
This paper is a minor revision of a preprint of a paper accepted by the Journal of the IET and is subject
to Institution of Engineering and Technology Copyright. When the final version is published, the copy of
record will be available at IET Digital Library. The paper is based on an earlier article of the same name
published at PKC 2015 c© IACR 2015, DOI 10.1007/978-3-662-46447-2_2.

On the Selective Opening Security of Practical

Public-Key Encryption Schemes

Felix Heuer Tibor Jager Eike Kiltz Sven Schäge

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{felix.heuer,tibor.jager,eike.kiltz,sven.schaege}@rub.de

Abstract

We show that two well-known and widely employed public-key encryption schemes – RSA Optimal
Asymmetric Encryption Padding (RSA-OAEP) and the Diffie-Hellman Integrated Encryption Scheme
(DHIES), instantiated with a one-time pad – are selective opening secure (under the strong, simulation-
based notion) against chosen-ciphertext attacks in the random oracle model.

Both schemes are obtained via known generic transformations that transform relatively weak
primitives (with security in the sense of one-wayness) to IND-CCA secure encryption schemes. We
also show a similar result for the well-known Fujisaki-Okamoto transformation that can generically
turn a one-way secure public key encryption system into a IND-CCA-secure public-key encryption
system.

We prove that selective opening security comes for free in these transformations. Both DHIES
and RSA-OAEP are important building blocks in several standards for public key encryption and key
exchange protocols. The Fujisaki-Okamoto transformation is very versatile and has successfully been
utilised to build efficient lattice-based cryptosystems. The considered schemes are the first practical
cryptosystems that meet the strong notion of simulation-based selective opening (SIM-SO-CCA)
security.

Keywords: public key encryption, selective opening security, SIM-SO-CCA, OAEP, DHIES,
Fujisaki–Okamoto

1 Introduction

Consider a set of clients A1, . . . , An connecting to a server S. To encrypt a message mi, each client
Ai draws fresh randomness ri and transmits ciphertext ci = EncpkS

(mi; ri) to S. Here pk denotes
the public key of S, mi is the transmitted message, and ri is the randomness used for encryption.
Assume an adversary observes these ciphertexts, and is then able to ‘corrupt’ a subset of clients {Ai}i∈I ,
I ⊆ {1, . . . , n}, for instance by installing a malware on their computers. Then, for all i ∈ I, the adversary
learns not only the message mi, but also the randomness ri that Ai has used to encrypt mi. Attacks of
this type are called selective-opening (SO) attacks (under sender corruptions) and a central question in
cryptography is whether the unopened ciphertexts remain secure.

At a first glance, one may be tempted to believe that security of the non-corrupted ciphertexts follows
immediately, if the encryption scheme meets some standard security notion, like indistinguishability
under chosen-plaintext (IND-CPA) or chosen-ciphertext (IND-CCA) attacks, due to the fact that
each user Ai samples the randomness ri independently from the other users. However, it has been
observed [BH92, CFGN96, CDNO97, Bea97, CHK05] that this is not true in general, see e.g. [HR14] for
an overview.

Basically, it is a combination of two features of the notion of selective opening security that make this
security definition essentially stronger than traditional forms of security. The first one is randomness.
Observe that the previous security experiment explicitly models that the attacker may also obtain
the random coins that are used to produce ciphertexts when corrupting a sender. In practice this is
motivated by the fact that erasing (cryptographic) information is technically very difficult and expensive.
However, very importantly from a provable-security point of view, the randomness may act as a proof of
well-formedness of a ciphertext for the attacker. In particular it is now much harder for the simulator

mailto:felix.heuer@rub.de
mailto:felix.heuer@rub.de

to create ciphertexts that look ‘normal’ but which are actually computed via some other mechanism
(possibly involving some secret trapdoor information). This is because whenever the simulator produces
a ciphertext, it must also be able to produce the corresponding message and randomness that map to
this ciphertext via the public encryption routine. In traditional security games, even when modelling
chosen-ciphertext security, the attacker may not obtain access to such proofs. We also emphasize that
the probability to simply guess which of the ciphertexts the attacker is going to corrupt is negligible
1/

(

n
n/2

)

. As a consequence it is not a viable strategy for the simulator to prepare two size n/2 subsets

of ciphertexts, one where ciphertexts are produced in the usual way and one where they are produced
differently.

The second feature is that the notion of selective opening security considers message distributions over
all encrypted messages. In particular revealing on plaintext may narrow down the number of possible
plaintexts for the remaining ciphertexts. This is very realistic in many practical scenarios as usually
queries of many clients to a single server are often very similar (like providing a file request in some special
format). In traditional notions of security the simulator has to only guarantee that a single ciphertext
that it produced (usually termed the challenge ciphertext) is secure.

Results on SO Security. Defining the right notion of security against selective opening attacks has
proven highly non-trivial. There are three notions of security that are not polynomial-time equivalent to
each other, two indistinguishability-based notions usually denoted as weak IND-SO and (full) IND-SO
security, and a simulation-based notion of selective opening security referred to as SIM-SO security.
Previous results showed that SIM-SO-CCA and full IND-SO-CCA security are the strongest notions of
security [BHK12, BDWY12, HR14]. However, only SIM-SO-CCA has been realised so far [FHKW10,
HLOV11, Hof12]. Unfortunately, the existing constructions are very inefficient and rather constitute
theoretical contributions. Intuitively, SIM-SO security says that for every adversary in the above scenario
there exists a simulator which can produce the same output as the adversary without ever seeing any
ciphertext, randomness, or the public key. It is noteworthy that unlike weak IND-SO security, which
requires message distributions that support ‘efficient conditional re-sampling’ (cf. [BHY09]), SIM-SO is
independent of the concrete distribution of the messages.

1.1 Our Contributions

In this paper we show that three important public key encryption systems are secure under the strong
notion of SIM-SO-CCA security. Previous results only established IND-CCA security of the resulting
schemes. Most notably, our results cover the well-known DHIES scheme, instantiated with a one-time
pad, RSA-OAEP, and the Fujisaki-Okamoto (FO) transform instantiated with a one-time pad. Our
results show that SIM-SO security essentially comes for free in the random oracle model. This yields the
first practical public key encryption schemes that meet the strong notion of SIM-SO-CCA security.

First Construction: DHIES. The first construction we consider is a generalisation of the well-
known ‘Diffie-Hellman integrated encryption scheme’ (DHIES) [ABR01]. (DHIES or ‘Hashed ElGamal
Encryption’ uses a MAC to make plain ElGamal encryption IND-CCA secure.) This generic idea behind
DHIES was formalised by Steinfeld, Baek, and Zheng [SBZ02] who showed how to build an IND-CCA
secure public key encryption system from a key encapsulation mechanism (KEM) that is one-way under
plaintext checking attacks (OW-PCA). OW-PCA is a comparatively weak notion of security in which the
adversary’s main task is to decapsulate a given encapsulation of some symmetric key. In addition to the
public key, the adversary has only access to an oracle which checks, given a KEM key and a ciphertext,
whether the ciphertext indeed constitutes an encapsulation of the KEM key under the public key. This
construction is IND-CCA secure in the random oracle model [SBZ02]. We show that it is furthermore
SIM-SO-CCA secure in the random oracle model. We stress that our result generically holds for the
entire construction and therefore for any concrete instantiation of it. Most importantly, it covers the
well-known DHIES scheme (when instantiated with a one-time pad) that is contained in several public-key
encryption standards like IEEE P1363a, SECG, and ISO 18033-2. DHIES is the de-facto standard for
elliptic-curve encryption.

Second Construction: OAEP. The second construction of public key encryption schemes that we con-
sider is the well-known Optimal Asymmetric Encryption Padding (OAEP) transformation [BR94]. OAEP
is a generic transformation for constructing public-key encryption schemes from trapdoor permutations
that was proposed by Bellare and Rogaway. Since then, it has become an important ingredient in many

2

security protocols and security standards like TLS [DR08, Res02], SSH [Har06], S/MIME [RT10, Hou03],
EAP [CA06], and Kerberos [NSF05, Rae05].

We show that OAEP is SIM-SO-CCA secure when instantiated with a partial-domain trapdoor
permutation (cf. Section 4.1). Since it is known [FOPS01] that the RSA permutation is partial-domain
one-way under the RSA assumption, this implies that RSA-OAEP is SIM-SO-CCA secure under the
RSA assumption. In fact, our result holds not only for trapdoor permutations, but for injective trapdoor
functions as well.

Since SIM-SO-CCA security implies IND-CCA security, our proof also provides an alternative to the
IND-CCA security proof of [FOPS01]. Interestingly, despite that we are analysing security in a stronger
security model, our proof seems to be somewhat simpler than the proof of [FOPS01], giving a more direct
insight into which properties of the OAEP construction and the underlying trapdoor permutation make
OAEP secure. This might be due to the fact that our proof is organised as a sequence of games [BR06].

Complementing the work of [FOPS01, BF06, BDU08], our result gives new evidence towards the belief
that the OAEP construction is sound, and that OAEP-type encryption schemes can be used securely in
various practical scenarios.

Third Construction: Fujisaki-Okamoto. Like the previous transformations, the Fujisaki-Okamoto
[FO13] transform takes as input a one-way secure public-key encryption system and turns it into a
IND-CCA secure one. The transformation excels through its generality. In [Pei14], it has successfully been
applied to construct an efficient lattice-based cryptosystem. Remarkably, all other major transformations
to IND-CCA cryptosystems where either deemed inefficient, insecure, or inapplicable in this setting. (For
more details we refer to [Pei14]).

1.2 Related Work

The problem of selective-opening attacks is well-known, and has already been observed twenty years
ago [BH92, CFGN96, CDNO97, Bea97, CHK05]. The problem of constructing encryption schemes that
are provably secure against this class of adversaries without random oracles has only been solved recently
by Bellare, Hofheinz, and Yilek [BHY09]. In [BHY09], the authors show that lossy encryption [PW08]
implies security against selective openings under chosen-plaintext attacks (SO-CPA). This line of research
is continued in [HLOV11] by Hemenway et al., who show that re-randomisable encryption and statistically
hiding two-round oblivious transfer imply lossy encryption. From a cryptographic point of view, the
above works solve the problem of finding SO-CPA secure encryption schemes, as there are several
constructions of efficient lossy or re-randomizable encryption schemes, e.g. [PW08, BHY09, HLOV11].
When it comes to selective openings under chosen-ciphertext attacks, the situation is somewhat different.
Hemenway et al. [HLOV11], Fehr et al. [FHKW10], Hofheinz [Hof12], and Fujisaki [Fuj12] describe
SIM-SO-CCA secure encryption schemes which are all too inefficient for practical applications. More
recently, an identity-based encryption scheme with selective-opening security was proposed [BWY11]. It
is noteworthy, that the most efficient public key encryption systems proven to be weak IND-SO secure
do not meet the stronger notion of SIM-SO security. Lately, SIM-SO-CCA security for IBE has been
achieved [LDL+14].

State-of-the-Art of the Provable Security of OAEP. The OAEP construction was proved
IND-CCA secure if the underlying trapdoor permutation is partial-domain one-way [BR94, Sho02,
FOPS01]. Since the RSA trapdoor permutation is a partial-domain one-way function, this yields the
IND-CCA security of RSA-OAEP as well. Fischlin and Boldyreva [BF06] studied the security of OAEP
when only one of the two hash functions is modelled as a random oracle, and furthermore showed that
OAEP is non-malleable under chosen plaintext attacks for random messages without random oracles. The
latter result was strengthened by Kiltz et al. [KOS10], who proved the IND-CPAsecurity of OAEP without
random oracles, when the underlying trapdoor permutation is lossy [PW08]. Since lossy encryption
implies IND-SO-CPA security [BHY09], this immediately shows that OAEP is IND-SO-CPA secure in the
standard model. However, we stress that prior to our work it was not clear if OAEP meets the stronger
notion of SIM-SO security, neither in the standard model nor in the random oracle. Backes et al. [BDU08]
showed that OAEP is secure under so-called key-dependent message attacks in the random oracle model.

There also exist a number of negative results [Bro06, KP09] showing the impossibility of instantiating
OAEP without random oracles.

3

State-of-the-Art of the Provable Security of DHIES. The IND-CCA security of DHIES in the
random oracle model is equivalent to the Strong Diffie-Hellman (sDH) assumption [ABR01, SBZ02].

State-of-the-Art of the Provable Security of FO. In our analysis we consider a slightly modified
transformation that was given in the journal version [FO13]. This variant is less restrictive than the
original version in [FO99]. In particular, the input symmetric encryption system does not need to be
deterministic and bijective anymore. The version in [FO13] also clarifies that the two conditions on
which the decryption algorithm may abort should trigger the output of the same error symbol. Joye,
Quisquater, and Yung [JQY01] have shown that such a behaviour is crucial for security. In fact, Sakurai
and Takagi [ST02] have practically exploited the sole fact that in some implementations the error symbol
is output slightly earlier when its generated by the first abort condition (timing side-channel). This
lead to a successful attack on the EPOC cryptosystem, that applies the Fujisaki-Okamoto transform
from [FO99] to the Okamoto-Uchiyama encryption system [OU98].

2 Preliminaries

For n ∈ N let [n] := {1, . . . , n}. For two strings µ, ν, we denote with µ||ν the string obtained by
concatenating µ with ν. If L is a set, then |L| denotes the cardinality of L. Let λ denote the security
parameter. We assume implicitly that any algorithm receives the unary representation 1λ of the security
parameter as input as its first argument. We say that an algorithm is a PPT algorithm, if it runs in
probabilistic polynomial time (in λ). For a finite set A we denote the sampling of a uniform random
element a by a $← A, while we denote the sampling according to some distribution D by a← D.

2.1 Games

We present definitions of security and encryption schemes in terms of games and make use of sequences
of games to proof our results. A game G is a collection of procedures/oracles {Initialise, P1, P2, . . . , Pt,
Finalise} for t ≥ 0, where P1 to Pt and Finalise might require some input parameters, while Initialise

is run on the security parameter 1λ. We implicitly assume that boolean flags are initialised to false,
numerical types are initialised to 0, sets are initialised to ∅, while strings are initialised to the empty
string ǫ.

An adversary A is run in game G, if A calls Initialise. During the game A may run the procedures
Pi as often as allowed by the game. If a procedure P was called by A, the output of P is returned to
A, except for the Finalise procedure. On A’s call of Finalise the game ends and outputs whatever
Finalise returns. Let GA ⇒ out denote the event that G outputs out after running A. If a game’s
output is either 0 or 1, A wins G if GA ⇒ 1 happens. Further, the advantage Adv(GA, HA) of A in
distinguishing games G and H is defined as |Pr[GA ⇒ 1] − Pr[HA ⇒ 1]|. For A run in G and S run in
game H the advantage of A is defined as |Pr[GA ⇒ 1]− Pr[HS ⇒ 1]|. Setting a boolean flag “Abort. . .”
to true implicitly aborts the adversary.

2.2 Public Key Encryption Schemes

Let M, R, C be sets, let R be finite. We say that M is the message space, R is the randomness space,
and C is the cipertext space. A public key encryption scheme PKE = (Gen, Enc, Dec) consists of three
polynomial-time algorithms.

• Gen generates, given the unary representation of the security parameter 1λ, a key pair (sk, pk)←
Gen(1λ), where pk defines M, R, and C.

• Given pk, and a message m ∈ M, Enc outputs an encryption c ← Encpk(m) ∈ C of m under the
public key pk.

• The decryption algorithm Dec takes a secret key sk and a ciphertext c ∈ C as input, and outputs a
message m = Decsk(c) ∈M, or a special symbol ⊥ 6∈ M indicating that c is not a valid ciphertext.

Notice, that Enc is a probabilistic algorithm; we make the used randomness only explicit when needed.
In that case we write c = Enc(m; r) for r $← R. We require correctness of PKE, that is for all security
parameters 1λ, for all (pk, sk)← Gen(1λ), and for all m ∈M we have Pr[Decsk(Encpk(m)) = m] = 1.

4

Procedure Initialise

(pk, sk) $← Gen(1λ)
Return pk

Procedure Finalise(out)

Return Rel((mi)i∈[n],D, I, out)

Procedure Enc(D)

(mi)i∈[n] ← D

(ri)i∈[n]
$← R

(ci)i∈[n] := Encpk(mi; ri)
Return (ci)i∈[n]

Procedure Dec(c)

Return Decsk(c)

Procedure Open(i)

I := I ∪ {i}
Return (mi, ri)

Figure 1: REAL-SIM-SO-CCAPKE game. Remember that D is a distribution over Mn.

Procedure Initialise

Return ǫ

Procedure Enc(D)

(mi)i∈[n] ← D

Return ǫ

Procedure Finalise(out)

Return Rel((mi)i∈[n],D, I, out)

Figure 2: IDEAL-SIM-SO-CCAPKE game.

2.3 SIM-SO-CCA Security Definition

Definition 2.1. Let PKE := (Gen, Enc, Dec) be a public-key encryption scheme with message space M,
randomness space R and ciphertext space C. Let n = n(λ) > 0 be a polynomially bounded function.
Further, let D be a distribution over Mn and Rel a relation. We consider the following games, whereby
an adversary A is run in the REAL-SIM-SO-CCAPKE game (Figure 1), while a simulator S is run in the
IDEAL-SIM-SO-CCAPKE game (Figure 2). We demand that A and S call Enc exactly one time before
calling Open or Finalise. Further, A is not allowed to call Dec on any ci. To an adversary A, a
simulator S, a relation Rel and n we associate the advantage function

AdvSIM-SO-CCA

PKE (A,S, Rel, n, λ) := |Pr[REAL-SIM-SO-CCAA
PKE ⇒ 1]− Pr[IDEAL-SIM-SO-CCAS

PKE ⇒ 1]| .

PKE is SIM-SO-CCA secure if for every PPT adversary A and every PPT relation Rel there exists a
PPT simulator S such that AdvSIM-SO-CCA

PKE (A,S, Rel, n, λ) ≤ negl(λ).

3 Transformation from any OW-PCA secure KEM

3.1 Key Encapsulation Mechanisms and Message Authentication Codes

Definition 3.1. Let K a key space, let R denote a finite randomness space, and C a ciphertext space.
A Key Encapsulation Mechanism (KEM) KEM consists of three PPT algorithms KEM=(KEMGen,

Encap, Decap) defined to have the following syntax.

• KEMGen generates a key pair (pk, sk) on input 1λ: (pk, sk)← KEMGen(1λ), where pk specifies K,
R and C.

• Encap is given pk and outputs a key k ∈ K and an encapsulation c ∈ C of k: (c, k)← Encappk.

• Given sk, Decap decapsulates c ∈ C: k ← Decapsk(c), where k ∈ K or outputs some ⊥ /∈ K.

We require correctness: for all λ ∈ N, for all (pk, sk) generated by KEMGen(1λ), and for all (c, k) output
by Encappk we have Pr[Decapsk(c) = k] = 1. We make the randomness used in Encap only explicit when
needed. Without loss of generality we assume Encap to sample k $← K. Further, let K, C be exponentially
large in the security parameter: |K| ≥ 2λ, |C| ≥ 2λ.

KEM has unique encapsulations if for every λ ∈ N and every (pk, sk) output by KEMGen(1λ) and all
c, c′ ∈ C we have Decapsk(c) = Decapsk(c′)⇒ c = c′.

We introduce a security notion for KEMs that appeared in [OP01], namely one-way security in the
presence of a plaintext-checking oracle (OW-PCA) amounting an adversary to test if some c is a valid
encapsulation of a key k. That is, on input (c, k) and given the sk the oracle returns Checksk(c, k) :=

(Decapsk(c)
?
= k) ∈ {0, 1}.

5

Procedure Initialise(1λ)

(pk, sk) $← KEMGen(1λ)
Return pk

Procedure Challenge

(k∗, c∗) $← Encappk

Return c∗

Procedure Check(k, c)

Return (Decap(c)
?
= k)

Procedure Finalise(k)

Return (k
?
= k∗)

Figure 3: OW-PCAKEM game

Procedure Initialise(1λ)

k $← MACGen(1λ)
Return ǫ

Procedure Tag(m)

t← Tagk(m)
Return t

Procedure Vrfy(m̃, t̃)

Return Vrfyk(m̃, t̃)

Procedure Finalise(m∗, t∗)

Return (Vrfyk(m∗, t∗) ∧ (m∗, t∗) 6= (m, t))

Figure 4: sUF-OT-CMAMAC game

Definition 3.2. Let KEM = (KEMGen, Encap, Decap) be a Key Encapsulation Mechanism and A an
adversary run in the OW-PCAKEM game stated in Figure 3. We restrict the adversary to call Challenge

exactly one time and define A’s advantage in winning the OW-PCAKEM game as

AdvOW-PCA

KEM (A, λ) := Pr[OW-PCAA
KEM ⇒ 1] .

KEM is OW-PCA secure, if AdvOW -P CA
KEM (A, λ) is negligible for all PPT A.

Definition 3.3. Let M be a message space, K a key space and let T be a set (tag space). A Message Au-
thentication Code (MAC) MAC consists of the following three PPT algorithms MAC = (MACGen, Tag, Vrfy),
whereby

• MACGen generates a key k ∈ K on input 1λ: k ← MACGen(1λ).

• Tagk computes a tag t ∈ T for a given message m ∈M: t← Tagk(m).

• Given a message m ∈M and a tag t ∈ T , Vrfyk, outputs a bit: {0, 1} ← Vrfyk(m, t).

We require MAC to be correct: For all λ ∈ N, all keys k generated by MACGen(1λ), all m ∈ M and
all tags computed by Tagk(m) we have Pr[Vrfyk(m, Tagk(m)) = 1] = 1. For a fixed MAC and k, given
message m we call a tag t / the tuple (m, t) valid, if Vrfyk(m, t) = 1.

Definition 3.4. For an adversary A and a MAC MAC := (MACGen, Tag, Vrfy) we consider the
sUF-OT-CMAMAC (strong unforgeability under one-time chosen message attacks) game given in Figure 4,
where A is allowed to call Tag at most once. We define the advantage of A run in the sUF-OT-CMAMAC

game as
AdvsUF-OT-CMA

MAC (A, λ) := Pr[sUF-OT-CMAA
MAC ⇒ 1] .

MAC is sUF-OT-CMA secure, if AdvsUF-OT-CMA

MAC (A, λ) ≤ negl(λ) holds for all PPT adversaries A.

Note that we only require one-time security, so a sUF-OT-CMA secure MAC can be constructed
information-theoretically.

3.2 The Transformation

Before we prove our results on the selective opening security of schemes built from KEMs, we recall a well
known transformation ([SBZ02]) to turn a given KEM into a PKE scheme. Notice, that we instantiate
the symmetric encryption with a one-time-pad.

Let KEM = (KEMGen, Encap, Decap) be a KEM with key space KKEM, randomness space RKEM and
ciphertext space CKEM. Let MAC = (MACGen, Tag, Vrfy) be a MAC with key space KKEM, message

6

Procedure PKEGen(1λ)

(pk, sk) $← KEMGen(1λ)
Return (pk, sk)

Procedure Enc(m)

(k, c(1)) $← Encappk

(ksym, kmac) := H(k)
c(2) := ksym ⊕m
c(3) := Tagkmac(c(2))
Return (c(1), c(2), c(3))

Procedure Dec(c(1), c(2), c(3))

k ← Decapsk(c(1))
(ksym, kmac) := H(k)
if Vrfykmac(c(2), c(3)) = 0

Return ⊥
else

Return c(2) ⊕ ksym

Figure 5: Transformation PKEKEM,MAC from KEM and MAC to PKE.

space {0, 1}ℓ and tag space TMAC. Let H : KKEM → {0, 1}ℓ × KMAC be a hash function. By applying
the transformation given in Figure 5 we obtain a PKE PKEKEM,MAC for messages M = {0, 1}ℓ, with
randomness space RKEM and ciphertexts in CKEM × {0, 1}ℓ × TMAC.

It is well known, that the given construction turns a OW-PCA KEM into a IND-CCA secure PKE
scheme in the random oracle model [SBZ02]. Our next theorem strengthens this results by showing that
PKEKEM,MAC is even SIM-SO-CCA secure.

Theorem 3.5. Let KEM be a OW-PCA secure KEM with unique encapsulations and let MAC be a
sUF-OT-CMA secure MAC. Then PKEKEM,MAC is SIM-SO-CCA secure in the random oracle model.
In particular, for any adversary A run in the REAL-SIM-SO-CCAPKEKEM,MAC

game, that issues at most

qh ≤ 2λ−1 hash and qd ≤ 2λ−1 decryption queries and obtains n ciphertexts, and every PPT relation Rel,
there exists a simulator S, a forger F run in the sUF-OT-CMAMAC game, and an adversary B run in the
OW-PCAKEM game with roughly the same running time as A such that

AdvSIM-SO-CCA

PKEKEM,MAC
(A,S, Rel, n, λ) ≤ n ·

(

qh + qd

2λ−1
+ AdvsUF-OT-CMA

MAC (F , λ) + AdvOW-PCA

KEM (B, λ)

)

.

Intuition for the proof of Theorem 3.5 Recall the definition of SIM-SO-CCA security. For any
(fixed) adversary A run in the REAL-SIM-SO-CCA game we have to construct a simulator S that can
compute the same output as A, even though S is run in the IDEAL-SIM-SO-CCA game. To this end we
gradually modify the REAL-SIM-SO-CCA game in a sequence of games such that, eventually, a simulator
S can simulate the (modified) REAL-SIM-SO-CCA interface for adversary A while S itself is run in the
IDEAL-SIM-SO-CCA game.

Game G0 constitutes of the REAL-SIM-SO-CCAA
PKEKEM,MAC

game up to some small syntactical changes,
e.g. the random oracle is implemented by lazy sampling in an additional Hash procedure.

Observe that S can only learn mi by querying Open(i) to its challenger (ideal game). Further, note
that the set of opened ciphertexts I may be part of A’s output that S wants to simulate. Hence S must
not query Open(i) to its ideal game challenger unless A does not pose the same query.

Since all Open queries by A will happen after it received its ciphertexts (c1, . . . , cn) from S, the
simulator has to provide A with correctly distributed ciphertexts ci independent of mi. In game G1 it is
ensured that c(2)

i = ksym
i ⊕mi is uniformly random at the time A obtains its ciphertexts, in game G2 we

will rewrite encryption to sample c(2)

i uniformly at random.
Once A obtained its ciphertexts, it may call Open, Hash and Dec as it wishes. Observe, that fixing

c(2)

i and mi immediately determines ksym
i = c(2)

i ⊕mi. Note that on a call Open(i) by A, simulator S has
to reveal mi and ri such that ci = Encpk(mi; ri). Therefore, in our construction, simulator S will program
the first component of H(ki) to be c(2)

i ⊕mi. Thus, we have to ensure that ksym
i remains undefined (i.e.

the ciphertexts ci remain non-commiting) as long as A does not call Open(i). Only when A makes such
a call, S can issue Open(i) to its ideal game to obtain mi and define ksym

i accordingly.)
To make sure that ksym

i remains undefined long enough, we have to consider that A might call
Hash(ki) or issue a valid ciphertext (c(1)

i , ·, ·) to Dec since any such call would assign a value to ksym
i .

From game G3 on, we will abort when A sends a valid ciphertext to Dec and A did not call Hash(ki)
before. Since A did not call Hash(ki) before, kmac

i is still uniformly random and the probability of abort
can be bounded due to sUF-OT-CMA security of MAC. If A calls Hash(ki), it managed to decapsulate
ki hidden in c(1)

i . From G4 on, we will abort once A queries Hash(ki); the probability of abort is bounded
via KEMs OW security.

7

Procedure Initialise G0−1

(pk, sk) $← KEMGen(1λ)
(ri)i∈[n]

$← R
(ki, c(1)

i)i∈[n]
$← Encappk(ri)

(ksym
i , kmac

i)i∈[n]
$← Ksym ×Kmac

H(ki)i∈[n] := (ksym
i , kmac

i)

Return pk

Procedure Hash(s) G1−4 G2−4

✄

✂

�

✁
G4

if (s, ·) /∈ LH

if s = ki for some i ∈ [n]
if ¬calledEnc

AbortEarly := true
else

✄

✂

�

✁AbortH := true

H(ki) :=(σsym
i ⊕mi, σmac

i)

else
hs

$← Ksym ×Kmac

H(s) := hs

Return hs

Procedure Open(i) G2−4

I := I ∪ {i}

H(ki) := (σsym
i ⊕mi, σmac

i)

Return (mi, ri)

Procedure Enc(D) G0−1 G2−4

calledEnc := true
(mi)i∈[n] ← D

(ci)i∈[n] :=(c(1)

i ,mi⊕ksym
i ,Tagkmac

i
(mi⊕ksym

i))

(σsym
i , σmac

i)i∈[n]
$← Ksym ×Kmac

(ci)i∈[n] := (c(1)

i , σsym
i , Tagσmac

i
(σsym

i))

Return (ci)i∈[n]

Procedure Dec(c(1), c(2), c(3)) G1−4 G3−4

if (c(1) ∈ {c(1)

i }
n
i=1 ∧ ¬calledEnc)

AbortEarly := true
else

k := Decapsk(c(1))

if

(

c(1) ∈ {c(1)

i }
n
i=1 ∧ (k, ·) /∈ LH

∧Vrfyσmac
i

(c(2), c(3)) = 1

)

AbortDec := true
else

(ksym, kmac) := H(k)
if Vrfykmac(c(2), c(3)) = 0

Return ⊥
else

Return c(2)

i ⊕ksym

Procedure Finalise(out)

Return Rel((mi)i∈[n],D, I, out)

Figure 6: Sequence of games G0 to G4. Boxed code is only executed in the games indicated by the game
names given in the same box style at the top right of every procedure, non-boxed code is always run.

Proof. Let qh be the number of hash queries and let qd be the number of decryption queries issued
by A, let n = n(λ) be a polynomial in λ. For i ∈ [n] let: mi denote the ith message sampled by the
challenger, ri the ith randomness used by Encap: (ki, c(1)

i) ← Encap(ri), (ksym
i , kmac

i) ← H(ki) the ith

key-pair generated by hashing ki and ci := (c(1)

i , c(2)

i , c(3)

i) the ith ciphertext. Without loss of generality,
the games samples (ri)i∈[n] as part of Initialise. We proceed with a sequence of games which is given in
pseudocode in Figure 6.

Game 0 We model H as a random oracle. Challenger C0 keeps track of issued calls (either by the
game or A) of Hash(s) by maintaining a list LH . For a query s, Hash(s) returns hs if there is an
entry (s, hs) ∈ LH , otherwise Hash samples hs at random, adds (s, hs) to LH , and returns hs; we write
H(s) := hs only and implicitly assume an update operation LH := LH ∪ {(s, hs)} to happen in the
background.
We introduce small syntactical changes: Challenger C0 samples (ksym

i , kmac
i)i∈[n] uniformly random and

sets (H(ki))i∈[n] := (ksym
i , kmac

i) while Initialise is run. Additionally, G0 runs Encappk to generate

(ki, c(1)

i)i∈[n] during Initialise.

Claim 0. Adv(REAL-SIM-SO-CCAA
PKEKEM,MAC

, GA
0) = 0.

Proof. Apparently, it makes no difference if the challenger samples (ri)i∈[n] and runs Encap(ri) on demand
as part of Enc or in advance while Initialise is run.
Since H is modeled as a random oracle, H(s) is sampled uniformly random for every fresh query Hash(s).

8

Therefore C0 does not change the distribution by sampling (ksym
i , kmac

i) in the first place and setting
H(ki) := (ksym

i , kmac
i) afterwards.

Game 1 We add an abort condition. Challenger C1 raises the event AbortEarly and aborts1, if A
did not call Enc before calling either Hash(ki) or Dec(c(1)

i , ·, ·) for some i ∈ [n].

Claim 1. Adv(GA
0 , GA

1) ≤ n · (qh + qd) · 2−(λ−1).

Proof. Since games G0 and G1 are identical until AbortEarly is raised, it follows that Adv(GA
0 , GA

1) ≤
Pr[AbortEarly]. Let viaHash and viaDec be the events that AbortEarly was caused by either a
hash or a decryption query of A. Let si denote the ith hash and di = (d(1)

i , d(2)

i , d(3)

i) the ith decryption
query of A. It holds that

Pr[AbortEarly] = Pr[viaHash] + Pr[viaDec]

≤ Pr[s1 ∈ {ki}
n
i=1] +

qh
∑

i=2

Pr[si ∈ {ki}
n
i=1|

i−1
∧

j=1

sj /∈ {ki}
n
i=1]

+ Pr[d(1)

i ∈ {c
(1)

i }
n
i=1] +

qd
∑

i=2

Pr[d(1)

i ∈ {c
(1)

i }
n
i=1|

i−1
∧

j=1

d
(1)
j /∈ {c(1)

i }
n
i=1]

=

qh
∑

i=1

n

2λ − (i−1)
+

qd
∑

i=1

n

2λ − (i−1)
≤

qh
∑

i=1

n

2λ − qh
+

qd
∑

i=1

n

2λ − qd
≤

n(qh + qd)

2λ−1
.

Above holds since Encap samples k $← K and KEM has unique encapsulations.

Game 2 We change the encryption procedure and answer hash queries in a different way. Challenger
C2 does not program H(ki) for i ∈ [n] anymore. Enc still samples mi, and samples σsym

i
$← Ksym,

σmac
i

$← Kmac, to compute ci = Encki
(mi) := (c(1)

i , σsym
i , Tagσmac

i
(σsym

i)). If A should call Hash(ki) for

i ∈ [n] or Open(i), the challenger programs H(ki) := (σsym
i ⊕mi, σmac

i).
As from now on (ki, ·) /∈ LH implies that Open(i) was not called.

Claim 2. Adv(GA
1 , GA

2) = 0.

Proof. Assuming that AbortEarly does not happen in game G2, the keys ksym
i and kmac

i are still
uniformly random when A calls Enc. Therefore (c(2)

i)i∈[n] = mi ⊕ ksym
i is uniform and (c(3)

i)i∈[n] is a valid
tag of a uniformly random message under a key from the uniform distribution. Consequently, challenger
C2 can sample (c(2)

i)i∈[n] := σsym
i uniformly and can compute the tags using a uniform key σmac

i without
changing the distribution of the encryptions (ci)i∈[n].
Challenger C2 does not program H(ki) for i ∈ [n] anymore, but has to keep H consistent. If A calls
Hash(ki) or Open(i), C2 sets H(ki) := (σsym

i ⊕mi, σmac
i).

Game 3 We add another abort condition. If A already called Enc, issues a decryption query
(c(1)

i , c(2), c(3)) /∈ {ci}
n
i=1, where H(ki) is not defined, and Vrfyσmac

i
(c(1)

i , c(2), c(3)) verifies, challenger C3

raises AbortDec and aborts A.

Claim 3. Adv(GA
2 , GA

3) ≤ n ·AdvsUF-OT-CMA
MAC (F , λ).

Proof. Games G2 and G3 are identical until AbortDec happens, it suffices to bound Pr[AbortDec].
Let MAC := (MACGen, Tag, Vrfy) be the MAC used by the challenger in the sUF-OT-CMA game.

We construct an adversary F against the sUF-OT-CMA security of MAC having success probability
Pr[AbortDec]/n. The reduction is straight forward: Forger F runs adversary A as in game G3, but
picks i∗ $← [n] during Initialise. Computing the i∗th ciphertext, F queries its sUF-OT-CMA challenger
for t∗ := Tag(σsym

i∗) instead of using its own Tag procedure and sends (ci)i∈[n] to A. If A should call
Open(i∗), challenger C3 apparently was unlucky in hiding its own challenge and aborts the adversary.
Querying its Vrfyk(·, ·) oracle, F can detect when A issues a valid query Dec(c(1)

i , c(2), c(3)) for some
i ∈ [n], returns (c(2), c(3)) to its sUF-OT-CMA challenger and aborts A.

1Notice, that C1 aborts even if such a decryption query is invalid.

9

Procedure Initialise:

pk $← InitialiseOW -P CA

i∗ $← [n]
(ri)i∈[n]\{i∗}

$← R
(ki, c(1)

i)i∈[n]\{i∗} ← Encappk(ri)

c
(1)
i∗

$← Challenge

Return pk

Procedure Hash(s)

if (s, ·) /∈ LH

if s = ki for some i ∈ [n] \ {i∗}
if ¬calledEnc

AbortEarly := true
else

AbortH := true
else

if Check(s, c
(1)
i∗) = 1

FinaliseOW -P CA(s)
AbortH := true

else

if

(

∃(c(1),ksym,kmac)∈Hpatch

s.t. Check(s, c(1)) = 1)

)

H(s) := (ksym, kmac)
else

hs
$← Ksym ×Kmac

H(s) := hs

Return H(s)

Procedure Open(i)

if i = i∗

Abort := true
else

I := I ∪ {i}
H(ki) := (σsym

i ⊕mi, σmac
i)

Return (mi, ri)

Procedure Enc(D):

calledEnc := true
(mi)i∈[n] ← D

(σsym
i , σmac

i)i∈[n]
$← Ksym ×Kmac

(ci)i∈[n] := (c(1)

i , σsym
i , Tagσmac

i
(σsym

i))

Return (ci)i∈[n]

Procedure Dec(c(1), c(2), c(3))

if (c(1) ∈ {c(1)

i }
n
i=1 ∧ ¬calledEnc)

AbortEarly := true
else

if c(1) ∈ {c(1)

i }
n
i=1

if Vrfyσmac
i

(c(2), c(3)) = 1
AbortDec := true

else
Return ⊥

else

if

(

∃ (s, ·, ·) ∈ LH s.t.
Check(s, c(1)) = 1

)

(ksym, kmac) := H(s)
else

(ksym,kmac) $←Ksym ×Kmac

Add (c(1),ksym,kmac) to Hpatch

if Vrfykmac(c(2), c(3)) = 0
Return ⊥

else
Return c(2)

i ⊕ksym

Procedure Finalise(out)

Return Rel((mi)i∈[n],D, I, out)

Figure 7: Reduction to KEM’s OW-PCA security given by the game interface for A.

Assume that AbortDec happens, i.e. A makes a valid decryption query (c(1)

i , c(2), c(3)) /∈ {ci}i∈[n],
while H(ki) is still undetermined. Notice, that we must not allow H(ki∗) to be fixed since kmac

i∗ is only
known to the sUF-OT-CMA challenger. Let (c(1)

i , c̃(2), c̃(3)) ∈ {ci}i∈[n] be the ciphertext ci, whose first
component matches the first entry of A’s valid decryption query. Hence, c(3) is either a new valid tag
for c̃(2) or c(3) is a valid tag for a ‘new’ message c(2), since (c(2), c(3)) 6= (c̃(2), c̃(3)). In both cases F wins
its sUF-OT-CMA challenge by returning (c(2), c(3)), if F picks the right challenge ciphertext to embed t∗.
The claim follows by rearranging

AdvsUF-OT-CMA
MAC (F , λ) ≥ Pr[AbortDec]/n .

Game 4 We add one more abort condition. Challenger C4 raises the event AbortH if A already called
Enc, issues a hash query Hash(ki) for i ∈ [n] and did not call Open(i) before.

Claim 4. Adv(GA
3 , GA

4) ≤ n ·AdvOW -P CA
KEM (B, λ).

10

Proof. Games G3 and G4 are identical until AbortH happens. Given some adversary A run in the
REAL-SIM-SO-CCA game, we construct an adversary B against the OW-PCA security of KEM having
success probability Pr[AbortH]/n as depicted in Figure 7. Adversary B receives a pk and a challenge
encapsulation c∗ ← Challenge of some key k∗ and aims to output k, given access to an Check(·, ·)

returning Checksk(k, c) := (Decapsk(c)
?
= k).

B runs A as A is run in game G3 except for the following differences: After calling Initialise, B
guesses an index i∗ $← [n]. Then B creates ci as before, but hides its own challenge in the first component
of the i∗th ciphertext. Let’s assume that AbortH happens. Since B knows {c(1)

i } for i ∈ [n] \ {i∗},
it can detect if A queries Hash(s) for s ∈ {ki} where i ∈ [n] \ {i∗}, while B can invoke its Check

oracle to detect the query Hash(ki∗) since Check(ki∗ , c(1)

i∗) = 1. Therefore B does not have to guess
when AbortH happens. If A should call Open(i∗), B apparently guessed i∗ wrong2 and aborts A.
Running the reduction, B has to maintain the conditions for AbortDec. Therefore it suffices to check if
c(1) ∈ {c(1)

i }
n
i=1 and Vrfyσmac

i
(c(2), c(3)) hold, because H(k) cannot be defined, since neither AbortH, nor

Abort via Open happened.
It remains to explain how B (unable to compute k = Decapsk(c(1))) answers decryption queries without

knowing sk. To answer these queries we make use of the nifty “oracle patching technique” from [CS03].
If A calls Dec(c(1), c(2), c(3)), B checks if H(k) is already defined by querying Check(s, c(1)) for every
(s, ·) ∈ LH . If there is such a s, B uses (ksym, kmac) := H(s). If not, B picks (ksym, kmac) at random and
has to keep an eye on upcoming hash queries, since B just committed to H(k).

Therefore B maintains a dedicated list Hpatch where B adds (c(1), (sym, kmac)). On every hash query
Hash(s), B checks if there is an entry (c(1), ksym, kmac) ∈ Hpatch s.t. Check(s, c(1)) = 1 in order to fix
the oracle by setting H(s) := (ksym, kmac). If A should call Dec(c(1)

i∗ , ·, ·), challenger C3 treats it like
every other decryption query. Considering that AbortH happens, B only has to pick the right ciphertext
to hide its own OW-PCA challenge to win its game. Therefore B succeeds if AbortH happens and B
guessed i∗ ∈ [n] correctly:

AdvOW-PCA
KEM (B, λ) ≥ Pr[AbortH]/n .

Claim 5. There exists a simulator S run in the IDEAL-SIM-SO-CCA game such that

Adv(GA
4 , IDEAL-SIM-SO-CCAS

PKEKEM,MAC
) = 0 .

Proof. We construct a simulator S run in the ideal game. The simulator runs the adversary as it is run
in game G4. Especially, all abort event remain in the code. Thus, any abort event is as likely to occur as
in game G4. For simplicity we explain the functionality of S assuming that no abort event happens.

First, S runs Gen on its own and feeds pk to A. On A’s call of Enc(D) the simulator calls Enc(D) as
well and creates dummy encryptions without knowing the sampled messages (mi)i∈[n]. If A calls Open(i),
the simulator forwards the query to its own game, learns mi, and returns (mi, ri) to A.
Because AbortEarly does not happen, S does not have to commit to Dec(ci) before Enc is called. Since
neither AbortH nor AbortDec happen, A calls Open(i) before issuing ‘critical’ hash or decryption
queries and S is able to learn mi and can program H accordingly. Due to these changes and the dummy
encryption introduced in game G2, A cannot get information on some mi without calling Open(i), that is,
‘avowing’ S to call Open(i) as well, allowing S to answer possibly upcoming hash or decryption queries
consistently.

Collecting the advantages of A we get the claim as stated in (3.5).

3.3 Implications for practical encryption schemes

We now give specific instantiations of SIM-SO-CCA secure scheme via our generic transformation. We
focus on two well known KEMs, namely the DH and RSA key encapsulation mechanism.

2A cannot ask to open every single challenge ciphertext, since AbortH occurs.

11

Procedure Gen(1λ)

x $← Zp

X := gx

pk := (G, g, p, X)
sk := x
Return (pk, sk)

Procedure Enc(m)

r $← Zp

(ksym, kmac)← H(Xr)
c1 := gr

c2 := ksym ⊕m
c3 := Tagkmac(c2)
Return (c1, c2, c3)

Procedure Dec(c1, c2, c3)

(ksym, kmac)← H(c1
x)

if Vrfykmac(c2, c3) = 0
Return ⊥

else
Return c2 ⊕ ksym

Figure 8: The Diffie-Hellman Integrated Encryption Scheme DHIES instantiated with a one-time pad.

DHIES Let G be a group of prime-order p, and let g be a generator. The Diffie-Hellman KEM
DH-KEM = (Gen, Enc, Dec) is defined as follows. The key-generation algorithm Gen picks x $← Zp and
defines pk = X := gx and sk = x; the encapsulation algorithm Encappk picks r $← Zp and returns
(c = gr, k = Xr); the decapsulation algorithm Decapsk(c) returns k = cx.

OW-PCA security of the DH-KEM is equivalent to the strong Diffie-Hellman (sDH) assumption
[ABR01]. The sDH assumption states that there is no PPT adversary A that, given two random group

elements U := gu, V := gv and a restricted DDH oracle Ov(·, ·) where Ov(a, b) := (av ?
= b) computes guv

with non-negligible probability.
Let MAC be a MAC with message-space and key-space {0, 1}ℓ and let H : G 7→ {0, 1}2ℓ be a hash

function. The security of DHIES = PKEDH-KEM,MAC (depicted in Figure 8) instantiated with a one-time
pad is stated in the following corollary, whose proof is a direct consequence of Theorem 3.5.

Corollary 3.6. DHIES instantiated with a one-time pad is SIM-SO-CCA secure in the random oracle
model, if MAC is sUF-OT-CMA and the sDH assumption holds in G.

RSA-KEM We obtain another selective-opening secure encryption scheme, if we plug the RSA-KEM

into the generic transformation given in Figure 5. Thereby, OW-PCA security of the RSA-KEM holds
under the RSA assumption [Sho04a]. Under the RSA assumption, PKERSA-KEM,MAC (as described in
ISO18033-2 [Sho04a]) is SIM-SO-CCA secure in the random oracle model.

Both reductions for the OW-PCA security of the DH-KEM, RSA-KEM, respectively, are tight.

4 The OAEP Transformation

In this section we show that OAEP is SIM-SO-CCA secure when instantiated with a partial-domain
one-way trapdoor permutation (see Section 4.1). Since it is known [FOPS01] that the RSA permutation is
partial-domain oneway under the RSA assumption, this implies that RSA-OAEP is SIM-SO-CCA secure
under the RSA assumption. In fact, our result works not only for trapdoor permutations, but for injective
trapdoor functions as well.

Since SIM-SO-CCA security implies IND-CCA security, our proof also provides an alternative to the
IND-CCA security proof of [FOPS01].

4.1 Trapdoor Permutations and Partial-Domain Onewayness

Recall that a trapdoor permutation is a triple of algorithms T = (GK, F, F −1), where GK generates a

key pair (ek, td)
$
← GK(1λ), F (ek, ·) implements a permutation

fek : {0, 1}k → {0, 1}k (1)

specified by ek, and F −1(td, ·) inverts fek using the trapdoor td. Let us write the function fek from (1)
as a function

fek : {0, 1}ℓ+k1 × {0, 1}k0 → {0, 1}k

with k = ℓ + k1 + k0.

12

Procedure Initialise(1λ)

(ek, td) $← GK(1λ)
Return ek

Procedure Challenge

(s, t) $← {0, 1}ℓ+k1 × {0, 1}k0

y := F (ek, (s, t))
Return y

Procedure Finalise(s′)

Return (s
?
= s′)

Figure 9: PD-OWT game

Definition 4.1. Let T be a trapdoor permutation as given above and B an adversary run in the PD-OWT

game given in Figure 9. We restrict B to call Challenge exactly one time and define B’s advantage in
winning the PD-OWT game as

AdvPD-OW

T (B, λ) := Pr[PD-OWB
T ⇒ 1] .

Moreover, if AdvPD-OW

T (B, λ) ≤ negl(λ) for all probabilistic polynomial-time (in λ) adversaries B, we say
that T is a partial-domain secure trapdoor permutation.

4.2 Optimal Asymmetric Encryption Padding (OAEP)

Let T = (GK, F, F −1) be a trapdoor permutation. The OAEP encryption scheme is defined as follows.

• The key generation Gen(1λ) computes a key pair (ek, td)← GK(1λ) for the trapdoor permutation.
It defines two hash functions

G : {0, 1}k0 → {0, 1}ℓ+k1 and H : {0, 1}ℓ+k1 → {0, 1}k0

and outputs sk = td and pk = (ek, G, H).

• To encrypt a message m ∈ {0, 1}ℓ, the sender draws a random value r
$
← {0, 1}k0 . Then it computes

s = m||0k1 ⊕G(r) t = r ⊕H(s) .

The ciphertext is c = F (ek, (s, t)) = fek(s, t).

• To decrypt a ciphertext C, the decryption algorithm Decsk(c) uses sk = td to apply the inverse
permutation to c, and obtains (s, t) = F −1(td, c). Then it computes r = t⊕H(s) and µ = s⊕G(r),
and parses µ ∈ {0, 1}ℓ+k1 as µ = m||ρ with m ∈ {0, 1}ℓ and ρ ∈ {0, 1}k1 . If ρ = 0k1 , then the
decryption algorithm outputs m. Otherwise ⊥ is returned.

The OAEP padding process is illustrated in Figure 10.

m||0k1 r

H

G

s t

⊕

⊕

Figure 10: The OAEP padding process.

13

4.3 Security of OAEP against SO-CCA Attacks

In this section we will analyse the security of the OAEP scheme. We will prove that OAEP is SIM-SO-CCA
secure in the random oracle model [BR93], assuming the partial-domain onewayness of the trapdoor
permutation T . Note that a proof in the random oracle model is the strongest result we can hope for,
since SIM-SO-CCA security implies IND-CCA security, and it is known [KP09] that OAEP can not be
proven IND-CCA secure without random oracles.

Theorem 4.2. Let OAEP be the scheme described in Section 4.2 and T = (GK, F, F −1) be a trapdoor
permutation. Then OAEP is SIM-SO-CCA secure in the random oracle model (where both hash functions
G and H are modeled as random oracles). In particular, for every PPT relation Rel, every adversary
A run in the REAL-SIM-SO-CCAOAEP game that issues at most qh queries to H, qg queries to G, qd

decryption queries, and obtains n ciphertexts, there exists a simulator S and an adversary B in the
PD-OWT experiment such that

AdvSIM-SO-CCA

OAEP (A,S, Rel, n, λ) ≤ δ

where
δ = qd ·

(

2−k1 + qg · 2
−k0

)

+ n(qg + n) · 2−k0 + nqh · AdvT
pd(B, λ) + nqg · 2

−ℓ−k1 .

Intuition for the proof of Theorem 4.2 We prove the theorem in a sequence of games, starting
with the REAL-SIM-SO-CCAOAEP experiment. From game to game we gradually modify the challenger,
until we end up in a game where the challenger can act as a simulator in the IDEAL-SIM-SO-CCAOAEP

experiment. Our goal is to modify the challenger such that in the final game it does not need to know
message mi before the adversary asks Open(i). To this end, we have to describe how the challenger is
able to create “non-committing” ciphertexts c1, . . . , cn in the Enc procedure, which can then be opened
to any message mi when A issues an Open(i) query.

In a first step, we replace the original decryption procedure that uses the real trapdoor td with an
equivalent (up to a negligible error probability) decryption procedure, which is able to decrypt ciphertexts
by examining the sequence of random oracle queries made by adversary A. Here we use that A is not
able (except for some non-negligible probability) to create a new valid ciphertext c = F (ek, (s, t)), unless
it asks the random oracle H on input s and G on input H(s)⊕ t. However, in this case the challenger is
able to decrypt c by exhaustive search through all queries to H and G made by A.

For i ∈ [n] let ci = F (ek, (si, ti) now denote the ith challenge ciphertext that A receives in the security
experiment. We show how to construct an attacker against the partial-domain one-wayness of T , which
is successful if the adversary A ever asks H(si) before Open(i) for any i ∈ [n]. Thus, assuming that
T is secure in the sense of partial-domain one-wayness, it will never happen that A asks H(si) before
Open(i), except for some negligible probability.

Finally, we conclude with the observation that from A’s point of view all values of H(si) remain equally
likely until Open(i) is asked, which implies also that it is very unlikely that A ever asks G(ti ⊕H(si))
before Open(i). This in turn means that the challenger does not have to commit to a particular value
of G(ti ⊕H(si)), and thus not to a particular message mi||0

k1 = si ⊕G(ti ⊕H(si)), before Open(i) is
asked.

Proof of Theorem 4.2. The proof proceeds in a sequence of games, following [BR06, Sho04b], where
Game G0 corresponds to the REAL-SIM-SO-CCAA

OAEP experiment with adversary A and a challenger,
called C0. From game to game, we gradually modify the challenger, until we obtain a challenger which is
able to act as a simulator in the IDEAL-SIM-SO-CCAS

OAEP experiment.
Let us first fix some notation. We denote with qg an upper bound on the number of queries issued by

A to random oracle G, with qh an upper bound on the number of queries to H, and with qd an upper
bound on the number of decryption queries. For i ∈ [n] we will denote with ci the ith component of the
challenge ciphertext vector (ci)i∈[n], and we write ci as ci = fek(si, ti).

Game 0 Challenger C0 executes the REAL-SIM-SO-CCA experiment with attacker A by implementing
the procedures described in Figure 11. Note that C0 also implements procedures to simulate the random
oracles G and H. To this end, it maintains four lists

LG ⊆ {0, 1}k0 × {0, 1}ℓ+k1 LH ⊆ {0, 1}ℓ+k1 × {0, 1}k0

LA
G ⊆ {0, 1}k0 LA

H ⊆ {0, 1}ℓ+k1

14

Procedure Initialise

(ek, td)
$
← GK(1λ)

Return ek

Procedure Enc(D)

(mi)i∈[n] ← D

for i ∈ [n]:

ri
$
← {0, 1}k0

si := m||0k1 ⊕Gint(ri)
ti := ri ⊕Hint(si)
ci := F (ek, (si, ti))

Return (ci)i∈[n]

Procedure Dec(c)

(s, t) := F −1(td, c)
r := t⊕Hint(s)
m||ρ := s⊕Gint(r)
if ρ = 0k1

Return m
else

Return ⊥

Internal procedure Hint(s)

If (s, hs) /∈ LH

hs
$
← {0, 1}k0

LH := LH ∪ (s, hs)
Return hs

Procedure H(s)

LA
H := LA

H ∪ {s}
Return Hint(s)

Procedure Open(i)

I := I ∪ {i}
Return (mi, ri)

Internal procedure Gint(r)

if (r, hr) /∈ LG

hr
$
← {0, 1}ℓ+k1

LG := LG ∪ (r, hr)
Return hr

Procedure G(r)

LA
G := LA

G ∪ {r}
Return Gint(r)

Procedure Finalise(out)

Return Rel((mi)i∈[n],D, I, out)

Figure 11: Procedures of Game 0.

which are initialised to the empty set in the Initialise procedure.
To simulate the random oracle G, the challenger uses the internal procedure Gint, which uses list LG

to ensure consistency of random oracle responses.
The adversary does not have direct access to procedure Gint, but only via procedure G, which stores

all values r queried by A in an additional list LA
G. This allows us to keep track of all values queried by A.

Random oracle H is implemented similarly, with procedures Hint and H, using list s LH and LA
H .

By definition we have

Adv(REAL-SIM-SO-CCAA
OAEP, GA

0) = 0 .

In the following games we will replace C0 with challenger Ci in Game i. In the last game, we replace the
challenger with a simulator.

Game 1 In this game, C1 proceeds exactly as C0, except that instead of implementing procedure Dec,
it uses procedure Dec1 from Figure 12 to respond to decryption-queries. Note that procedure Dec1 does
not require the trapdoor td to perform decryption.

Claim 1. It holds that Adv(GA
0 , GA

1) ≤ qd ·
(

2−k1 + qg · 2
−k0

)

.

Proof. Game G1 is perfectly indistinguishable from Game G0, unless A makes a decryption query with
ciphertext c, such that Dec(c) 6= Dec1(c). Note that this can only hold if A queries a ciphertext c with
(s, t) = F −1(td, c), such that

(s, ·) 6∈ LH or (t⊕H(s), ·) 6∈ LG

where · is any value, but it holds that G(t⊕H(s))⊕ s = m||ρ with ρ = 0k1 .
Consider a single chosen-ciphertext c = F (ek, (s, t)). Suppose that (s, ·) 6∈ LH . In this case H(s)

is uniform and independent from A’s view. The probability that there exists (r, ·) ∈ LG such that
r = H(s)⊕ t is therefore at most qg · 2

−k0 , since we assumed that the adversary issues at most qg queries
to G.

If (r, ·) 6∈ LG then G(r) is uniform and independent from A’s view, thus the probability that
G(r)⊕ s = m||0k1 has the correct syntax is at most 2−k1 .

Since the adversary issues at most qd chosen-ciphertext queries, we have Adv(GA
0 , GA

1) ≤
qd ·

(

2−k1 + qg · 2
−k0

)

.

15

Procedure Dec1(c)

For (r, hr, s, hs) ∈ LG × LH :

if

(

c = F (ek, (s, r ⊕ hs)
∧ s⊕ hr = m||0k1

)

Return m
Return ⊥

Procedure Enc2(D)

(mi)i∈[n] ← D

For i ∈ [n]:

si
$
← {0, 1}ℓ+k1 , ti

$
← {0, 1}k0

ci := F (ek, (si, ti))
ri := H(si)⊕ ti

if ri ∈ LG

AbortG := true
hri

:= si ⊕mi||0
k1

LG := LG ∪ {(ri, hri
)}

Return (ci)i∈[n]

Figure 12: Replacement procedures Dec1 and Enc2.

Game 2 Challenger C2 proceeds exactly like C1, except that it implements procedure Enc2 from
Figure 12 instead of Enc. Note that this procedure first samples (si, ti) uniformly random, then computes
ci = F (ek, (si, ti)), and finally programs the random oracle G such that ci decrypts to mi.

Claim 2. It holds that Adv(GA
1 , GA

2) ≤ n(qg + n) · 2−k0 .

Proof. Note that procedure Enc2 first defines ri := H(si)⊕ ti for uniformly random ti
$
← {0, 1}k0 . Thus,

ri is distributed uniformly over {0, 1}k0 , exactly as in Game G1. Now suppose that ri 6∈ LG, thus Enc2

does not terminate. In this case the hash function G is programmed such that G(ri) = hri
= si ⊕mi||0

k1 .
Since si is uniformly distributed, so is G(ri), exactly as in Game G1. Thus, Enc2 simulates procedure
Enc from Game G1 perfectly, provided that it does not terminate.

Note that the procedure terminates only if ri ∈ LG. Since all values r1, . . . , rn are distributed uniformly,
because the si-values are uniformly random, this happens with probability at most n(qg + n) · 2−k0 .

Game 3 We add an abort condition to the Open procedure (see the left-hand side of Figure 13).
Challenger C3 proceeds exactly like C2, except that it raises event AbortS and terminates, if A ever
queried si to H for some i ∈ [n] before querying Open(i).

Note that in Game G3, the attacker never evaluates H on input si for any i 6∈ I, or the game is
aborted.

Claim 3. It holds that Adv(GA
2 , GA

3) ≤ n · qh · AdvT
pd(B, λ).

Proof. Game G3 proceeds identically to Game G2, until event AbortS is raised. Thus we have

Adv(GA
2 , GA

3) ≤ Pr[AbortS] .

We construct an adversary B against the partial-domain onewayness of T . Adversary B receives as input

ek and y = fek(s, t) for uniformly random (s, t)
$
← {0, 1}ℓ+k1 × {0, 1}k0 . It proceeds exactly like C3,

Procedure Open(i)

I := I ∪ {i}
if si ∈ LA

H

AbortS := true
Return (mi, ri)

Procedure Open(i)

I := I ∪ {i}
if si ∈ LA

H

AbortS := true
if ri ∈ LA

G

AbortR := true
Return (mi, ri)

Figure 13: Modified Open procedures of Games 3 (left) and 4 (right).

16

Procedure Enc(D)

(mi)i∈[n] ← D

For i ∈ [n]:

si
$
← {0, 1}ℓ+k1 , ti

$
← {0, 1}k0

ci := F (ek, (si, ti))
ri := H(si)⊕ ti

if ri ∈ LG

AbortG := true
Return (ci)i∈[n]

Procedure Open(i)

I := I ∪ {i}
if si ∈ LA

H

AbortS := true
if ri ∈ LA

G

AbortR := true
hri

:= si ⊕mi||0
k1

LG := LG ∪ {(ri, hri
)}

Return (mi, ri)

Figure 14: New procedures for Game G5.

except for the following. At the beginning of the game it sets pk := ek and guesses two indices j
$
← [n]

and q
$
← [qh] uniformly random, and sets cj := y. Note that cj is correctly distributed (cf. the changes

introduced in Game G2). When A makes its qth query s∗ to H, then B returns s∗ and terminates.
Assume that AbortS happens. Then, at some point in the game, A makes the first query s′ to H

such that s′ = si is a partial-domain preimage of some ci. With probability 1/qh it holds that s∗ = si.
Moreover, with probability 1/n we have i = j. In this case B obtains the partial preimage s = sj of
y = cj . Thus, B succeeds, if AbortS happens and if it has guessed j ∈ [n] and q ∈ [qh] correctly. This
happens with probability Pr[AbortS]/(nqh), which implies that

Pr[AbortS] ≤ nqh · AdvT
pd(B, λ) .

Game 4 We add another abort condition to the Open procedure (see the right-hand side of Figure 13).
Challenger C4 raises event AbortR and terminates, if A ever queries ri to GA for some i ∈ [n], before
querying Open(i). Otherwise it proceeds like C3.

Claim 4. It holds that Adv(GA
3 , GA

4) ≤ nqg · 2
−ℓ−k1 .

Proof. Note that A never queries si before querying Open(i) (or the game is aborted), due to the changes
introduced in Game G3. Thus, for all i 6∈ I, H(si) is uniformly random and independent of A’s view.
Therefore, all ri = ti ⊕H(si) are uniformly random and independent of A’s view. Since A issues at most
qg queries to G, and we have 1 ≤ i ≤ n, this implies Adv(GA

3 , GA
4) ≤ nqg · 2

−ℓ−k1 .

Game 5 Note that the attacker in Game G4 never issues a query G(ri) before asking Open(i), as
otherwise the game is aborted. Thus, the challenger does not have to define the hash value G(ri) before
Open(i) is asked. Therefore we can move the definition of G(ri) from the Enc2 procedure to the Open

procedure.
Therefore we replace the procedures Enc2 and Open from Game G4 with procedures Enc and Open

described in Figure 14.
Note that the only difference is that for each i ∈ [n] the hash value G(ri) is not defined in the Enc

procedure, but in the Open procedure. Moreover, this modification is completely oblivious to A, which
implies

Adv(GA
4 , GA

5) = 0 .

Game 6 Note that in Game G5 the encryption procedure samples a message vector (mi)i∈[n], but the
messages are only used in the Open procedure. This allows us to construct a simulator, whose procedures
are described in Figure 15. Note that the view of A when interacting with the simulator is identical to
its view when interacting with challenger C5, which implies

Adv(GA
5 , GA

6) = 0 .

17

Procedure Initialise

Initialise()

(ek, td)
$
← GK(1λ)

LG := LH := LA
G := LA

H := ∅
Return ek

Procedure Enc(D)

Enc(D)

for i ∈ [n]:

si
$
← {0, 1}ℓ+k1

ti
$
← {0, 1}k0

ci := F (ek, (si, ti))
ri := H(si)⊕ ti

If ri ∈ LG then
AbortG := true

Return (ci)i∈[n]

Procedure Dec1(c)

For (r, hr, s, hs) ∈ LG × LH do

if

(

c = F (ek, (s, r ⊕ hs)
∧ s⊕ hr = m||0k1

)

Return m
Return ⊥

Internal procedure Hint(s)

if (s, hs) /∈ LH

hs
$
← {0, 1}k0

LH := LH ∪ (s, hs)
Return hs

Procedure H(s)

LA
H := LA

H ∪ {s}
Return Hint(s)

Procedure Open(i)

mi := Open(i)

I := I ∪ {i}
if si ∈ LA

H

AbortS := true
if ri ∈ LA

G

AbortR := true
hri

:= si ⊕mi||0
k1

LG := LG ∪ {(ri, hri
)}

Return (mi, ri)

Internal procedure Gint(r)

if (r, hr) /∈ LG

hr
$
← {0, 1}ℓ+k1

LG := LG ∪ (r, hr)
Return hr

Procedure G(r)

LA
G := LA

G ∪ {r}
Return Gint(r)

Procedure Finalise(out)

Finalise(out)

Figure 15: Procedures used by the simulator to implement the REAL-SIM-SO-CCAA
OAEP experiment.

Instructions in boxes correspond to calls to the IDEAL-SIM-SO-CCAS
OAEP experiment made by the simulator.

5 The Fujisaki-Okamoto Transformation

In this section we study the Fujisaki-Okamoto transformation [FO99, FO13] that combines a one-way
secure PKE scheme with high min-entropy of ciphertexts and a one-time secure symmetric encryption
scheme to obtain an IND-CCA secure PKE scheme. We instantiate the symmetric encryption with the
one-time pad and consider the FO transformation as a transformation of PKE schemes. We show that
the same transformation also yields SIM-SO-CCA secure PKEs under the same complexity assumptions
as in [FO13].

5.1 One-wayness and ciphertext distribution

Definition 5.1. Let PKE = (Gen, Enc, Dec) be a PKE scheme with message space M and randomness
space R. For an adversary B we consider the one-wayness game OWPKE as given in Figure 16, where B
calls Challenge exactly once. To PKE, B, and λ we associate the advantage function AdvOW

PKE(B, λ) :=
Pr[OWB

PKE ⇒ 1].

Procedure Initialise(1λ)

(pk, sk) $← Gen(1λ)
Return pk

Procedure Challenge

m $←M
r $← R
c := Encpk(m; r)
Return c

Procedure Finalise(m′)

Return (m
?
= m′)

Figure 16: One-way game OWPKE for PKE scheme PKE.

18

Procedure FOGen(1λ)

(pk, sk)← Gen(1λ)
Return (pk, sk)

Procedure FOEncpk(m)

r $← RFO

c := m ⊕ G(r)
h := H(r, c)
e := Encpk(r; h)
Return (e, c)

Procedure FODecsk(e, c)

r̂ := Decsk(e)
if r̂ /∈ RFO

Return ⊥
ĥ := H(r̂, c)

if e 6= Encpk(r̂; ĥ)
Return ⊥

m := c ⊕ G(r̂)
Return m

Figure 17: Fujisaki-Okamoto Transformation for PKE scheme PKE.

Definition 5.2. Let PKE = (Gen, Enc, Dec) PKE scheme with message space M and randomness space
R. Let m ∈M and pk ← Gen. We define the min-entropy of Encpk(m) as

γ(pk, m) := − log max
c∈{0,1}∗

{

Pr
r

$←R

[c = Encpk(m; r)]

}

.

PKE is γ-spread if for all pk ← Gen and all m ∈M we have γ(pk, m) ≥ γ.

Note that for any γ-spread PKE scheme appending γ′ random bits to encryptions of messages
immediately ensures that the scheme is (γ + γ′)-spread at the cost of longer ciphertexts as mentioned in
[FO99]. Hence, the following transformation allows one to construct a SIM-SO-CCA secure PKE from
any one-way secure PKE.

5.2 The Transformation

Let PKE = (Gen, Enc, Dec) be a PKE with message spaceM, randomness space R and ciphertext space C.
Consider the FO Transformation FOPKE = (FOGen, FOEnc, FODec), given in Figure 17 with message
space MFO := {0, 1}ℓ, randomness space RFO :=M and ciphertext space CFO := C × {0, 1}ℓ. Therefore,
let G : RFO → {0, 1}ℓ and H : RFO × {0, 1}ℓ → R be hash functions.

The FO encryption process is illustrated in Figure 18.

Theorem 5.3. Let PKE be a OW, γ-spread PKE where γ = poly(n), then FOPKE is SIM-SO-CCA secure
in the random oracle model. In particular, for any adversary A run in the REAL-SIM-SO-CCAFOPKE

game
that issues at most qh hash queries, qd decryption queries and obtains n ciphertexts, and every efficient
PPT relation Rel, there exists a simulator S and an adversary B run in the OWPKE game with roughly
the same running time as A such that

AdvSIM-SO-CCA

FOPKE
(A,S, Rel, n, λ) ≤ n ·

(

qd · 2
−γ + qh ·

(

1

|R| − qh
+ AdvOW

PKE(B, λ)

))

.

Intuition for the proof of Theorem 5.3 The proof idea is similar to the proof of our result on
DHIES from Theorem 3.5. In the first game hop we will replace the decryption procedure such that

m

r

G(r)

⊕

H(r, c) Encpk(r; h)

c

h

c
e

Figure 18: Structure of the Fujisaki-Okamoto encryption. We have (e, c) = FOEncpk(m; r).

19

(almost all) decryption queries can be answered correctly without the secret key. Then a statistical
argument ensures that H(ri, ·) and G(ri) are still uniformly random for all i ∈ [n] from A’s point of view
when it calls Enc. After rewriting the encryption of challenge messages and moving the programming
of G and H from Enc to the G, H and Open procedure, we will use Π’s one-wayness to ensure that A
will not query H(ri, ci) or G(ri) for i ∈ [n] even after seeing the challenge ciphertexts. In a last game
transition we will construct a simulator run in the ideal experiment.

Proof. We proceed in a sequence of games. Our proof of SIM-SO-CCA security is similar to the proof of
IND-CCA security given in [FO13]. Note that qh denotes the number of hash queries to G and H issued
by A. We continue with detailed descriptions of the games that are given as pseudocode in Figure 19.

Procedure Initialise

(pk, sk)← Gen(1λ)
(ri)i∈[n]

$← RFO

Return pk

Procedure H(s1, s2) G2−4 G3−4 G4

if s1 ∈ {ri}i∈[n]

if ¬calledEnc

AbortEarly := true

else
let i s.t. s1 = ri

if s2 = ci

if i /∈ I
AbortHash := true

LH := LH ∪ {s1, s2, σh
i }

if (s1, s2, ·) /∈ LH

hs
$← R

LH := LH ∪ {(s1, s2, hs)}
Return hs

Procedure G(t) G2−4 G3−4 G4

if t ∈ {ri}i∈[n]

if ¬calledEnc

AbortEarly := true

else

let i s.t. t = ri

if i /∈ I
AbortHash := true

LG := LG ∪ {t, σg
i ⊕ mi}

if (t, ·) /∈ LG

gt
$← {0, 1}ℓ

LG := LG ∪ {(t, gt)}
Return gt

Procedure Finalise(out)

Return Rel((mi)i∈[n],D, I, out)

Procedure Enc(D) G0−2 G3−4

calledEnc := true
(mi)i∈[n] ← D

ci := G(ri) ⊕mi

hi := H(ri, ci)
ei := Encpk(ri; hi)

σh
i

$← {0, 1}ℓ

σh
i ← R

ci := σg
i

ei := Encpk(ri; σh
i)

Return ((ei, ci)i∈[n])

Procedure Open(i) G3−4

I := I ∪ {i}

LG := LG ∪ {(ri, σg
i ⊕ mi)}

LH := LH ∪ {(ri, ci, σh
i)}

Return (mi, ri)

Procedure Dec(e, c) G0

r̂ := Decsk(e)
if r̂ /∈ RFO

Return ⊥
ĥ := H(r̂, c)

if e 6= Encpk(r̂; ĥ)
Return ⊥

m := c ⊕ G(r̂)
Return m

Procedure Dec(e, c) G1−4

if ∄(r̂, c, ĥ) ∈ LH s.t. e = Encpk(r̂; ĥ)
Return ⊥

let r̂ s.t. (r̂, c, ĥ) ∈ LH ∧ e = Encpk(r̂; ĥ)
m := c ⊕ G(r̂)
Return m

Figure 19: Sequence of games used in the proof of Theorem 5.3. Boxed code is only run in those games
that are given in the top right of each procedure within a box of the same style. Code not inside a box is
always executed. Note that for Dec the whole procedure is replaced for better readability.

20

Game 0 REAL-SIM-SO-CCAFOPKE
game run with adversary A whereby hash functions G and H are

modelled as random oracles. Additionally, we already moved the sampling of random coins ri from Enc

to Initialise and added a flag at the beginning of Enc. Clearly, Adv(REAL-SIM-SO-CCAA, GA
0) = 0.

Game 1 We change the decryption procedure such that decryption queries can be answered without
the secret key. Instead of decrypting e to obtain r̂ and querying (r̂, c) to H, adversary A is aborted if it
did not submit some tuple (r̂, c) to H s.t. e = Encpk(r̂; H(r̂, c)).

Claim 1. Adv(GA
0 , GA

1) ≤ n · qd · 2
−γ .

Proof. We call a ciphertext (e, c) valid if it passes decryption without aborting, i.e. for r := Decsk(e) we
have r ∈ RFO and e = Encpk(r; H(r, c)). A ciphertext (e, c) is invalid if it is not valid.

Consider the new decryption procedure and observe that invalid ciphertexts are aborted in both
procedures. Further, if a valid ciphertext is correctly decrypted in Game G1 the same holds for Game
G0. On the other hand, a valid ciphertext in Game G0 might result in ⊥ in Game G1 if A did not query
H(r̂, c) before, i.e. there is no entry (r̂, c, ·) in list LH. Thus, Adv(GA

0 , GA
1) is upper-bounded by the

probability that A submits a valid (e, c) to Dec while H(r̂, c) is still undefined.
We show that (r, c) 6= (ri, ci) for all i ∈ [n], i.e. H(r, c) is independent of H(ri, ci) for all i ∈ [n].

A has to submit a ciphertext (e, c) /∈ {(ei, ci)}i∈[n]. If c 6= ci for all i ∈ [n] the claim follows. Hence,
assume that for some fixed i ∈ [n] we have c = ci, then e 6= ei. Because e = Encpk(r; H(r, c)) it follows
(r, H(r, c)) 6= (ri, H(ri, ci)) by definition. Thus, either r 6= ri or H(r, c) 6= H(ri, ci), implying r 6= ri as
well since c = ci by assumption. Remember that Π is γ-spread, hence A’s probability of submitting
a valid (e, c) without querying H on (r̂, c) is at most n · 2−γ for a single decryption query. It follows
Adv(GA

0 , GA
1) ≤ n · qD · 2

−γ .

Game 2 We add an abort condition: AbortEarly. If A queries G(ri) or H(ri, ·) for some i ∈ [n] and
did not call Enc, game G2 aborts A.

Claim 2. Adv(GA
1 , GA

2) ≤ (n · qh)/(|R| − qh).

Proof. Observe that ri for all i ∈ [n] is uniformly random from A’s point of view when obtaining pk.
Note that the game aborts if A chooses r ∈ {ri}i∈[n] and queries H(r, c) for any c ∈ {0, 1}ℓ or G(r). Thus,
Pr[AbortEarly] is upper-bounded by the sum over the probability of aborting on query i conditioned
on ‘AbortEarly did not happen’. Hence,

Pr[AbortEarly] ≤ n ·

qh
∑

i=1

1

|RFO| − (i− 1)
≤

n · qh

|R| − qh
.

Game 3 We rewrite the Enc procedure. Instead of querying H(ri, ci) (resp. G(ri)) we pick σh
i

$← R
(resp. σg

i
$← {0, 1}ℓ) uniformly random. The challenge ciphertexts will be computed as (ei, ci) =

(Encpk(ri; σh
i), σg

i) while the programming H(ri, ci) := σh
i and G(ri) := σg

i ⊕ mi will only happen on A’s
call of Open(i) or query H(ri, ci), G(ri), respectively.

Claim 3. Adv(GA
2 , GA

3) = 0.

Proof. Note that on call of Enc the values H(ri, ci) and G(ri) are uniformly random for all i ∈ [n].
Hence, we can replace the evaluation of H(ri, ci) with some value σh

i chosen uniformly at random. The
same argument applies for G. Thus, G(ri)⊕mi is uniform and we can replace it by same σg

i with identical
distribution. The additional code within H and G ensures that for all i ∈ [n] H(ri, ci) and G(ri) are
programmed consistently, the same argument applies for the additional lines within Open.

Observe that the encryptions (ei, ci) are independent of the sampled messages when A obtains
((ei, ci)i∈[n]). However, ciphertext (ei, ci) does not remain independent of mi if A queries H(ri, ci), G(ri)
or Open(i). While the latter is not harmful, we will block aforementioned hash queries in the next game
hop.

21

Game 4 We add another abort condition: AbortHash. Adversary A is aborted if it already called
Enc and queries H(ri, ci) or G(ri) for some i ∈ [n] and did not call Open(i).

Claim 4. Adv(GA
3 , GA

4 ,) ≤ n · qh ·AdvOW(B, λ).

Proof. Games G3 and G4 proceed identical until AbortHash happens. Thus we have Adv(GA
3 , GA

4) ≤
Pr[AbortHash]. We construct an adversary B against the one-wayness of Π. First, B obtains (pk, y)
from its OW game. Adversary B picks i∗ $← [n], j∗ $← [qh] and forwards pk to A. On A’s j∗th hash query
H(s1, ·) (resp. G(t)), B returns s1 (resp. t) to its OWΠ game.

Receiving D from A, B samples a message vector according to D and encrypts every message as given
in game G3 for i ∈ [n] \ {i∗}. For the i∗th message, B returns (y, σg

i).
Assume that AbortHash happens. Then, with probability 1/n it will happen for i = i∗. In particular,

A will not call Open(i∗) and will query H(ri∗ , ·) or G(ri∗) whereby ri∗ is the decryption of y. With
probability 1/qh A will make that query as its j∗th and B wins its OWΠ game by returning ri. It follows
AdvOW

Π (B, λ) ≥ Pr[AbortHash] · 1/(n · qHash). The claim follows by rearranging.

Note that from now on the ciphertexts remain independent of the sampled messages until A makes an
Open query.

Claim 4. There exists a simulator S that runs in the IDEAL-SIM-SO-CCA game such that we have
Adv(GA

4 , IDEAL-SIM-SO-CCAS) = 0.

Proof. We construct a simulator S run in the IDEAL-SIM-SO-CCA game. At first, S runs Gen on its own
to obtain (pk, sk). Then S forwards pk to A. The simulator will answer hash queries as in game G4.
Once it receives D from A, the simulator calls Enc(D). Simulator S creates ‘dummy ciphertexts’ as in
game G4 and sends them to A. Assuming that A does not cause any Abort, S does not have to reveal a
message mi before A calls Open(i). If A calls Open(i), S issues the same query to its game, obtains
mi and programs the random oracles accordingly and forwards (ri, mi) to A. S forwards whatever A
outputs.

Collecting the probabilities we obtain the bound as given in Theorem 5.3.

Acknowledgments

We thank the reviewers of the Journal of the IET for their helpful feedback. Further, we thank Zhengan
Huang and Shengli Liu for their valuable comments. Felix Heuer and Eike Kiltz were (partially) funded by
a Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation and the German Federal Ministry
for Education and Research. Felix Heuer was also partially funded by German Research Foundation
(DFG) SPP 1736, Algorithms for BIG DATA. Eike Kiltz was partially funded by ERC Project ERCC
(FP7/615074). Sven Schäge is supported by Ubicrypt, the research training group 1817/1 funded by the
DFG. Part of this work was done while he was employed at University College London and supported by
EPSRC grant EP/J009520/1.

References

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In Naccache [Nac01], pages 143–158. (Cited on page 2, 4, 12.)

[BDU08] Michael Backes, Markus Dürmuth, and Dominique Unruh. OAEP is secure under key-
dependent messages. In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS,
pages 506–523, Melbourne, Australia, December 7–11, 2008. Springer, Berlin, Germany.
(Cited on page 3.)

[BDWY12] Mihir Bellare, Rafael Dowsley, Brent Waters, and Scott Yilek. Standard security does not
imply security against selective-opening. In Pointcheval and Johansson [PJ12], pages 645–662.
(Cited on page 2.)

22

[Bea97] Donald Beaver. Plug and play encryption. In Kaliski Jr. [Kal97], pages 75–89. (Cited on
page 1, 3.)

[BF06] Alexandra Boldyreva and Marc Fischlin. On the security of OAEP. In Xuejia Lai and Kefei
Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 210–225, Shanghai, China,
December 3–7, 2006. Springer, Berlin, Germany. (Cited on page 3.)

[BH92] Donald Beaver and Stuart Haber. Cryptographic protocols provably secure against dynamic
adversaries. In Rainer A. Rueppel, editor, EUROCRYPT’92, volume 658 of LNCS, pages
307–323, Balatonfüred, Hungary, May 24–28, 1992. Springer, Berlin, Germany. (Cited on
page 1, 3.)

[BHK12] Florian Böhl, Dennis Hofheinz, and Daniel Kraschewski. On definitions of selective opening
security. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012,
volume 7293 of LNCS, pages 522–539, Darmstadt, Germany, May 21–23, 2012. Springer,
Berlin, Germany. (Cited on page 2.)

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results for
encryption and commitment secure under selective opening. In Joux [Jou09], pages 1–35.
(Cited on page 2, 3.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press. (Cited on page 14.)

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Alfredo De Santis,
editor, EUROCRYPT’94, volume 950 of LNCS, pages 92–111, Perugia, Italy, May 9–12, 1994.
Springer, Berlin, Germany. (Cited on page 2, 3.)

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume
4004 of LNCS, pages 409–426, St. Petersburg, Russia, May 28 – June 1, 2006. Springer,
Berlin, Germany. (Cited on page 3, 14.)

[Bro06] Daniel R. L. Brown. What hashes make RSA-OAEP secure? Cryptology ePrint Archive,
Report 2006/223, 2006. http://eprint.iacr.org/. (Cited on page 3.)

[BWY11] Mihir Bellare, Brent Waters, and Scott Yilek. Identity-based encryption secure against
selective opening attack. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
235–252, Providence, RI, USA, March 28–30, 2011. Springer, Berlin, Germany. (Cited on
page 3.)

[CA06] T. Clancy and W. Arbaugh. Extensible Authentication Protocol (EAP) Password Authenti-
cated Exchange. RFC 4746 (Informational), November 2006. (Cited on page 3.)

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable encryption. In
Kaliski Jr. [Kal97], pages 90–104. (Cited on page 1, 3.)

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party
computation. In 28th ACM STOC, pages 639–648, Philadephia, Pennsylvania, USA, May 22–
24, 1996. ACM Press. (Cited on page 1, 3.)

[CHK05] Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-secure, non-interactive public-
key encryption. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 150–168,
Cambridge, MA, USA, February 10–12, 2005. Springer, Berlin, Germany. (Cited on page 1,
3.)

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput., 33(1):167–226,
2003. (Cited on page 11.)

23

http://eprint.iacr.org/

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176. (Cited on
page 3.)

[FHKW10] Serge Fehr, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Encryption schemes secure against
chosen-ciphertext selective opening attacks. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 381–402, French Riviera, May 30 – June 3, 2010. Springer,
Berlin, Germany. (Cited on page 2, 3.)

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
537–554, Santa Barbara, CA, USA, August 15–19, 1999. Springer, Berlin, Germany. (Cited
on page 4, 18, 19.)

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. Journal of Cryptology, 26(1):80–101, January 2013. (Cited on page 3, 4,
18, 20.)

[FOPS01] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. RSA-OAEP
is secure under the RSA assumption. In Joe Kilian, editor, CRYPTO 2001, volume 2139
of LNCS, pages 260–274, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Berlin,
Germany. (Cited on page 3, 12.)

[Fuj12] Eiichiro Fujisaki. All-but-many encryptions: A new framework for fully-equipped UC
commitments. Cryptology ePrint Archive, Report 2012/379, 2012. http://eprint.iacr.

org/. (Cited on page 3.)

[Har06] B. Harris. RSA Key Exchange for the Secure Shell (SSH) Transport Layer Protocol. RFC
4432 (Proposed Standard), March 2006. (Cited on page 3.)

[HLOV11] Brett Hemenway, Benoît Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy encryption:
Constructions from general assumptions and efficient selective opening chosen ciphertext
security. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of
LNCS, pages 70–88, Seoul, South Korea, December 4–8, 2011. Springer, Berlin, Germany.
(Cited on page 2, 3.)

[Hof12] Dennis Hofheinz. All-but-many lossy trapdoor functions. In Pointcheval and Johansson
[PJ12], pages 209–227. (Cited on page 2, 3.)

[Hou03] R. Housley. Use of the RSAES-OAEP Key Transport Algorithm in Cryptographic Message
Syntax (CMS). RFC 3560 (Proposed Standard), July 2003. (Cited on page 3.)

[HR14] Dennis Hofheinz and Andy Rupp. Standard versus selective opening security: Separation
and equivalence results. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages
591–615, San Diego, CA, USA, February 24–26, 2014. Springer, Berlin, Germany. (Cited on
page 1, 2.)

[Jou09] Antoine Joux, editor. EUROCRYPT 2009, volume 5479 of LNCS, Cologne, Germany,
April 26–30, 2009. Springer, Berlin, Germany. (Cited on page 23, 25.)

[JQY01] Marc Joye, Jean-Jacques Quisquater, and Moti Yung. On the power of misbehaving adversaries
and security analysis of the original EPOC. In Naccache [Nac01], pages 208–222. (Cited on
page 4.)

[Kal97] Burton S. Kaliski Jr., editor. CRYPTO’97, volume 1294 of LNCS, Santa Barbara, CA, USA,
August 17–21, 1997. Springer, Berlin, Germany. (Cited on page 23.)

[KOS10] Eike Kiltz, Adam O’Neill, and Adam Smith. Instantiability of RSA-OAEP under chosen-
plaintext attack. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 295–313,
Santa Barbara, CA, USA, August 15–19, 2010. Springer, Berlin, Germany. (Cited on page 3.)

24

http://eprint.iacr.org/
http://eprint.iacr.org/

[KP09] Eike Kiltz and Krzysztof Pietrzak. On the security of padding-based encryption schemes - or
- why we cannot prove OAEP secure in the standard model. In Joux [Jou09], pages 389–406.
(Cited on page 3, 14.)

[LDL+14] Junzuo Lai, Robert H. Deng, Shengli Liu, Jian Weng, and Yunlei Zhao. Identity-based
encryption secure against selective opening chosen-ciphertext attack. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 77–92,
Copenhagen, Denmark, May 11–15, 2014. Springer, Berlin, Germany. (Cited on page 3.)

[Nac01] David Naccache, editor. CT-RSA 2001, volume 2020 of LNCS, San Francisco, CA, USA,
April 8–12, 2001. Springer, Berlin, Germany. (Cited on page 22, 24, 25.)

[NSF05] T. Nadeau, C. Srinivasan, and A. Farrel. Multiprotocol Label Switching (MPLS) Management
Overview. RFC 4221 (Informational), November 2005. (Cited on page 3.)

[OP01] Tatsuaki Okamoto and David Pointcheval. REACT: Rapid Enhanced-security Asymmetric
Cryptosystem Transform. In Naccache [Nac01], pages 159–175. (Cited on page 5.)

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as secure as
factoring. In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, International
Conference on the Theory and Application of Cryptographic Techniques, Espoo, Finland, May
31 - June 4, 1998, Proceeding, volume 1403 of Lecture Notes in Computer Science, pages
308–318. Springer, 1998. (Cited on page 4.)

[Pei14] Chris Peikert. Lattice cryptography for the internet. In Michele Mosca, editor, Post-Quantum
Cryptography - 6th International Workshop, PQCrypto 2014, Waterloo, ON, Canada, October
1-3, 2014. Proceedings, volume 8772 of Lecture Notes in Computer Science, pages 197–219.
Springer, 2014. (Cited on page 3.)

[PJ12] David Pointcheval and Thomas Johansson, editors. EUROCRYPT 2012, volume 7237 of
LNCS, Cambridge, UK, April 15–19, 2012. Springer, Berlin, Germany. (Cited on page 22,
24.)

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Richard E.
Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 187–196, Victoria, British
Columbia, Canada, May 17–20, 2008. ACM Press. (Cited on page 3.)

[Rae05] K. Raeburn. Encryption and Checksum Specifications for Kerberos 5. RFC 3961 (Proposed
Standard), February 2005. (Cited on page 3.)

[Res02] E. Rescorla. Preventing the Million Message Attack on Cryptographic Message Syntax. RFC
3218 (Informational), January 2002. (Cited on page 3.)

[RT10] B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Extensions (S/MIME) Version
3.2 Message Specification. RFC 5751 (Proposed Standard), January 2010. (Cited on page 3.)

[SBZ02] Ron Steinfeld, Joonsang Baek, and Yuliang Zheng. On the necessity of strong assumptions
for the security of a class of asymmetric encryption schemes. In Lynn Margaret Batten
and Jennifer Seberry, editors, ACISP 02, volume 2384 of LNCS, pages 241–256, Melbourne,
Victoria, Australia, July 3–5, 2002. Springer, Berlin, Germany. (Cited on page 2, 4, 6, 7.)

[Sho02] Victor Shoup. OAEP reconsidered. Journal of Cryptology, 15(4):223–249, 2002. (Cited on
page 3.)

[Sho04a] Victor Shoup. ISO 18033-2: An emerging standard for public-key encryption. http://shoup.

net/iso/std6.pdf, December 2004. Final Committee Draft. (Cited on page 12.)

[Sho04b] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs, 2004.
shoup@cs.nyu.edu 13166 received 30 Nov 2004, last revised 18 Jan 2006. (Cited on page 14.)

25

http://shoup.net/iso/std6.pdf
http://shoup.net/iso/std6.pdf

[ST02] Kouichi Sakurai and Tsuyoshi Takagi. A reject timing attackon an IND-CCA2 public-key
cryptosystem. In Pil Joong Lee and Chae Hoon Lim, editors, Information Security and
Cryptology - ICISC 2002, 5th International Conference Seoul, Korea, November 28-29, 2002,
Revised Papers, volume 2587 of Lecture Notes in Computer Science, pages 359–373. Springer,
2002. (Cited on page 4.)

26

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Games
	Public Key Encryption Schemes
	SIM-SO-CCA Security Definition

	Transformation from any OW-PCA secure KEM
	Key Encapsulation Mechanisms and Message Authentication Codes
	The Transformation
	Implications for practical encryption schemes

	The OAEP Transformation
	Trapdoor Permutations and Partial-Domain Onewayness
	Optimal Asymmetric Encryption Padding (OAEP)
	Security of OAEP against SO-CCA Attacks

	The Fujisaki-Okamoto Transformation
	One-wayness and ciphertext distribution
	The Transformation

