient [15] was introduced aiming to reduce the number

of false positives caused by Pearson. Such reduction is

sought by removing values from both sequences during

the computation of the Pearson correlation coefficient.

False positive sequences tend to have a high correlation

that will vanish when outlier values are removed. There-

fore, Jackknife takes as its final correlation value the

smaller Pearson correlation value over the sequences

considering the removal of all their features, one at each

step. The Jackknife correlation coefficient is formally

defined in Equation (19). In such Equation, PEi(x, y)

stands for PE without considering the ith feature of both

x and y (PE0 (x, y) accounts for no feature removal).

JK(x, y) = min
0≤i≤n

PEi(x, y) (19)

Although it was proposed for short gene time-series

clustering, Jackknife can also be employed in other sce-

narios (note that it only considers feature removal). Due

to such a fact we employed it in all our experiments in

this paper. It is easy to verify that Jackknife correlation

coefficient has O(n2) running time, which can become

prohibitive for data with a large number of features

(which is the case for cancer data).

Local Shape-based Similarity: The measure called Local

Shape-based Similarity, introduced by [35] considers the

fact that similarities between genes can occur locally, in a

subspace of the features from the time-series. The

authors also consider the possibility that such local simi-

larities may be transposed in one of the genes. Therefore,

the Local Shape-based Similarity seeks for local and

transposed alignments in sequences that have a high

score. The alignment with highest score is defined as

final value of similarity, given that it represents the best

local (possibly transposed) similarity between the two

time-series. The measure is given by Equations (20) and

(21), for which S, accounts for the similarity considered

between any two size k subsequences of x and y. The

authors suggest a mink of n − 2 (n is the number of fea-

tures in the original series) [35].

LSS(x, y) = max
mink≤k≤n

Similarityk(x, y) (20)

Similarityk(x, y) = max
1≤i,j≤n+1−k

S(x[i, i − 1 + k], y[j, j − 1 + k]) (21)

It is important to note that in order to obtain the final

value of the Local Shape-based Similarity one has to

compute similarities among different sized sequences (for

any two sequences of same length LSS uses Spearman

correlation). Given that the probability of obtaining high

similarity values is greater for sequences with smaller

sizes, LSS employs such probability rationale in order to

obtain its final similarity value. Made such considerations,

S is defined as the probability associated with the correla-

tion value for the subsequences being compared (which

relates to their sizes). Details on such calculations can be

obtained in [35]. Local Shape-based Similarity has O(n3)

running time, which according to its authors can be

decreased if one employs an approximated version [35].

Datasets

We consider a total of 52 gene expression datasets in

our study. These datasets are both from cancer and

gene time-series experiments, as we detail in the

following.

Datasets from cancer studies: We adopt the bench-

mark set of 35 datasets compiled by [4] in order to eval-

uate distance measures for the clustering of cancer data.

From these datasets, 14 were obtained with cDNA

microarrays, whereas 21 were produced with Affymetrix

microarrays. Cancer benchmark data is summarized by

Table 1. Please, consult [4] for full details regarding this

benchmark set.

Datasets from short gene time-series studies: For this

type of data we adopt the benchmark set of 17 datasets

compiled by [34]. All the datasets from this benchmark

set, which come from three independent studies invol-

ving yeast, i.e., Saccharomyces cerevisiae, were produced

employing cDNA microarrays. These datasets are sum-

marized by Table 2. Please, consult [34] for full details

regarding this benchmark set.

Clustering methods

We employed four different clustering methods in our

comparison, which are briefly reviewed in the sequel.

The k-medoids clustering method [25] is similar to the

more popular k-means [63]. The only difference between

these two clustering methods is due to the fact that, in

k-medoids, each cluster is summarized by a medoid, i.e.,

a real object that minimizes its distance to all the remain-

ing objects that belong to the cluster. The k-medoids

method has three main steps: (i) for a given number k of

clusters, k randomly chosen objects are selected as cluster

medoids, (ii) each object in the dataset is assigned to

the cluster with closest medoid and; (iii) cluster medoids

are updated, i.e., for each cluster the new medoid is the

object that has the lowest distance to the remaining

objects that belong to its cluster. Steps (ii) and (iii) are

repeated until a fixed number of iterations is exceeded or

changes in clustering memberships are no longer

observed. It is important to note that the k-medoids is

not a deterministic method, i.e., for different initializa-

tions it may produce different outputs. To this extent, for
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each different dataset, number of clusters and distance

adopted the method is initialized 50 times.

Hierarchical clustering methods are fairly common in

the gene expression literature. We consider three differ-

ent variants of agglomerative hierarchical clustering

[23], i.e., Average-Linkage, Complete-Linkage and

Single-Linkage. These methods take as input a proximity

matrix generated from a dataset and produce as output

a hierarchy of partitions, usually referred to as a dendro-

gram. Hierarchical clustering methods have two main

steps: (i) each one of the objects is assigned to a single-

ton cluster, i.e., a cluster with a single object and; (ii)

the two closest clusters are merged into a new cluster

comprising their objects. Step (ii) is then repeated until

a single cluster is obtained. Note that differences among

Average-Linkage, Complete-Linkage and, Single-Linkage

are defined by how the distance between clusters is

computed, in order to identify the two closest clusters.

For Average-Linkage this distance is given by the mean

distance among all objects belonging to different clus-

ters. For Complete-Linkage this distance is given by the

farthest distance between objects in different clusters. In

Single-Linkage it is provided by the smallest distance

among objects belonging to different clusters. To obtain

partitions with distinct cluster numbers we just have to

“cut” the resulting dendrogram at the desired level.

Finally, the intervals [2,
⌈√

o
⌉

], that comprehend the

number of clusters considered during our second and

third evaluation scenarios, are chosen due to its com-

mon usage in the clustering literature [64,65].

Clustering validity

In the following we briefly describe the two traditional

clustering validity criteria employed in order to assess

the quality of partitions. Note that for gene time-series

datasets we also employed a biologically driven valida-

tion methodology, as we already detailed.

Adjusted rand index

For cases in which a reference partition is available one

can employ external validation measures to quantify the

quality of the results. Due to its correction that takes

into account conformities between partitions found by

chance [66], we choose the Adjusted Rand [23,47],

defined by Eq. (22), to evaluate clustering results. The

greater its value, the greater is the concordance between

the two partitions under comparison, with values close

to 0 indicating conformities found by chance. Given a

partition U and a reference partition V, in Eq. (22), (a)

accounts for the total number of object pairs belonging

to the same cluster in both U and V; (b) represents the

total number of object pairs in the same cluster in U

and in different clusters in V; (c) is the total number of

object pairs that are in different clusters in U and in the

same cluster in V; and (d) is the total number of object

pairs that are in different clusters in both U and V.

AR =

a − (a + b)(a + c)

(a + b + c + d)

(a + b)(a + c)

2
− (a + b)(a + c)

(a + b + c + d)

(22)

Silhouette index

To estimate the number of clusters in our third evalua-

tion scenario, a relative index of comparison between

partitions is also employed. The Silhouette index is

defined by Eq. (23), considering a partitioning of m

objects in k disjoint clusters. In Eq. (23), u(i) represents

the average distance of x and all the remaining objects

of its cluster. Value v(i) is obtained as follows: for a

given object x, the average distance of x and all the

objects from a given cluster is obtained. This process is

repeated for all the k − 1 clusters, excluding the cluster

to which x belongs. At the end of the process the lowest

mean value found is attributed to v(i). In other words, v

(i) stands for the mean distance between x and its

neighbor cluster (closest cluster). Silhouette, which is a

maximization measure, has its values within [−1, 1].

S =
1

m

m
∑

i=1

v(i) − u(i)

max{v(i), u(i)} (23)

We choose the Silhouette based on its superior results in

comparison to other relative criteria, as demonstrated by

[49,67,68]. We also note that the Silhouette has already

been successfully employed in order to estimate the num-

ber of cluster for gene expression data, e.g., [69-71].

Finally, we would like to note, that by using the Sil-

houette index we simulate a real application in which

the user does not have any a priori information regard-

ing the number of clusters present in the data. It is

important to make clear, that the use of relative indexes

(such as the Silhouette) is just part of the more general

procedure that comprehends the whole clustering analy-

sis, i.e., (i) pre-processing, (ii) clustering and, (iii) valida-

tion [72]. To this extent, in a real application, relative

indexes may, in turn, help the user to choose the “best”

partition or the “best” number of clusters for a given

dataset (according to the criterion). For a review of clus-

tering validation techniques in gene expression, please

refer to [72].

Friedman and Nemenyi statistical tests

Statistical tests were employed to assess the significance

of the results obtained during our experimental evalua-

tion. Based on the work of [73] we use Friedman [74]

and Nemenyi [75] (with p-value = 0.05), given that they
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are more appropriate for evaluating the results of a col-

lection of methods obtained over different datasets.
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