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Abstrac(-We demonstrate that Ethernet LAN traffic is statis-

tically se~-simi/ar, that none of the commonly used traffic models

is able to capture this fra([al-like behavior, that such behavior

has serious implications for the design, control, and analysis of

high-speed, cell-based networks, and that aggregating streams of

such traffic typically intensifies the self-similarity (“burstiness”)

instead of smoothing it. Our conclusions are supported by a

rigorous statistical analysis of hundreds of millions of high quality

Ethernet traffic measurements colleeted between 1999 and 1992,

coupled with a discussion of tbe underlying mathematical and

statistical properties of self-similarity and their relationship with

actual network behavior. We also present traffic models based

on self-similar stochastic processes that provide simple, accurate,

and realistic descriptions of traffic scenarios expected during

B-ISDN deployment.

1. INTRODUCTION

I
N THIS PAPER 1. we use the LAN traffic data collected by

Leland and Wilson [ 14] who were able to record hundreds

of millions of Ethernet packets without loss (irrespective of

the traffic load) and with recorded time-stamps accurate to

within 100 ps, The data were collected between August 1989

and February 1992 on several Ethernet LAN’s at the Bellcore

Morristown Research and Engineering Center. Leland and

Wilson [ 14] present a preliminary statistical analysis of this

unique high-quality data and comment in detail on the presence

of ‘Sburstiness” across an extremely wide range of time scales:

traffic “spikes” ride on longer-term “ripples,” that in turn

ride on still longer term “swells,” etc. This self-similar or

fractal-like behavior of aggregate Ethernet LAN traffic is very

different both from conventional telephone traffic and from

currently considered formal models for packet traffic (e.g.,

pure Poisson or Poisson-related models such as Poisson-batch

or Markov-Modulated Poisson processes (see [11]), packet-

train models (see [13]), fluid flow models (see [1]), etc. and

requires a new look at modeling traffic and performance of

broadband networks.

The main objective of this paper is to establish in a

statistically rigorous manner the self-similarity characteristic

of the very high quality, high time-resolution Ethernet LAN
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traffic measurements presented in [ 14]. Moreover, we illustrate

some of the most striking differences between self-similar

models and the standard models for packet traffic currently

considered in the literature. For example, our analysis of the

Ethernet data shows that the generally accepted argument for

the “Poisson-like” nature of aggregate traffic, namely, that

aggregate traffic becomes smoother (less bursty) as the number

of traffic sources increases, has very little to do with reality.

In fact, using the degree of self-similarity (which typically

depends on the utilization level of the Ethernet and can be

defined via the Hurst parameter) as a measure of “burstiness,”

we show that the burstiness of LAN traffic typically intensifies

as the number of active traffic sources increases, contrary to

commonly held views.

The term “self-similar” was coined by Mandelbrot. He

and his co-workers (e.g., see [21 ]–[23]) brought self-similar

processes to the attention of statisticians, mainly through

applications in such areas as hydrology and geophysics. For

further applications and references on the probability theory

of self-similar processes, see the extensive bibliography in

[27]. For an early application of the self-similarity concept to

communications systems, see the seminal paper by Mandelbrot

[18].

The paper is organized as follows. In Section 11,we describe

the available Ethernet traffic measurements and comment on

the changes of the Ethernet population, applications, and

environment during the measurement period from August 1989

to February 1992. In Section III, we give the mathematical

definition of self-similarity, identify classes of stochastic mod-

els which are capable of accurately describing the self-similar

behavior of the traffic measurements at hand, and illustrate

statistical methods for analyzing self-similar data sets. Section

IV describes our statistical analysis of the Ethernet data, with

emphasis on testing for self-similarity. Finally, in Section

V we discuss the significance of self-similarity for traffic

engineering, and for operation, design, and control of B-ISDN

environments.

11. TRAFFIC MEASUREMENTS

2.1, The Trafic Monitor

The monitoring system used to collect the data for the

present study was custom-built by one of the authors (Wilson)

in 1987/88 and has been in use to the present day with one

upgrade. For each packet seen on the Ethernet under study,

the monitor records a timestamp (accurate to within 100p-to

within 20 /Ls in the updated version of the monitor), the packet

lW3+692/94$04.00 @ 1994 IEEE
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TABLE I

QUASJTATSVEDESCRIPTIONOF SETS OF ETHERNEXTRAFFIC MEASUREMENTSUSED rN THE ANALYSISIN SECITONIV

Traces of Ethe

Measurement Period

ToM (27.45 h)

AUGUST 1989 Low Hour

Start of Trace: (6:25 anr-7:25 am)

Aug. 29, 11:25 am Normal Hour

End of Trace: (2:25 pm-3:25 pm)
Aug. 30, 3:10 pm Bmy Hour

4:25 pm-5:25 pm)

Told (20,86 h)

OCTOBER 1989 Low Hour

Start of Trace: (2:00 am-3:tM am)

Get. 5, 11:(NIam Normal Hour

End of Trace: (5:00 pm-6:00 pm)

Get. 6, 7:51 pm Busy Hour

(1 I:oo am-12:ou am)

Total (40.16 h)

JANUARY 1990 Low Hour

Start of Trace: (Jan. 11, 8:32 pm-9:32 pm)

JWI.10, 6:07 am Normal Hour
End of Trace: (Jan. 10,9:32 arn-10:32 am)
Jan. 11, 1017 pm Busy Hour

(1032 am-l I :32 am)

Totat (47.91 h)

FEBRUARY 1992 Low Hour

Start of Trace: (Feb. 20, 1:21 arn-2:21 am)

Feb. 18, 5:22 am Normal Hour

End of Trace: (Feb. 18, 8:21 pm-9:21 pm)

Feb. 20, 5:16 ~ Busy Hour

(Feb. 18, 11:21 am-12:21 am.

length, the status of the Ethernet interface and the first 60 bytes

of data in each packet (header information). As we will show

in Section IV, the high-accuracy timestamps of the Ethernet

packets produced by this monitor are crucial for our statistical

analyses of the data. A detailed discussion of the capabilities

of the original monitoring system, including extensive testing

of its capacity and accuracy can be found in [14].

2.2. The Network Environment at Bellcore

The network environment at the Bellcore Morns Research

and Engineering Center (MRE) where the traffic measurements

used for the analysis presented later were collected is probably

typical of a research or software development environment

where workstations are the primary machines on people’s

desks. It is also typical in that much of the original installation

was well thought out and planned but then grew haphazardly.

For the purposes of this study, this haphazard growth is not

necessarily a liability, as we are able to study the traffic on a

network that is evolving over time. Table I gives a summary

description of the traffic data analyzed later in the paper. We

consider four sets of traffic measurements, each representing

between 20 and 40 consecutive hours of Ethernet traffic and

each consisting of tens of millions of Ethernet packets. The

data were collected on different intracompany LAN networks

at different times over the course of approximately four years

(August 1989, October 1989, January 1990, and February

1992).

2.2.1. Workgroup Network Traflc Data: Four data sets will

be considered in this paper. A summary description of these

;t Traffic Measurements

Total Number Total Number Ethernet

Data Set of Bytes of Packets Utilization

11448753134 27901984 9.3’?4

AUG89.LB 224315439

AUG89.LP 652909
5.0’%

AUG89.MB 3S0889404

AUG89.MP 968631
8.5%

AUG89.HB 677715381

AUG89.HP 1404444
15.l%

14774694236 27915376 15.7%

OCT89.LB 468355006

0CT89.LP 978911
10.4%

ocT89.h4B 827287174

0CT89.MP 1359656
18.4%

OCT89.HB 1382483551

0CT89.HP 2141245
30.7%

7122417589 27954961 3.9%

JAN90.LB 87299639

JAN90.LP 310038
1.9’%

JAN90.MB 182636845

JAN90.MP 643451
4.l%

JAN90.HB 711529370

JAN90.HP 1391718
15.8%

6585355731 27674814 3.1%1

FEB92.LB 56811435

FEB92.LP 231823
1.3%

FEB92.MB 154626159

FEB92.MP 524458
3.4%

FEB92.HB 225066741

FEB92.HP 947662
5.0’%

data sets is given in Table I. The first two sets of traffic

measurements, taken in August and October of 1989 (see first

two rows in Table I), were from an Ethernet network serving a

laboratory of researchers engaged in everything from software

development to prototyping new services for the telephone

system. The traffic was mostly from services that used the

Internet Protocol (1P) suite for such capabilities as remote

Iogin or electronic mail, and the Network File System (NFS)

protocol for file service from servers to workstations. There

were some unique services, though; for example, the audio of

a local radio station was p-law encoded and distributed over

the network during portions of the day. While it is not our

intent to provide here a detailed description of the particular

MRE network segments under study, some words about the

types of traffic on them are appropriate.

A snapshot of the network configuration at the time of

collection of the earliest data set being used (August 1989)

is given in Fig. 1: there were about 140 hosts and routers

comected to this intra-laboratory network at that time, of

which 121 spoke up during the 27 h monitoring period. This

network consisted of two cable segments connected by a

bridge, implying that not all the traffic on the network as

a whole was visible from our monitoring point. During the

period this data was collected, among the 25 most active hosts

were two DEC 3100 fileservers, one Sun-4 fileserver, six Sun-

3 fileservers, two VAX 8650 minicomputers, and one CCI

Power 6 minicomputer. At that time, the less active hosts were

mainly diskless Sun-3 machines and a smattering of Sun-4 ‘s,

DEC 3 100’s, personal computers, and printers.
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Fig. 1, Network from which the August 1989 and October 1989 measure-

ments were taken.

During the latter part of 1989 when the first two data sets

were collected, a revolution was taking place on this network.

The older Sun-3 class workstations were rapidly replaced with

RISC-based workstations such as the SPARC station-1 and

DEC 3100. Many of the new workstations were “dataless”

(where the operating system is stored on a local disk but

user data on a server) instead of “diskless” (where all tiles

for the user and for the operating system are stored on a

remote server). Because of the increased computing power

of the machines connected to this segment, the network load

increased appreciably, in spite of the trend towards dataless

workstations. Note, for example, that the “busy hour” from

the October 1989 data set is indeed busy: 30. 7y0 utilization

as compared to 15. l?lo during the August 1989 busy hour;

similar increases can also be observed for the low and normal

hours. Not long after this data was taken, this logical Ethernet

segment was again segmented by adding yet a third cable and a

bridge, and moving some user workstations and their fileserver

to that new cable. The above network has always been isolated

from the rest of the Bellcore world by one or more routers. The

other sides of these routers were connected to a large corporate

intemet consisting at that time of many Ethernet segments and

T-1 point-to-point links connected together with bridges. Less

than 5% of the total traffic cm this workgroup network during

either of the traces went out to either the rest of Bellcore or

outside of the company.

?.2,2. W[>rkgr(>upand External Trafl(: The third data set,

taken in January 1990 (row 3 in Table I), came from an

Ethernet cable that linked the two wings of the MRE facility

that were occupied by a second laboratory (see Fig. 2). At

the time this data set was collected, this second laboratory

comprised about 160 people, engaged in work similar to the

first laboratory. This particular segment was unique in that it

was also the segment serving Bellcore’s link to the outside

Internet world. Thus the traffic on this cable was from several

sources: (i) two very active file servers directly connected to

the segment; (ii) traffic (file service and remote Iogin) between

the two wings of this laboratory; (iii) traffic between the

laboratory and the rest of Bellcore; and (iv) traffic between

Bellcore as a whole and the larger Internet world. This last

type of traffic we term exfermd traffic, and in 1990 could come

from conversations between machines in any part of Bellcore

and the outside world. This Ethernet segment was specifically

monitored to capture this external traffic. In Section IV, we

%?7

-*! ‘CA*

a’:’”-K
Fig. 2. Network for second laboratory from which the Jarruary 1990 mea-

surements were taken.

m-w nrr
Rmwbmawd

ad Lmu’lKt

m

ToCxb?r
BcllmmBuitdimgJ‘.

■

BxktuE u-

Fig. 3. Backbone network for MRE facility from which the Febrmry 1990

measurements were taken.

will be considering the aggregate and external traffic from

this data set separately. This segment was separated from both

the Bellcore intemet and the two wings of the laboratory by

bridges, and from the outside world by a vendor-controlled

router programmed to pass anything with a Bellcore address

as source or destination. In contrast to the two earlier data sets,

over 1200 hosts spoke up during the 40 h monitoring period

on this segment.

The last data set, from February 1992 (see row 4 in Table

I), was taken from the building-wide Ethernet backbone in

MRE after security measures mandated by the “Morris worm”

(described in detail in [26]) had been put into place (see Fig.

3). This cable carried all traffic going between laboratories

within MRE, traffic from other Bellcore buildings destined for

MRE, and all traffic destined for locations outside of Bellcore.
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Fig. 4. Pictorial “proof” of self-similarity: Ethernet traffic (packets per time unit) on five different time scales (a)-(e). For comparison, synthetic traffic

h-m an appropriately chosen compound Poisson model on the same five different time scales (a’)-(e’).

Some hosts were still directly connected to this company-

wide network in early 1992, but the trend to move them from

the Bellcore intemet to workgroup cables comected to the

Bellcore intemet via routers continues to the present. Because

this cable had very little host to file server traffic, the overall

traffic levels were much lower than for the other three sets.

On the other hand, the percentage of remote login and mail

traffic was higher. This cable also carried the digitized radio

traffic between the two laboratories under discussion. The most

radical difference bet ween this data set and the others is that

the traffic is primarily router to router rather than host to host.

In fact, about 600 hosts spoke up during the measurement

period (down from about 1200 active hosts during the January

’90 measurement period), and the five most active hosts were

routers.

III. SELF-SIMfLARSTOCHASTIC PROCESSES

3.1. A Picture is Worth a Thousand Words

For 27 consecutive hours of monitored Ethernet traffic from

the August 1989 measurements (first row in Table I), Fig.

4 (a)-(e) depicts a sequence of simple plots of the packet

counts (i.e., number of packets per time unit) for five different

choices of time units. Starting with a time unit of 100 s (Fig.

4(a)), each subsequent plot is obtained from the previous one

by increasing the time resolution by a factor of 10 and by

concentrating on a randomly chosen subinterval (indicated by

a darker shade).

The time unit corresponding to the finest time scale (e) is

10 ms. In order to avoid the visually irritating quantization

effect associated with the finest resolution level, plot (e)

depicts a “jittered” version of the number of packets per

10 ms, i.e., a small amount of noise has been added to the

actual arrival rate. Observe that with the possible exception

of plot (a) which suggests the presence of a daily cycle,

all plots are intuitively very “similar” to one another (in a

dkributional sense), that is, Ethernet traffic seems to look

the same in the large (rein, h) as in the small (s, ins). In

particular, notice the absence of a natural length of a “burst:”

at every time scale ranging from milliseconds to minutes

and hours, bursts consist of bursty subperiods separated by

less bursty subperiods. This scale-invariant or “self-similar”

feature of Ethernet traffic is drastically different from both

conventional telephone traffic and from stochastic models

for packet traffic currently considered in the literature. The

latter typically produce plots of packet counts which are

indistinguishable from white noise after aggregating over

a few hundred milliseconds, as illustrated in Fig. 4 with
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the sequence of plots (a’)–(e’); this sequence was obtained

in the same way as the sequence (a)–(e), except that it

depicts synthetic traffic generated from a comparable (in

terms of average packet size and arrival rate) compound

Poisson process. (Note that while the choice of a compound

Poisson process is admittedly not very sophisticated, even

more complicated Markovian arrival processes would produce

plots indistinguishable from Fig. 4(a’)–(e’). ) Fig. 4 provides a

surprisingly simple method for distinguishing clearly between

our measured data and traffic generated by currently used

models and strongly suggests the use of self-similar stochastic

processes for traffic modeling purposes. Below. we give a brief

description of the concept of self-similar processes, discuss

their most important mathematical and statistical properties,

mention some modeling approaches, and outline statistical

methods for analyzing self-similar data. For a more detailed

presentation andreferences, see 117], [4], or [2].

3..?. Definitions and Propertic,~

Let .Y = (.Yt : / = (’l.1. 2....) be a f{~t’uriar2ce.Yrarionary

stochastic process with mean I(, variance rJ2 and autocorrela-

tion function r(k). k > 0. In particular, we assume that X has

an autocorrelation function of the foml

where () < ~i < I and 1. is slowly varying at infinity, i.e.,

liltlt-+w L(l.r)/ l,(t) = 1, for all .r > (). (For our discussion

below, we assume for simplicity that L is asym totically

constant. ) For each ))t = 1.2.3... .. let .Y[’”) =
r(x,,~’) :/$=

1. ‘2.3. ..) denote the new covariance stationary time series

(with corresponding autocorrelation function r(’n )) obtained by

averaging the original series Y over non-overlapping blocks

of size ~rl, That is. for each II) = 1.2. :\. . . .. .l-(’”) is given
by ~j,lll ] = l//n(.Yk.,,, --,1,+] + . . + .Y~,,, ).k > 1. The

process .Y is called (e.u/[t/y)second-order self-similar with

self-similarity parameter 11 = 1 – ~J/2 if for all m = 1, 2 . . . ..

var(.~~’”~) = ~zr,,-’i and

‘r~’’’~(k) = r(k), k > (). (2)

.\- is called (u.symptoticallyj se(wtd-order self-similar with

selt-similarity parameter }1 = 1– ~~/2 if for ail k large enough,

,“’J’(A”’) – r(k). as ?t] - x (3)

with r(k) given by ( I ). In other words. .Y is exactly or

asymptotically second-order self-similar if the corresponding

aggregated processe~ .1-I1,1J are the same as X or become

indistinguishable from .Y—at least with respect to their au-

tocorrelation functions.

Mathematically. self-similarity manifests itself in a number

of equivalent ways: (i) the variance of the sample mean

decreases more slowly than the reciprocal of the sample size

(slowly dccqvin,g l,ariances), i.e.. var( .Y(‘“) ) N a2?n-i?, as

rt}+ x, with () < ;) < I (here and below, a,z. as, . . .

denote finite positive constants): (ii) the autocorrelations decay

hyperbolically rather than exponentially fast. implying a non-

summable autocorrelation function ~k. r(k) = K (long-

range depende~r[e). i.e., r(k) satisfies relation ( 1); and (iii)

the spectral density ~(.) obeys a power-law near the origin

(1/~–rroise), i.e., ~(~) - a3A-7, as A ~ O, with O < ~ <1

and~=l–~.

Intuitively, the most striking feature of (exactly or asymp-

totically) second-order self-similar processes is that their ag-

gregated processes X(m) possess a nondegenerate correlation

structure, as m ~ w. This intuition is best illustrated with

the sequence of plots in Fig. 4: if X represents the number of

Ethernet packets per 10 ms (plot (e)), then plots (d)-(a) depict

segments of the time series rrLX(m ), m = 10, 100, 1000.10000”

(i.e., number of Ethernet packets per 0.1, 1, 10, 100 s),

respectively. Note that all plots look “similar” and distinctively

different from pure noise. The existence of a nondegenerate

correlation structure for the processes X(m), as m + ,x,

is in stark contrast to typical packet traffic models currently

considered in the literature, all of which have the property that

their aggregated processes X (’n) tend to second-order pure

noise, i.e., for all k > 1,

r ‘m)(k) -+ O. as 7rl + x. (4)

Equivalently, packet traffic models currently considered in

the literature can be characterized by (i) a variance of the

sample mean that decreases like the reciprocal of the sample

mean, i.e., Va(x(”l)
) - rQTn

–1
, as 77L + x, (ii) an

autocorrelation function that decreases exponentially fast (i.e.,

T-(k) - pk. O < p < 1), implying a summable autocorrelation

function ~k r(k) < cc (short-range dependence), or (iii) a

spectral density that is bounded at the origin.

Historically, the importance of self-similar processes lies

in the fact that they provide an elegant explanation and

interpretation of an empirical law that is commonly referred to

the Hurst effect. Briefly, for a given set of observations (Xk :

k = 1.2, . . . . n) with sample mean ~(rt) and sample variance

S2(7L), the resealed adjusted range statistic (or RIS statistic) is

given by R(n)/S(n) = l/S(n)[ max(O, W’l, W2, . . . . Wn) –

min (O, Wl$WZ, . . . . W.)], with wk = (Xl + X2 + . . +

Xk ) – k~(n)(,k ~ 1). While many naturally Occurnng

time series appear to be well represented by the relation

E[z?(7/)/s(7L)] ~ rzsn~. as n --+ x, with Hurst parameter

H “typically” about ().7, observations xk from a short-

range $~pendent model are known to satisfy ~[l?(7L) /S(71)]

- (l(j?) , as 71-+ X. This discrepancy is generally referred

to as the Hurst effect,

3.3. Modeling of Self-Similar Phenomena

Since in practice we are always dealing with finite data

sets, it is in principle not possible to decide whether the

above asymptotic relationships (e.g., ( I )-(4)) hold or not.

For processes that are not self-similar in the sense that their

aggregated series converge to second-order pure noise (see

(4)), the correlations will eventually decrease exponentially,

continuity of the spectral density function at the origin will

eventually show up, the variances of the aggregated pro-

cesses will eventually decrease as m-1, and the resealed

adjusted range will eventually increase as no’s. For finite

sample sizes, distinguishing between these asymptotic and

the ones corresponding to self-similar processes is, in general,
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problematic. In the present context of Ethernet measurements,

we typically deal with time series with hundreds of thousands

of observations and are therefore able to employ statistical

and data analytic techniques that are impractical for small

data sets. Moreover, with such sample sizes, parsimonious

modeling becomes a necessity due to the large number of

parameters needed when trying to fit a conventional process

to a “truly” self-similar model. Modeling, for example, long-

range dependence with the help of short-range dependent

processes is equivalent to approximating a hyperbolically

decaying autocomelation function by a sum of exponential.

Although always possible, the number of parameters needed

will tend to infinity as the sample size increases, and giv-

ing physically meaningful interpretations for the parameters

becomes more and more difficult. In contrast, the long-range

dependence component of the process can be modeled (by a

self-similar process) with only one parameter. Moreover, from

a modeling perspective, it would be very unsatisfactory to use

for a single empirical time series two different models, one for

a short sequence, another one for a long sequence.

Two formal mathematical models that yield elegant repre-

sentations of the self-similarity phenomenon but do not pro-

vide any physical explanation of self-similarity are fracfbud

Gaussian noise and the class of fractional autoregressive inte-

grated moving-average (ARIMA) processes. Fractional Gauss-

ian noise X = (X~ : k 2 O) with parameter H G (O, 1)

has been introduced in [22] and is a stationary Gaussian

process with mean p, variance Oz, and autocorrdation function

r-(k) = l/2(lk + 112* – IIc12H+ Ik – 112H), k > 0. Simple

calculations show that fractional Gaussian noise is exactly

second-order self-similar with self-similarity parameter If, as

long as 1/2 < If < 1. Methods for estimating the three

unknown parameters IL,u*, and H are known and will be

addressed below. Fractional ARIMA(p, d, q) processes are a

natural generalization of the widely used class of Box–Jenkins

models [3] by allowing the parameter d to take non-integer

values. They wem introduced by Granger and Joyeux [10]

and Hosking [12] who showed that fractional ARIMA(P, d, q)

processes are asymptotically second-order self-similar with

self-similarity parameter d + 1/2, as long as O < d < 1/2.

Fractional ARIMA processes are much more flexible with

regard to the simultaneous modeling of the short-term and

long-term behavior of a time series than fractional Gaussian

noise, mainly because the latter, having only the three param-

eter u, az, and H, has a very rigid correlation structure and is

not capable of capturing the wide range of low-lag correlation

structures encountered in practice. This flexibility can already

be observed when considering the simplest processes of the

fractional ARIMA(P, d, q) family, namely the two-parameter

models ARIMA(l, d, O) and ARIMA(O, d, 1).

Finally, we briefly mention a construction of self-similti

processes (due to Mandelbrot [19] and later extended by Taqqu

and Levy [28]), based on aggregating many simple renewal

reward processes exhibiting inter-renewal times with infinite

variances. Although the construction was originally cast in an

economic framework involving commodhy prices, it is par-

ticularly appealing in the context of high-speed packet traffic,

and we will return to this construction in Section V when

attempting to provide a “phenomenological” explanation for

the observed self-similar nature of aggregate Ethernet traffic.

In its simplest form, this construction requires a sequence of

i.i.d. integer valued random variables UO, UI, U2, . . . (“inter

renewal times”) with “heavy tails,” i.e., with the property

P[U ~ u] - u-ah(u), asu ~ co, (5)

where h is slowly varying at infinity and O < a < 2.

For example, the stable (Pareto) distribution with parameter

1< a <2 satisfies the “heavy-tail” property (5). Furthermore,

let WO, WI, Wz, . . . be an i.i.d. sequence (“rewards”) with

mean zero and finite variance, independent of the b”s. Next,

let Sk = SO + ~$=1 Uj, k 2 0 denote the delayed renewal

sequence derived from (Uj )j20 where SO is chosen such

that the sequence (Sk )k20 is stationary. The renewal reward

process W = (W(t) : t = 0,1,2,.. .) is then defined

by W(t) = ~~=o wk~(.s,.,,s,l(t), with 1A(”) denoting the
indicator function of the set A. By aggregating Zt4 i.i.d.

copies W(l), W(2), . . . . Wfkf) of W, we obtain the model

of interest, namely the process W* given by W* (T, M) =

ZF=l Zti=l w(m)(~) with W“(O, M) = O. In [19] and [28]

it is shown that for T and M both large with T << M,

W* behaves like fractional Brownian motion; in other words,

properly normalized, W’(T, M) converges to the integrated

version of fractional Gaussian noise, i.e., to a mean-zero

Gaussian process BH = (B~(s) : s ~ O), 1/2 < H <1, with

correlation function R(s, t) = l/2(s2H + t2H– Is– t12H).For

more details concerning fractional Brownian motion, see [22]

and [21 ]. As an immediate consequence of Taqqu and Levy’s

result, we have that for T and M both large with T << M,

the increment process of W* behaves like fractional Gaussian

noise.

3.4. Inference for Self-Similar Processes

Since slowly decaying variances, long-range dependence,

and a spectral density obeying a power-law are different

manifestations of one and the same property of the underlying

covariance stationary process X, namely that X is asymptot-

ically or exactly second-order self-similar, we can approach

the problem of testing for and estimating the degree of self-

similarity from three different angles: (1) time-domain analysis

based on the MS-statistic, (2) analysis of the variances of

the aggregated processes X(m), and (3) periodogram-based

analysis in the frequency-domain. The following gives a brief

description of the corresponding statistical and graphical tools.

For an engineering-based graphical tool that is related to the

variance property of the aggregated processes, see Section 5.2.

The objective of the R/S analysis of an empirical record is

to infer the degree of self-simihwit y H (Hurst parameter+via

the Hurst effect-for the self-similar process that presum-

ably generated the record under consideration. Graphical R/S

analysis consists of taking logarithmically spaced values of

n (starting with n x 10), and plotting log(R(n)/S(n))

versus log(n) results in the resealed adjusted range plot (also

called the pox diagram of R/S). When l-l is well defined, a

typical resealed adjusted range plot starts with a transient

zone representing the nature of short-range dependence in
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the sample, but eventually settles down and fluctuates in a

straight “street” of a certain slope. Graphical R/S analysis is

used to determine whether such asymptotic behavior appears

supported by the data. In the affirmative, an estimate fi of

H is given by the street’s asymptotic slope which can take

any value between 1/2 and 1. For practical purposes, the

most useful and attractive feature of the R/S analysis is its

relative robustness against changes of the marginal distribu-

tion. This feature allows for practical] y separate investigations

of the self-similarity property of a given data set and of its

distributional characteristics.

We have observed that for second-order self-similar pro-

cesses, the variances of the aggregated processes X(”’). m >—

1. decrease linearly (for large m) in log-log plots against m

with slopes arbitrarily flatter than —1. The so-called tlariance-

firne plots are obtained by plotting log(var( X(m))) against

log( 7n) (‘‘time”) and by fitting a simple least squares line

through the resulting points in the plane, ignoring the small

values for m. Values of the estimate ~ of the asymptotic slope

between – 1 and O suggest self-similarity, and an estimate for

the degree of setf-simik-wity is given by A = 1 – ~/2.

The absence of any limit law results for the statistics

corresponding to the R/S analysis or the variance-time plot

makes them inadequate for a more refined data analysis

(e.g.. confidence intervals for H). In contrast, a more re-

fined data analysis is possible for maximum likelihood-type

estimates (MLE) and related methods based on the per-i-

0dOgrUf7? I(r) = (2’T?L)-1 \ ~J=~ Xjt’i;J12, () ~ J; < fl Of

.%” = (Xl, .~2, . . . . X,, ) and its distributional properties. In

particular, for Gaussian or approximately Gaussian processes,

Whittle’s approximate MLE has been studied extensively

and has been shown to have desirable statistical properties.

Combined, Whittle’s approximate MLE approach and the

aggregation method discussed earlier give rise to an oper-

ational procedure for obtaining confidence intervals for the

self-similarity parameter H. Briefly, for a given time series,

consider the corresponding aggregated processes X(m) with

/r/ = 100,”‘200. 300, . . .. For each of the aggregated series,

estimate the self-similarity parameter H(m) via Whittle’s

method. This procedure results in point estimates fi(n’) of

H( “iJ and corresponding %5%,-confidence intervals of the form
~(lrl) + l,gfj~ ~, ,,,~, where ti~(,,, , is given by a known central

limit theorem result (for references, see [17 ]). Plots of fi(m’ )

(together with their 95%-confidence intervals) versus 711 will

typically vary for small aggregation levels, but will stabilize

after a while and fluctuate around a constant value, our final

estimate of the self-similarity parameter }{.

IV. ETHERNET TRAFFIC 1s SELF-SIMILAR

While Fig. 4 gives a pictorial “proof’ of the self-similar

nature of the traffic measurements described in Section II,

using the statistical and graphical tools presented above, we

establish in this section the self-similar nature of Ethernet

traffic (and some of its major components, such as external

traffic or external TCP traffic) in a statistically more rigorous

manner. For each of the four measurement periods described in

Table I, we identified typical low-, medium-, and high-activity

hours. With the resulting data sets, we are able to investigate

features of the observed traffic that persist across the network

as well as across time, irrespective of the utilization level of

the Ethernet. Only one LAN could be monitored at any one

time (making it impossible to study correlations in the activity

on different LAN’s) and all data were collected from LAN’s in

the same company (making it not representative for all LAN

traffic). For a similar analysis that uses different data sets from

Table I, see [ 16].

4,1. Ethernet Trajjic over a 27-Hour Period

In order to check for the possible self-similarity of the

August 1989 Ethernet traffic data, we apply the graphical

tools described in the previous section, namely, variance-

time plots, pox plots of R/S, and periodogram plots, to the

three subsets AUG89.LB, AUG89.MB, and AUG89.HB of

the August ’89 trace that correspond to a typical “low hour,”

“normal hour,” and “busy hour” traffic scenario, respectively

(see Table I). Each sequence contains 360000 observations,

and each observation represents the number of bytes sent over

the Ethernet per 10 ms. As an illustration of the usefulness of

the graphical tools for detecting self-similarity in an empirical

record, Fig. 5 depicts the variance-time curve (a), the pox

plot of R/S (b), and the periodogram plot (c) corresponding

to the sequence AUG89.MB. The variance-time curve, which

has been normalized by the corresponding sample variance,

shows an asymptotic slope that is distinctly different from

– 1 (dotted line) and is easily estimated to be about – ,40,

resulting in an estimate fi of the Hurst parameter H of

about fi x .80. Estimating the Hurst parameter directly

from the corresponding pox plot of R/S leads to a practically

identical estimate; the value of the asymptotic slope of the

R/S plot is clearly between 1/2 and 1 (lower and upper dotted

line, respectively), with a simple least-squares fit resulting

in H x .79. Finally, looking at the periodogram plot, we

observe that although there are some pronounced peaks in the

high-frequency domain of the periodogram, the low-frequency

part is characteristic for a power-law behavior of the spectral

density around zero. In fact, by fitting a simple least-squares

line using only the lowest 10~ of all frequencies, we obtain

a slope estimate ~ x .64 which results in a Hurst parameter

estimate P of about .82. Thus, together the three graphical

methods suggest that the sequence AUG89.MB is self-similar

with self-similarity parameter H x .80. Moreover, Fig. 5(d)

indicates that the normal hour Ethernet traffic of the August

1989 data is, for practical purposes, exactly self-similar: it

shows the estimates of the Hurst parameter H for selected

aggregated time series derived from the sequence AUG89.MB,

as a function of the aggregation level m. For aggregation

levels m = 1,5.10.50, 100,500, 1000, we plot the Hurst

parameter estimate fi(m’) (based on the pox plots of IUS

(“*”), the variance-time curves (“o”), and the periodogram

plots (“0”)) for the aggregated time series X(’”) against the

logarithm of the aggregation level m. Notice that the estimates

are extremely stable and practically constant over the depicted

range of aggregation levels 1 s wi. s 1000. Because the

range includes small values of m, the sequence AUG89.MB
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Fig, 5. Graphical methods for checking the self-similarity property of the

sequence AUG89.MB.

can be regarded as exactly self-similar. Similar results are

obtained for the sequences AUG89.LB and AUG89.HB, and

for the corresponding packet count processes AUG89.LP,

AUG89.MP, and AUG89.HP. Together, these observations

show that Ethernet traffic over approximately a 24-hour period

is self-similar, with the degree of self-similarity increasing as

the utilization of the Ethernet increases.

4.2. Ethernet Trajj4c Over a Four-Year Period

In order to examine in detail the nature of Ethernet traffic

across time as well as across the network under consideration,

we now consider the remaining data sets described in Table I.

In contrast to Section 4.1, our analysis below results in

estimates of the self-similarity parameter H together with their

respective 95%-confidence intervals. As discussed in Section

3.4, such a refined analysis is possible if maximum likelihood

type estimates (MLE) or related estimates based on the pe-

riodogram are used instead of the mostly heuristic graphical

estimation methods illustrated in the previous section. Plots

(a)-(d) of Fig. 6 show the result of the MLE-based estimation

method when combined with the method of aggregation. For

each of the four sets of traffic measurements described in

Table I, we use the time series representing the packet counts

during normal traffic conditions (i.e., AUG89.MP in Fig. 6(a),

0CT89.MP in (b), JAN90.MP in (c), and FEB92.MP in (d)),

and consider the corresponding aggregated time series X(m)

with m = 100, 200, 300,. ... 1900, 2000 (representing the

packet counts per 1,2,..., 19,20 s, respectively). We plot the

Hurst parameter estimates llfm) of H(m) obtained from the

aggregated series X(m), together with their 95%-confidence

intervals, against the aggregation level m. Fig. 6 shows that for

the packet counts during normal traffic loads (irrespective of

the measurement period), the values of fi(m) are quite stable

and fluctuate only slightly in the 0.85 to 0.95 range throughout

the aggregation levels considered. The same holds for the

95%-confidence interval bands indicating strong statistical

evidence for self-similarity of these four time series with

degrees of self-similarity ranging from about 0.85 to about

0.95. The relatively stable behavior of the estimates fi(m) for

the different aggregation levels m also confirms our earlier

finding that Ethernet traffic during normal traffic hours can be

considered to be exactly self-similar rather than asymptotically

self-similar. For exactly self-similar time series, determining

a single point estimate for H and the corresponding 9570-

confidence interval is straightforward and can be done by

visual inspection of plots such as the ones in Fig. 6 (see below).

Notice that in each of the four plots in Fig. 6, we added two

lines corresponding to the Hurst parameter estimates obtained

from the pox diagrams of R/S and the variance-time plots,

respectively. Typically, these lines fall well within the 95~0-

confidence interval bands which confirms our earlier argument

that for these long time series considered here, graphical

estimation methods based on R/S or variance-time plots can

be expected to be very accurate.

In addition to the four normal hour packet data time series,

we also appliedthe combined MLE/aggregation method to

the other traffic data sets described in Table 1. Fig. 7(a)

depicts all Hurst parameter estimates (together with the 95%-

confidence interval corresponding to the choice of m discussed

earlier) for each of the 12 packet data time series, while Fig.

7(b) summarizes the same information for the time series

representing the number of bytes. We also include in these

summary plots the Hurst parameter estimates obtained via the

variance-time plots (“o”) and R/S analysis (“*”) in order to

indicate the accuracy of these essentially heuristic estimators

when compared to the statistically more rigorous Whittle

estimator (“o”).

Concentrating first on the packet data, i.e., Fig. 7(a),we see

that despite the transition from mostly host-to-host workgroup

traffic during the August 1989 and October 1989 measurement
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Fig. 6. Penodogram-based MLE/aggregation melhod for the sequences

AUG89.MP, 0CT89.MP. JAN90,MP, and FEB92,MP.

periods, to a mixture of host-to-host and router-to-router traffic

during the January 1990 measurement period, to the pre-

dominantly router-to-router traffic of the February 1992 data

set, the Hurst parameter corresponding to the typical normal

and busy hours, respectively, are comparable, with slightly

higher H-values for the busy hours than for the normal traffic

hours, This latter observation might be surprising in light of

conventional traffic modeling where it is commonly assumed

that as the number of sources (Ethernet users) increases, the

resulting aggregate traffic becomes smoother and smoother. In

contrast to this generally accepted argument for the “Poisson-

like” nature of aggregate traffic, our analysis of the Ethernet

data shows that, in fact, the aggregate traffic tends to become

less smooth (or, more bursty ) as the number of active sources

increases (see also our discussion in Section 5.1 ). While

I
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Fig. 7. Summary plot of Hursl parameter estimates for all da)a sets in Table I.

there were about 120 hosts that spoke up during the August

1989 or October 1989 busy hour, we heard from an order

of magnitude more hosts (about 1200) during the January

1990 high traffic houq the comparable number of active hosts

during the February ’92 busy hour was around 600. The major

difference between the early (pre-1990) measurements and the

later ones (post- 1990) can be seen during the low traffic hours.

Intuitively, low period router-to-router traffic consists mostly

of machine-generated packets which tend to form a much

smoother arrival process than low period host-to-host traffic

which is typically produced by a smaller than average number

of actual Ethernet users, e.g., researchers working late hours.

Next, turning our attention to Fig. 7(b), we observe that as

in the case of the packet data, H increases as we move from

low to normal to high traffic hours. Moreover, while there

is practical y no difference between the two post- 1990 data

sets, the two pre-1990 sets clearly differ from one another but

follow a similar pattern as the post-1990 ones. The difference

between the August 1989 and October 1989 measurements

can be explained by the transition from diskless to “dataless”

workstations that occurred during the latter part of 1989 (see

Section 2,2). Except during the low hours, the increased

computing power of many of the Ethernet hosts causes H

to increase and gives rise to a bit rate that closely matches

the self-similar feature of the corresponding packet process.

Also note that the 95%-confidence intervals corresponding to

the Hurst parameter estimates for the low traffic hours are

typically wider than those corresponding to the estimates of H

for the normal and high traffic hours. This widening indicates
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TABLE 11
QUALITATIVEDESCRIFITONOF THE SETS OF EXTERNAL ETHERNETTRAFFtC MEASUREMENTSUSED IN THE ANALYSISIN SECTION4.3

Traces of Ethernet Traffic Measurements

I Total Total Percentage of

Measurement [ntemal Traffic
Period Data (see Table I)

JAN90.LB
JANUARY 1990

Start of Trace:
JAN90.LP

Jan. 10,6:07 am
JAN9CLMB

End of Trace:
JAN90.MP

JarL 11, 10:17 pm
JAN9CLHB

JAN90MP

FEB92.LB
FEBRUARY 1992

Start of Trace:
FEB92.LP

Feb. 18, 5:22 am
FEB92.MB

End of Trace:
FEB92.MP

Feb. 20, 5:16 am FEB92.HB

FEB92.HP

that Ethernet traffic during low traffic periods is asymptotically

self-similar rather than exactly self-similar.

We also notice in Fig. 7 that some of the analyzed time series

result in estimated Hurst parameters close to 1, i.e., their cor-

responding 95%-confidence intervals include the value H = 1.

When finding an H-estimate close to 1, it is advisable to

analyze the time series further to ensure that the observed high

degree of self-similarity is genuine and cannot be explained

by elementary arguments (see for example [21]). To illustrate,

we consider the sequences JAN90.HP and FEB92.HP; visual

inspection of both time series and comparisons with traces of

fractional Gaussian noise with H = 0.9 (see, for example,

the plots in [23] and [21]) show no obvious signs of non-

stationarity; the mean seems to be changing with time but

the overall mean appears constant and although, locally, there

clearIy exist spurious trends and cycles of varying frequencies,

these “typical” features of nonstationarity are characteristic

of stationary long-range dependent processes. Moreover, the

variance-time plots as well as the pox diagrams of the adjusted

range R (without resealing by S) of the two time series

yield slope estimates (not shown) that are consistent with the

observed high H-values. As discussed in [2] this consistency

is a strong indication that the given time series cannot be

regarded as nonstationary due to a lack of differencing. Further

tests for non-stationarity (e.g., due to nonhomogeneities of H)

can be found in [17].

4.3. External Ethernet Traflic

The Ethernet traffic analyzed so far is also called iruernal

trdlic and consists of all packets on a LAN. An important

component of internal Ethernet traffic is the so-called remote

or external Ethernet traffic, consisting of all those Ethernet

packets that originate on one LAN but are routed to another

LAN. That is, for the traffic measurements at hand, an external

packet is defined to be an 1P (Internet protocol) packet with

a source or destination address that is not on any of the

Bellcote networks. This external traffic can be viewed as

representative for LAN interconnection services, which are

expected to contribute significantly to future broadband traffic.

Table 11 summarizes the external Ethernet traffic data ana-

lyzed in the process of this study. We consider the two most

reeent measurement traces i.e., the January 1990 and February

Number of NumLux of Internal

Data Set Bytes Packets Traffic

JAN90E.LB 1105876 1.27%

JAN90E.LP 9369 3.02%

JAN90E.MB 16536148 9.05%

JAN90E.MP 87307 13.57%

JAN90E.HB 13023016 2.00%

JAN90E.HP 68405 4.96%,

FEB92E.LB 2319881 4.08%

FEB92E.LP 25247 10.89%,

FEB92E.MB 86283283 55.80%

FEB92E.MP 270636 51.60%

FEB92E.HB 55154789 24.50%

FEB92E.HP 202367 21.35%

1992 data sets, and for ease of comparison, we analyze for

both measurement periods the time series consisting of the

number of external packets (bytes) per 10 ms during the same

low-, normal-, and high-hours of (internal) Ethernet traffic

as considered in Table I. The last column in Table II shows

that external traffic (in terms of packets or bytes) makes up

between 1– 10~0 of the internal traffic during the low hours

in January 1990 and February 1992, about 2–2570 during the

corresponding busy hours, and up to 56% during the February

1992 normal hour. As a result, it is reasonable to expect

external traffic to behave very similarly to the overall traffic

analyzed earlier in this section. Differences (if any) between

the internal and external traffic can, in general, be attributed

to NFS traffic between workstations and file servers which is

missing completely in the external traffic.

Repeating the same laborious analysis of Section 4.2 for the

data sets described in Table II, we find that in terms of its self-

similar nature, external traffic does not differ from the internal

traffic studied earlier. More specifically, the Hurst parameters

for the external traffic during normal and high (internal) traffic

hours (or during previously identified stationary parts of the

corresponding data sets) are only slightly smaller than the ones

depicted in Fig. 7. For instance, even though the portion of

external packets during the high (internal) traffic hour of the

January 1990 data is only 2% of all the packets seen during this

period, the data set JAN90E.HP seems to be well described by

an H-value that changes from H = 0.82 for the first 30 min to

H = 0.94 for the second 30 rein; recall that the corresponding

data set of internal traffic, i.e., the sequence JAN90.HP, has

an estimated Hurst parameter of 0.98. A more significant

change in the Hurst parameter occurs during the low traffic

hours. While the internal traffic data (JAN90.LB, JAN90.LP,

FEB92.LB, and FEB92.LP) yield a Hurst parameter of about

0.70, the sequences JAN90E.LB, JAN90E.LP, FEB92E.LB,

and FEB92E.LP have H x 0.55, and the corresponding 95

intervals contain the value H = 0.5. These are the only cases

in all the data sets considered in this paper, where an H-value

of 0.5 (i.e., conventionally used short-range dependent models

such as Poisson, batch-Poisson, or Markov-Modulated Poisson

Processes) seems to describe the data accurately. For all other

data sets described in Tables I and 11, the 95%-confidence

intervals for the Hurst parameter estimates do not even come
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close to covering the value H = 0.5. As already mentioned

in our discussion of Fig. 7, the low hour traffic in the January

199(I and February 1992 data is mostly machine-generated and

produces traffic that is typically smoother (i.e., less bursty)

than traffic that is generated during the normal and busy hours

by humans using their workstations. This argument applies

even more when considering low hour external traffic.

We also looked at the portion of external traffic using the

Transmission Control Protocol (TCP) and 1P. There were two

main reasons for this. First, the traditional services offered by

the Internet are for the most part based around TCP, which

offers reliable delivery of data and protection against data

loss due to lost or corrupted packets. These services include

remote Iogin, file transfer (including anonymous file transfer

for making information and programs publicly available to any

lntemet user), electronic mail. and more recently the delivery

of the electronic bulletin board known as Netnews. The second

reason is that application programs using the TCP protocol

have significantly less control over how their data is actually

sent than do applications using the User Datagram Protocol

(LJDP) or their own protocol. The TCP protocol has significant

control over how the user data is segmented and a great deal

of control over the spacing of the packets as they are sent

out. When investigating the external TCP traffic, we found

that there was little point in doing a separate analysis. For

instance, in the heavy traffic hour from the MRE backbone

taken in 1992 (FEB92E. HP), 87% of the packets were TCP

packets, and a plot of the external TCP traffic is practically

indistinguishable from the corresponding plot of the entire

external traffic. Of those TCP packets of the FEB92E.HP data

set. about (;(;(~ of the packets were for file transfer, 9~o for

remote login~ELNET. 11% for electronic mail, and 13~o for

netnews delivery. The 12% of non-TCP traffic simply had no

effect on the results of our analysis for this data set; external

TC’P traffic is practically identical to the external traffic, and

our findings for the external traffic apply directly to external

TCP traffic,

V. ENGINEERING FOR SELF-SIMILAR NETWORK TRAFFtC

The fact that one can distinguish clearly—with respect

to second-order statistical properties-between the existing

models for Ethernet traffic and our measured data is surprising

and clearly challenges some of the modeling assumptions that

have been made in the past. While this distinction is obvious

from a statistical perspective, potential traffic engineering

implications of this distinction are currently under intense

scrutiny. Below, we concentrate on three implications of self-

similar network trdftic for traffic engineering purposes: mOd-

eling individual sources such as Ethernet hosts, inadequacy

of conventional notions of “burstiness,” and the generation of

synthetic traces of self-similar traffic. For a simulation study of

the effects of self-similar packet traffic on congestion control

and management for B- ISDN, we refer to [7].

i. 1. On t)lt, Natl{t-t~Of Tra/ji( Generated bt’ [ndi\’idual.

.Ethernet H[~.sts

In Section IV, we showed that irrespective of when and

where the Ethernet measurements were collected, the traffic is

self-similar, with different degrees of self-similarity depending

on the load on the network. We did so without first study-

ing and modeling the behavior of individual Ethernet users

(sources). Although historically, accurate source modeling has

been considered a prerequisite for successful modeling of

aggregale traffic, we show here that in the case of self-similar

packet traffic, knowledge of fundamental characteristics of the

aggregate traffic can provide new insight into the nature of

traffic generated by an individual user. Thus, in this section

we attempt to give a phenomenological explanation for the

visually obvious (see Fig. 4) and statistically significant (see

Fig. 7) self-similarity property of aggregate Ethernet LAN

traffic in terms of the behavior of individual Ethernet users.

TO this end, we recall Mandelbrot’s construction of frac-

tional Brownian motion (see Section 3.3) and interpret the

renewal reward process W(’”) = (W(m)(t) : t = 0, 1,2, . . .)

introduced in Section 3.3 as the amount of information (in

bits, bytes, or packets) generated by Ethernet host m at time t

(1 s m < M, t > O). In fact, if bits or bytes are the prefemed

units, the renewal reward process source model resembles the

popular class of fluid models (see [1]). On the other hand,

if we think of packets as the underlying unit of information,

the renewal reward process is basically a packet train model in

the sense of [13]. For ease of presentation, we can assume that

the “rewards” WO, WI, WZ, . . . take only the values 1 and O

(or, to keep E[W] = O, +1 and – 1), with equal probabilities,

where the value 1/0 during a renewal interval indicates an

active/inactive period during which the source sends 1/0 unit(s)

of information every time unit. The crucial property that

distinguishes the renewal reward process source model from

the above mentioned models is that the inter-renewal intervals

(i.e., the lengths of the active/inactive periods) are heavy-

tailed in the sense of (5) or, using Mandelbrot’s terminology,

exhibit the injinire variance syndrome. Intuitively, (5) states

that with relatively high probability, the active/inactive periods

are very long, i.e., each Wm can assume the same value for

a long period of time. While this heavy-tailed property of the

activefinactive periods seems plausible in light of tbe way a

typical workstation user contributes to the overall traffic on

the Ethernet, we have not yet analyzed the traffic generated

by individual Ethernet users in order to validate the simple

renewal reward source model assumption.

However, evidence in support of the infinite variance syn-

drome in packet traffic measurements already exists. For

example, in a recent study of traffic measurements from an

ISDN office automation application, Meier-Hellstem et al.

[24] observed that the extreme variability in the data (e.g.,

interarrival times of packets, number of successive packet

arrivals in certain states) cannot be adequately captured using

traditional packet traffic models but, instead, seems to be best

described with the help of heavy-tailed distributions of the

form (5). These authors subsequently propose an elaborate

and highly parametenzed model for the measured traffic. In

contrast, the renewal reward source model for the traffic

generated by an individual workstation user is extremely

simple; moreover, we have seen in Section 3.3 that when

aggregating the traffic of many such source models, the

resulting superposition process is a fractional Brownian motion
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with self-similarity parameter H = (3 — 0)/2, where a is

given in (5), and that the time series representing, for example,

the total number of bytes or Ethernet packets every 10 ms,

behaves like fractional Gaussian noise with the same If-value.

In this sense, our analysis in Section IV suggests that a simple

renewal reward process is an adequate traffic source model

for an individual Ethernet user and that often, a more detailed

source modeling might not be needed since the convergence

result in Section 3.3 shows that many of the details disappear

during the process of aggregating the traffic of many sources

and only property (5) is required for the fractional Brownian

motion behavior of the superposition process to hold. Note

that we have reached this conclusion by treating the Ethernet

packets essentially as black boxes, i.e., we did not look

into the packet header fields or distinguish packets based on

their source or destination. Further work on extracting the

relevant source-destination addresses from our measurements

and on statistically validating the infinite variance property

of the inter-renewal periods of a single source is currently in

progress.

5.2. On Measuring “Burstiness” for Self-Similar Network

TraJjic

On an intuitive level, the results of our statistical analysis

of the Ethernet traffic measurements in Section IV can be

summarized by saying that typically, the higher the load on

the Ethernet the higher the estimated Hurst parameter If, i.e.,

the degree of self-similarity in the arrival rate process (in

terms of packets or bytes). Visual comparisons between the

different traces also suggest that the larger H, the “burstier”

the corresponding trace appears. Trying to capture the intuitive

notion of “burstiness” with the help of the Hurst parameter l-l

becomes particularly appealing in light of the relation H =

(3 - a)/2 mentioned in the previous section between the self-

simikirity parameter H and the parameter a that characterizes

the “thickness” (see (5)) of the tail of the inter-renewal time

distribution (i.e., of the lengths of the active/inactive periods).

Clearly, the heavier the tail in (5) (i.e., the closer ~ gets to

1), the greater the variability of the active/inactive periods and

hence, the burstier the traffic generated by an individual source.

Going from a to H relates burstiness of an individual source

to burstiness of the aggregate traffic: the higher the H, the

burstier the aggregate traffic. The fact that the Hurst parameter

H seems to capture the intuitive notion of burstiness through

the concept of self-similarity and, at the same time, also seems

to agree well with the visual assessment of bursty behavior

challenges the feasibility of some of the most commonly

used measures of “burstiness.” The latter include the index

of dispersion (’Jor counts), the peak-to-mean ratio, and the

coefficient of variation (of inter-renewal times).

A commonly used measure for capturing the variability of

traffic over different time scales is provided by the index of

dispersion (for counts) and has recently attracted considerable

attention (see for example [11 ]). For a given time interval

of length L, the index of dispersion for counts (IDC) is

given by the variance of the number of arrivals during the

interval of length L divided by the expected value of that same

quantity. Fig. 8 depicts the IDC as a function of L in log-log

0.01 0.10 1.00 10.0

IoIJ1O(L)fln Seconds)

(a)

0.01 0.10 1.Ou 10.0

IoglO(L)(in Saeonds)

(b)

Fig. 8. Index of dispersion for counts (IDC) as a function of the length L of

the time interval over which the IDC is calculated, for the high traffic hours

of the January 1990 and February 1992 data sets.

coordinates; it shows the IDC for both internal (solid lines)

and external (dashed lines) traffic from the high traffic hour of

the January 1990 (Fig. 8(a)) and February 1992 data (b).

Note in particular that the IDC increases monotonically

throughout a time span that covers 4-5 orders of magnitude.

This behavior is in stark contrast to conventional traffic models

such as Poisson or Poisson-like processes and the popular

Markov-modulated Poisson processes where the IDC is either

constant or converges to a fixed value quite rapidly. On the

other hand, self-similar traffic models are easily shown to

produce a monotonically increasing IDC. In fact, assume for

simplicity that the process X representing the total number of

packets seen in every 10 ms interval, is fractional Gaussian

noise (with positive drift) with self-similarity parameter H.

CL2H-1 (where c is a finite positi~e constant th~t does not

depend on L), and plotting log(lDC(L)) against log(L)

results in an asymptotic straight line with slope 2H – 1. The

dotted lines in Figure 5.1 represent the IDC curves predicted

by self-similar traffic models with H x 0.94 (JAN90.HP)

and H = 0.96 (FEB92.HP), respectively. Similarly striking

agreement between the empirical and theoretical IDC curves

can be observed for the corresponding external traffic data sets.

Notice that plotting the IDC curve and estimating its slope

provides a quick and simple engineering-based approach to

testing for self-similarity of a set of traffic measurements.

Leland and Wilson [ 14] have pointed out the problem with

using the peak-to-mean ratio as a measure for “bttrstiness”

in the presence of self-similar traffic. The observed ratio of

peak bandwidth (i.e., peak arrival rate of, say, bytes) to mean

bandwidth depends critically on the time interval over which

the peak and mean bandwidth is determined, i.e., essentially

any peak-to-mean ratio is possible, depending on the length

of the measurement interval. For a two-week long trace of

the October 1989 measurements, they show that the peak rate



LELAND eta/.: SELF-SIMILAR NATURE OF ETHERN~ TRAFFIC 13

in bytes for the external traffic observed in any 5 s interval

is about 150 times the mean arrival rate, while the peak rate

observed in any 5 ms interval is about 710 times the mean.

The dependence of this burstiness measure on the choice of

the time interval is clearly undesirable.

Final] y, we remark that the use of the coefficient of }wri-

ation (for interarrival times), i.e., the ratio of the standard

deviation of the interarrival time to the expected number of

the interarrival time, as a measure of “burstiness” becomes

questionable because of the potential “heavy-tailedness” (in

the sense of (5)) of the interarrival times and the implied

infinite variance property. Although the empirical standard

deviation can always be calculated, it will depend crucially

on the sample size and can attain practically any value as the

sample size increases.

5.-?. On Generutin<q .Tynthetic Traces of Self Similar Trafic

As we have noted in Section IV, exactly self-similar models

such as fractional Gaussian noise, or some nonlinew trans-

formation of fractional Gaussian noise (in order to ensure

for example that the process takes only positive values) or

asymptotically self-similar models such as fractional ARIMA

processes can be used to fit hour-long traces of Ethernet traffic

very well. Parameter estimation techniques for these models

are known but they often turn out to be computationally too in-

tensive in order to work for large data sets. However, we have

illustrated in Section W how to estimate the Hurst parameter

H for large data sets, and methods to adapt the existing pa-

rameter estimation techniques and to apply them to long time

series are currently being studied (for references, see [17]).

Notice also that our analysis of the measured data has shown

that the Hurst parameter can be expected to change during a

measurement period of an hour or more and that refinements

such as modeling the change points of H may be needed in

the future in order to produce more realistic traffic models. For

other approaches to modeling self-similar packet traffic, see the

recent articles by Erramilli and Singh [6] who use deterministic

nonlinear chaotic maps in order to mimic the fractal-like

properties of Ethernet traffic, and Veitch [29] whose work is

motivated by the early paper of Mandelbrot [18].

An important requirement of practical traffic modeling is to

generate synthetic data sequences that exhibit similar features

as the measured traffic. While exact methods for generating

synthetic traces from fractional Gaussian noise and fractional

ARIMA models exist (see for example [ 12]), they are, in

general, only appropriate for short traces (about 1000 obser-

vations). For longer time series, short memory approximations

have been proposed such as the fast fractional Gaussian

~ujise by Mandelbrot [20]. However, such approximations also

become often inappropriate when the sample size becomes

exceedingly large. Here, we briefly discuss two methods

for generating asymptotically self-similar observations. The

tirst method simulates the buffer occupancy in an Al/G/cc

queue. where the service time distribution G satisfies the

heavy-tail condition (5), i.e., G has infinite variance. Cox

l-l] showed that an infinite variance service time distribution

results in an asymptotically self-similar buffer occupancy

process, and he relates the tail-behavior of the former to

the degree of self-similarity of the latter. Generating a time

series of length 100000 this way requires about 2 h of CPU-

time on a Sun SPARCstation 2. The second method exploits

a convergence result obtained by Granger [9] who showed

that when aggregating many simple AR( 1)-processes, where

the AR(1) parameters are chosen from a beta-distribution on

[0, 1] with shape parameters p and q, then the superposition

process is asymptotically self-similau Granger also showed

that the Hurst parameter H depends linearly on the shape

parameter q of the beta-distribution. This method is well-

-suited for parallel computers, and producing a synthetic trace

of length 100000 on a MasPar MP- 1216, a massively parallel

computer with 16384 processors, takes only a few minutes. In

contrast, Hosking’s method to produce 100000 observations

from a fractional ARIMA(O, d. 0) model requires about 10 h

of CPU time on a Sun SPARCstation 2. Implementations of

and experimentations with these and some other methods are

currently under way.

VI. DISCUSSION

Understanding the nature of traffic in high-speed, high-

bandwidth communications systems such as B-ISDN is essen-

tial for engineering, operations, and performance evaluation of

these networks. In a first step toward this goal, it is important

to know the traffic behavior of some of the expeeted major

contributors to future high-speed network traffic. In this paper,

we analyze LAN traffic offered to a high-speed public network

supporting LAN interconnection, an important and rapidly

growing B-ISDN service. The main findings of our statistical

analysis of hundreds of millions of high quality, high time-

resolution Ethernet LAN traffic measurements are that (i)

Ethernet LAN traffic is statistically self-similar, irrespective of

when during the four-year data collection period 1989–1 992

the data were collected and where they were collected in the

network, (ii) the degree of self- simihuit y measured in terms

of the Hurst parameter H is typically a function of the overall

utilization of the Ethernet and can be used for measuring the

“burstiness” of the traffic (namely, the burstier the traffic the

higher H), (iii) major components of Ethernet LAN traffic such

as external LAN traffic or external TCP traffic share the same

self-similar characteristics as the overall LAN traffic, and (iv)

the packet traffic models currently considered in the literature

are not able to capture the self-similarity property and can

therefore be clearly distinguished from our measured data.

For the purpose of modeling this self-similar or fractal-like

nature of the Ethernet traffic data, we introduce novel methods

based on self-similar stochastic processes. The motivation for

these methods is the desire for an accurate and relatively

simple (i.e., parsimonious) description of the complex packet

traffic generation process. These modeling approaches typ-

ically yield a single parameter (i.e., the Hurst parameter)

that describes the fractal nature of the measured traffic and

appears to capture the intuitive notion of “burstiness” where

conventional measures of burstiness no longer apply. From the

point of view of queueing/performance analysis, the proposed

modeling approaches pose new and challenging problems

which are likely to require new sets of mathematical tools.

Ultimately, in the context of traffic engineering, it is the pre-
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dieted performance of appropriately chosen queueing systems

that will decide the relevance of self-similar traffic models.

However, indications of the impact of the self-similar nature

of packet traffic for engineering, operations, and performance

evahtation of high-speed networks are already ample: (i)

source models for individual Ethernet users are expeeted to

show extreme variability in terms of interarrival times of

packets (i.e., the infinite variance syndrome), (ii) commonly

used measures for “burstiness” such as the index of dispersion

(for counts), the peak-to-mean-ratio, or the coefficient of

variation (for interarrival times) are no longer meaningful

for self-similar traffic but can be replaced by the Hurst

parameter, (iii) the nature of congestion produced by self-

similar network traffic models differs drastically from that

predicted by standard formal models and displays a far more

complicated picture than has been typically assumed in the

past, and (iv) first analytic results show a clear distinction

between predicted performance of certain queueing models

with traditional input streams and the same queueing models

with self-similar inputs (see for example [25] and [5]). Finally,

in light of the same fractrd-like behavior recently observed in

VBR video traffic (see [2] and [8])-another major contributor

to future high-speed network traffic-the more complicated

nature of congestion due to the self-similar traffic behavior

can be expected to persist even when we move toward a more

heterogeneous B-ISDN environment. Thus, we believe based

on our measured traffic data that the success or failure of, for

example, a proposed congestion control scheme for B-ISDN

will depend on how well it performs under a self-similar rather

than under one of the standard formal traffic scenarios.
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