
On the Selection of Subdivision Directions in

Interval Branch-and-Bound Methods for Global

Optimization*

DIETMAR RATZ dietmar.ratz@math.uni-karlsruhe.de

Institut f�ur Angewandte Mathematik, Universit�at Karlsruhe, D-76128 Karlsruhe, Germany

and

TIBOR CSENDES csendes@inf.u-szeged.hu

Departm. of Applied Informatics, J�ozsef Attila University, H-6720 Szeged, �Arp�ad t�er 2, Hungary

(Received: 31 January 1995; accepted 28 April 1995)

Journal of Global Optimization 7: 183{207, 1995. 183
c1995 Kluwer Academic Publishers. Printed in the Netherlands.

Abstract. This paper investigates the inuence of the interval subdivision selection rule on the

convergenceof interval branch-and-bound algorithms for global optimization. For the class of rules
that allows convergence, we study the e�ects of the rules on a model algorithm with special list

ordering. Four di�erent rules are investigated in theory and in practice. A wide spectrum of test
problems is used for numerical tests indicating that there are substantial di�erences between the

rules with respect to the required CPU time, the number of function and derivative evaluations,
and the necessary storage space. Two rules can provide considerable improvements in e�ciency
for our model algorithm.

Keywords: Global optimization, interval arithmetic, branch-and-bound, interval subdivision

1. Introduction

The investigated class of interval branch-and-bound methods for global optimiza-
tion [7], [8], [19] addresses the problem of �nding guaranteed and reliable solutions
of global optimization problems

min
x2X

f(x); (1)

where the objective function f : IRn ! IR is continuously di�erentiable and
X � IRn is an n-dimensional interval vector. We do not require a special problem
structure, but we assume inclusion functions of the objective function and its gra-
dient to be available [1]. These inclusion functions are utilized to compute bounds
for f on an interval vector (and therefore on a continuum of points, including those
points that are not �nitely representable). So valleys, no matter how narrow, are
enclosed with certainty.

* The work has been supported by the Grants OTKA 2879/1991, and MKM 414/1994.

184 D. RATZ AND T. CSENDES

The basic idea of such interval branch-and-bound algorithms is to apply several
interval techniques to reject large regions in which the optimum can be guaran-
teed not to lie. For this reason, the original interval vector X gets subdivided,
and subregions which cannot contain a global minimizer of f are discarded, while
the other subregions get subdivided again until the desired accuracy (width) of the
interval vectors is achieved. In this context, our special interest lies in the choice of
the direction for the interval subdivision steps, and the present paper investigates
the possible improvements of this choice for interval branch-and-bound methods
for global optimization. The generality of the problem class and the modest re-
quirement of the existence of the inclusion functions stress the importance of any
improvement in e�ciency.
The global minimum value of f on X is denoted by f�, and the set of global

minimizer points of f on X by X�. That is,

f� = min
x2X

f(x) and X� = fx� j f(x�) = f�g:

We denote real numbers by x; y; . . . and real bounded and closed interval vectors
by X = [X;X]; Y = [Y ; Y]; . . ., where minX = X, maxX = X, minY = Y ,
maxY = Y , etc.
The set of compact intervals is denoted by II := f[a; b] j a � b; a; b 2 IRg and

the set of n-dimensional interval vectors (also called boxes) by IIn. For real vectors
and interval vectors the notations

x = (xi); xi 2 IR; and X = (Xi); Xi 2 II

are used.
The width of the interval X is de�ned by w(X) = maxX �minX if X 2 II, and

w(X) = maxni=1w(Xi), if X 2 IIn. The midpoint of the interval X is de�ned by
m(X) = (minX +maxX)=2 if X 2 II, and m(X) = (m(Xi)), if X 2 IIn.
We call a function F : IIn ! II an inclusion function of f : IRn ! IR in X, if

x 2 X implies f(x) 2 F (X). In other words, frg(X) � F (X), where frg(X) is the
range of the function f on X. The inclusion function of the gradient of f is denoted
by rF .
There are several ways to build an inclusion function for a given optimization

problem (e.g. by using the Lipschitz constant). Interval arithmetic [1], [7], [8], [19] is
a convenient tool for constructing inclusion functions. This can be done for almost
all functions speci�ed by a �nite algorithm (i.e. not only for given expressions).
Moreover, applying so-called automatic di�erentiation or di�erentiation arithmetic
in connection with interval arithmetic [7], we are also able to compute the inclusion
function for the gradient.
Automatic di�erentiation combines the advantages of symbolic and numerical

di�erentiation and handles numbers instead of symbolic formulas. The computation
of the gradient is done automatically together with the computation of the function
value. The main advantage of this process is that only the algorithm or formula for
the function is required. No explicit formulas for the gradient are required.

ON THE SELECTION OF SUBDIVISION DIRECTIONS 185

It is assumed in the following that the inclusion functions have the isotonicity

property, i.e. X � Y implies F (X) � F (Y), and that

w(F (Xi))! 0 as w(Xi)! 0; for all F: (2)

2. The Model Algorithm

Interval subdivision methods for global optimization (c.f. [3], [5], [7], [8], [15], [19],
[20]) usually start from an initial box X 2 IIn, subdivide X and store the subboxes
in a list L, and discard subboxes which are guaranteed not to contain a global
minimizer, until the desired accuracy (width) of the interval vectors in the list is
achieved. To do so, several special steps and tests are applied (cut-o� test, mono-
tonicity test, concavity test, interval Newton-like step, or local search procedures).
Our model algorithm has the most important common features of such interval

subdivision methods for global optimization, but it includes no local search proce-
dure (c.f. [3]), no concavity test, and no Newton-like steps, since the latter require
the inclusion of the Hessian. On the other hand, the cut-o� and monotonicity
tests are applied, because their usage does not require additional information on
the problem (see below). It would not make sense to skip these tests. Although,
cross-e�ects of the direction selection rules and the skipped steps are possible, the
investigation of their numerical implication is the subject of an other study.

ALGORITHM 2.1. GlobalOptimize (f;X; "; Y; F �; L)

1. Y := X; L := f g; ef := f(m(X)); fUpper bound for f�g

2. k := OptimalComponent (Y); fDirection Selectiong

3. Bisection (Y; k; U1; U2);

4. for i := 1 to 2 do

5. FU := F (U i); if ef < FU then nexti;

6. if MonotonicityTest (rF (U i)) then nexti;

7. L := L + (U i; FU); fStore U i and FU in Lg

8. if L = f g then return;

9. (Y; FY) := Head (L); L := L� (Y; FY);

10. ef := minf ef ; f(m(Y))g; fImprove upper bound for f�g

11. L := CutO�Test (L; ef);
12. if w(F (Y)) > " then goto 2;

13. F � := [FY ; ef]; fBest possible inclusion of f�g

14. return Y; F �; L.

We use the notation \+" for entering and \�" for discarding elements in the list
L. Head (L) delivers the �rst element of L. For abbreviation, we write FY instead
of minF (Y).

186 D. RATZ AND T. CSENDES

We call the interval vector Y , which is �rst set in Step 1 and updated in Step 9,
the leading box, and the leading box of the m-th iteration is denoted by Y m.
In contrast to the model algorithm used in [6], we used a simpli�ed version of

the algorithm from [7] and [21]. It incorporates the cut-o� and monotonicity tests
according to the following sub-algorithms.

ALGORITHM 2.2. CutO�Test (L; ef)
1. for all (Y; FY) 2 L do

2. if ef < FY then L := L� (Y; FY);

3. return L;

ALGORITHM 2.3. MonotonicityTest (G)

1. for i := 1 to n do

2. if 0 62 Gi then return true;

3. return false;

Since we do not do anything special to handle boundary points, the monotonicity
test may discard subboxes containing global minimizer points if they lie on the
boundary of X. Thus, we assume in the following that there exists a stationary
point x� 2 X for which f(x�) = f� which makes sense, for the aim of our study
is investigating the impact of the direction selection rules on the convergence of
Algorithm 2.1.
Our model algorithm uses a special ordering of the subdivided boxes Y in the

pending list L. The boxes Y are stored as pairs (Y; FY) sorted in nondecreasing
order with respect to the FY as a �rst ordering criterion and in decreasing order
with respect to the age of the boxes as a second ordering criterion. Therefore, a
newly computed pair is stored in the list L according to the following ordering rule
(c.f. [21]):

� either FW � FY < FZ holds,

� or FY < FZ holds, and (Y; FY) is the �rst element of the list,

� or FW � FY holds, and (Y; FY) is the last element of the list,

� or (Y; FY) is the only element of the list,

9>>>>=
>>>>;
(3)

where (W;FW) is the predecessor and (Z;FZ) is the successor of (Y; FY) in L.

That is, the second components of the list elements may not decrease, and a new
pair is entered behind all other pairs with the same second component. Since the
�rst element of the list has the smallest second component, we can directly use the
corresponding box to compute f(m(Y)) for the improvement of ef in performing
the cut-o� test. Due to this special ordering, we can also save some work when

ON THE SELECTION OF SUBDIVISION DIRECTIONS 187

deleting elements in the cut-o� test, because we can delete the whole rest of the
list when we have reached the �rst element to be deleted.

3. Subdivision Direction Selection Rules

The main target of this paper is Step 2 of Algorithm 2.1. There, we can apply
di�erent rules trying to �nd an optimal component (coordinate direction) to bisect
the box Y . We call these rules interval subdivision direction selection rules and we
investigated four di�erent rules. In OptimalComponent , each of the rules selects a
direction k by using a merit function:

k := min
n
j j j 2 J and D(j) =

n
max
i=1

D(i)
o
; (4)

where J = f1; 2; . . .; ng and D(i) is determined by the given rule. The usual de�-
nition of such rules does not specify a certain coordinate direction if the maximum
is achieved several times. Thus, we take the smallest one.

Rule A

The interval-width-oriented rule [15], [19], [23] chooses the coordinate direction with

D(i) := w(Xi): (5)

This rule was justi�ed by the idea of subdividing the original interval vector X in
a uniform way. It has also been used for generating subdivision directions in other
optimization procedures (e.g. [10]). Algorithm 2.1 with Rule A is convergent both
with and without the monotonicity test (e.g. in [5] and [19]). This rule allows a
relatively simple analysis of the convergence speed (as in [19], Chapter 3, Theorem
6).

Rule B

The rule of Hansen and Walster [8] selects the coordinate direction by using (4)
with

D(i) := w(Gi(X)) �w(Xi); (6)

where G(X) = rF (X). It is a heuristical direction selection rule which aims to
�nd the component with the largest value of

Wi = max
t2Xi

f (m(X1); . . . ;m(Xi�1); t;m(Xi+1); . . . ;m(Xn))

�min
t2Xi

f (m(X1); . . . ;m(Xi�1); t;m(Xi+1); . . . ;m(Xn)) :

The factor Wi, that is assumed to reect how much f varies as xi varies over Xi,
is then approximated by w(Gi(X)) �w(Xi).

188 D. RATZ AND T. CSENDES

Rule C

The rule of Ratz [21] can be formulated with (4) and

D(i) := w (Gi(X) � (Xi �m(Xi))) ; (7)

where again G(X) = rF (X). The underlying idea was to minimize the width of
the inclusion

w(F (X)) = w(F (X) � f(m(X)))

� w(rF (X) � (X �m(X)))

= w

nX
i=1

@F

@xi
(X) � (Xi �m(Xi))

!

=
nX
i=1

w

�
@F

@xi
(X) � (Xi �m(Xi))

�
:

Obviously, the component i is to be chosen for which w(@F
@xi

(X)�(Xi�m(Xi))) is the
largest. The important di�erence between (6) and (7) is that in rule C the width of
the multiplied intervals is maximized and not the multipliedwidths of the respective
intervals, which deliver di�erent values in general (due to the subdistributive law).
In [6] we remarked that the right hand side of (7) can be written as

maxfjminGi(X)j; jmaxGi(X)jgw(Xi)

and that Rules B and C give the same merit function value if and only if either
minGi(X) = 0 or maxGi(X) = 0. We also mentioned the relation of rule C to
Lipschitzian partition methods for global optimization [17], [18] and to the \maxi-

mum smear" function (used as a direction selection merit function solving systems
of nonlinear equations [11]).

Rule D

The fourth rule uses a relative width of the intervals and is de�ned by (4) and

D(i) :=

�
w(Xi) if 0 2 Xi;

w(Xi)=minfjxij j xi 2 Xig otherwise:
(8)

It is derivative-free like Rule A, and it reects the machine representation of the
intervals. Consider the case when the width of one component interval is greater
than all other component widths, but the minimum and maximum values of this
interval are nearly adjoining machine numbers. In this case the subdivision of the
other components is more important than the subdivision of the \large" component.
Figures 1 and 2 show the distributions of subboxes for the discussed direction

selection rules A, B, C, and D, respectively, when solving the Branin problem and

ON THE SELECTION OF SUBDIVISION DIRECTIONS 189

A

0

15

-5 10

B

0

15

-5 10

C

0

15

-5 10

D

0

15

-5 10

Figure 1. Remaining subintervals after 50 iteration steps of Algorithm 2.1 with the direction
selection rules A, B, C, and D for the Branin problem

the Six-Hump-Camel-Back problem (see the Appendix for their de�nition) with
Algorithm 2.1.

Figure 1 shows the situations after 50 iterations of the model algorithm for the
Branin problem. The numbers of subboxes are 14, 14, 13, and 23, respectively. Rule
A tends to form square-like boxes, while the others produce elongated subboxes.

190 D. RATZ AND T. CSENDES

A

-2

2

-2 2

B

-2

2

-2 2

C

-2

2

-2 2

D

-2

2

-2 2

Figure 2. Remaining subintervals after 500 iteration steps of Algorithm 2.1 with the direction
selection rules A, B, C, and D for the Six-Hump-Camel-Back problem

The greatest volume decrease is due to Rule C, the least volume decrease is due to
Rule D.

Figure 2 shows the situations after 500 iterations of the model algorithm for the
Six-Hump-Camel-Back problem. The numbers of subboxes are 94, 100, 31, and
167, respectively. Here, Rules A and D produced square-like boxes, while Rules B

ON THE SELECTION OF SUBDIVISION DIRECTIONS 191

and C produced elongated subboxes. Again, the greatest volume decrease is due to
Rule C, the least volume decrease is due to Rule D.

Example 3.1 Let us consider the function f(x) = x1 � x2 � x3 to demonstrate
the inuence of the di�erent direction selection rules on the width of the interval
function evaluation of f . We use

X =

0
@ [0; 1]

[�10; 20]
[1000; 2000]

1
A

with

G =rF (X) =

0
@ [�20000; 40000]

[0; 2000]
[�10; 20]

1
A and c = m(X) =

0
@ 0:5

5
1500

1
A :

Applying Rule A, we get

D(1) = w(X1) = 1

D(2) = w(X2) = 30

D(3) = w(X3) = 1000

and choose k := 3. Thus, we bisect in

U1 =

0
@ [0; 1]

[�10; 20]
[1000; 1500]

1
A and U2 =

0
@ [0; 1]

[�10; 20]
[1500; 2000]

1
A ;

and we get F (U1) = [�15000; 30000] and F (U2) = [�20000; 40000].
Applying Rule B, we get

D(1) = w(G1) �w(X1) = 60000 � 1 = 60000

D(2) = w(G2) �w(X2) = 2000 � 30 = 60000

D(3) = w(G3) �w(X3) = 30 � 1000 = 30000

and choose k := 1. Thus, we bisect in

U1 =

0
@ [0; 0:5]

[�10; 20]
[1000; 2000]

1
A and U2 =

0
@ [0:5; 1]

[�10; 20]
[1000; 2000]

1
A ;

and we get F (U1) = [�10000; 20000] and F (U2) = [�20000; 40000].
Applying Rule C, we get

D(1) = w(G1 � (X1 � c1)) = w([�20000; 20000]) = 40000

D(2) = w(G2 � (X2 � c2)) = w([�30000; 30000]) = 60000

D(3) = w(G3 � (X3 � c3)) = w([�10000; 10000]) = 20000

192 D. RATZ AND T. CSENDES

and choose k := 2. Thus, we bisect in

U1 =

0
@ [0; 1]

[�10; 5]
[1000; 2000]

1
A and U2 =

0
@ [0; 1]

[5; 20]
[1000; 2000]

1
A ;

and we get F (U1) = [�20000; 10000] and F (U2) = [0; 40000].
Applying Rule D, we get

D(1) = w(X1) = 1

D(2) = w(X2) = 30

D(3) = w(X3)=1000 = 1

and choose k := 2. Thus, we bisect as for Rule C getting the same boxes and
interval function evaluations as above.
Assuming now that the upper bound ef = �10000 for the global minimum value

f� is already known, we can discard U2 in the cut-o� test if we use Rule C or D.

4. Convergence and the direction selection rules

In the following, we summarize the main de�nitions and theoretical results given in
[6] for the somewhat more general model algorithm used in the present paper, and
we investigate the relations between the subdivision selection rules and convergence
properties of Algorithm 2.1. The di�erence between the algorithms is that in [6] the
list ordering was not speci�ed for elements with equal lower bound on the objective
function values. With the special ordering studied in the present paper, we can
prove stronger convergence statements.
For our theoretical study, we de�ned the sequence of interval vectors that can

be produced by the model algorithm, and we speci�ed a property (balanced) of
the subdivision direction selection rules that can ensure convergence for the model
algorithm.

Definition 4.1 We call an in�nite sequence of interval vectors (Y s)1s=0 an in�nite

subdivision sequence of Y , if Y 0 = Y and if for each nonnegative integer s the
box Y s+1 is given as Y s+1

j = Y s
j for j = 1; . . . ; k � 1; k + 1; . . . ; n, and either

Y s+1
k = [minY s

k ;m(Y s
k)], or Y

s+1
k = [m(Y s

k);maxY s
k], where k is the direction

selected by the given rule with Y s, F (Y s) and rF (Y s).

If we assume that the box Y is not discarded by the monotonicity test and " = 0,
it is easy to see, that the set of leading boxes (Y s)1s=0 contains at least one in�nite
subdivision sequence. It may contain in�nite subdivision sequences but also �nite
sequences of subboxes that end with a box Y , the subdivision of which resulted in
such subboxes, that either 0 =2 rF (U) or f� � F (U) holds for these. The latter
�nite sequences do not a�ect the convergence of the procedure.

ON THE SELECTION OF SUBDIVISION DIRECTIONS 193

Definition 4.2 We call a direction selection rule balanced, if for all interval vectors
X, for all isotone inclusion functions F (X) and rF (X) having property (2), and
for each in�nite subdivision sequence of X that is a subsequence of the leading
boxes (Y s)1s=0, the sequence of directions generated by the given rule contains each
k of the possible directions 1; 2; . . . ; n for which w(Xk) > 0 in�nitely many times.

The rules �tting De�nition 4.2 do not necessarily deliver the directions in a uni-
form way, but each direction is chosen again after a �nite number of iteration steps.

We denote the set of accumulation points of the sequence (Y s)1s=0 by A. Recall
that the inclusion functions F (X) and rF (X) are assumed to be isotone and to
satisfy (2). For the sake of convergence investigation, we set the stopping criterion
parameter " to zero and we assume that w(X) > 0 (otherwise the solution requires
no search and thus no subdivision). Recall also, that we assume that there exists a
stationary point x� 2 X� for which f(x�) = f�.

The following three theorems and two corollaries have been proven in [6] for a
general model algorithm that did not assume that the pairs in the list L with equal
second element are ordered according to their age. Hence, these results hold also
for Algorithm 2.1.

Theorem 4.3 Algorithm 2.1 converges in the sense that lims!1w(Y s) = 0, if and
only if the interval subdivision direction selection rule is balanced.

Theorem 4.4 Assume that the interval subdivision direction selection rule is bal-

anced. Then Algorithm 2.1 converges to global minimizer points in the sense that

lims!1 F (Y s) = f�, A 6= ; and A � X�.

One direction of the assertions of Theorem 4.3 and Theorem 4.4 are generaliza-
tions of some convergence results in [19] for the model algorithm with the studied
class of direction selection rules. Notice that the opposite direction of all the state-
ments in Theorem 4.4 is not true. For example, A 6= ; also holds if the direction
selection rule is not balanced.

Theorem 4.5 Assume that Algorithm 2.1 converges for a given problem (1) to

global minimizer points in the sense that lims!1 F (Y s) = f�, and thus A � X�.

Then either the algorithm proceeds on the problem like an algorithm with a balanced

direction selection rule, or there exists a box X̂ � X such that f(x) = f� for all

x 2 X̂, and w(X̂i) > 0, i 2 J for all coordinate directions that are selected only a

�nite number of times.

The essential meaning of Theorem 4.5 is that with the exception of problems for
which a box X̂ as de�ned above exists, the direction selection rule must be balanced
to ensure convergence to global minimizer points.

Corollary 4.6 The subdivision direction selection Rules A and D are balanced,

and thus Algorithm 2.1 converges to global minimizer points with each of these rules.

194 D. RATZ AND T. CSENDES

Corollary 4.7 Either subdivision direction selection Rules B and C choose each

direction i 2 J for which w(Xi) > 0 an in�nite number of times, and thus Al-

gorithm 2.1 converges to global minimizer points with each of these rules, or the

algorithm converges to a subbox of X with a positive width that contains only global

minimizer points.

The next de�nition and theorem point out the consequences of the new list or-
dering on the convergence properties.

Definition 4.8 We call a global minimizer point x0 of problem (1) hidden, if there
exists a subbox X0 � X with positive volume (w(X0

i) > 0, i = 1; 2; . . . ; n) for which
x0 2 X0 and minF (X0) = f�, while there exists an other global minimizer point
x00 of the same problem such that minF (X00) < f� holds for each subbox X00 � X

with positive volume that contains x00. Global minimizer points that do not ful�ll
the criteria of a hidden minimizer are called non-hidden.

Theorem 4.9 If Algorithm 2.1 with direction selection Rules A, B, C, or D con-

verges to a global minimizer point x� 2 X� in the sense that it is an accumulation

point (x� 2 A) of the sequence of leading boxes (Y s)1s=0, then it converges to all

non-hidden global minimizer points in the same sense.

Proof: If we solve the global optimization problem (1) with given inclusion func-
tions F andrF , then Algorithm 2.1 produces an in�nite sequence of leading boxes
(Y s)1s=0 with a subsequence of (Y sl)1l=0 such that lim1l=0 Y

sl = x� 2 X�. Consider
an arbitrary non-hidden global minimizer point x0 2 X�, and assume that x0 is
not an accumulation point of the sequence (Y s)1s=0. Then x0 is contained only in a
�nite number of subboxes of (Y s)1s=0, let Y

l be the last one of these subboxes.

As x0 is a non-hidden global minimizer point, minF (Y l) � minF (Y s) must hold
for an in�nite number of indices s � l. This implies that, due to the list ordering
applied in Algorithm 2.1, Y l is selected for further subdivision | and this is a
contradiction.

A direct consequence of Theorems 4.4 and 4.9 and Corollaries 4.6 and 4.7 is

Corollary 4.10 1. If the interval subdivision direction selection rule is balanced,

then the set of accumulation points A of the sequence (Y s)1s=0 generated by Algo-

rithm 2.1 contains all non-hidden global minimizer points of the given optimization

problem (1).

2. Algorithm 2.1 both with subdivision direction selection Rules A and D converges

to all non-hidden global minimizer points of problem (1).

3. Either Algorithm 2.1 both with subdivision direction selection Rules B and C

converges to all non-hidden global minimizer points of problem (1), or the algorithm

converges to a set of subboxes of X with positive width that contain only non-hidden

global minimizer points.

ON THE SELECTION OF SUBDIVISION DIRECTIONS 195

Example 4.11 Wewant to �nd global minimizer points of problem (1) with f(x) =
x21x

4
2 on the interval vector X = [0; 1]2. We use the range functions as inclusion

functions, so F (X) = frg(X) = X2
1X

4
2 , and G1(X) = @F

@x1
(X) = 2X1X

4
2 , and

G2(X) = @F
@x2

(X) = 4X2
1X

3
2 . The set of global minimizer points is X� = [0; 1]�

[0; 0] [[0; 0]� [0; 1]. Since minF (Y) = 0 = f� for each subbox Y � X, all the
global minimizer points are non-hidden. According to Theorem 4.9, X� is equal to
the set of accumulation points A of the sequence of leading boxes (Y s)1s=0.
Using the direction selection Rule C with Algorithm 2.1, we get

D(1) = w(G1(Y
0)(Y 0

1 �m(Y 0
1))) = w([0:0; 2:0][�0:5;0:5]) = w([�1:0; 1:0]) = 2

D(2) = w(G2(Y 0)(Y 0
2 �m(Y 0

2))) = w([0:0; 4:0][�0:5;0:5]) = w([�2:0; 2:0]) = 4

for Y 0 = X. The second coordinate is selected for subdivision. Consider now a
subbox of the form [0; 1] � [0; d] (where d > 0). For this box D(1) = 2d4 and
D(2) = 4d4, and thus always the direction k = 2 is chosen. Hence, the subsequence
[0; 1]� [0; d] (d = 1; 0:5; 0:25; . . .) of (Y s)1s=0 converges to the interval vector Y

� =
[0:0; 1:0]�[0:0; 0:0] without a single subdivision in the �rst coordinate (c.f. Corollary
4.7). According to the comment after the de�nition of Rule C, the merit function
values and thus the selected directions are the same with Rule B, i.e. the same
result interval vector is obtained by applying Rule B.

Example 4.12 Our algorithm with Rule B may become non-convergent if we re-
move the monotonicity test. Consider the function f(x) = x1 + x22. With @F

@x1
=

[1; 1], Rule B chooses always k = 2 for all interval vectors with w(Xi) > 0; i = 1; 2.
The list ordering does not play any role in the direction selection, and hence Al-
gorithm 2.1 shows the same behavior as the model algorithm of [6]. Therefore,
lims!1minF (Y s) 6= lims!1maxF (Y s), where Y s is again the actual box Y in
the s-th iteration. Although the probability to have this phenomenon in real-life
problems is small, it is nonetheless noteworthy that this behavior di�ers from that
of Rule A.

5. Numerical experiences

We list the functions f and starting interval vectors X used in our tests in the
Appendix to supply a complete documentation of the problems input data. The
�rst group of functions from S5 to RB is the group of standard test functions taken
from [24]. We also used these functions in [6]. The rest of the functions are from
[14] and from [22] with the exception of the Griewank functions (Griew) which are
also taken from [24]. The last group of functions (R4 { R8) is new.
We carried out the numerical tests on a HP 9000/730 using an implementation of

Algorithm 2.1 in PASCAL{XSC [12] Version 2.03. The program is a modi�cation
(simpli�cation) of the code given in [7]. The inclusion functions were produced
by natural interval extensions, i.e. they were all isotone and they ful�ll condition
(2). The gradients were calculated by automatic di�erentiation, thus no numerical

196 D. RATZ AND T. CSENDES

or symbolic derivatives were used. In contrast to our earlier study [6], now the
gradient was calculated in a single step, and thus the monotonicity test could not
save the computation of certain components of the gradient. All the numerical
results of the subsequent sections were obtained with " = 10�2.
Tables 1 to 4 contain the e�ciency measures provided solving the test problems.

The �rst column gives the problem name, and the second column gives the di-
mension of the problem. The e�ciency measures for Rules B, C, and D are also
expressed as percentages of the respective value for Rule A. In the second last lines
the computational e�orts are given which are necessary to solve the whole set of
test problems. The percentages in these lines show how much e�ort is needed with
the actual rule compared to the value obtained by Rule A. This is the expected
ratio of improvement (if less than 100%) solving a large set of problems similar to
the studied one. The average of percentages values (denoted by AoP) reect the
relative computational burden one can anticipate for a single problem if the actual
rule is used instead of Rule A, according to the statistical information provided by
the set of test problems.

5.1. Comparing the Standard Time Units

Table 1 summarizes the CPU times required for the solution of the global opti-
mization test problems. The CPU times are expressed in standard time units to
allow a fair comparison with results obtained on other computer platforms. The
standard time unit (1000 real evaluations of the Shekel-5 function) was 0.18 sec on
the computational environment described above.
The STU values given in Table 1 are substantially smaller than those in our

earlier study [6], this is in part due to the better interval arithmetic implementation.
According to the STU values, Rules B and C are better choices than Rule A or D.
On the basis of the numerical tests made, we can expect 16% or 22% improvements
in the computation time if we use Rules B or C instead of Rule A. Rule D causes
about 19% increase. Completing a large set of problems similar to the studied set,
Rule B require 62% less, Rule C 63% less, and Rule D 25% less CPU time.

5.2. Comparing the Number of Function Evaluations

Table 2 gives the number of objective function evaluations (NFE) necessary to
solve the test problems. For practical applications, this measure together with the
number of gradient evaluations is more important than the required CPU time, since
the functions involved are usually more complex than those of the test problems (see
e.g. [13], [20]). According to the present test results, 15% and 19% improvement
can be expected if Rules B and C are used instead of Rule A, and Rule D causes
19% higher number of function evaluations. The sum of the numbers of function
evaluations (and also that of the gradient evaluations) must be interpreted with
care, because the individual complexities of the test problems are di�erent. When a

ON THE SELECTION OF SUBDIVISION DIRECTIONS 197

Table 1. Standard time units required by the four methods for the solution of global
optimization test problems

Function Dim. Rule A Rule B (B/A) Rule C (C/A) Rule D (D/A)

S5 4 0.51 0.51 (100%) 0.51 (100%) 0.51 (100%)
S7 4 0.72 0.73 (101%) 0.70 (97%) 0.74 (103%)

S10 4 1.02 1.03 (101%) 0.98 (96%) 1.01 (99%)

H3 3 5.32 2.45 (46%) 2.01 (38%) 11.18 (210%)
H6 6 32.31 21.30 (66%) 18.23 (56%) 78.92 (244%)

GP 2 942.91 813.83 (86%) 839.19 (89%) 2630.72 (279%)

SHCB 2 2.42 2.54 (105%) 2.23 (92%) 3.13 (129%)
BR 2 1.37 1.26 (92%) 1.21 (88%) 2.75 (201%)

RB 2 0.06 0.04 (67%) 0.04 (67%) 0.07 (117%)

THCB 2 0.88 0.71 (80%) 0.68 (68%) 1.30 (147%)
L3 2 123.15 83.88 (68%) 83.10 (67%) 120.30 (98%)

L5 2 23.67 17.24 (73%) 17.10 (72%) 23.12 (98%)

L8 3 1.35 1.35 (100%) 1.35 (100%) 1.35 (100%)
L9 4 2.37 2.37 (100%) 2.37 (100%) 2.37 (100%)

L10 5 3.74 3.74 (100%) 3.74 (100%) 3.74 (100%)

L11 8 9.96 9.96 (100%) 9.96 (100%) 9.96 (100%)
L12 10 15.55 15.55 (100%) 15.55 (100%) 15.55 (100%)

L13 2 1.96 0.92 (47%) 0.92 (47%) 0.96 (100%)

L14 3 1.87 1.55 (83%) 1.55 (83%) 1.87 (100%)
L15 4 2.94 3.02 (103%) 2.87 (97%) 2.96 (101%)

L16 5 4.16 3.79 (91%) 3.63 (87%) 4.18 (101%)
L18 7 7.84 7.19 (92%) 7.19 (92%) 7.86 (101%)

Schw2.1 2 0.91 1.19 (130%) 1.19 (130%) 0.69 (76%)

Schw3.1 3 0.10 0.10 (100%) 0.10 (100%) 0.10 (100%)
Schw3.1p 3 0.10 0.10 (100%) 0.10 (100%) 0.10 (100%)

Schw2.5 2 0.11 0.12 (109%) 0.10 (91%) 0.14 (127%)

Schw2.7 3 4123.40 244.59 (6%) 239.01 (6%) 778.51 (19%)
Schw2.10 4 9.11 3.01 (33%) 3.09 (34%) 9.11 (100%)

Schw2.14 4 2.59 2.27 (88%) 2.24 (86%) 7.05 (272%)

Schw2.18 2 0.68 0.64 (94%) 0.64 (94%) 0.71 (104%)
Schw3.2 3 0.15 0.10 (67%) 0.10 (67%) 0.13 (87%)

Schw3.7 30 0.42 0.41 (98%) 0.38 (91%) 0.36 (86%)

Griew5 5 87.41 87.41 (100%) 87.41 (100%) 87.41 (100%)
Griew7 7 1046.80 1043.21 (99%) 1031.06 (98%) 1048.91 (101%)

R4 2 16.79 9.05 (54%) 8.21 (49%) 59.27 (353%)

R5 3 9.65 6.69 (69%) 3.64 (38%) 3.63 (38%)
R6 5 23.26 18.61 (80%) 11.26 (48%) 13.18 (57%)

R7 7 61.03 41.54 (68%) 23.93 (39%) 32.29 (53%)

R8 9 113.72 71.35 (63%) 44.31 (39%) 55.74 (49%)

Sum 6682.31 2525.35 (38%) 2471.88 (37%) 5021.88 (75%)

AoP (84%) (78%) (119%)

198 D. RATZ AND T. CSENDES

Table 2. Number of function evaluations required by the four methods for the solution
of global optimization test problems

Function Dim. Rule A Rule B (B/A) Rule C (C/A) Rule D (D/A)

S5 4 87 87 (100%) 87 (100%) 87 (100%)
S7 4 93 93 (100%) 89 (96%) 93 (100%)

S10 4 95 97 (102%) 93 (98%) 95 (100%)

H3 3 419 197 (47%) 175 (42%) 877 (209%)
H6 6 1631 1077 (66%) 915 (56%) 3807 (233%)

GP 2 87217 76475 (88%) 79755 (91%) 263395 (302%)

SHCB 2 1283 1271 (99%) 1135 (88%) 1635 (127%)
BR 2 255 231 (91%) 223 (87%) 597 (234%)

RB 2 77 49 (64%) 49 (64%) 89 (115%)

THCB 2 731 591 (81%) 547 (74%) 1051 (144%)
L3 2 2805 1977 (71%) 1969 (70%) 2945 (105%)

L5 2 781 549 (70%) 549 (70%) 741 (95%)

L8 3 43 43 (100%) 43 (100%) 43 (100%)
L9 4 57 57 (100%) 57 (100%) 57 (100%)

L10 5 71 71 (100%) 71 (100%) 71 (100%)

L11 8 115 115 (100%) 115 (100%) 115 (100%)
L12 10 143 143 (100%) 143 (100%) 143 (100%)

L13 2 43 39 (90%) 39 (90%) 43 (100%)

L14 3 63 57 (90%) 57 (90%) 63 (100%)
L15 4 83 77 (93%) 75 (93%) 83 (100%)

L16 5 93 85 (91%) 83 (91%) 93 (100%)
L18 7 129 117 (91%) 117 (91%) 129 (100%)

Schw2.1 2 603 717 (119%) 717 (119%) 433 (72%)

Schw3.1 3 59 59 (100%) 59 (100%) 59 (100%)
Schw3.1p 3 59 59 (100%) 59 (100%) 59 (100%)

Schw2.5 2 137 137 (100%) 127 (93%) 159 (116%)

Schw2.7 3 29989 2051 (7%) 1999 (7%) 5533 (18%)
Schw2.10 4 605 247 (41%) 249 (41%) 625 (103%)

Schw2.14 4 745 687 (92%) 667 (90%) 1531 (206%)

Schw2.18 2 803 803 (100%) 803 (100%) 851 (106%)
Schw3.2 3 111 69 (62%) 69 (62%) 95 (86%)

Schw3.7 30 3 3 (100%) 3 (100%) 3 (100%)

Griew5 5 4095 4095 (100%) 4095 (100%) 4095 (100%)
Griew7 7 23039 23039 (100%) 23039 (100%) 23039 (100%)

R4 2 903 503 (56%) 479 (53%) 2919 (323%)

R5 3 259 185 (71%) 113 (44%) 111 (43%)
R6 5 283 313 (111%) 201 (71%) 231 (82%)

R7 7 699 489 (70%) 297 (42%) 389 (56%)

R8 9 1015 653 (64%) 421 (41%) 523 (52%)

Sum 159721 117607 (74%) 119783 (75%) 316907 (198%)

AoP (85%) (81%) (119%)

ON THE SELECTION OF SUBDIVISION DIRECTIONS 199

similar set of problems is to be solved, the expected improvements are 26% for Rule
B, 25% for Rule C, while Rule D means about twice as much function evaluations.

5.3. Comparing the Number of Gradient Evaluations

Table 3 provides the number of gradient evaluations (NGE). As mentioned earlier,
the gradients are calculated in a single step, and not componentwise as in our
previous study [6]. Thus the NFE is an upper bound on the NGE values. The
remarkable stability in the NGE/NFE ratios found in the earlier paper is now even
stronger, and the number of cases where NGE equals NFE is larger than in [6].
This fact is mainly due to the single step evaluation that does not allow skipping
the calculation of some gradient components, and can also be caused to a smaller
extent by the use of automatic di�erentiation that may result in less tight inclusions
of the gradients than with the hand-coded routines. The range of the NGE/NFE
values is between 70% and 100%.
According to the test results, 14% and 19% improvements can be expected if Rule

B or Rule C is used instead of Rule A, while Rule D causes 18% higher number of
gradient evaluations. When a similar set of problems is to be solved, the anticipated
improvements are as high as 25% for Rule B and 24% for Rule C, while Rule D
means about twice as much gradient evaluations.

5.4. Comparing the Space Complexity

Table 4 shows the minimal lengths of the list L necessary to solve the test problems
with the studied direction selection rules. The joint space complexity of the whole
set of test problems is the maximal value of the corresponding column. According
to the test results, a list of length 8197 is enough to solve the set of test problems
with Rule A, while the necessary list lengths for the other rules were 6729, 6740,
and 19327, respectively. The latter ones represent {18%, {18% and +136% di�er-
ences. The average of the percentages for the new rules were 89%, 86% and 116%,
respectively.

5.5. Summary

Two dominant behaviors can be recognized by studying the numerical results: for
about half of the test problems Rule B, and especially Rule C ensure much more
e�cient solution than Rule A, while Rule D is the worst in this sense. The improve-
ments showed in Tables 1 to 4 are even stronger for this �rst subset of problems.
For a smaller set of problems the di�erences due to the direction selection rules
are moderate, just few percents. The few remaining test problems show various
other patterns. It is remarkable that usually the same behavior characterized each
problem in di�erent tables.

200 D. RATZ AND T. CSENDES

Table 3. Number of gradient evaluations required by the four methods for the solution
of global optimization test problems

Function Dim. Rule A Rule B (B/A) Rule C (C/A) Rule D (D/A)

S5 4 87 87 (100%) 87 (100%) 87 (100%)
S7 4 93 93 (100%) 89 (96%) 93 (100%)

S10 4 95 97 (102%) 93 (98%) 95 (100%)

H3 3 407 189 (47%) 163 (40%) 861 (212%)
H6 6 1464 997 (68%) 850 (58%) 3215 (220%)

GP 2 73553 65473 (89%) 67834 (92%) 223601 (304%)

SHCB 2 1137 1107 (97%) 999 (88%) 1527 (134%)
BR 2 255 231 (91%) 223 (87%) 500 (196%)

RB 2 77 49 (64%) 49 (64%) 89 (115%)

THCB 2 707 535 (76%) 503 (71%) 1025 (145%)
L3 2 2452 1765 (72%) 1761 (72%) 2384 (97%)

L5 2 548 437 (80%) 437 (80%) 555 (101%)

L8 3 43 43 (100%) 43 (100%) 43 (100%)
L9 4 57 57 (100%) 57 (100%) 57 (100%)

L10 5 71 71 (100%) 71 (100%) 71 (100%)

L11 8 115 115 (100%) 115 (100%) 115 (100%)
L12 10 143 143 (100%) 143 (100%) 143 (100%)

L13 2 43 39 (90%) 39 (90%) 43 (100%)

L14 3 63 57 (90%) 57 (90%) 63 (100%)
L15 4 83 77 (93%) 75 (93%) 83 (100%)

L16 5 93 85 (91%) 83 (91%) 93 (100%)
L18 7 129 117 (91%) 117 (91%) 129 (100%)

Schw2.1 2 515 625 (121%) 625 (121%) 424 (82%)

Schw3.1 3 59 59 (100%) 59 (100%) 59 (100%)
Schw3.1p 3 59 59 (100%) 59 (100%) 59 (100%)

Schw2.5 2 137 137 (100%) 127 (93%) 158 (115%)

Schw2.7 3 25829 1534 (6%) 1496 (6%) 4722 (18%)
Schw2.10 4 605 242 (40%) 244 (40%) 605 (100%)

Schw2.14 4 742 687 (93%) 667 (90%) 1460 (197%)

Schw2.18 2 803 803 (100%) 803 (100%) 851 (106%)
Schw3.2 3 111 69 (62%) 69 (62%) 95 (86%)

Schw3.7 30 3 3 (100%) 3 (100%) 3 (100%)

Griew5 5 4095 4095 (100%) 4095 (100%) 4095 (100%)
Griew7 7 23039 23039 (100%) 23039 (100%) 23039 (100%)

R4 2 843 463 (56%) 443 (53%) 2851 (338%)

R5 3 259 185 (71%) 113 (44%) 111 (43%)
R6 5 283 313 (111%) 201 (71%) 231 (82%)

R7 7 699 489 (70%) 297 (42%) 389 (56%)

R8 9 1015 653 (64%) 421 (41%) 523 (52%)

Sum 140811 105319 (75%) 106649 (76%) 274547 (195%)

AoP (86%) (81%) (118%)

ON THE SELECTION OF SUBDIVISION DIRECTIONS 201

Table 4. Space complexity of the four methods for the solution of global optimization
test problems in terms of the necessary length of the list

Function Dim. Rule A Rule B (B/A) Rule C (C/A) Rule D (D/A)

S5 4 14 15 (107%) 15 (107%) 14 (100%)
S7 4 17 18 (106%) 17 (100%) 17 (100%)

S10 4 18 20 (111%) 18 (100%) 18 (100%)

H3 3 27 17 (63%) 16 (59%) 42 (156%)
H6 6 183 99 (54%) 88 (48%) 372 (203%)

GP 2 6878 6729 (98%) 6740 (98%) 19327 (281%)

SHCB 2 164 158 (96%) 142 (87%) 174 (106%)
BR 2 25 22 (88%) 20 (80%) 51 (204%)

RB 2 16 15 (94%) 15 (94%) 18 (113%)

THCB 2 58 52 (90%) 48 (83%) 74 (128%)
L3 2 821 531 (65%) 526 (64%) 708 (86%)

L5 2 167 141 (84%) 140 (84%) 166 (99%)

L8 3 10 10 (100%) 10 (100%) 10 (100%)
L9 4 13 13 (100%) 13 (100%) 13 (100%)

L10 5 16 16 (100%) 16 (100%) 16 (100%)

L11 8 25 25 (100%) 25 (100%) 25 (100%)
L12 10 31 31 (100%) 31 (100%) 31 (100%)

L13 2 10 11 (110%) 10 (100%) 10 (100%)

L14 3 14 15 (107%) 14 (100%) 14 (100%)
L15 4 18 20 (111%) 21 (117%) 18 (100%)

L16 5 23 24 (104%) 25 (109%) 23 (100%)
L18 7 34 31 (91%) 30 (88%) 34 (100%)

Schw2.1 2 101 118 (117%) 118 (117%) 92 (91%)

Schw3.1 3 7 7 (100%) 9 (129%) 7 (100%)
Schw3.1p 3 7 7 (100%) 7 (100%) 7 (100%)

Schw2.5 2 15 15 (100%) 15 (100%) 19 (127%)

Schw2.7 3 8197 385 (5%) 377 (5%) 1172 (14%)
Schw2.10 4 267 96 (36%) 96 (36%) 249 (93%)

Schw2.14 4 96 71 (74%) 67 (70%) 272 (283%)

Schw2.18 2 24 24 (100%) 24 (100%) 28 (117%)
Schw3.2 3 17 14 (82%) 12 (71%) 14 (82%)

Schw3.7 30 2 2 (100%) 2 (100%) 2 (100%)

Griew5 5 704 704 (100%) 704 (100%) 704 (100%)
Griew7 7 5505 5632 (102%) 5249 (95%) 5505 (100%)

R4 2 116 76 (66%) 72 (62%) 264 (228%)

R5 3 34 27 (79%) 19 (56%) 20 (59%)
R6 5 52 37 (71%) 29 (56%) 36 (69%)

R7 7 62 47 (76%) 39 (63%) 50 (81%)

R8 9 72 57 (79%) 49 (68%) 64 (89%)

Maximum 8197 6729 (82%) 6740 (82%) 19327 (236%)

AoP (89%) (86%) (116%)

202 D. RATZ AND T. CSENDES

The trends of the present test results are close to those reported in [6], where the
algorithm used a di�erent list ordering, componentwise calculated and hand-coded
gradient inclusion functions. The few larger di�erences in the e�ciency �gures can
be explained by the algorithmic changes.
Summarizing the consequences of the numerical tests, we can conclude that Rule

C is the best choice in terms of most of the e�ciency measures, closely followed by
Rule B. Although Rule D was worse than Rule A for many of the test problems, for
some cases (e.g. Schwefel No. 2.1 or R5) it was nonetheless the best rule from many
points of view. The numerical experiences indicate that with the recognition of the
problem type, a substantial amount of computational e�ort can be saved by using
the proper one of the new direction selection rules. For some test problems, the right
direction selection rule could cause dramatic improvements in terms of computation
time or space complexity (which is of vital importance in some application �elds). It
should be stressed that the discussed algorithmic changes do not require additional
information on the problems, and they provide the e�ciency improvements on a
very wide problem class.

Appendix

Problem descriptions

In the following, we list the functions f and starting interval vectors X used in
our tests, the abbreviated and full names of the corresponding problems, and the
dimensionality of the problems.

S5, S7, S10: Shekel (x 2 IR4):

fSm(x) = �
mX
i=1

1

(x�Ai)(x� Ai)T + ci
;

where A 2 IRm�4, c 2 IRm, and m = 5, m = 7, and m = 10, respectively. We
use Xi = [0; 10], i = 1; . . . ; 4.

H3, H6: Hartman (x 2 IR3 and x 2 IR6, respectively):

fHn(x) = �
4X
i=1

ci exp

0
@� nX

j=1

Aij(xj � Pij)
2

1
A :

for n = 3 and n = 6, where A;P 2 IR4�n and c 2 IRn. We use Xi = [0; 1],
i = 1; . . . ; n.

GP: Goldstein and Price (x 2 IR2):

f(x) = (1 + (x1 + x2 + 1)2(19� 14x1 + 3x21 � 14x2 + 6x1x2 + 3x22)) �

(30 + (2x1 � 3x2)
2(18� 32x1 + 12x21 + 48x2 � 36x1x2 + 27x22)):

ON THE SELECTION OF SUBDIVISION DIRECTIONS 203

We use Xi = [�2; 2], i = 1; . . . ; 2.

SHCB: Six-hump camel-back function, Branin (x 2 IR2):

f(x) = 4x21 � 2:1x41 +
1

3
x61 + x1x2 � 4x22 + 4x42:

We use Xi = [�2; 2], i = 1; . . . ; 2.

BR: Branin (x 2 IR2):

f(x) =

�
5

�
x1 �

5:1

4�2
x21 + x2 � 6

�2
+ 10

�
1�

1

8�

�
cos x1 + 10:

We use X1 = [�5; 10] and X2 = [0; 15].

RB: Rosenbrock (x 2 IR2):

f(x) = 100(x2 � x21)
2 + (x1 � 1)2:

We use Xi = [�1:2; 1:2], i = 1; . . . ; 2.

THCB: Three-hump camel-back function (x 2 IR2):

f(x) = 12x21 � 6:3x41+ x61 + 6x2(x2 � x1):

We use Xi = [�3; 3], i = 1; . . . ; 2.

L3: Levy (x 2 IR2):

f(x) =
5X
i=1

i cos((i� 1)x1 + i)
5X

j=1

j cos((j + 1)x2 + j):

We use Xi = [�10; 10], i = 1; . . . ; 2.

L5: Levy (x 2 IR2):

f(x) =
5X
i=1

i cos((i� 1)x1 + i)
5X

j=1

j cos((j + 1)x2 + j)

+(x1 + 1:42513)2 + (x2 + 0:80032)2:

We use Xi = [�10; 10], i = 1; . . . ; 2.

204 D. RATZ AND T. CSENDES

L8, L9, L10, L11, L12: Levy (x 2 IRn, n = 3; 4; 5; 8; 10, respectively):

f(x) =
n�1X
i=1

(yi � 1)2(1 + 10 sin2(�yi+1))

+ sin2(�y1) + (yn � 1)2;

with yi = 1 + (xi � 1)=4, i = 1; . . . ; n:

We use Xi = [�10; 10], i = 1; . . . ; n.

L13, L14, L15, L16, L18: Levy (x 2 IRn, n = 2; 3; 4; 5; 7, respectively):

f(x) =
n�1X
i=1

(xi � 1)2(1 + sin2(3�xi+1))

+(xn � 1)2(1 + sin2(2�xn)) + sin2(3�x1):

We use Xi = [�10; 10], i = 1; . . . ; n for n = 2; 3; 4 and Xi = [�5; 5], i = 1; . . . ; n
for n = 5; 7.

Schw2.1: Beale (x 2 IR2):

f(x) = (1:5� x1 + x1x2)
2 + (2:25� x1 + x1x

2
2)
2 + (2:625� x1 + x1x

3
2)
2:

We use X1 = [�1:5; 7:5] and X2 = [�4; 5].

Schw3.1: Schwefel (x 2 IR3):

f(x) =
3X
i=1

�
(x1 � x2i)

2 + (xi � 1)2
�
:

We use Xi = [�10; 10], i = 1; . . . ; 3.

Schw3.1p: Schwefel (x 2 IR3):

f(x) =
3X
i=1

�
(Px1 � Px2i)

2 + (Pxi � P)2
�
;

with P = [0:999; 1:001]. We use Xi = [�10; 10], i = 1; . . . ; 3.

Schw2.5: Booth (x 2 IR2):

f(x) = (x1 + 2x1 � 7)2 + (2x1 + x2 � 5)2:

We use Xi = [�5; 5], i = 1; . . . ; 2.

ON THE SELECTION OF SUBDIVISION DIRECTIONS 205

Schw2.7: Box 3D (x 2 IR3):

f(x) =
10X
k=1

�
exp(

�kx1
10

)� exp(
�kx2
10

)� (exp(
�k

10
)� exp(�k))x3

�2

:

We use Xi = [�10; 30], i = 1; . . . ; 3.

Schw2.10: Kowalik (x 2 IR4):

f(x) =
11X
i=1

�
ai � x1

b2i + bix2

b2i + bix3 + x4

�
:

We use Xi = [0; 0:42], i = 1; . . . ; 4.

Schw2.14: Powell (x 2 IR4):

f(x) = (x1 + 10x2)
2 + 5(x3 � x4)

2 + (x2 � 2x3)
4 + 10(x1 � x4)

4:

We use Xi = [�4; 5], i = 1; . . . ; 4.

Schw2.18: Matyas (x 2 IR2):

f(x) = 0:26(x21 + x22)� 0:48x1x2:

We use Xi = [�30; 30], i = 1; . . . ; 2.

Schw3.2: Schwefel (x 2 IR3):

f(x) =
3X
i=2

�
(x1 � x2i)

2 + (xi � 1)2
�
:

We use Xi = [�1:89; 1:89], i = 1; . . . ; 3.

Schw3.7: Schwefel (x 2 IR30):

f(x) =
30X
i=1

x10i :

We use Xi = [�0:184; 0:184], i = 1; . . . ; 30.

Griew5: Griewank (x 2 IR5):

f(x) =
5X
i=1

x2i
400

�
5Y
i=1

cos(
xip
i
) + 1:

We use Xi = [�600; 600], i = 1; . . . ; 5.

206 D. RATZ AND T. CSENDES

Griew7: Griewank (x 2 IR7):

f(x) =
7X
i=1

x2i
4000

�
7Y
i=1

cos(
xip
i
) + 1:

We use Xi = [�600; 500], i = 1; . . . ; 7.

R4: Ratz (x 2 IR2):

f(x) = sin(x21 + 2x22) exp(�x
2
1 � x22)

We use Xi = [�3; 3], i = 1; . . . ; 2.

R5, R6, R7, R8: Ratz (x 2 IRn, n = 3; 5; 7; 9, respectively):

f(x) =

sin2

�
�
x1 + 3

4

� n�1X
i=1

�
xi � 1

4

�2�
1 + 20 sin2

�
�
xi+1 + 3

4

��!2

We use Xi = [�10; 10], i = 1; . . . ; n.

References

1. Alefeld G. and Herzberger J. (1983), Introduction to Interval Computations, AcademicPress,
New York.

2. Benson, H. P. (1982), On the Convergence of two Branch-and-Bound Algorithms for Non-

convex Programming Problems, J. Optim. Theory and Appl., 36, 129{134.

3. Caprani, O., Godthaab, B., and Madsen, K. (1993), Use of a Real-Valued Local Minimum

in Parallel Interval Global Optimization, Interval Computations, 3, 71{82.

4. Csendes, T. (1988), Nonlinear Parameter Estimation by Global Optimization | E�ciency

and Reliability, Acta Cybernetica, 8, 361{370.

5. Csendes, T. and Pint�er, J. (1993), The Impact of Accelerating Tools on the Interval Subdivi-

sion Algorithm for Global Optimization, European J. of Operational Research, 65, 314{320.

6. Csendes, T. and Ratz, D. (1995), Subdivision Direction Selection in Interval Methods for

Global Optimization, submitted for publication.

7. Hammer, R., Hocks, M., Kulisch, U., and Ratz, D. (1993), Numerical Toolbox for Veri�ed

Computing I, Springer-Verlag, Berlin.

8. Hansen, E. (1992), Global Optimization Using Interval Analysis, Marcel Dekker, New York.

9. Jansson, C. and Kn�uppel, O. (1992),A Global Minimization Method: the Multi-Dimensional

Case, Report 92.1, Technische Universit�at Hamburg-Harburg.

10. Jones, D. R., C. D. Perttunen and B. E. Stuckman (1994), Lipschitzian Optimization without

the Lipschitz Constant, J. of Optim. Theory and Appl., 79, 157{181.

11. Kearfott, R. B. and Novoa, M. (1990), INTBIS, a Portable Interval Newton/Bisection Pack-

age, ACM T. on Mathematical Software, 16, 152{157.

12. Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, Ch. (1992), PASCAL{XSC {

Language Reference with Examples, Springer-Verlag, New York.

13. Kristinsdottir, B. P., Zabinsky, Z. B., Csendes, T., and Tuttle, M. E. (1993), Methodologies

for Tolerance Intervals, Interval Computations, 3, 133{147.

ON THE SELECTION OF SUBDIVISION DIRECTIONS 207

14. Levy, A. V., Montalvo, A., Gomez, S., and Calderon, A. (1981), Topics in Global Optimiza-

tion, Lecture Notes in Mathematics, No. 909, Springer-Verlag, Berlin.

15. Moore, R. E. (1966), Interval Analysis, Prentice Hall, Engelwood Cli�s.

16. Neumaier, A. (1990), Interval Methods for Systems of Equations, Cambridge University
Press, Cambridge.

17. Pint�er, J. (1986), Extended Univariate Algorithms for n-dimensional Global Optimization,
Computing 36, 91{103.

18. Pint�er, J. (1992), Convergence Quali�cation of Adaptive Partition Algorithms in Global

Optimization, Mathematical Programming 56, 343{360.

19. Ratschek, H. and Rokne, J. (1988), New Computer Methods for Global Optimization, Ellis
Horwood, Chichester.

20. Ratschek, H. and Rokne, J. (1993),Experiments Using Interval Analysis for Solving a Circuit
Design Problem, J. Global Optimization 3, 501{518.

21. Ratz, D. (1992), Automatische Ergebnisveri�kation bei globalen Optimierungsproblemen,
Dissertation, Universit�at Karlsruhe.

22. Schwefel, H. (1991), Numerical Optimization of Computer Models, Wiley, New York.

23. Skelboe, S. (1974), Computation of Rational Interval Functions, BIT 4, 87{95.

24. T�orn, A. and �Zilinskas, A. (1989),Global Optimization, Lecture Notes in Computer Science,

No. 350, Springer-Verlag, Berlin.

