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AXTRACT

It is only now, after one decade of adaptive control theory

development following on from the self-tuning-regulator (STR) algorithms of

Astran and Wittenmark, that the original insights imbedded in its design

are justified by a rigorous global convergence theory, as outlined in the

paper.

The original STR is of current interest from a theoretical point

of view because it is the first example of a direct adaptive stochatic

control scheme for which the plant noise, when present, is sufficient to

achieve the persistence of excitation required for asymptotic optimality.

This aspect is featured in the theory of the paper.

The theory of the paper also generalizes open-loop extended least

squares (recursive maximum likelihood) global convergence theory to the

case where state estimates involve a priori noise estimates are employed

rather than a posteriori ones as in existing theories.



1. INTRODUCTION

The challenge that the self-tuning regulator (STR) [11 presents to the

theorist is to match the simplicity and robustness of the algorithm with a

theory as to why it works as well as it does.

Early simulations hinted at global convergence under a plant minimum

phase assumption for ARMAX (autoregressivemoving average exogenous input)

plants. However, analysis in [2,3] and simulations in [4] show that, as in

open-loop extended least squares schemes [2,5,6], for “highly” correlated

plant noise, there may not be asymptotic optimality. Thus a now familiar

strict positive real condition on the noise model is introduced or

side-stepped using the techniques of [7].

The first convergence analysis techniques applied to the STR assumed a

priori closed-loop stability and then gave asymptotic results [1,2,3].

Then global convergence results where achieved for stochastic approximation

based versions [8]. What then of the least squares based adaptive control?

To date, extended least squares techniques in adaptive estimation and

control have global convergence theories as in [8-13] only when the state

estimates include the a posteriori estimates, and the parameter updates

include noise model parameter estimates. The theories apply only to

indirect adaptive control schemes. It is known [14,15] that the original

STR can be viewed as an extended least squares scheme employing a priori

noise estimates in such a way that the plant noise model parameter

estimates are not updated or used in the controller. The STR is a truly

direct adaptive controller not requiring explicit estimates of the plant

noise model parameters.

The intuition behind the original STR design and some subsequent

“direct” adaptive control algorithms is that only the minimum variance

controller parameters need to be identified, and these can be consistently

estimated on line in a self-tuning scheme by virtue of plant noise alone.



The addition of persistently exciting input or reference signals, at the

expense of asymptotic optimality, is not required to achieve this. This iS

in contrast to the case for the direct adaptive control schemes of [9,10]

with persistence of excitation results as in [11,13].

In this paper, the open-loop and closed-loop global convergence

theories of [9,13] are generalized to cope with a priori noise estimates in

the state estimates, and thereby to cope with the original STR modified by

a (weighting coefficient) selection factor. Moreover, for the closed-loop

STR, it is shown that plant noise, assumed to exist, is sufficient to give

persistence of excitation and thereby asymptotic optimality.



2. THE STR AND A PRIORI NOISE ESTIMATION

In this section, a rationale IS given for the orignal STR based on a

priori noise estimation.

The Plant: Consider

operator notation as:

Ayk = BUk + Cwk

with wk the plant zero

plant exogenous input.

the

mean

For

ARMAX plant in standard polynomial delay

(2.1)

“white” noise, yk the plant output, and uk the

the theory tO fOllOW, wk iS assumed tO SatiSfy

k
E[wk[’+l] = 0, E[w2klFk–1] S Uw and lim sup ~ ~ wi2 < @ as.

k+mk~

where Fk is the o-algebra generated by wo, wl,...wk. The plant is assumed

to be strictly minimum phase so that B-l and C-l are exponentially

asymptotically stable operators. An alternative expression for (2.1) is:

Yk = b,uk--l+ e’xk + Wk

where, without loss of generality taking !L= n,

6’ = [(cl - al)””(cn- an)bz**bmc~-ocn]

(2.2)

(2.3)

x; = [Yk-l””yk-n Uk-z““uk-~(wk-~-yk-~) ““(wk-n-yk-n)] (2.4)

An additional requirement of our theory development is that the polynomials

B and (A-C) be relatively prime.

An ‘a priori’ Extended Least Squares Scheme: Consider state estimates:

A .

Xk f = [Yk-,
.

““”yk-n uk–2‘“”uk-m(wk-l[k-2-yk-1)” ““(wk-n[ k-n-l–yk-n)]

(2.5)

and parameter estimates:



for k 2 r where

r

;k~k;k(yk-bluk--l-~;.-~;k). (2.6a)

AA AA

Bk-Ixk)(k’‘dk- ~

A

@+; k’ ~k- ~xk (2.6b)

r is the first integer such that, in obvious notation.

& 1 = ~ ;i~i~~ + diag {On+m,In) (2.6c)
1

is not singular. The a priori noise estimates are given from

A A A

I
wk k-~ = Yk–bll+-l - ek-~xk (2.7)

and the control uk iS chosen SO that

;k++ ~ bluk+ ~~+l~k+l = 0 (2.8)

Observe that the control selection (2.8) forces the a Priori noise

.
estimates Wk k-~I to be the plant outputs

(2.5) can be written as:

.
Xk’ = [Yk-, ““yk–n Uk-z““uk-m O*”Ol

The algorithms (2.6), (2.8) now simplifies

.
yk in (2.6)) STR algorithm, deleting zero

Thus denoting:

— — — k
;;l = diag. {P;l, I}, P~l = ~ ;i~’

i
1

yk, so that the state estimates

(2.5)

as the standard (but weighted by

blocks of vectors and matrices.

(2.9a)

(2.9b)

(2.9c)

The standard STR algorithm is expressed in

A

terms of ~k, pk and @k.



The term diag{On+m, In} in (2.6c) ensures that Bk exists, although its

necesity is a hint to the persistence of excitation issues to arise later.

Weighting Coefficient Selection: In practice, the tk selection is taken

as a constant in the presence of stability. (Note that ~kak is invariant

Of ;k when ;k=y*O, so that without loss of generality take Y=I.) However,

in the presence of instability it is known from simulations that improved

performance can be achieved by giving less weighting to the recent data, or

equivalently having a decreasing ?k. Our theory calls for a monotonically

non-increasing ;k (at least asymptotically). The yk selection defined

below appears cumbersome at first glance, but allows what we believe is the

“simplest” convergence analysis. When there is “stablity” and “persistence

of excitation” with bounded noise inputs, ;k is
A

constant, otherwise yk

decays. The following selection has some features in common with that for

a posteriori based extended least squares in [9,10, and more recently 161,

but has new features which were not envisaged at the time of development of

the a posteriori schemes. Let us define, for some bounds and arbitrary

small c>O,

— .
Yk=l if tr[pk] and ~k’Bk-l f?k decay to Zero “faster”

—
than sk, and the condition number of pk-l is

bounded above (keSl).

kA —
11’l(~Xi’ii) ‘l-E if kksi but condition number of pk-l is

1

bounded ‘kEs,)-

!s~;(ln sk)-+(l+E) otherwise (kcS~), where Sk = fi’~i-l~i

Yk* = min[Yk,Y*k-1]

A

ik = yk* if yk;~~k–lxk < E/2 or k<j the first time instant that the

inequality is satisfied.

min[~k*, C(2;~;~–l;k)–!]otherwise (kES,).
(2.10)



3. A PRIORI EXTENDED LEAST SQUARES AND STR CONVERGENCE RESULTS

The challenge addressed in this section is to generalize the extended

least squares based global convergence analysis techniques of [9-13] to

cope with state estimates involving a priori noise estimates rather than a

posterior noise estimates as in the original theory. The work of the

previous section then allows interpretation to give STR global convergence

results.

Ironically, the first global convergence results for the open-loop

estimation case [5a] were for the case of a priori noise estimates in the

state estimates, but then it was observed that the theory simplified and

could be more complete by working with the a posteriori noise estimates

[5b,61.

For the closed-loop case, in generalizing the earlier stochastic

approximation results to a least squares version, an important observation

of [9] is that the convergence theory is inherently more

for the case of a posteriori noise estimates in the state

than if a priori estimates are used. Now dealing with the

straightforward

estimate vector

closed-loop STR

case we must of necessity cope with the more difficult case involving a

priori noise estimates.

To achieve our objective, we generalize the first lemma and theorem of

a sequence of results in [9,12], and then observe that the remaining

results carry through mutatis mutandis.

Lemma 3.1: With the step size selection rule (2.10) associated with the a

priori Extended Least Squares algorithm, including STR schemes of the

previous section, then for arbitrary c>O and bounds in (2.10),

;k ;~~k;k < c for k>j [defined in (2.10)1

(3.la)

(3.lb)



(3.lC)

k
= (lim ~ ~~~i)‘l-E if k~s’iand dkwhere dn = 1 otherwise.

1 !

Proof: See Appendix.

Remark: The results (3.la), (3.lc) are not surprising in the light of

earlier theory for weighting coefficient selection for a posteriori

extended least squares schemes [9,10,161. However, result (3.lb) is

stronger than for earlier schemes and is crucial to the convergence results

to follow for a priori based extended least squares.

Lemma 3.2: Consider the plant (2.1) (not necessarily stable orminimum

phase) and the a priori (weighted) extended least squares theme with ~k

selection (2.10). Consider also that [C-l(Z)-~l is strictlY Positive real.

Then (see proof for details):

(ii) ~ ll~k-lll-’ ll~k-~k-jll’ < m for all finite j

(iv) for the STR case [control given from (2.8)1
m

1

Proof: See Appendix.



Lemma 3.3: (Linear boundedness) Under the conditions

the additional constraint that for some ;,; and all k>;,

of Lemma (3.2) and

then

lim inf dk~kk > 0
k+m

~k-’ (Wk,k-wk)’ <0
1

(3.2)

(3.3)

(3.4)

(3.5)

;k-’ (Yk-wk)z < m , ~k-’ (llik112 < m as. (3.6)
1 1

Proof: The result (3.3) follows that of [15] as applied in [9,1O]. That

(3.4) follows from (3.3) and the ~k selection property (3.Ic) is immediate.

The strengthening of the results of Theorem (3.1) then follows from (3.4).

Vvv

Lemma 3.4: Consider the open-loop estimation case in which for all k2~ (as

in Lemma 3.2), the following stability is assumed:



Consider the closed-loop STR control case in which the plant is minimum

phase with, for some K,~ and all k>;,

(3.8)

Then for the above cases, the constraint (3.2) is satisfied and the

stablity result (3.3) of Lemma 3.2 follows.

Proof: Follows in a straightforward manner the relevant part of the proof

of Theorem 3.2 of [9].

Remarks:

1. The result (3.3) in the STR case gives a Cesaro boundedness result for

the plant inputs and outputs.

2. So far in the theory, there is achieved asymptotically optimal one-step

ahead prediction and minimum variance control without there being

consistent parameter estimation. The results of’ [17] Point to lack of

robustness unless there is persistently exciting input signals for related

algorithms. The following results we believe are crucial to understand the

practical success of the original STR.

Theorem 3.1: (STR Convergence with Sufficiently Rich Plant Noise)

!neQmhao the STR algorithm of this paper applied to the plant (2.1),

assumed strictly minimum phase, with no pole/zero cancellations and

satisfying [C-l(z)-$] strictly positive real. In addition, assume that the

noise wk is sufficiently rich so that

, k

lim inf ;~Wi2>0 as. (3.9)
k+co 1

Then (3.3) - (3.7) hold with, using the definition (2.9),

A

— —

liIU6~11’k= 0, Iim ek = 6 (3.10)
k+rn k+cn



Moreover, with the

is a ; such that

bounded in norm,

condition number bound of (2.10)

for all k 2 ;. then k CS1US2.

A A

lim /j~l;k’Bk_lXk = o as.
k+W

suitably large, there

Furthermore, with wk

(3.11)

for k suitably large ~k = yk*, kcSl, for all k 2 1 and

Iim inf ~k > 0 as. (3.12)
k+m

Proof: See Appendix.

Remarks:

1. We stress that the above results are truly global convergence results

and do not include any requirement for projection into a stability-domain

as in earlier theories for the original STR algorithm. Notice that with

the property (3.12), the STR scheme is asymptotically the original STR

scheme with equal weighings (~k~l),

2. The persistence of excitation due to measurement noise alone, is

specific to the least squares style regression vector used. If one uses an

a posteriori

guarantee of

persistently

is used [12,

based extended least squares estimation procedure, there is no

adaptive control with consistent parameter estimation unless a

exciting or TIcontinuouslydisturbed” referenCe trajectory Yk*

13,191. Enriching yk* to achieve persistency will adversely

affect asymptotic optimality [191.

3. For the case when the STR algorithm is organized so as to

simultaneously estimate bl, then the above analysis shows that plant noise

alone may not be sufficient for persistence of excitation of the states

—1 —
xk=[yk–l””yk-n uk-1‘“uk_m], so that pk+()as k+m, and will not be sufficient

—
for pk to go to zero linearly. This means that to guarantee estimation

of bl in such an STR scheme, variations to the controller or the addition



of persistence of excitation signals could be required. Degree one of lack

of persistence manifests itself in the results of [201 where the stochastic

approximation variant of the STR [8] is shown to produce parameter

estimates converging to the current value except for a single degree of

freedom (a random scaling).

4. CONCLUSIONS

The paper has presented global convergence results for an

estimation/controlscheme based on a priori noise estimates and thereby for

the original STR of [1]. The results are significant in that they are the

first known global convergence results for a truly direct least squares

based stochastic adaptive control scheme, although clearly there is a need

to modify the usual least square algorithm through weighting coefficient

selection. The resulting algorithm behaves asymptotically like least

squares but can contain some transient elements similar to stochastic

approximation. This appears to be the price necessary to establish global

convergence.

Of particular interest is that the convergence results confirm that the

plant noise, assumed to exist, is sufficient to give persistence of

excitation of the plant states and state estimates. Consequently,there is

guaranteed parameter estimate convergence to the optimal controller

parameters. That is, there is guaranteed asymptotic optimality which is in

contrast to the situation of indirect adaptive control where the

introduction of persistently exciting input (reference) signals to

guarantee parameter convergence precludes achievement of asymptotic

optimality.

The fact that the direct adaptive control algorithms such as the STR

are simpler for implementation than indirect schemes and no additional



persistence of excitation input disturbances are required for their

asymptotic optimality, suggests that further global convergence studies be

developed for more sophisticated direct adaptive stochastic schemes such as

direct adaptive pole assignment and LQG (linear quadratic gaussian)

schemes. We believe that the techniques of this paper could provide a

crucial key for obtaining global convergence results for such schemes.
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APPENDIX

Lemma Al: [t
For any at, rt = ~ a~’a~d~, c>O

Jo

(t

lim sup \ a~’a~ rT-l(ln r~)-’-cd~ < co
t,+w Jtl

Also in discrete time,

k
lim SUp ~ ai’ai ri-l(lll ri)-~-c < m

k+ca 1

(Al)

(A2)

Proof: The integral in (Al) can be reformulated as

[t 1 dr (t 1 d in r~

J

—d~=l dT
tl r~(ln r~)l+c d~ Jtl (ln rT)’+E d~

(t (d in r)-c
.—

I

d~
tl dT

= [(lnrtl) -S – (In rt)-c]/~

and (Al) is established. Also the summation in (A2) can be bounded by an

integral such as in (Al).
Vvv

Proof of Lemma 3.1: Proof of property (3.la). For kcSlUS2, and following

[161,

1



1

k
4 K1 yk Ymax-l ~ ;i;i’

1

This leads to,

For k e Sg, then (3.la) follows from a direct application of (A2),

. A A A
identifying alai as ~~Bi-lxi and noting BiS Bi-l.

Proof of Property (3.lb): Follows triVially frOIIIthe definition Of ~k fOr

the case kcS+ should (3.lb) not be satisfied otherwise.

Proof of Property (3.lc): With the definition of ?k* in (2.10), it follows

trivially for both kcSl, keS2 and keSq that

For k&S., with E(2;~6k-l;k)-’ < ?k*, and dk = 1 of necessity, then

k 1

1

1

so that (3.lc) is established.

Vvv

Proof of Lemma 3.2: The convergence analysis is for the parameter and

. -
state estimation equations, using the notations 13= 0-0, x = x–x,



xi = [o..oo..o(wl-~k~l-l ]k-z)..(wk-n-~k-~lk-n-t )] (A3)

Introducing definitions

(A4)

we see that

(Pk-iqk) = e’~k= (c-l )(wk-~klk-l)

(Pk+iqk) = e’xk + ek-..;ik= (iklk-l-wk)

(Pk-;qk) = ‘(c-l )(pk++qk) (A5)

pk = (C-l-;)qk

The strict positive real condition (2.20) and the faCt that ~k iS

monotonically decreasing now tells us, using manipulations as in [8], that

for some c>O and all k>O,

k

21[~iPiqi-3E?i(qi 2+pi2)] 2 0
0

Consider now a tentative (stochastic)Lyapunov function

k
vk = tik:k’~k‘l~k + 2~[~ipiqk - 3&;i(qi2+pi2)]

o

Simple manipulations now yield

E[vk]Fk_l] < Vk-1+ {EIA@?kW;qklFk .-.l]

‘3&E[(qk2 + pk2)lFk-l]}6k

(A6)

(A7)

(A8)



s 3 ?k2;k’~k~k(pk2+qk 2 + ~k2) (A9)

The second equality follows from a substitution Of ~k from (A3)(A5), the

third from (2.6b)(A4),and the inequality from (A4)(A5).

Now defining

(A1O)

and noting that E[~kWk’qklFk-l] = O, then (A8) leads to

E{vklFk-l] ~ vk-l-E[cxk]Fk-L] + pk

— — k
EIVklFk–~] < Vk-1 + ~k ~ vk~vk+~ai (All)

1

We see that the property (3.la) of the ~k, dk selections (2.6d) and Lemma

3.1 ensures that ~?dk<m.
—

Also (3.Ic) gives that for some k and all k then

ak>o, S0 that ~~ak>(). The term Vk is nonnegative under the strict positive
—

real condition on [C-~(z)-$l following [9], so that Vk is nonnegative”

Applying the martingale convergence theorem [18, page 33] to (All) gives

that

k
~Cti , vk , 6k~k’ak-’ak converge as.
o

m

1

~ m as. (A12)



The other results of the theorem follow in a straightforward manner as for

the corresponding results of [91. +++

Remark: The crucial construction to generalize the proof technique for the

case of a posteriori noise estimates in [8,10] to the case of a priori

estimates here, iS the step size ~k selection such that (3.lc) holds for

sufficiently small E required to keep ak in (A1O) positive.

Proof of Theorem 3.1: From the result (i) of Lemma 3.2,

applying (2.19) this result yields that the desired consistency (3.10)

holds for the self-tuning regulator if

Consider that (A13) does not hold, then kkSl subsequent to some time !?,
—

thus dk is asymptotically a constant, and lim inf pk>().
k+rn

Now from the Kronecker lemma we see that

implies

1k__,
l-~1-; ~ Xixi = O, or equivalently the persistence of excitation

condition,

lk––
lim inf – ~XiX~ >0
k+rn k ~ (A14)

implies the result



(A15)
k

lim ( ~ i-l;i;~)-l = o
k+m 1

This in turn implies a contradiction of the result

—
lim inf pk>o
k+a

under (3.4). We conclude that (A13) holds, and thereby the

(3.10). It remains to establish (A14) to verify (3.10).

Now from (3.6a) we see that yk has the asymptotic value

by the minimum phase property of (2.1), uk is exponentially

B-l(A-C)yk which iS in turn asymptotically B-l(A-C)Wk.

desired result

Wk . Moreover,

asymptotically
—

Thus xk iS

asymptotically

(3.5) tells us

The system

—
the state xi of the system B-l(A-C) drived by wk. Applying

that ~k in (A14) can be replaced by ~~.

B-l(A-C) is time invariant and completely controllable under

the coprimeness assumption of the pair B,(A-C)

apply, giving that persistency of the input
—

persistency of the states xi, and thereby of

so that the results of [12]

wk, as in (3.9), assures

xlk as in (A14). Parallel

arguments as in [13,19] lead to the same result.

The persistence of excitaton results (A14) and stability results

(3.3),(3.7) together give the result that the condition number of ~!~i~i is
— —

bounded. Thus kcSIUSz (for suitably large bounds) and all k>k where k is

sufficiently large.

With closed loop asymptotic

stability, then bounded inputs

together with (A13) implies that

and all k2k, then kcSl and kkS,,

k>;.

time invariance (3.10), and asymptotic

(wk) give bounded OUtpUtS (~k). This

(3.ll)holds, so that for suitably large k

A

Consequently ‘k=yk44and (3.12) holds for

Vvv


