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Abstract In many natural languages, there are clear syntactic and/or intona-
tional differences between declarative sentences, which are primarily used to pro-
vide information, and interrogative sentences, which are primarily used to request
information. Most logical frameworks restrict their attention to the former. Those
that are concerned with both usually assume a logical language that makes a clear
syntactic distinction between declaratives and interrogatives, and usually assign
different types of semantic values to these two types of sentences.

A different approach has been taken in recent work on inquisitive semantics.
This approach does not take the basic syntactic distinction between declaratives
and interrogatives as its starting point, but rather a new notion of meaning that
captures both informative and inquisitive content in an integrated way. The stan-
dard way to treat the logical connectives in this approach is to associate them with
the basic algebraic operations on these new types of meanings. For instance, con-
junction and disjunction are treated as meet and join operators, just as in classical
logic. This gives rise to a hybrid system, where sentences can be both informa-
tive and inquisitive at the same time, and there is no clearcut division between
declaratives and interrogatives.

It may seem that these two general approaches in the existing literature are
quite incompatible. The main aim of this paper is to show that this is not the
case. We develop an inquisitive semantics for a logical language that has a clearcut
division between declaratives and interrogatives. We show that this language co-
incides in expressive power with the hybrid language that is standardly assumed
in inquisitive semantics, we establish a sound and complete axiomatization for
the associated logic, and we consider a natural enrichment of the system with
presuppositional interrogatives.
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1 Introduction

In many natural languages, there are clear syntactic and/or intonational differences
between declarative sentences, which are primarily used to provide information,
and interrogative sentences, which are primarily used to request information. Most
logical frameworks, both in the linguistic and in the philosophical tradition, restrict
their attention to the former. Those that are concerned with both (Hamblin, 1973;
Karttunen, 1977; Hintikka, 1981, 1983, 1999, 2007; Groenendijk and Stokhof, 1984,
1997; Wísniewski, 1996, 2001, among others) usually assume a logical language
that makes a clear syntactic distinction between declaratives and interrogatives.
We will say that such analyses are syntactically dichotomous.

Most of these analyses do not only assume a syntactic distinction between
declaratives and interrogatives, but also assign different types of semantic values to
these two sentence types. We will say that such analyses are not only syntactically
dichotomous, but also semantically dichotomous.

A concrete example of an approach that is both syntactically and semantically
dichotomous is the partition semantics of Groenendijk and Stokhof (1984, 1997).
For simplicity, let us consider only the propositional fragment of the system, as
presented in Groenendijk and Stokhof (1997, §4). This system assumes a logical
language that contains (i) a standard propositional language L, and (ii) sentences
of the form ?ϕ, where ϕ ∈ L. Sentences in the basic propositional language L are
called declaratives, while sentences of the form ?ϕ are called interrogatives. This
means that every sentence in the language is either declarative or interrogative.
Thus, the system is syntactically dichotomous.

Semantically, the basic picture that Groenendijk and Stokhof argue for is that
declaratives express propositions, viewed as sets of possible worlds, while interroga-
tives express equivalence relations over the set of possible worlds. Since equivalence
relations correspond to partitions, interrogatives can be seen as partitioning the
set of all possible worlds, while declaratives can be seen as carving out a particu-
lar region in the set of all possible worlds. In uttering a declarative ϕ, a speaker
provides the information that the actual world is located in the region carved
out by ϕ, while in uttering an interrogative ?ϕ, a speaker requests enough infor-
mation to locate the actual world in one of the cells of the partition induced by
?ϕ. Thus, declaratives and interrogatives receive different types of semantic val-
ues, which means that the system is not only syntactically dichotomous, but also
semantically dichotomous.

A different approach has been pursued in recent work on inquisitive semantics

(Groenendijk and Roelofsen, 2009; Ciardelli, 2009; Ciardelli and Roelofsen, 2011,
among others). This approach does not take the syntactic distinction between
declaratives and interrogatives as its starting point, but rather a new notion of
meaning that captures both informative and inquisitive content in an integrated
way. The standard way to treat the logical connectives in this approach is to as-
sociate them with the basic algebraic operations on these new types of meanings
(Roelofsen, 2011, 2013; Ciardelli et al., 2012). For instance, conjunction and dis-
junction are treated as meet and join operators, respectively, just as in classical
logic. This treatment of the logical connectives gives rise to a hybrid system, where
sentences may be both informative and inquisitive at the same time, and there is
no clearcut division between declaratives and interrogatives. This system is re-
ferred to as InqB, where B stands for basic. InqB is not syntactically dichotomous,
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and since semantic dichotomy presupposes syntactic dichotomy, it is not seman-
tically dichotomous either. The logic that InqB gives rise to has been investigated
in Ciardelli (2009); Ciardelli and Roelofsen (2009, 2011).

It may seem that the two approaches are quite incompatible, since their ar-
chitectures diverge in such a fundamental way. The main goal of this paper is to
show that this is in fact not the case. Even though inquisitive semantics, viewed
as a general approach to meaning, does not require a clearcut syntactic distinc-
tion between declaratives and interrogatives, it is perfectly compatible with such
a distinction. To demonstrate this, we will show how the new type of meanings
assumed in inquisitive semantics can be assigned in a natural way to sentences in
a language that has a clearcut distinction between declaratives and interrogatives.
The resulting system will be referred to as InqD, where D stands for dichotomous.
Evidently, InqD is syntactically dichotomous. Strictly speaking, it is not seman-
tically dichotomous, since all sentences are assigned the same type of meanings,
capturing both their informative and their inquisitive content. However, in the
case of declarative sentences, inquisitive content will always be trivial, while in the
case of interrogative sentences, informative content will always be trivial. Thus,
even though the system is not semantically dichotomous in the strict sense of the
term, it does clearly capture the crucial semantic difference between declaratives
and interrogatives.

We provide meaning preserving translations between InqD and InqB, as well as
a sound and complete proof system for the logic that InqD gives rise to. We show
that the expressive power of InqD crucially extends that of partition semantics. In
particular, InqD allows for a basic analysis of disjunctive and conditional questions,
which are notoriously beyond the expressive reach of partition semantics (see, e.g.,
Mascarenhas, 2009; Ciardelli et al., 2013a).

We also consider an extension of InqD with presuppositional interrogatives. We
refer to this system as InqDπ, where π stands for presuppositional. We show that
the proof system developed for InqD is also sound and complete for InqDπ, provided
that its inference rules are taken to apply to the wider range of interrogatives
available in InqDπ. From the perspective of comparing different erotetic logics,
an important feature of InqDπ is that it exhibits some fundamental similarities
with some of the most widely-studied existing systems, in particular the inferential

erotetic logic (IEL) of Wísniewski (1996, 2001) and the interrogative model of inquiry

(IMI) of Hintikka (1981, 1983, 1999, 2007). Just like InqDπ, these systems assume a
dichotomous language with presuppositional interrogatives. This similarity makes
it easier to compare inquisitive semantics with IEL and IMI, and to transfer in-
sights between the different approaches. For instance, it seems that the notion of
entailment considered in inquisitive semantics is meaningful and relevant in the
context of IEL and IMI as well, and that the axiomatization result established in
this paper can be exported straightforwardly.

The system InqD achieves division of semantic labor at the cost of sacrificing
the algebraic treatment of the logical constants embodied by InqB. We conclude by
sketching a way to reconcile the tenets of the two approaches by building division
of labor not directly into the core system, but rather on top of it.

The paper is organized as follows. We start in section 2 with a brief review
of InqB. Then, in section 3, we present InqD, and meaning preserving translations
between InqD and InqB. In section 4 we provide a proof system for the logic that
InqD gives rise to, and in section 5 we compare the expressive power of InqD with
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that of partition semantics. In section 6, we present the system InqDπ, and show
that the proof system for InqD is also sound and complete for InqDπ, provided that
we take its inference rules to apply to the wider range of interrogatives available
in InqDπ. In section 7 we briefly sketch an alternative way of achieving division
of labor than the one offered by InqD, and indicate its potential relevance for the
semantic analysis of natural language. Section 8 concludes.

2 Basic inquisitive semantics

We start with a brief review of InqB. Throughout the paper we will restrict our
attention to the propositional case. The language of InqB, LInqB,P , is a standard
propositional language based on a set of atomic sentences P, with ⊥, ∧, ∨, and →
as its basic connectives. We also make use of three abbreviations.

Definition 1 (Abbreviations)

1. ¬ϕ abbreviates ϕ→ ⊥
2. !ϕ abbreviates ¬¬ϕ
3. ?ϕ abbreviates ϕ ∨ ¬ϕ

The ingredients for the semantics of InqB are worlds and states. A P-world is
simply a valuation function for P, assigning a truth value to each atomic sentence
p ∈ P. A P-state is a set of P-worlds. Reference to the set of atomic sentences P
will be dropped whenever possible. The semantics of InqB is defined not in terms
of truth at worlds, but rather in terms of support at states.

Definition 2 (Support for InqB)

1. s |= p iff ∀w ∈ s : w(p) = 1
2. s |= ⊥ iff s = ∅
3. s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ

4. s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

5. s |= ϕ→ ψ iff ∀t ⊆ s : if t |= ϕ then t |= ψ

Support is persistent : if a state s supports a sentence ϕ, then every substate t ⊆ s
also supports ϕ. Moreover, the empty state supports every sentence, which means
that every sentence is supported by at least one state. Thus, the set of states
that supports a given sentence is always non-empty and downward closed. Non-
empty, downward closed sets of states are referred to as propositions in inquisitive
semantics, and the set of states that support a sentence ϕ is referred to as the
proposition expressed by ϕ.

Definition 3 (Propositions in inquisitive semantics)

A P-proposition is a non-empty, downward closed set of P-states.

Definition 4 (Propositions expressed by sentences in InqB)

The proposition expressed by a sentence ϕ in InqB, [ϕ]InqB, is the set of all states
that support ϕ in InqB.
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We will usually simply write [ϕ] instead of [ϕ]InqB. Given the properties of support
mentioned above, the proposition [ϕ] expressed by a sentence in InqB is indeed
always a proposition in the sense of definition 3. Moreover, the language of InqB

is expressively complete, in the sense that for any finite set P of atomic sentences,
any P-proposition is the proposition expressed by some sentence in LInqB,P . The
proof of this fact can be found in Ciardelli (2009).

Proposition 1 (Expressive completeness of InqB)

Let P be a finite set of atomic sentences. Then for any P-proposition A there is a

sentence ϕ ∈ LInqB,P such that [ϕ] = A.

In uttering a sentence ϕ, a speaker is taken to provide the information that the
actual world is included in one of the states that supports ϕ, and to request enough
information from other participants to establish a specific state that supports ϕ.
Thus, the proposition expressed by ϕ captures both its informative and its inquis-
itive content.

Definition 5 (Entailment and equivalence)

1. ϕ |= ψ iff [ϕ] ⊆ [ψ]
2. ϕ ≡ ψ iff ϕ |= ψ and ψ |= ϕ

One sentence ϕ entails another sentence ψ just in case every state that supports ϕ
also supports ψ. This means that whenever we accept the information provided by
ϕ and supply the information requested by ϕ, establishing a state that supports ϕ,
we also accept the information provided by ψ and supply the information requested
by ψ.

The set of all propositions in inquisitive semantics, together with the inquisitive
entailment order, forms a Heyting algebra, just like the set of all classical proposi-
tions together with the classical entailment order. Moreover, disjunction, conjunc-
tion, negation, and implication behave semantically as join, meet, and (relative)

pseudo-complement operators in this algebra, just like in classical logic (Roelofsen,
2011). Thus, InqB can be seen as the equivalent of classical propositional logic
(CPL) in the inquisitive setting. For this reason, it is regarded as the most basic
inquisitive semantics.

Since in uttering ϕ, a speaker provides the information that the actual world
is located in one of the states in [ϕ], the informative content of ϕ is characterized
by

⋃
[ϕ].

Definition 6 (Informative content) info(ϕ) :=
⋃

[ϕ]

In classical propositional logic, the informative content of a sentence ϕ is embodied
by the set of all worlds in which that sentence is true, which we will denote as
|ϕ|. It can be shown that for every ϕ ∈ LInqB, info(ϕ) = |ϕ|. This means that,
while inquisitive semantics adds an inquisitive dimension to the classical notion of
meaning, InqB does not diverge from CPL as far as informative content goes.

A sentence ϕ is called informative iff its informative content is non-trivial, i.e.,
iff info(ϕ) 6= ω, where ω denotes the set of all worlds. On the other hand, ϕ is
called inquisitive iff in order to establish a state that supports ϕ it is not enough
to just accept the informative content of ϕ, i.e., iff info(ϕ) /∈ [ϕ]. This means that in
order to establish a state that supports ϕ, additional information beyond info(ϕ)
is needed.
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(b) !(p ∨ q)
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(c) ?p

Fig. 1 An example of a hybrid (a), an assertion (b), and a question (c).

Definition 7 (Informativeness and inquisitiveness)

– ϕ is informative iff info(ϕ) 6= ω

– ϕ is inquisitive iff info(ϕ) /∈ [ϕ]

In terms of informativeness and inquisitiveness, the following semantic categories
can be distinguished.

Definition 8 (Assertions, questions, hybrids, and tautologies)

– ϕ is an assertion iff it is non-inquisitive
– ϕ is a question iff it is non-informative
– ϕ is a hybrid iff it is both informative and inquisitive
– ϕ is a tautology iff it is neither informative nor inquisitive

It can be shown that, as long as we restrict ourselves to the propositional case,
every state that supports a given sentence ϕ is included in a maximal state sup-
porting ϕ (see, e.g., Ciardelli, 2009; Ciardelli and Roelofsen, 2011).1 Together with
the fact that support is persistent, this means that the proposition expressed by
ϕ is completely determined by the set of maximal states that support ϕ. These
states are referred to as the possibilities for ϕ.

Definition 9 (Possibilities for a sentence)

The maximal states that support a sentence ϕ are called the possibilities for ϕ.

Fact 1 (Possibilities and propositions)

For every state s and every sentence ϕ, s ∈ [ϕ] iff s is included in a possibility for ϕ.

This allows for an alternative characterization of inquisitiveness and assertions.

Fact 2 (Inquisitiveness in terms of possibilities)

1. ϕ is inquisitive iff there are at least two possibilities for ϕ

2. ϕ is an assertion iff there is exactly one possibility for ϕ

The characterization of propositions in terms of possibilities also allows for a per-
spicuous visual representation of propositions. Figure 1 depicts the propositions
expressed by some simple sentences in a language that has just two atomic sen-
tences, p and q. Given such a language, there are just four possible worlds to

1 This fact does not hold anymore in the first-order version of InqB (Ciardelli, 2009, 2010;
Ciardelli et al., 2013b).
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consider: a world where both p and q are true, one where p is true and q is false,
one where p is false and q is true, and one where both p and q are false. In figure 1
these worlds are marked 11, 10, 01, and 00, respectively. Figure 1(a) depicts the
proposition expressed by p∨q. Since the proposition expressed by a sentence is fully
determined by the possibilities for that sentence, we only depict these possibilities.
In the case of p ∨ q, there are two possibilities: one consisting of all worlds where
p is true, 11 and 10, and one consisting of all worlds where q is true, 11 and 01.
Notice that p ∨ q is informative, since info(p ∨ q) 6= ω. It provides the information
that the actual world is one in which at least one of p and q is true. It is also
inquisitive, since it has more than one possibility. Since p ∨ q is both informative
and inquisitive, it is a hybrid.

Figure 1(b) depicts the proposition expressed by !(p∨q). This sentence has the
same informative content as p∨ q, but it is not inquisitive. Thus, it is an assertion.
This illustrates a more general fact. Namely, for any sentence ϕ, !ϕ has precisely
the same informative content as ϕ. Moreover, !ϕ is always an assertion, i.e., it is
never inquisitive. For this reason, ! is referred to as the non-inquisitive projection

operator in InqB.
Finally, figure 1(c) depicts the proposition expressed by ?p. This sentence is

not informative, since info(?p) = ω. However, it does request information. Specif-
ically, it requests enough information to either establish a state that supports p
or a state that supports ¬p. Thus, ?p is a question. Again, this illustrates a more
general fact. Namely, for any ϕ, ?ϕ requests enough information to establish a
state that supports either ϕ or ¬ϕ. Moreover, ?ϕ is always a question, i.e., it is
never informative. For this reason, ? is referred to as the non-informative projection

operator in InqB.
A sentence ϕ is always equivalent to the conjunction of its two projections, ?ϕ

and !ϕ. This fact, which will play an important role later on, is known as ‘division’
(see, e.g. Ciardelli, 2009; Groenendijk and Roelofsen, 2009).

Fact 3 (Division) For any sentence ϕ, ϕ ≡ ?ϕ ∧ !ϕ

Given these notions, it is natural to think of sentences in InqB as inhabiting a
two-dimensional space, as depicted in figure 2 (see Mascarenhas, 2009; Ciardelli,
2009; Roelofsen, 2013). One of the axes is inhabited by questions, which are al-
ways non-informative; the other axis is inhabited by assertions, which are always
non-inquisitive; the ‘zero-point’ of the space is inhabited by tautologies, which
are neither informative nor inquisitive; and the rest of the space is inhabited by
hybrids, which are both informative and inquisitive. Every hybrid sentence ϕ has
a projection onto the horizontal axis, !ϕ, and a projection onto the vertical axis,
?ϕ. The former is always an assertion, the latter is always a question, and the
conjunction of the two is always equivalent with ϕ itself.

This concludes our brief review of InqB. Notice that the system is not syntacti-
cally dichotomous: there is no clearcut syntactic division between declaratives and
interrogatives. It may be suitable to think of sentences of the form !ϕ and ?ϕ as
corresponding to declaratives and interrogatives in natural language, respectively
(see Roelofsen, 2013). However, even so, the logical language also contains many
sentences that are not of this form, and can as such not be classified as being either
declarative or interrogative.

Note also that questions and assertions are defined in InqB as semantic cate-
gories. That is, whether a given sentence counts as an assertion or a question is not
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Questions

AssertionsTautologies

Hybrids

ϕ ≡ !ϕ ∧ ?ϕ
?ϕ

!ϕ

Fig. 2 Projection and division.

defined in terms of syntactic features, but rather in terms of semantic features: the
proposition that the sentence expresses, and its informative content. Thus, these
categories are quite different from the categories of declaratives and interrogatives,
which are syntactic in nature.

Finally, note that InqB is not semantically dichotomous either. All sentences
are assigned the same type of semantic value: a non-empty, downward closed set of
states. These semantic values capture both informative and inquisitive content at
the same time. In some cases, the informative content or the inquisitive content of
a sentence is trivial. However, the system does not make use of two distinct types
of semantic values, one to capture informative content and the other to capture
inquisitive content, as is characteristic of semantically dichotomous approaches.

3 Inquisitive semantics for declaratives and interrogatives

We now turn to the heart of the paper, which aims to show that, even though
inquisitive semantics does not require a clearcut syntactic division between declar-
atives and interrogatives, it is certainly compatible with such a division. We will
specify an alternative system, InqD, which uses exactly the same inquisitive se-
mantic machinery as InqB, but applies this machinery to a language that makes a
clear division between declaratives and interrogatives.

3.1 Language

The logical language that we will consider, LInqD, consists of declaratives, interrog-
atives, and sequences of sentences that may be either declarative or interrogative.
The latter are included to allow for meaning-preserving translations back and forth
between InqD and InqB. In defining LInqD we will use α and β as meta-variables
ranging over declaratives, µ and ν as meta-variables ranging over interrogatives,
and ϕ and ψ as meta-variables ranging over arbitrary sentences. We start with a
definition of the declarative fragment of the language, L!.
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Definition 10 (Declaratives) L! is the smallest set containing a given set P of
atomic sentences, as well as ⊥, and is closed under conjunction and implication.
That is:

– If α, β ∈ L!, then α ∧ β ∈ L! as well
– If α, β ∈ L!, then α→ β ∈ L! as well

Negation and disjunction are defined as abbreviations, as follows.

Definition 11 (Abbreviations) For any α, β ∈ L!:

– α→ ⊥ is abbreviated as ¬α
– ¬(¬α ∧ ¬β) is abbreviated as α ∨ β

Now let us turn to interrogatives. As is common practice in a number of logical ap-
proaches to questions, in particular the inferential erotetic logic (IEL) of Wísniewski
(1996, 2001) and the interrogative model of inquiry (IMI) of Hintikka (1981, 1983,
1999, 2007), we take basic interrogatives to be of the form ?{α1 , . . . , αn}, where
α1 , . . . , αn are declarative sentences.2 Intuitively, the declaratives α1 , . . . , αn de-
termine what is needed to resolve the issue that is raised by ?{α1 , . . . , αn}. This
intuition will be reflected by the semantic clauses given below: a state will support
?{α1 , . . . , αn} just in case it supports at least one of α1 , . . . , αn .

We place one restriction on the formation of basic interrogatives. Namely, the
set {α1 , . . . , αn} must be such that α1 ∨ . . . ∨ αn constitutes a classical tautology.
In other words, for every possible world w, at least one of α1 , . . . , αn must be true
in w. Intuitively, this means that it must always be possible to truthfully resolve
a basic interrogative in any possible world.3

Unlike in IEL and IMI, besides basic interrogatives, our language will also con-
tain more complex interrogatives. These are built from basic ones using conjunc-
tion and implication. In the case of conjunction, both conjuncts must be inter-
rogatives. In the case of implication, the antecedent must be declarative, and the
consequent interrogative.4

2 Like IEL, we take the symbols ‘{’ and ‘}’ to be part of the object language. This means
that, e.g., ?{p,¬p}, ?{¬p, p}, and ?{p, p,¬p} are three distinct interrogative formulas. Unlike
IEL, we impose no requirement that n ≥ 2 or that the α’s should be syntactically distinct.
However, different choices in this respect would be just as compatible with the framework that
we are going to propose, and would not impinge on the results that will be established here.

3 Instead of imposing this restriction, we could also think of a basic interrogative
?{α1 , . . . , αn} as presupposing that the actual world is one where the interrogative can be
truthfully resolved, i.e., a world where at least one of α1 , . . . , αn is true (see Hintikka, 1981,
1983, 1999, 2007; Wísniewski, 1996, 2001). This alternative will be explored in section 6. Yet
another strategy would be to assume that a basic interrogative ?{α1 , . . . , αn} cannot only be
resolved by establishing that one of α1 , . . . , αn is true, but also by establishing that all of
α1 , . . . , αn are false. This also guarantees that basic interrogatives can be truthfully resolved
in every world (see Groenendijk, 2011).

4 The constraint that the antecedent of a conditional interrogative must be a declarative,
is a bit arbitrary from a purely semantic perspective. In InqB, an implication is bound to be
a question (i.e., non-informative) as soon as its consequent is. So, unlike the constraint on
conjunction that both conjuncts must be interrogative, which is needed to guarantee that the
conjunction as a whole expresses a question, the constraint on implication is not semantically
motivated (see Groenendijk (2011) for more detailed discussion of this point).
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Definition 12 (Interrogatives) L? is the smallest set such that:

– If α1 , . . . , αn ∈ L! and α1 ∨ · · · ∨ αn is a classical tautology,
then ?{α1 , . . . , αn} ∈ L?

– If µ, ν ∈ L?, then µ ∧ ν ∈ L?
– If α ∈ L! and µ ∈ L?, then α→ µ ∈ L?

Finally, we define LInqD as the language containing both L! and L?, as well as finite
sequences of sentences from either L! or L?.

Definition 13 (LInqD) LInqD is the smallest set such that:

– If ϕ ∈ L! ∪ L?, then ϕ ∈ LInqD
– If ϕ1 , . . . , ϕn ∈ L! ∪ L?, then 〈ϕ1 , . . . , ϕn 〉 ∈ LInqD

A sequence 〈ϕ1 , . . . , ϕn 〉 may be thought of as a discourse or text consisting of
multiple consecutive sentences.

3.2 Semantics

In defining the semantics of InqD, we follow exactly the same pattern as we did in
defining the semantics for InqB above. We first specify recursively when a sentence
is supported by a given state.

Definition 14 (Support for InqD)

1. s |= p iff ∀w ∈ s : w(p) = 1
2. s |= ⊥ iff s = ∅
3. s |= ?{α1 , . . . , αn} iff s |= α1 or . . . or s |= αn

4. s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

5. s |= α→ ψ iff ∀t ⊆ s : if t |= α then t |= ψ

6. s |= 〈ϕ1 , . . . , ϕn 〉 iff s |= ϕ1 and . . . and s |= ϕn

The proposition expressed by ϕ, denoted [ϕ]InqD, is the set of all states support-
ing ϕ. Just like for InqB, support for InqD is persistent, and moreover the empty
state supports every sentence. This ensures that the proposition [ϕ]InqD expressed
by a sentence is always a proposition in the sense of inquisitive semantics (def-
inition 3). All other semantic notions—entailment, equivalence, the informative
content of a sentence, the possibilities for a sentence, informative and inquisitive
sentences, questions, assertion, hybrids, and tautologies—carry over directly from
InqB to InqD as well.

When comparing the definition of support for InqD and InqB, we find two
differences, which concern the third and the sixth clause. The sixth clause in the
support definition for InqD is concerned with sequences of sentences. Such sequences
were not part of the language in InqB, so this clause is not present in the support
definition for InqB. In InqD, sequences are treated just like conjunctions: a state
supports a sequence just in case it supports every element of the sequence.

Now let us consider the third clause of the support definition. In InqB, the
third clause was concerned with disjunction. In InqD, disjunction is not a basic
connective, rather α ∨ β is defined as an abbreviation of ¬(¬α ∧ ¬β). Thus, the
support definition for InqD does not include a clause for disjunction. Rather, the
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third clause of the definition is concerned with basic interrogatives. However, notice
that the clause is still very similar to the clause for disjunction in InqB: a state
supports ?{α1 , . . . , αn} just in case it supports at least one of α1 , . . . , αn , while
in InqB, a state supports a disjunction just in case it supports at least one of the
disjuncts. Thus, from a semantic point of view, basic interrogatives in InqD behave
just like disjunctions in InqB. The only difference is that the ‘disjuncts’ of a basic
interrogative in InqD cannot be chosen arbitrarily. In order to guarantee that the
issue raised by a basic interrogative ?{α1 , . . . , αn} can be truthfully resolved in
every world, the ‘disjuncts’ α1 , . . . , αn have to be chosen in such a way that in
every world, at least one of them is true.5

The fifth clause of the support definition, concerning conditionals, is the same
as in InqB. However, it is easy to see that, in the context of InqD, the clause can
be given a simpler and more intuitive formulation.

Fact 4 (Alternative clause for conditionals in InqD)

For any conditional α→ ϕ in InqD and any state s:

s |= α→ ϕ ⇐⇒ s ∩ |α| |= ϕ

A final observation to make about the support definition for InqD is that the
clauses for conjunction and implication apply uniformly to both declaratives and
interrogatives. There is no need to specify separate clauses for the two types of
sentences. This is made possible by the fact that, even though InqD is syntactically
dichotomous, it is not semantically dichotomous. Just as in InqB, all sentences are
assigned the same type of semantic value: a non-empty, downward closed set of
states.

One striking difference between InqB and InqD is that the latter does not contain
any hybrid sentences. Declaratives are never inquisitive, and interrogatives are
never informative. In other words, every declarative is an assertion, and every
interrogative is a question. The labor of providing and requesting information is
strictly divided between the two sentence types.

Fact 5 (Questions, assertions, and hybrids in InqD)

– Every declarative in InqD is an assertion.

– Every interrogative in InqD is a question.

– No single sentence in InqD is a hybrid.

Of course, a sequence of sentences in InqD may very well be hybrid. For instance,
the sequence 〈p, ?{q,¬q}〉 consisting of the declarative p and the interrogative
?{q,¬q}, provides the information that p is the case, and requests further in-
formation to determine whether q is the case (see figure 3(h) and the discussion
below).

Recall that in InqB, the informative content of a sentence ϕ always amounts
to the set of worlds in which it is classically true: info(ϕ) = |ϕ|. This means that
InqB does not diverge from the classical treatment of informative content, it just
adds an inquisitive dimension to the notion of meaning. An analogous result holds
for InqD. Namely, the informative content of every declarative sentence α in InqD

5 This restriction will be lifted in section 6, where we will consider interrogatives that can
only be truthfully resolved in some worlds.
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11 10

01 00

(a) p

11 10

01 00

(b) p ∧ q

11 10

01 00

(c) p→ q

11 10

01 00

(d) p ∨ q

11 10

01 00

(e) ?{p,¬p}

11 10

01 00

(f) ?{p,¬p}∧?{q,¬q}

11 10

01 00

(g) p→ ?{q,¬q}

11 10

01 00

(h) 〈p, ?{q,¬q}〉

Fig. 3 Propositions expressed by some simple sentences in InqD.

amounts to the set of worlds in which it is classically true: info(α) = |α|. Moreover,
since every declarative α is an assertion in InqD, there is always a unique possibility
for α, which coincides with |α|. Thus, for all intents and purposes, the meaning of
a declarative in InqD can be identified with its classical meaning.

Fact 6 (Declaratives behave classically in InqD)

For every declarative α in InqD, s |= α ⇐⇒ s ⊆ |α|. In particular, a declarative α

has a unique possibility, which coincides with |α|.

As we will see, this fact entails that the logic of the declarative fragment of InqD

simply coincides with classical propositional logic (CPL). Thus, InqD is a conserva-

tive extension of CPL, and in this sense it extends CPL in a less drastic way than
InqB. However, there is also a sense in which InqD extends CPL in a more drastic
way than InqB. Namely, besides enriching the semantic machinery, it also enriches
the syntax. It does not only add an inquisitive dimension to the notion of meaning,
but also a new syntactic category—the category of interrogatives—to the logical
language.

3.3 Examples

To illustrate the semantics of InqD, we have depicted the propositions expressed by
some simple sentences in figure 3. As before, we assume that our language contains
just two atomic sentences, p and q, which means that there are just four possible
worlds, 11, 10, 01, and 00. Also as before, we only depict possibilities. As we saw
above, for every declarative α there is a single possibility, which coincides with the
proposition expressed by α in CPL. This is illustrated for some simple declarative
sentences in figure 3(a)–3(d).

Now let us turn to interrogatives. First consider the basic interrogative ?{p,¬p}.
As depicted in figure 3(e), there are two possibilities for this interrogative, one
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consisting of all worlds where p is true, and one consisting of all worlds where ¬p
is true. Thus, this interrogative may be taken to correspond to the polar question
whether p is true or false. Polar questions in English usually only make one of the
two ‘disjuncts’ explicit, as illustrated in (1).

(1) Is John going to the party?

It is also possible to make both disjuncts explicit, as in (2), and in many natu-
ral languages other than English, such as Mandarin Chinese, this is in fact the
standard way to formulate polar questions.

(2) Is John going to the party or not?

In terms of inquisitive content, (1) and (2) are equivalent. Both are used to raise the
issue whether John is going to the party or not, and both are resolved if and only
if one of the two options is established. This is suitably captured both in InqB and
in InqD. It has been noted that in English questions like (2) usually carry a sense
of urgency that is not necessarily conveyed by standard polar questions like (1)
(Bolinger, 1978; Biezma, 2009). In order to capture this fine-grained difference, it
would be necessary to further refine the basic inquisitive semantic machinery of
InqB and InqD.

Turning back to the logical language of InqD, recall that there are two ways to
construct complex interrogatives, using either conjunction or implication. Let us
consider one example of both. As depicted in figure 3(f), the conjunctive interrog-
ative ?{p,¬p} ∧ ?{q,¬q} has four possibilities. Each of these possibilities contains
enough information to determine whether p is true and also whether q is true.

Now let us consider a conditional interrogative, p → ?{q,¬q}. As depicted in
figure 3(g), there are two possibilities for this sentence, |p→ q| and |p→ ¬q|. Thus,
the sentence has the same resolution conditions as a simple conditional question
in English, exemplified in (3).

(3) If John is going to the party, will Mary go as well?

The two possibilities correspond to the two basic resolving answers to this question:

(4) a. Yes, if John is going, Mary is going as well.
b. No, if John is going, Mary won’t go.

Finally, let us consider a simple sequence of two sentences, 〈p, ?{q,¬q}〉. Notice
that the first element of the sequence is declarative and the second interrogative.
As depicted in figure 3(h), there are two possibilities for 〈p, ?{q,¬q}〉. Both of
these support p. In addition, one of them supports q and the other supports ¬q.
Thus, both possibilities contain the information that p is true, as well as sufficient
information to determine whether q is true or not.

Notice that all the interrogative sentences we considered are such that their
possibilities together cover the set of all possible worlds, as depicted in figures 3(e)–
3(g). This means that none of them is informative, they are all questions, in
accordance with fact 5. The sequence 〈p, ?{q,¬q}〉 has two possibilities, which
means that it is inquisitive, but these states do not cover the set of all possible
worlds, which means that the sequence is informative as well. Thus, as noted
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earlier, this example illustrates that sequences can be hybrid, unlike individual
sentences in InqD.

3.4 Translations

We will now show that there is a straightforward translation procedure that trans-
forms any sequence of sentences in InqD into an equivalent conjunction of sentences
in InqB, and conversely any sentence ϕ in InqB can be turned into an equivalent
sequence of two sentences 〈αϕ, µϕ〉 in InqD, where αϕ is a declarative equivalent
with !ϕ, and µϕ an interrogative equivalent with ?ϕ.6

A corollary of this result is that InqD and InqB have exactly the same expressive
power. Recall that InqB is expressively complete (see proposition 1 above). Thus,
the fact that it is possible to translate every sentence in LInqB into an equivalent
sequence of sentences in LInqD implies that InqD is also expressively complete.

Let us first consider the translation from LInqD to LInqB, which is straightfor-
ward. Note that the translation procedure given below only applies to sentences
that do not contain the non-basic connectives ¬ and ∨. If we want to translate a
sentence that does contain ¬ or ∨, we first have to rewrite it in terms of the basic
connectives, and then translate it into LInqB using the procedure given here.

Definition 15 (Translation from LInqD to LInqB)

1. (p)† = p for all p ∈ P
2. (⊥)† = ⊥
3. (?{α1 , . . . , αn})† = (α1 ∨ . . . ∨ αn)
4. (α→ ψ)† = α→ (ψ)†

5. (ϕ ∧ ψ)† = (ϕ)† ∧ (ψ)†

6. (〈ϕ1 , . . . , ϕn 〉)† = (ϕ)† ∧ . . . ∧ (ϕn)†

This translation procedure is meaning preserving.

Fact 7 ((.)† is meaning preserving) For all ϕ ∈ LInqD : [ϕ]InqD = [(ϕ)†]InqB.

As may be expected, translation in the other direction is less straightforward. For
a start, given that LInqD does not contain any single sentences that are hybrid,
it will not be possible to translate every sentence in LInqB into a single sentence

in LInqD in a meaning preserving way. It is possible, however, to translate each
sentence in LInqB into a pair of sentences in LInqD.

Recall from section 2 that in InqB, every sentence ϕ is equivalent with the
conjunction of its two projections, !ϕ ∧ ?ϕ. We referred to this fact as the division

fact: the informative and the inquisitive content of a sentence ϕ can always be
divided over one sentence that is an assertion, !ϕ, and another sentence that is
a question, ?ϕ. We will use this fact to establish the desired meaning preserv-
ing translation from LInqB to LInqD. Namely, we will first show how to translate
sentences of the form !ϕ, and then sentences of the form ?ϕ. Together with the
division fact, this will yield a meaning-preserving translation procedure for the
entire language.

6 Throughout this section we will assume that both LInqD and LInqB are based on the same
set of atomic sentences P.
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First, recall that the informative content of every sentence ϕ in InqB coincides
with the set of worlds in which this sentence is classically true, |ϕ|, and the same
holds for every declarative in InqD. It follows that whenever ϕ is an assertion in
InqB, it expresses exactly the same proposition in InqB as in InqD, namely ℘(|ϕ|).

Fact 8 If ϕ is an assertion in InqB, then [ϕ]InqD = [ϕ]InqB = ℘(|ϕ|).

Recall that every sentence of the form !ϕ is an assertion in InqB. So !ϕ expresses
the proposition ℘(|!ϕ|). But since !ϕ abbreviates ¬¬ϕ, |!ϕ| amounts to |ϕ|, which
means that [!ϕ]InqB = ℘(|ϕ|) = [ϕ]InqD. Thus, for sentences of the form !ϕ, there is
a straightforward meaning preserving translation from InqB to InqD.

Now let us turn to sentences in InqB of the form ?ϕ. In order to deal with
these sentences, we need to build on the fact that every sentence ϕ in LInqB can
be turned into an equivalent sentence of the form ¬ϕ1 ∨ . . .∨¬ϕn , a disjunction of
negated sentences. One way of achieving this is given by the following disjunctive

negative translation.

Definition 16 (Disjunctive negative translation)

1. dnf(p) = ¬¬p
2. dnf(⊥) = ¬¬⊥
3. dnf(ψ ∨ χ) = dnf(ψ) ∨ dnf(χ)
4. dnf(ψ ∧ χ) =

∨
{¬¬(ψi ∧ χj ) | 1 ≤ i ≤ n, 1 ≤ j ≤ m} 7

where:
– dnf(ψ) = ψ1 ∨ . . . ∨ ψn

– dnf(χ) = χ1 ∨ . . . ∨ χm
5. dnf(ψ → χ) =

∨
{¬¬

∧
1≤i≤n(ψi → χf (i)) | f : {1, . . . , n} → {1, . . . ,m}}

where:
– dnf(ψ) = ψ1 ∨ . . . ∨ ψn

– dnf(χ) = χ1 ∨ . . . ∨ χm

The sentence dnf(ϕ) is called the disjunctive negative form of ϕ. As shown in
(Ciardelli, 2009; Ciardelli and Roelofsen, 2011), a sentence is always equivalent
with its disjunctive negative form.

Fact 9 For any ϕ ∈ LInqB, [ϕ]InqB = [dnf(ϕ)]InqB.

Every negated sentence is an assertion in InqB. So the dnf of a sentence is always a
disjunction of assertions, and by fact 8 all these assertions express exactly the same
proposition in InqD as they do in InqB. Now consider a sentence of the form ?ϕ in
InqB, and its disjunctive negative form dnf(?ϕ). Since ?ϕ is a question, dnf(?ϕ) is
also a question, which means that |dnf(?ϕ)| = ω. In other words, for every possible
world w ∈ ω, there is at least one disjunct of dnf(?ϕ) that is classically true in w.
This means that:

?{ψ | ψ is a disjunct of dnf(?ϕ)}

is a well-formed basic interrogative in InqD. Moreover, it is clear that this basic
interrogative expresses exactly the same proposition in InqD as dnf(?ϕ) does in

7 If Φ is a finite set of formulas, we write
∨
Φ to denote the disjunction ϕ1 ∨ · · · ∨ϕn , where

ϕ1 , . . . , ϕn is an arbitrary enumeration of the elements of Φ. Similarly, later on we shall write
?Φ for the interrogative ?{ϕ1 , . . . , ϕn}, where ϕ1 , . . . , ϕn is an arbitrary enumeration of Φ.
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InqB, which in turn is the same as the proposition expressed by ?ϕ in InqB. This,
then, establishes the desired meaning preserving translation.

As before, the translation procedure given below is intended to be applied only
to sentences in InqB that do not contain any non-basic connectives. If we want to
translate a sentence ϕ that does contain non-basic connectives, then we first have
to rewrite it in terms of the basic connectives in InqB, and then translate it using
the procedure given below. Moreover, recall that disjunction is a basic connective
in InqB but not in InqD; if the translation of ϕ contains a disjunction β ∨ γ, this is
to be treated in InqD as an abbreviation of ¬(¬β ∧ ¬γ).

Definition 17 (Translation from LInqB to LInqD)

For every ϕ ∈ LInqB: (ϕ)] = 〈ϕ, ?{ψ | ψ is a disjunct of dnf(?ϕ)}〉.

Fact 10 ((.)] is meaning preserving) For every ϕ ∈ LInqB : [(ϕ)]]InqD = [ϕ]InqB

Thus, despite the considerable differences in their syntax, InqD and InqB are equiv-
alent in terms of expressive power. Moreover, it can be seen from the translation in
definition 17 that removing conjunctive and conditional interrogatives from InqD

would not reduce the expressive power of the system. All propositions can be
expressed by declaratives, basic interrogatives, and sequences consisting of declar-
atives and basic interrogatives.

In section 5 we will consider two natural ways to restrict the expressive power
of InqD. The most radical way of doing so will yield a system that essentially
amounts to the propositional fragment of the partition semantics of Groenendijk
and Stokhof (1984, 1997), discussed in the beginning of the paper. But, before
coming to that, we will first consider the logic that InqD gives rise to.

4 Entailment and validity in InqD

InqD comes with a notion of entailment and validity that applies uniformly to
declaratives and interrogatives.

Definition 18 (Entailment and validity)

– We say that a set of sentences Φ entails a sentence ψ in InqD, notation Φ |= InqD ψ,
just in case ψ is supported by any state that supports all sentences in Φ.

– We say that ϕ is valid in InqD just in case is it is supported by all states.
– The set of all validities in InqD is called the logic of InqD, and is denoted LInqD.

Before investigating the formal properties of entailment and validity in InqD, let
us first consider what these notions amount to at an intuitive level, depending on
the syntactic category of the sentences involved. First consider a sentence ϕ that
is valid in InqD. There are two cases to consider, the case where ϕ is a declarative
and the case in which it is an interrogative. If ϕ is a declarative, then it is valid
just in case its informative content is trivial. This means that it cannot be used to
provide non-trivial information. If ϕ is an interrogative, then it is valid just in case
the issue that it raises is trivially resolved. This means that it cannot be used to
request non-trivial information. Thus, from a conversational point of view, valid
sentences, be they declarative or interrogative, are sentences that cannot be used
to make any non-trivial contribution to the conversation. Moreover, it follows from
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fact 6 that a declarative is valid in InqD if and only if it is a tautology in classical
logic.

Now consider entailment. Let us restrict ourselves to cases where the antecedent
is a single sentence rather than a set containing multiple sentences. Then there
are four cases to consider, the case where both antecedent and consequent are
declarative, the case where both are interrogative, and two cases where one is
declarative and the other interrogative. We will continue to use α and β as meta-
variables ranging over declaratives, and µ and ν as meta-variables ranging over
interrogatives, and we will use |= CPL to denote entailment in classical propositional
logic.

Case 1: declarative entails declarative

If α and β are declaratives, then it follows from fact 6 that α |= InqD β ⇐⇒
|α| ⊆ |β| ⇐⇒ α |= CPL β. Thus, a declarative α entails another declarative β
just in case α provides as least as much information as β, that is, iff α classically
entails β.

Case 2: interrogative entails interrogative

Intuitively, a state supports an interrogative just in case it contains enough
information to resolve the issue expressed by the interrogative. Thus, an inter-
rogative µ entails another interrogative ν just in case any piece of information
that resolves the issue expressed by µ also resolves the issue expressed by ν;
in other words, just in case µ requests at least as much information as ν does.
Thus, in this case entailment does not compare informative strength, as it does
in the case of declaratives, but rather inquisitive strength.

Case 3: declarative entails interrogative

It follows from fact 6 that for any declarative α and any interrogative µ,
α |= InqD µ ⇐⇒ |α| |= µ. So, α entails µ just in case the information provided
by α is sufficient to resolve the issue expressed by µ. In this case, entailment
is thus related to answerhood.

Case 4: interrogative entails declarative

Suppose now an interrogative µ entails a declarative α. This implies that the
informative content of µ entails the informative content of α, info(µ) ⊆ info(α).
But since µ is an interrogative, its informative content is trivial, i.e., coincides
with the set ω of all worlds. But then, info(α) must be trivial as well, which
means that α must be a tautology. Thus, an interrogative can never entail a
declarative unless the latter is a tautology (in which case, it is entailed by any

sentence).

Now that it is clear what validity and entailment amount to at an intuitive level,
let us turn to the formal properties of these notions. We will focus on entailment,
since validity is a special case thereof. We first note that the deduction theorem
holds for declaratives.

Proposition 2 (Deduction theorem)

For any set of sentences Φ, any declarative α and any sentence ψ,

Φ,α |= InqD ψ ⇐⇒ Φ |= InqD α→ ψ

Next we note that the logic is compact. The proof of this fact follows the same line
of reasoning as the proof of the corresponding fact for InqB, which can be found
in Ciardelli (2009, p. 24–25).
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Proposition 3 (Compactness)

For any Φ and ψ, if Φ |= InqD ψ then there is a finite Φ′ ⊆ Φ such that Φ′ |= InqD ψ.

The interrogative operator is a syntactically constrained form of constructive dis-
junction. This is witnessed by the fact that it has the disjunction property.

Proposition 4 (Disjunction property for ?) For any declaratives α1 , . . . , αn :

|= InqD ?{α1 , . . . , αn} ⇐⇒ |= InqD αi for some 1 ≤ i ≤ n

In fact, this is a particular case of a more general and important fact.

Proposition 5 For any declaratives α1 , . . . , αn and any set of declaratives Γ :

Γ |= InqD ?{α1 , . . . , αn} ⇐⇒ Γ |= InqD αi for some 1 ≤ i ≤ n

We now come to the task of axiomatizing |= InqD. Since we’ve already seen that the
declarative fragment of InqD behaves classically, we will have to enrich a system
for classical logic with special rules to deal with interrogatives. We choose to build
on a natural deduction system for classical logic.

The rules of the system are listed in Figure 4 on the next page, using α, β, γ

for declaratives, µ, ν, λ for interrogatives, and ϕ,ψ for generic sentences, which
may belong to either category. We write Φ ` InqD ψ if there is a proof of ψ whose
undischarged assumptions are all included in Φ. Throughout the rest of this section
we will drop the subscript InqD and simply write |= and ` for |= InqD and ` InqD.

A couple of remarks are in place here. First, notice that the introduction and
elimination rules for the interrogative operator have exactly the same shape as the
(standard) rules for disjunction. The crucial difference between the two operators
lies in the generality of the elimination rule: in the case of ?, the conclusion of the
elimination rule can be any formula, declarative or interrogative, whereas for ∨,
the conclusion must be a declarative. This simple restriction prevents obviously
unsound derivations, such as the one from the tautology α ∨ ¬α to the polar
interrogative ?{α,¬α}.

The Kreisel-Putnam rule is named after a similar rule proposed and investi-
gated by Kreisel and Putnam (1957) in the context of intuitionistic logic. The
original rule is concerned with implications that have a negative antecedent and
a disjunctive consequent. It distributes the disjuncts of the consequent over the
implication as a whole. Similarly, our inference rule distributes the ‘disjuncts’ of a
basic interrogative that forms the consequent of an implication over the implica-
tion as a whole. An analogous axiom also plays a crucial role in the axiomatization
of InqB (Ciardelli, 2009; Ciardelli and Roelofsen, 2011).

One can check that each of the rules is sound with respect to the semantics,
which means that the deduction system as a whole is sound as well.

Proposition 6 (Soundness) For any set of sentences Φ and any sentence ψ:

Φ ` ψ ⇒ Φ |= ψ

As far as declaratives are concerned, the system coincides with the usual natural
deduction system for CPL, and therefore it is complete for our semantics.
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Conjunction

ϕ ψ

ϕ ∧ ψ
ϕ ∧ ψ
ϕ

ϕ ∧ ψ
ψ

Disjunction

α
α ∨ β

β

α ∨ β

[α]
...
γ

[β]
...
γ α ∨ β
γ

Implication

[α]
...
ϕ

α→ ϕ
α α→ ϕ

ϕ

Negation

[α]
...
⊥
¬α

α ¬α
⊥

Falsum

⊥
ϕ

Interrogatives

αi

?{α1 , . . . , αn}

[α1 ]
...
ϕ . . .

[αn ]
...
ϕ ?{α1 , . . . , αn}
ϕ

Double negation Kreisel-Putnam rule

¬¬α
α

α→ ?{β1 , . . . , βn}
?{α→ β1 , . . . , α→ βn}

Fig. 4 A derivation system for InqD.
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Proposition 7 For any set of declaratives Γ and any declarative α:

Γ |= α ⇒ Γ ` α

Next consider the case in which the premisses are declaratives and the conclusion
is a basic interrogative.

Proposition 8 For any set of declaratives Γ and any basic interrogative ?{α1 , . . . , αn}:

Γ |= ?{α1 , . . . , αn} ⇒ Γ ` ?{α1 , . . . , αn}

Proof Suppose Γ |= ?{α1 , . . . , αn}. Then, by proposition 5, we must have Γ |= αi

for some 1 ≤ i ≤ n. But then it follows from the completeness of our system for
declaratives, proposition 7, that Γ ` αi , whence by using the introduction rule for
? we can conclude that Γ ` ?{α1 , . . . , αn}. 2

The next step towards completeness is to show that in fact, any interrogative
is provably equivalent to a basic interrogative, so that the previous proposition
generalizes to arbitrary interrogatives.

Definition 19 (Provable equivalence) We say that two sentences ϕ and ψ are
provably equivalent, notation ϕ ≡ P ψ, just in case ϕ ` ψ and ψ ` ϕ.

Lemma 1 Any interrogative is provably equivalent to a basic one.

Proof The proof goes by induction on the complexity of the interrogative µ under
consideration. The claim is trivially true for a basic interrogative, so we just have
to consider the induction step for conjunctive and conditional interrogatives.

1. Consider a conjunctive interrogative µ∧ν and suppose the induction hypothesis
holds for µ and ν, that is, suppose there are declaratives α1 , . . . , αn , β1 , . . . , βm
such that
– µ ≡ P ?{α1 , . . . , αn}
– ν ≡ P ?{β1 , . . . , βm}

We claim that µ ∧ ν is provably equivalent to the basic interrogative

λ := ?{αi ∧ βj | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

We are going to show that this is the case by indicating how these two sentences
may be derived from each other in our system.
(a) Assume µ∧ν. Eliminating the conjunction we obtain both µ and ν, whence

by induction hypothesis we obtain both ?{α1 , . . . , αn} and ?{β1 , . . . , βm}.
Now assume αi for some 1 ≤ i ≤ n. Whatever βj we assume, for 1 ≤ j ≤ m,
we will be able to derive αi ∧βj , whence, by introduction of the ? operator,
we obtain λ.
Since λ may be obtained from βj for all j and since we have the interrog-
ative ?{β1 , . . . , βm}, by the rule of ?-elimination we can discharge all the
assumptions βj and obtain λ.
This proof of λ can be carried out under the assumption αi for any i.
Since we have the interrogative ?{α1 , . . . , αn}, we can apply again the ?-
elimination rule, discharge all the hypotheses αi and conclude λ.



On the semantics and logic of declaratives and interrogatives 21

(b) Conversely, assume λ. Now, if we assume any item αi ∧ βj we can con-
clude αi and thus, by ?-introduction, we obtain ?{α1 , . . . , αn}. Then from
?{α1 , . . . , αn} we can obtain the provably equivalent interrogative µ. Now,
since µ can be obtained under the assumption αi ∧βj for any 1 ≤ i ≤ n and
1 ≤ j ≤ m, and since we have the interrogative λ =?{αi ∧ βj | 1 ≤ i ≤ n, 1 ≤
j ≤ m}, the ?-elimination rule applies: all the assumptions αi ∧ βj can be
discharged and µ can be concluded.
With a totally analogous strategy we proceed to obtain ν, and finally by
the introduction of conjunction we conclude µ ∧ ν.

2. Now consider a conditional interrogative α → µ and assume by the induction
hypothesis that µ is provably equivalent to a basic interrogative ?{β1 , . . . , βm}.
We claim that α → µ is provably equivalent to the basic interrogative ?{α →
β1 , . . . , α→ βn}. Again we will indicate how these sentences are interderivable
in the system.
(a) Assume α → µ. Now assume α: then we can conclude µ and therefore, by

assumption, also ?{β1 , . . . , βm}. Now we discharge the hypothesis α and
conclude α→ ?{β1 , . . . , βm}. At this point we have to resort to our Kreisel-
putnam rule, which yields ?{α→ β1 , . . . , α→ βn}. The role of the Kreisel-
Putnam rule in the system is precisely to guarantee this last inference,
which would not be possible otherwise.

(b) Conversely, assume ?{α→ β1 , . . . , α→ βn}. Also, assume α. Now, whichever
of the items α→ βj we assume, eliminating the implication we will be able
to conclude βj ; then we can obtain ?{β1 , . . . , βm} by ?-introduction, and
therefore also the provably equivalent sentence µ.
Hence, µ may be concluded from any of the assumptions α → βj for any
1 ≤ j ≤ n, and since we have the interrogative ?{α → β1 , . . . , α → βn}, we
can apply the ?-elimination rule, discharge all the hypotheses α → βj and
conclude µ.
Finally, we discharge the hypothesis α and conclude α → µ. The only re-
maining undischarged assumption is ?{α → β1 , . . . , α → βn}. This con-
cludes the proof of the lemma. 2

Proposition 8 can now be generalized to arbitrary interrogatives.

Proposition 9 For any set of declaratives Γ and any interrogative µ:

Γ |= µ ⇒ Γ ` µ

Proof Suppose that Γ |= µ. By the previous lemma, µ is provably equivalent to a
basic interrogative ?{α1 , . . . , αn}. In particular, µ ` ?{α1 , . . . , αn}. Since the proof
system is sound we have that µ |= ?{α1 , . . . , αn}, and since Γ |= µ we also have
that Γ |= ?{α1 , . . . , αn}. It follows then from proposition 8 that Γ ` ?{α1 , . . . , αn}.
Finally, since ?{α1 , . . . , αn} ` µ, we can conclude that Γ ` µ. 2

Putting together propositions 7 and 9 yields a completeness result for the case in
which all premises are declaratives.

Proposition 10 For any set of declaratives Γ and any arbitrary sentence ϕ:

Γ |= ϕ ⇒ Γ ` ϕ
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Now let us examine the case where we have an interrogative premise.

Proposition 11 Let µ be an interrogative and ϕ an arbitrary sentence.

µ |= ϕ ⇒ µ ` ϕ

Proof Suppose that µ |= ϕ. According to lemma 1, µ is provably equivalent to a
basic interrogative ?{α1 , . . . , αn}. In particular, ?{α1 , . . . , αn} ` µ. But then, since
the proof system is sound, we have that ?{α1 , . . . , αn} |= µ, and since µ |= ϕ, we
also have that ?{α1 , . . . , αn} |= ϕ. Now consider any αi , 1 ≤ i ≤ n. Any state that
supports αi also supports ?{α1 , . . . , αn}, and therefore also ϕ. This means that
αi |= ϕ. But then, since αi is a declarative, proposition 10 tells us that αi ` ϕ.
So ϕ can be derived from any αi , 1 ≤ i ≤ n. But then, using the ?-elimination
rule, it can be derived from ?{α1 , . . . , αn}, and therefore also from the provably
equivalent interrogative µ. Thus, we can conclude that µ ` ϕ. 2

So, the case in which there is a single interrogative premise is fine too. We now
turn to the general case, where we have an arbitrary set of premises.

Theorem 11 (Completeness theorem)

For any set of sentences Φ and any sentence ψ:

Φ |= ψ ⇒ Φ ` ψ

Proof Suppose that Φ |= ψ. First, since the system is compact (proposition 3),
there is a finite Φ′ ⊆ Φ with Φ′ |= ψ. Let us divide this finite set Φ′ into a set of
declaratives Γ and a set of interrogatives Λ. We then have that Λ, Γ |= ψ.

Now, a state supports all the interrogatives in Λ if and only if it supports the
conjunctive interrogative λ :=

∧
Λ. Analogously, a state supports all the declara-

tives in Γ if and only if it supports the conjunction γ :=
∧
Γ .

Therefore, Λ, Γ |= ψ is equivalent to λ, γ |= ψ. In turn, by the deduction
theorem, this is equivalent to λ |= γ → ψ. Now we are reduced to having only one
interrogative as our assumption, and proposition 11 ensures completeness for this
case, yielding λ ` γ → ψ. But if λ ` γ → ψ, then λ, γ ` ψ.

Finally, notice that both λ and γ are conjunctions of sentences in Φ: therefore,
both are derivable from Φ. So from Φ one can derive both λ and γ, whence in turn
one can derive ψ. Thus, we have shown that Φ ` ψ, and the completeness result is
established. 2

5 Restricting the expressive power of InqD

In this section, we consider two ways of restricting the expressive power of InqD,
and argue that the full expressive power is needed for a suitable analysis of natural
language. We also address the issue whether, and to what extent, a semantics of
interrogatives is to be intensional, which is related to the issue of expressive power.
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5.1 Simpler basic interrogatives

We saw in section 3.4 that the expressive power of InqD would not be reduced if
we removed conjunctive and conditional interrogatives from the language. That is,
every proposition that is expressed by a conjunctive or a conditional interrogative
can just as well be expressed by a basic interrogative in the language.

However, if we restrict the syntax of basic interrogatives themselves, then the
expressive power of the system does significantly decrease. Given the usual form
of polar interrogatives in natural languages like English, there is one particularly
natural way to restrict the syntax of basic interrogatives in our logical language.
Namely, rather than assuming that the interrogative operator applies to a finite
set of declaratives, we could assume that it applies to a single declarative. Rather
than basic interrogatives of the form ?{α1 , . . . , αn}, for any n ≥ 1, we would then
only have basic interrogatives of the form ?α. Let us call the system that results
from this adjustment InqC.8

Definition 20 (Syntax of InqC) The syntax of InqC is just like that of InqD,
except for the formation of basic interrogatives. For any declarative α, ?α is a
basic interrogative, and nothing else is a basic interrogative in InqC.

Semantically, a basic interrogative of the form ?α is most naturally treated as
raising the issue whether α is true or not. In terms of support, this means that a
state supports ?α just in case it supports either α or ¬α.

Definition 21 (Semantics of InqC) The semantics of InqC is just like that of
InqD, except for the support clause for basic interrogatives, which is as follows:

– s |= ?α iff s |= α or s |= ¬α

One may expect that, given the possibility to form conjunctive and conditional
interrogatives, restricting the syntax of basic interrogatives in the way just de-
scribed does not reduce the expressive power of the overall system. But it does.
To demonstrate this, we will show that all sentences of InqC are characterized by
a particular property, that is not a general feature of sentences in InqD and InqB.

Proposition 12 (InqC is pair-distributive)

For every sentence ϕ in InqC and every state s:

s |= ϕ ⇐⇒ ∀w, v ∈ s : {w, v} |= ϕ

Proof The left-to-right direction of the equivalence holds by the persistence of
support. For the converse, we will prove the contrapositive implication: if s 6|= ϕ,
then there are w, v ∈ s such that {w, v} 6|= ϕ. We proceed by induction on the
complexity of ϕ.

– ϕ is a declarative α. Recall that a state s supports a declarative α iff s ⊆ |α|
(fact 6). So, if s 6|= α, then there is a world w ∈ s which is not in |α|. But then,
again by the same property of declaratives, {w} 6|= α, and notice that {w} is of
the form {w, v} with w = v ∈ s.

8 It can be shown that this system coincides with the propositional fragment of the system
presented in Velissaratou (2000), which amounts to an enrichment of partition semantics with
conditional questions. This explains the C in InqC.
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– ϕ is a polar interrogative ?α. Suppose s 6|= ?α. This means that s is not included
in either |α| or |¬α|, and thus must contain both a world w where α is true
and a world v where α is false. But then the state {w, v} is also not included
in either |α| or |¬α|, whence {w, v} 6|= ?α.

– ϕ is a conjunctive interrogative µ∧ ν. If s 6|= µ∧ ν, then either s 6|= µ, or s 6|= ν.
Suppose s 6|= µ. Then by the induction hypothesis there are w, v ∈ s such that
{w, v} 6|= µ. But then also {w, v} 6|= µ ∧ ν. Similarly if s 6|= ν.

– ϕ is a conditional interrogative α → µ. Suppose s 6|= α → µ. According to fact
4, this happens if and only if s ∩ |α| 6|= µ. Now by the induction hypothesis
there are two worlds w, v ∈ s ∩ |α| such that {w, v} 6|= µ. But since w and v are
in α, {w, v} ∩ |α| = {w, v}, so we also have {w, v} ∩ |α| 6|= µ. Using again fact 4
we get {w, v} 6|= α → µ, which is what we wanted, since both worlds w and v

are in s. 2

The fact that InqC is pair-distributive means that the semantics can be based on a
notion of support that is only concerned with pairs of worlds (more precisely, with
states containing at most two worlds) rather than with arbitrary sets of worlds. In
such a setup, then, the proposition expressed by a sentence can be encoded as a
binary relation on the set of all possible worlds, namely ∼ ϕ = {〈w, v〉 | {w, v} |= ϕ}.

This is reminiscent of partition semantics, where interrogatives also express
a relation on the set of all possible worlds. In the case of partition semantics,
the relation expressed by an interrogative is always an equivalence relation, which
corresponds with a partition. In the case of InqC, viewed as a relational semantics,
the proposition expressed by a sentence is not always an equivalence relation. For
instance, a conditional interrogative like p→ ?q is supported by the pair of worlds
{11, 00} and also by the pair {00, 01} but not by the pair {11, 01} (where the labels
of the worlds are as in our earlier examples). We will show below that if we further
restrict the syntax of InqC by taking away conditional interrogatives, we obtain a
system that has exactly the same expressive power as partition semantics.

The earliest version of inquisitive semantics, presented in Groenendijk (2009)
and Mascarenhas (2009), was also defined as a relational semantics, satisfying
pair-distributivity. However, it has been argued in Ciardelli (2009); Ciardelli and
Roelofsen (2011) that pair-distributivity is not a desirable feature for inquisitive
semantics, and the main systems discussed in this paper, InqD and InqB, therefore
purposefully lack this feature.

The gist of the problem that pair-distributivity gives rise to can be illustrated
with a simple example. Consider a language with three atomic sentences, p, q,
and r, and consider an issue that can be resolved by establishing that either one of
these sentences is true, or that they are all false. In InqB this issue is expressed by
the sentence ?(p∨q∨r), in InqD it is expressed by the sentence ?{p, q, r,¬(p∨q∨r)}.
In natural languages like English issues of this kind are expressed by disjunctive
interrogatives with rising intonation on all disjuncts, indicated in the example
below with upward pointing arrows.9

9 Disjunctive questions like (5), with rising intonation on all disjuncts, are called open dis-
junctive questions (Roelofsen and van Gool, 2010). Open disjunctive questions are to be dis-
tinguished from alternative questions, which come with falling intonation on the final disjunct
(Bartels, 1999; Pruitt and Roelofsen, 2013), and have different semantic characteristics as well.
We will return to alternative questions momentarily.
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(5) Is Peter going to Italy↑ this summer, or to France↑, or to Spain↑?
a. To Italy.
b. To France.
c. To Spain.
d. No, he is not going anywhere.

The issue raised by (5) can be resolved by answering that Peter is going to one of
the three countries, or that he is not going to any of them.

Consider the proposition expressed by ?{p, q, r,¬(p ∨ q ∨ r)} in InqD. Since
there are only three atomic sentences in our language, there are eight possible
worlds: 111, 110, 101, 011, 100, 001, 010, and 000. The proposition expressed by
?{p, q, r,¬(p∨q∨r)} has four maximal elements: |p|, |q|, |r|, and |¬(p∨q∨r)|. We will
show that this proposition cannot be expressed in any system that is pair-distributive.
Towards a contradiction, suppose that ϕ is a sentence that expresses the given
proposition in a system that is pair-distributive. Then, ϕ is supported by all pairs in
|p| = {111, 110, 101, 100}, all pairs in |q| = {111, 110, 011, 010}, and all pais in |r| =
{111, 101, 011, 001}. But then it is also supported by all pairs in {111, 101, 011, 101},
the set of all worlds in which at least two of the atomic sentences are true. But
then, again by pair-distributivity, the state {111, 101, 011, 110} as a whole also
supports ϕ. But this state does not support ?{p, q, r,¬(p ∨ q ∨ r)} in InqD, because
it does not support any of the ‘disjuncts’ of the interrogative. So ϕ does not express
the proposition under consideration, which contradicts our initial assumption.

The upshot of this example is that any pair-distributive system, including InqC

and the relational inquisitive semantics of Groenendijk (2009) and Mascarenhas
(2009), has trouble dealing with disjunctive questions with three or more disjuncts.
In InqD and InqB, this problem does not arise. Thus, the difference in expressive
power between InqD and InqB on the one hand and InqC on the other, is crucial
from the point of view of natural language semantics.

5.2 No conditional interrogatives

Now, let us consider a further restriction of InqC, leaving out conditional interrog-
atives from the syntax of the language. We saw that in the case of InqD, leaving
out conditional interrogatives did not have a real impact on the expressive power
of the system. But in the case of InqC it does. Namely, it essentially leads us back
to the propositional fragment of the partition theory that we discussed in the be-
ginning of the paper as one of the most elementary semantic theories dealing with
both declaratives and interrogatives.

To see this, first consider the proposition expressed by a basic interrogative
?α in InqC. There are two cases to consider. First, if α is a contradiction or a
tautology, then there is a single possibility for ?α, namely the set of all possible
worlds. This possibility, then, forms a (trivial) partition of the set of all possible
worlds, consisting of only one cell. Second, if α is not a contradiction or a tautology,
then there are exactly two possibilities for ?α. One of these is the unique possibility
for α, and the other is the unique possibility for ¬α. These possibilities are disjoint,
and together they cover the set of all possible worlds. Thus, they form a partition
of the set of all possible worlds consisting of two cells.
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It is easy to see that if µ and ν are two interrogatives whose possibilities form a
partition of the set of all possible worlds, then the conjunction of µ and ν has this
property as well. But this means that, as long as we do not allow for conditional
interrogatives, all interrogatives in InqC express partition-like propositions. Thus,
in terms of expressive power, we have the following hierarchy:

partition semantics < InqC < InqD = InqB

Notoriously, disjunctive and conditional questions are beyond the reach of a basic
partition semantics.10 If we move one step up, to InqC, a basic account of con-
ditional questions comes within reach, though disjunctive questions remain prob-
lematic. If we move one more step up, to InqD/InqB, a basic account of disjunctive
questions becomes available as well.

5.3 The debate on the intensionality of interrogatives

In Groenendijk and Stokhof (1997) it is extensively argued, for the most basic
case of yes/no-interrogatives in a propositional language, that it is impossible to
construe an extensional semantics for interrogatives that gives rise to suitable logi-
cal notions of answerhood and entailment. According to Groenendijk and Stokhof,
the semantic evaluation of interrogatives has to be intensional in the sense that it
needs to relate to more than one possible world.

This claim has been challenged by Nelken and Francez (2002), who develop
what they call an extensional semantics for interrogatives, which assigns to each
interrogative one of 5 truth values, organized as a bilattice.11 Unfortunately, as
is noticed in the paper itself, the interpretation is inadequate in that it does not
validate, e.g., |= ?(α ∨ ¬α), where the disjunction is classical, and hence, tauto-
logical. Nelken and Francez try to overcome this inadequacy by calling upon an
underlying intuitionistic logic. But once such a move is made, it can no longer be
claimed that the resulting semantics for interrogatives is extensional.

A new attempt to provide an extensional semantics for interrogatives was
launched in Nelken and Shan (2006). Remarkably, Nelken and Shan operate in
the framework of modal logic. They equate a basic interrogative of the form ?α
with a modal statement 2α∨2¬α, where 2α is taken to mean that “α is known”
or “α is in the common ground”. The idea of using modal logic for the analysis
of interrogatives goes back to Åqvist (1965) and Hintikka (1976), who interpret
a question as a request for knowledge. The statement 2α ∨ 2¬α can be thought
of as capturing the knowledge that is needed to completely satisfy the request
expressed by ?α. As Nelken and Shan put it: “We interpret a question as the
knowledge condition required to answer it completely.”

10 Although see Isaacs and Rawlins (2008) for an analysis of conditional questions in a dy-
namic partition semantics that allows for hypothetical updates of the context of evaluation.
11 In the extended version of Groenendijk (2009) (url provided in the references), it is shown

that the relational inquisitive semantics developed there allows for an alternative formulation
that also assigns one of 5 values to each sentence in the language. A brief comparison with
the 5-valued system of Nelken and Francez (2002) is also made. The two systems are closely
related, but there is one value in each system that splits into two values in the other. It is this
difference that causes the problem for Nelken and Francez noted in the main text, a problem
that does not occur in the system of Groenendijk (2009). See also Groenendijk (2008, §6.5) for
more extensive discussion of this point.
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Nelken and Shan claim that the resulting treatment of interrogatives is exten-
sional. More precisely, they claim (and prove in the appendix of their paper) that
under their analysis “any entailment between questions is satisfiable iff it is satis-
fiable with two worlds, and falsifiable iff it is falsifiable with two worlds” (p.256)
and subsequently note that “a two-world structure can be easily simulated by a
non-modal first-order model that assigns to each atomic formula one of 4 truth
values: {FF, TF, FT, TT}. The truth value of a more complex formula is then
computed by applying the regular truth tables of the logical operators pointwise;
for example, the disjunction of TF and FT is TT. The ? operator checks whether
the two worlds agree: it maps TT and FF to TT; and TF and FT to FF” (p.257).
Strictly speaking, this 4-valued system is indeed extensional, in the sense that it
no longer makes explicit reference to multiple possible worlds. However, as Nelken
and Shan note, it still clearly “has an intensional flavor, in that the 4 truth values
simply encode 2 possible worlds” (p.257).

This result needs to be interpreted with some care. First of all, while it could be
seen as refuting the intensionality claim made by Groenendijk and Stokhof, which
says that a semantic treatment of interrogatives needs to make reference to more
than one possible world, it can also be seen as making this claim more precise,
showing that two worlds are in fact enough, at least for the kind of interrogatives
considered by Nelken and Shan.

With respect to the latter qualification, it is important to note that in the
proof of their claim, Nelken and Shan actually explicitly restrict themselves to
interrogatives which are conjunctions of basic interrogatives. This means, in partic-
ular, that the claim does not apply to conditional and disjunctive interrogatives; it
only applies to interrogatives that correspond to partitions.12 Thus, in our terms,
Nelken and Shan essentially show that partition semantics is pair-distributive. In the
present setting, this is an immediate consequence of Proposition 12, which says
that not only partition semantics but also InqC, which is strictly more expressive
in that it also allows for conditional interrogatives which do not correspond to
partitions, is still pair-distributive.

However, we have argued above that the expressive power of partition seman-
tics, and even of InqC, is not sufficient for a suitable semantic analysis of interrog-
atives in natural language. Such an analysis requires us, at the very least, to move
to a system with the expressive power of InqD and InqB.

Within the modal approach of Nelken and Shan, such a move can be made by
allowing for basic interrogatives of the form ?{α1 , . . . , αn} (rather than just ?α),
corresponding to the modal formula 2α1 ∨ . . . ∨ 2αn . However, the moment we
extend the expressive power of the interrogative fragment of the language in this
way, we know from Ciardelli (2009), Ciardelli and Roelofsen (2011), and the dis-
cussion above that the number of possible worlds needed for the evaluation of
interrogatives is no longer bounded. In particular, two worlds are not sufficient
anymore. This holds irrespectively of whether one adopts a support semantics rel-
ative to information states, or a semantics à la Nelken and Shan (2006) in terms
of knowledge conditions expressed by modal statements.

12 This may also explain the fact why for Nelken and Shan 4 values are sufficient, whereas
Groenendijk (2009) needs 5. The latter, unlike the former, does allow for disjunctive and
conditional interrogatives, although we have seen above that its treatment of disjunctive in-
terrogatives is problematic.
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This allows us to make Groenendijk and Stokhof’s intensionality claim again
more precise: as long as we restrict the expressive power of the interrogative frag-
ment of our formal language to that of partition semantics, as Nelken and Shan do,
or even to that of InqC, our semantics need not make reference to more than two
possible worlds. However, the moment we move to a system with the expressive
power of InqD and InqB, two worlds are no longer sufficient — indeed, our semantics
needs to make reference to sets of possible worlds with arbitrary cardinality.13

5.4 Two loose ends

We have shown that InqD is a natural, conservative extension of CPL, equivalent
in expressive power with the standard inquisitive system InqB, and that the full
expressive power of InqD and InqB is needed for the analysis of declaratives and
interrogatives in natural language. However, along the way we brought up two
issues that should still be considered in further depth.

First, a basic interrogative ?{α1 , . . . , αn} in InqD expresses an issue that is
settled precisely when one of α1 , . . . , αn is established. As mentioned, this no-
tion of basic interrogatives is familiar from other erotetic logics, in particular
Wísniewski’s IEL and Hintikka’s IMI. However, InqD constrains the formation of
basic interrogatives in a particular way: a formula ?{α1 , . . . , αn} only counts as a
basic interrogative if the disjunction α1 ∨ · · · ∨αn is a classical tautology. The role
of this condition is to ensure that the proposition expressed by an interrogative
always covers the whole logical space ω, so that, semantically, the interrogative is
a question. We mentioned in footnote 3 that instead of imposing this restriction,
we could also think of a basic interrogative ?{α1 , . . . , αn} as presupposing that the
actual world is one where the interrogative can be truthfully resolved, i.e., a world
where at least one of α1 , . . . , αn is true. This is indeed how basic interrogatives
are construed in IEL and IMI. We will explore this alternative in section 6.

The second issue is that, even though the expressive power of InqD is sufficient
to capture the meaning of disjunctive questions like (5), with rising intonation
on all disjuncts, it is not sufficient to suitably capture the meaning of disjunctive
questions like (6) below, with falling intonation on the final disjunct:

(6) Is Peter going to Italy↑ or France↓?

13 To avoid confusion, it should be noted that the syntax of Nelken and Shan’s system does
allow for formulas of the form p → ?q, corresponding to p → (2q ∨ 2¬q). Since Nelken and
Shan explicitly talk about such formulas as “conditional questions” it may be puzzling that
we present them as restricting the expressive power of the interrogative fragment of their
formal language to that of partition semantics. However, as remarked above, in proving their
extensionality claim, Nelken and Shan do explicitly restrict themselves to conjunctions of basic
interrogatives. This means that formulas like p → ?q, at least for the purpose of Nelken and
Shan’s central result, do not count as interrogatives. Furthermore, in our view, formulas like
p→ ?q, as interpreted by Nelken and Shan, do not suitably capture the knowledge conditions
of conditional interrogatives in natural language. In effect, the prediction is that a complete
answer to p → ?q is known just in case p happens to be false, or a complete answer to ?q is
known. The right analysis, in our view, is that a complete answer to p → ?q is known just
in case a complete answer to ?q is known under the assumption that p holds. But this is
impossible to express by a modal formula in the interrogative fragment of Nelken and Shan’s
formal language, even if we extend this fragment with conditionals of the form ϕ→ µ, where
ϕ is an arbitrary formula and µ a basic interrogative. Rather, a new abbreviation would be
needed for 2(p→ q) ∨ 2(p→ ¬q).
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As mentioned in footnote 9, disjunctive questions with rising intonation on all dis-
juncts are called open questions, while disjunctive questions with falling intonation
on the final disjunct are called alternative questions. Intuitively, there is a clear
semantic difference between the two. Namely, alternative questions, unlike open
questions, imply that exactly one of the disjuncts holds.14

Crucially, this exclusive implication has a different status than the information
provided by the corresponding disjunctive assertion. As illustrated in (7) and (8)
below, in the case of the assertion, a denial of the exclusive implication is typi-
cally marked with the direct disagreement particle no, whereas in the case of the
question, a denial of the exclusive implication should rather be marked with less
direct disagreement particles like actually or in fact.

(7) A: Peter is going to Italy or France.
B: No, he is staying home.

(8) A: Is Peter going to Italy↑ or France↓?
B: #No / In fact, / Actually, he is staying home.

Disagreement particles like actually and in fact are typically used to mark denials
of non-at-issue implications, in particular presuppositions, as illustrated in (9).

(9) A: John has quit smoking.
B: #No / In fact, / Actually, he never smoked.

For this reason, the exclusive implication of an alternative question is generally
regarded as a non-at-issue implication (see, e.g., Aloni et al., 2009; Haida, 2010;
Roelofsen and van Gool, 2010; AnderBois, 2011; Biezma and Rawlins, 2012). None
of the systems discussed in this paper so far are designed to deal with non-at-issue
implications, so none of them can be expected to suitably deal with alternative
questions. In other words, while we argued above that the full expressive power of
InqD and InqB is necessary for the analysis of questions in natural language, the
case of alternative questions shows that it is not yet sufficient.

6 Extending InqD with presuppositional interrogatives

In order to address the issues laid out above, we will consider a natural extension of
InqD that includes presuppositional interrogatives. We will refer to this extended
system as InqDπ, where π stands for presuppositional. The section is structured
as follows: we will first illustrate the changes that need to be made to include
presuppositions in our semantic picture, then we will introduce the system InqDπ,
and finally we will consider two natural notions of entailment in this enriched

14 It should be noted that, although this description of the semantic difference between open
and alternative questions is good enough for our purposes here, it needs to be refined in view
of cases like (i) below.

(i) Is Peter going to Italy↑, or France↑, or both↓?

If (i) were to imply that exactly one of its disjuncts holds, then it would be contradictory,
which is clearly not the case. For discussion of this issue, we refer to Roelofsen and van Gool
(2010).
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Fig. 5 Assertion, question, and tautology with presuppositions.

setting, showing that the completeness result established earlier for InqD can be
extended to InqDπ.

6.1 Presuppositions in inquisitive semantics

In presuppositional inquisitive semantics (Ciardelli et al., 2012), the meaning of
a sentence ϕ is determined by a pair 〈π(ϕ), [ϕ]〉, where π(ϕ) is a state—the pre-
supposition of ϕ—and [ϕ] is the proposition expressed by ϕ, with the condition
that info(ϕ) ⊆ π(ϕ). In uttering ϕ, a speaker is taken to presuppose that the ac-
tual world is included in π(ϕ). Furthermore, as before, she is taken to provide the
information that the actual world is included in info(ϕ), and to request enough
information from other participants to establish a specific state in [ϕ]. The con-
dition info(ϕ) ⊆ π(ϕ) ensures that the information provided is a (possibly trivial)
enhancement of the information presupposed.

In a presuppositional setting, the notion of informativeness given above needs
to be reformulated to take presuppositions into account: a sentence ϕ is called
informative just in case it provides strictly more information than it presupposes,
that is, info(ϕ) ⊂ π(ϕ). As before, ϕ is called a question iff it is non-informative.
Given the new, more general definition of informativeness, this now means that
info(ϕ) = π(ϕ). Thus, a question may be characterized as a sentence whose propo-
sition [ϕ] covers the presupposition π(ϕ). As before, a tautology is defined as a
sentence that is neither informative nor inquisitive. However, notice that tautolo-
gies may now have non-trivial presuppositions.

Non-presuppositional systems can be regarded as special cases of presupposi-
tional systems where the presupposition of every sentence is trivial, i.e., π(ϕ) = ω

for every ϕ. The systems InqB and InqD discussed above can be regarded as two
such systems. Notice that in a non-presuppositional system, the notion of infor-
mativeness boils down to the one given in section 2. As a consequence, a question
can be characterized as a sentence ϕ whose informative content coincides with ω.

Figure 5 depicts three examples of meanings in a presuppositional inquisitive
semantics. In each of the figures, the state drawn with dashed borders is the pre-
supposition π(ϕ), whereas the states drawn with solid borders are the possibilities
that make up the proposition [ϕ]. If a sentence expresses the meaning depicted
in figure 5(a), it has a non-trivial presupposition, namely, it presupposes that p.
Moreover, it is informative, since its informative content is strictly included in
the presupposition. And finally, it is an assertion, since it has only one possibil-
ity. If a sentence expresses the meaning depicted in picture 5(b), it again has a
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non-trivial presupposition, namely, it presupposes that at least one of p and q is
true. Moreover, it is a question, since its informative content coincides with its
presupposition; and it is inquisitive, since it has two different possibilities, one
corresponding to the information that p, and the other corresponding to the infor-
mation that q. Finally, if a sentence expresses the meaning depicted in 5(c), it is
a tautology, since it is neither informative—its informative content coincides with
its presupposition—nor inquisitive—it has just one possibility; however, it does
have a non-trivial presupposition, namely, it presupposes that p.

6.2 The system InqDπ

InqD is designed to embody a strict division of labor between the two syntactic
categories: declaratives only provide information, while interrogatives only request
information. That is, every declarative is an assertion, and every interrogative is
a question. In a non-presuppositional setting, the desire to ensure this division of
labor forces us to restrict the syntactic rule for forming basic interrogatives.

To see this, suppose we want a basic interrogative ?{α1 , . . . , αn} to be a ques-
tion. The semantic clause for the interrogative operator in InqD implies that
[?{α1 , . . . , αn}] = [α1 ] ∪ · · · ∪ [αn ], so that info(?{α1 , . . . , αn}) = info(α1 ) ∪ · · · ∪
info(αn). Now, recall that InqD is a conservative extension of classical proposi-
tional logic, that is, for any declarative α we have that info(α) = |α|. So the above
informative content amounts to |α1 |∪ · · ·∪ |αn | = |α1 ∨· · ·∨αn |. Now, since InqD is
a non-presuppositional system, something is a question iff its informative content
amounts to ω. So, if we want a basic interrogative ?{α1 , . . . , αn} to come out as
a question, we need to ensure that |α1 ∨ · · · ∨ αn | amounts to ω, which means
that α1 ∨ · · · ∨ αn should be a classical tautology. Hence the requirement that is
placed on basic interrogatives in InqD. If α1 ∨ · · · ∨ αn is not a classical tautology,
then ?{α1 , . . . , αn} would be informative, and thus the division of labor between
declaratives and interrogatives would be violated.

But notice that we are only compelled to this conclusion because InqD is a
non-presuppositional system. If we bring presuppositions into the picture, it can
very well be that ?{α1 , . . . , αn} is a question while info(?{α1 , . . . , αn}) is differ-
ent from ω. What is required is just that info(?{α1 , . . . , αn}) coincides with the
presupposition π(?{α1 , . . . , αn}), which may be non-trivial. So, by bringing pre-
suppositions into the picture we can allow the formation of a basic interrogative
?{α1 , . . . , αn} for an arbitrary sequence of declaratives α1 , . . . , αn , while still re-
taining a strict division of labor between declaratives and interrogatives. This idea
is implemented in the system InqDπ.

The syntax of InqDπ coincides with the syntax of InqD, except that a ba-
sic interrogative ?{α1 , . . . , αn} may now be formed out of any finite sequence of
declaratives α1 , . . . , αn . Since presuppositions are now part of the picture as well,
the semantics of InqDπ needs to specify two maps, a map π assigning a presuppo-
sition to each sentence, and a map [ ] assigning a proposition to each sentence. We
let the latter be defined simply by the support clauses given for InqD in definition
14; only, clause 3 now applies to a broader class of interrogatives.

As for the map π, we will proceed as follows: we will set aside presuppositions
of declaratives for simplicity, assuming the declarative fragment behaves just like
in InqD; as for presuppositions of interrogatives, the constraint that interrogatives
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11 10

01 00

(a) ?{p,¬p}

11 10

01 00

(b) ?{p, q}

11 10

01 00

(c) ?{p∧¬q, q ∧¬p}

11 10

01 00

(d) (p∨ q)→ ?{p, q}

Fig. 6 Four interrogatives in InqDπ .

should always be questions does not leave us much choice: the presupposition π(µ)
of an interrogative µ must always coincide with its informative content info(µ),
which is determined by the proposition [µ]. So, for any interrogative µ, π(µ) is fully
determined by [µ] and the requirement that, semantically, interrogatives should be
questions. Some calculation shows that the resulting inductive clauses for π should
be the following.

Definition 22 (Presuppositions)

– π(α) = ω for any declarative α
– π(?{α1 , . . . , αn}) = |α1 ∨ · · · ∨ αn |
– π(µ ∧ ν) = π(µ) ∩ π(ν)
– π(α→ µ) = {w |w 6∈ |α| or w ∈ π(µ)}.

These definitions guarantee that the division of labor is preserved in this system.

Fact 12 (Division of semantic labor in InqDπ)

– any declarative α is an assertion

– any interrogative µ is a question

Moreover, it is easy to see from the definitions that InqDπ is a conservative exten-
sion of InqD: for any sentence ϕ which belongs to the language of InqD we have that
π(ϕ) = ω and (trivially) [ϕ]InqDπ

= [ϕ]InqD. So, InqDπ simply extends InqD, allowing
the treatment of a less constrained class of interrogative sentences, which includes
basic interrogatives with non-trivial presuppositions, and complex interrogatives
having such basic interrogatives as components.

Figure 6 shows the meanings of some interrogatives in InqDπ. Figure 6(a) de-
picts the meaning of ?{p,¬p}: this interrogative is also a sentence in InqD, and
indeed, as expected, it receives the same interpretation in InqDπ as in InqD: it
expresses the polar question whether p and it has a trivial presupposition. Figure
6(b) depicts the meaning of ?{p, q}: since p ∨ q is not a classical tautology, this
interrogative is not a sentence of InqD; in InqDπ, it is a question that presupposes
that at least one of p and q is true, and requests enough information to establish
either p or q. Figure 6(c) depicts the meaning of ?{p ∧ ¬q, q ∧ ¬p}: again, since
(p ∧ ¬q) ∨ (q ∧ ¬p) is not a classical tautology, this interrogative is not a sentence
of InqD; in InqDπ, it is a question that presupposes that exactly one of p and q is
true, and requests enough information to establish either p or q. This is precisely
the type of meaning that we need to suitably deal with alternative questions in
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natural languages, as exemplified in (6) above.15 Finally, figure 6(d) depicts the
conditional interrogative (p ∨ q)→ ?{p, q}. The consequent of this interrogative is
the basic interrogative ?{p, q} of figure 6(b) which, as we have just seen, carries a
presupposition; however, it follows from the last clause of definition 22 that this
presupposition is ‘cancelled’ by the antecedent of the conditional, that is, the sen-
tence as a whole carries no presupposition.16 As the figure shows, the resulting
interrogative is a question that requests enough information to establish at least
one of (p ∨ q)→ p and (p ∨ q)→ q.

6.3 Entailment in InqDπ

There are two different natural ways to generalize the notion of entailment we
considered for InqD to InqDπ. Both ways are sensible, but they capture different
intuitions. Let us say that a sentence ϕ makes sense in a state s in case the infor-
mation presupposed by ϕ is available in s, that is, s ⊆ π(ϕ). In the first, stronger
sense, a sentence ϕ entails a sentence ψ in case whenever ϕ is supported, ψ makes
sense and it is supported as well.17 In the second, weaker sense, a sentence ϕ entails
a sentence ψ in case whenever ϕ is supported and ψ makes sense, ψ is supported
as well . Intuitively, the latter condition means that ψ cannot be used to make
any non-trivial contribution to the conversation after ϕ is settled, and thus can
be read as “ψ is redundant after ϕ”. In the general definition of these notions, the
antecedent may be a set of sentences rather than a single sentence.

Definition 23 (Entailment relations in InqDπ)

– Φ |= InqDπ

sψ iff for any state s, if s |= ϕ for all ϕ ∈ Φ then s |= ψ.
– Φ |= InqDπ

wψ iff for any state s, if s |= ϕ for all ϕ ∈ Φ and s ⊆ π(ψ), then s |= ψ.

In the following, we will mostly drop the subscript InqDπ and simply write |=
s and |= w . To illustrate the difference between the two notions, consider the
declarative p and the interrogative ?{p ∧ ¬q, q ∧ ¬p}, which, as we saw above,
can be taken to represent the alternative question whether p or q. Suppose p is
supported in s. Then, if the interrogative ?{p ∧ ¬q, q ∧ ¬p} makes sense in s, s
supports (p ∧ ¬q) ∨ (q ∧ ¬p). Since s supports p, it follows that s must support
p ∧ ¬q, and thus also the interrogative ?{p ∧ ¬q, q ∧ ¬p}. Thus, p weakly entails
?{p ∧ ¬q, q ∧ ¬p}, which captures the fact that ?{p ∧ ¬q, q ∧ ¬p} cannot be used to
make any non-trivial contribution to a conversation after p is established. However,

15 Notice that we are not concerned here with how this type of meaning is constructed
compositionally in natural languages. This is of course a very important issue, but it is beyond
the scope of the present paper. All we want to show by means of this example is that, in terms
of expressive power, the system InqDπ is rich enough to deal with alternative questions.
16 It is a distinctive feature of presuppositions that in compound sentences a presupposition

of one of the components can be cancelled by the informative content of another component. It
has proved to be notoriously difficult to accurately account for such cancellation phenomena,
which is known as the projection problem for presuppositions. Since we only deal here with
presuppositions of interrogatives, and since the only compound sentences in which interroga-
tives can combine with informative sentences are conditional interrogatives, projection poses
no problem here.
17 Notice that, since

⋃
[ϕ] ⊆ π(ϕ), a formula ϕ can only be supported in states in which it

makes sense in the first place. Thus, the condition s ⊆ π(ϕ) need not appear explicitly in the
definition of strong entailment, as it is implied by the condition s |= ϕ.
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the mere fact that p is established in s does not by itself ensure that the question
?{p∧¬q, q∧¬p} makes sense in s, and so p does not strongly entail ?{p∧¬q, q∧¬p}.

Fact 13

– p 6|= s?{p ∧ ¬q, q ∧ ¬p}
– p |= w?{p ∧ ¬q, q ∧ ¬p}

This example illustrates a general difference between weak and strong entailment
from declaratives to interrogatives. The declaratives that strongly entail an in-
terrogative µ are the ones that, by themselves, provide sufficient information to
establish a state that supports µ. The declaratives that weakly entail µ, on the
other hand, are those that, in response to µ –thus, assuming the information pre-
supposed by µ– provide sufficient information to establish a state that supports µ.
As the name suggests, strong entailment implies weak entailment.

Fact 14 If Φ |= sψ, then Φ |= wψ.

It is immediate from the definition that weak and strong entailment coincide when
the conclusion ψ has a trivial presupposition. Thus, in particular, they deliver the
same results when the conclusion is a declarative. Unlike in InqD, where an inter-
rogative could only entail a declarative if the declarative is a tautology, entailment
from interrogatives to declaratives may now hold non-trivially: an interrogative µ
entails a declarative α iff µ presupposes α.

Fact 15 µ |= sα ⇐⇒ µ |= wα ⇐⇒ π(µ) ⊆ |α|

When restricted to sentences in InqD, both notions simply coincide with entailment
in InqD.

Fact 16 If Φ ⊆ LInqD and ψ ∈ LInqD, then

Φ |= InqDπ

sψ ⇐⇒ Φ |= InqDπ

wψ ⇐⇒ Φ |= InqDψ

This means in particular that, just like entailment in InqD, both weak and strong
entailment are conservative extensions of classical propositional logic. Finally, we
are now going to see that weak entailment can actually be reduced to strong entail-
ment. For, a sentence ψ is weakly entailed by Φ if and only if ψ is strongly entailed
by Φ with the addition of a declarative γψ that captures the presupposition of ψ.
For any sentence ϕ, the declarative γϕ is given by the following recursive definition.

Definition 24

– γα = > for α declarative
– γ?{α1 ,...,αn} = α1 ∨ · · · ∨ αn

– γ(µ∧ν) = γµ ∧ γν
– γ(α→µ) = α→ γµ

The declarative γϕ expresses the presupposition of ϕ, in the following sense.

Fact 17 For any sentence ϕ and any state s, s |= γϕ ⇐⇒ s ⊆ π(ϕ).

Now the following connection between weak and strong entailment follows from
the definitions together with the previous fact.



On the semantics and logic of declaratives and interrogatives 35

Fact 18 (Weak entailment reduces to strong entailment)

For any set Φ of sentences and any sentence ψ,

Φ |= wψ ⇐⇒ Φ, γψ |= sψ

In section 4 we presented a sound and complete aziomatization of the logic of
InqD. Since the language of InqDπ makes use of exactly the same connectives as
the language of InqD, the deduction system for InqD presented in section 4 includes
rules for all connectives of InqDπ. It turns out that that very deduction system,
when applied to the extended language of InqDπ, yields a sound and complete
axiomatization of strong entailment in InqDπ(which is defined just like entailment
in InqD). To convince oneself of this, it suffices to go through the completeness
proof presented in section 4: nowhere does the argument appeal to the syntactic
restriction on basic interrogatives, or to the semantic fact that the proposition
expressed by an interrogative covers the logical space. All it relies on are the
support clauses, which InqDπ inherits unchanged from InqD. Thus, the very same
argument establishes the following completeness theorem for strong entailment in
InqDπ.

Theorem 19 (Soundness and completeness theorem for strong entailment)

For any set of sentences Φ and any sentence ψ,

Φ |= sψ ⇐⇒ Φ ` ψ

Notice that, since weak entailment reduces in a simple way to strong entailment,
indirectly we obtain an axiomatic characterization of weak entailment as well.

7 Division of labor without dichotomy

We started this paper with the observation that many natural languages are char-
acterized by a division of labor between two categories of sentences, distinguished
by syntactic and/or intonational features: declarative sentences are used primarily
to provide information, while interrogative sentences are used primarily to request
information.

In this paper we have been concerned with the construction of a formal system
InqD that reflects such a division of labor, all the while being based on the uniform
notion of meaning provided by inquisitive semantics.18 However, it is important
to note that, in InqD, the division of labor was achieved at the cost of giving up
one important feature of the basic inquisitive semantics system InqB, namely the
uniform algebraic treatment of the logical constants.

This trade-off is unavoidable given the dichotomous nature of the system InqD.
After all, we have seen that, as soon as disjunction is associated with the join
operation on the space of inquisitive propositions, simple disjunctions of assertions
express hybrid propositions. Therefore, if all sentences are to be either questions or
assertions, disjunction cannot simply express the join operation. Rather, in InqD,
the join operation has to be adapted in such a way that it always delivers either

18 We take it that as far as the division of labor is concerned InqD and InqDπ do not signifi-
cantly differ, and that what we say in this section about InqD, by and large also applies to its
presuppositional extension InqDπ .
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an assertion or a question. Indeed, ∨ is associated in InqD with a variant of the
join operation that always yields an assertion, and ? with a variant of the join
operation that always yields a question.

However, the strict dichotomy embodied by InqD is not the only way that divi-
sion of labor may come about in a semantic system. We would like to suggest here
a different, more subtle strategy that a system based on the inquisitive notion of
meaning may employ to attain division of labor while fully retaining the algebraic
treatment of the logical constants.

The proposal is to assume a structured system with two layers. The more funda-
mental layer consists of an InqB-like system, where the logical constants correspond
semantically with the basic algebraic operations on the space of meanings. Call
sentences of this system proto-sentences. A second, surface layer is then obtained
by heading a proto-sentence with one of a certain set of projection operators. Se-
mantically, all the projection operators available in the system have the property
of turning a proto-sentence into something which is either an assertion, or a ques-
tion (two such operators could be the projections ! and ? that we encountered in
section 2). Call sentences of this second layer projected sentences.

Unlike the dichotomous InqD, such a system fully preserves the algebraic treat-
ment of the logical constants, and only on top of that it implements the division of
labor, by heading each sentence with a projection operator that turns it into an
assertion or a question.

With regard to natural language, the idea underlying this approach is that the
function of certain syntactic and intonational features is precisely to signal that
certain projection operators need to be applied, resulting in a projected sentence,
and thus ensuring a clear division of labor.

Now, how can we determine which of these two strategies, if any, is actually
employed by natural languages? One way this may be assessed is to consider dis-
junctive sentences that are embedded in larger constructions, for instance in the
antecedent of a conditional, or in the scope of a modal operator. If such embedded
disjunctions are best treated as being purely informative, as in InqD, this speaks
in favor of employing the dichotomous strategy. However, if such embedded dis-
junctions are best treated as hybrid, alternative-generating sentences, as in InqB,
it is rather the non-dichotomous strategy sketched here that is called for.

A range of recent linguistic investigations of conditionals, modals, imperatives,
comparatives and other constructions (Kratzer and Shimoyama, 2002; Simons,
2005; Alonso-Ovalle, 2006; Aloni, 2007; Aloni and Roelofsen, 2012, among others)
indicates that, in English and a number of other languages, embedded disjunctions
behave in such a way that not only their informative content matters, but also
their potential to generate alternatives. This suggests that those natural languages
are not based on a strict InqD-style dichotomy, but implement division of labor on
top of a non-dichotomous, InqB-style semantics.

8 Conclusions and further work

In this paper we have seen how the notion of meaning that forms the cornerstone
of inquisitive semantics can be taken as the basis for a dichotomous propositional
system InqD in which the tasks of providing and requesting information are rigidly
divided between declaratives and interrogatives. We connected this system with
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the standard inquisitive system InqB by means of meaning preserving translations,
establishing that InqD, just like InqB, is expressively complete for the relevant
notion of meaning.

InqD gives rise to a uniform, cross-categorical notion of entailment, that gen-
eralizes classical entailment between declaratives to a combined logic involving
both declaratives and interrogatives. For this logic we provided a simple proof
system, showing that the logical properties of the interrogative operator of InqD

are those of a disjunction with a particularly strong elimination rule, and that the
usual rules for conjunction and implication also govern the logic of conjunctive
and conditional interrogatives.

We considered certain restrictions on the syntax of InqD, showing that they
lead to a reduction in expressive power that affects the ability of the system to
deal with certain natural types of issues, and brought this in relation to the debate
on whether and to what extent a semantics for interrogatives needs to be inten-
sional. Finally, we extended our semantic apparatus to deal with presuppositional
interrogatives. This allowed us to lift the unnatural restriction placed on the for-
mation of basic interrogatives in InqD, yielding a system InqDπ which is able to
deal with a wider range of interrogatives. While semantically richer, InqDπ inherits
the well-behaved notion of combined entailment of InqD, as well as the associated
completeness result.

The systems InqD and InqDπ are of interest in several ways. First, they con-
cretely demonstrate that the notion of meaning proposed by inquisitive semantics
is not inherently linked to the particular treatment of the logical constants em-
bodied by the system InqB. In particular, although this notion of meaning does
not require a dichotomous language, it is compatible with one.

Second, InqD and InqDπ may be particularly useful in applications where ques-
tions are relevant, but the alternative-generating character of disjunction is not (a
case in point is the inquisitive dynamic epistemic logic developed in Ciardelli and
Roelofsen, 2012). In such contexts, the use of a dichotomous language often helps
to keep intuitions clearer. For these applications, the availability of a simple and
perspicuous deduction system is a fundamental feature.

Third, several existing erotetic logics, most notably Wísniewski’s IEL and Hin-
tikka’s IMI, assume dichotomous languages that share many features with InqDπ.
This similarity facilitates comparisons and transfer of insights to and from these
traditions. For instance, it seems that the notion of entailment considered in this
paper is meaningful and relevant in the context of IEL and IMI as well, and that
the completeness result established here may be exported to those systems.

Needless to say, the analysis conducted here leaves many issues open. For one
thing, in this paper we focused exclusively on propositional systems. Many inter-
esting phenomena concerning questions can only be analyzed appropriately in a
first-order setting. Our expectation is that issues of translatability and axiomati-
zation will be vastly more complicated in that context.

Furthermore, even though we remarked in several places on the potential rele-
vance of our logical investigations for the analysis of natural language, this connec-
tion remains to be explored in much greater detail. In particular, while we pointed
out that, in terms of expressive power, the systems developed here are in princi-
ple capable of dealing with a considerable range of declarative and interrogative
constructions in natural language, we have only been concerned with composition-
ality issues at a very high level of abstraction. Much further work is needed to spell
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out precisely how the relevant meanings may be constructed compositionally in
natural languages.
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