
O n  t h e  S e m a n t i c s  of C o n c u r r e n c y :  

P a r t i a l  O r d e r s  a n d  T r a n s i t i o n  S y s t e m s  

G. Boudol & L Castellani 

INRIA Sophia-Antipolis 

06560-VALBONNE FRANCE 

A b s t r a c t .  

We introduce an algebra of labelled event structures whose operations are sequential composition, 
sum, and parallel composition. A transition relation is defined on these objects, where at each step 
a process performs a labelled poser. It is claimed that the bisimulation relative to such transition 
systems brings out a clean distinction between concurrency and sequential non-determinism. 

1. I n t r o d u c t i o n .  

This paper may be seen as proposing a tentative synthesis of various approaches to the semantics 
of concurrency. Milner's work on caIcuii of processes ([17,18,19]) provides our main source of 
inspiration. Let us recall the main features of such calculi (cf [1]): first there is a syntax which 
describes abstract programs as terms of an algebra; second there are behavioural rules according 
to which each term may perform some actions and become another term in doing so. This brings 
in a notion of tabeIled transitions denoted 

act prog ~ p r o f  

Finally a semantic equality is defined by means of the well-known notion of bislmulation [21,18,33. 
This gives the scheme of the following technical material. 

Plotkin has advocated in [23] that labelled transition systems determined by structural oper- 
ational rules provide a fairly natural setting to describe the operational semantics of programming 
languages. This is even more true with regard to parallel programming where one wants to program 
non-terminating processes, which may communicate during the computations: here functions from 
input to output can no longer be used as the semantical model. A symptom of this need of a more 
discriminating model is that a process is sometimes thought of as giving rise to a whole domain of 
computations rather than interpreted as a point in a domain; this point of view is exemplified by 
Winskel's work [20,32,34]. 

We shall entirely adopt Milner's standpoint [18,19] according to which any abstract notion 
of process must be based firmly upon operational semantics. As a matter of fact, one often uses 
informal behavioural arguments in order to decide whether some processes should or should not 
be distinguished. For instance (taken from [5]) one can "prove" 
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(at(b + ~)) + (aib) + ((a + c)ib) = (al(b + 4 )  + ((~ + ~)tb) 

(we use here a CCS-like notation) by saying that if the left-hand side performs a concurrently to 
the b of (alb), then the right-hand side is able to do the same thing by choosing a in ((a + e)Ib), 
and so on, so that no behaviour distinguishes the two terms. We shall give here a precise meaning 
to such a proof, by means of bisimulations. 

Bisimulations on transition systems provide a powerful concept (see [1,3] ), but many authors 
argue ([4,6,28], to mention but a few) that this yields an inadequate description of concurrency; 
specifically what is questioned is Milner's expansion theorem [17,14], expressing a simulation of 
concurrency by sequential non-determinism. Roughly speaking (a I b) = ab + ba, thus the parallel 
composition operator can be eliminated (from finite terms), whence it is not primitive. As a 
contribution to the theory of "true concurrency", our paper aims at solving 

concurrency # sequentiality + non-determinism 

More precisely our thesis is that this can be solved while still dealing with bisimulatlons on tran- 
sition systems. 

Evolving from Petri's ideas [22], there is another way to approach the semantics of concur- 
rency; following this way one thinks of sequentiality as causality, that is as prescribing an ordering 
on events. Dually, two events are concurrent if they are not causally related. Thus here a computa- 
tion is a partially ordered set of events rather than a mere sequence. This is by now a widely held 
point of view; it appears in the early work of Mazurkiewicz on traces [15], which have been related 
to posets and algebraic structures (monoids) in [16] and [29]. Another generalization of words 
was proposed by Winkowski [30,31]. Grabowski sets up in [12] a theory of "partial words" that 
are labelled posets, what Pratt  and Gischer call pomsets ([26,10,27], see also [29]). These are 
also the configurations of Winskel's (Iabelled) event s~ruc~ures, which are posets enriched with a 
notion of conflict [32,33,34] - a kind of object that Montanari & a/. also deal with [4,7,8]. Fairly 
close is the notion of process suggested by Petri [22], which is a partial unfolding of a net into an 
occurrence net (cf [9,11]). Reisig studies in [28] what can or cannot be distinguished according to 
various notions of computations. By the way, we must point out the fact that almost all the works 
we have just mentioned model more or less explicitely a process as a "language", that is a set of 
pomsets; this entails the linearity of sequential and parallel composition, that is their distributivity 
over the sum interpreted as set theoretic union. Roughly speaking, (a[(b + c)) = (a]b) + (alc) and 
a ; (b + c) = a ; b + a ; c, a kind of property that does not hold in Milner's calculi of processes. 

Let us now introduce our contribution: first of all, in order to solve ~ we must start with a 
formalism in which one can talk about sequentiallty, non-determinlsm and concurrency as distinct 
notions; this is why we adopt Winskel's (labelled) event structures which are built upon the 
exclusive relations of causal ordering, conflict and concurrency. Each of these relations gives rise 
to a way of constructing event structures: one simply juxtaposes two such structures and then sets 
the relation between their events. These operations are sequential composition, sum, and paralIeI 
composition; they provide us with a syntax for finite event structures (in this paper we shall treat 
neither infinite structures nor communication; to get some ideas about these subjects see the full 
version of the paper [2]). 

Here comes the main idea. We have already mentioned that an event structure determines 
a set of computations, what Winskel calls configurations. Then, defining "what remains of the 
structure" after such a computation we get a notion of labelled transition: here the action (= 
the computation) is a finite pomset and the reached state (= what remains...) is another event 
structure. The point is that we generalize what usually is "over the arrow"; a similar idea may be 
found in [5,8] and it seems that it could be applied to Petri nets where computations are processes 
(in the technical sense of [9,11]). As a matter of fact, we also extend Milner's idea ([18]) that 
actions should be elements of a commutative monoid (a similar notion is Winskel's synchronization 
algebra [33,34]): here we get elements of a "dioid", see below. 



125 

We also give a structural operational semantics (in Plotkin's style [23,24]) for our "abstract 
programs", and then show an exact correspondence between the semantical and syntactical notions 
of transition. Next we define our semantic equality, in the same way as Milner defines his strong 
congruence, and give an axiomatization for it. We claim that this notion of equality solves ~.  

Note: almost all the proofs are omitted; more details may be found in [2]. 

2. A lgeb ra  of Labe l led  Even t  S t ruc tu re s .  

As previously announced, our first concern is in labelled event structures. For some technical 
reasons that will become clear later, our definition is a slight variation of Winskel's one. At some 
points we shall assume knowledge of the work of Nielsen, Plotkin, and Winskel [20] which shows 
how to derive (labelled) event structures from some kind of (labelled) Petri nets; thus we shall 
feel free to use standard concepts of net theory (cf [9]) when dealing with such derived event 
structures. 

2.1 Labelled Event S~ructures and Terms. 

Let as usual {0,1}* be the set of words over the alphabet {0,1}. The concatenation of two words 
u and v is denoted uv, whereas the product of two languages L and L' is 

LL' = {uv/u e L & v E L'} 

DEFINITION. Let A be a non-empty set. An A-labelled event structure (A-LES for short) is a 
structure (E, <, #, l )  where 

(i) E c_ {0,1}* is the set of events, 

(ii) < is a partial order on E, the causaiity relation, 

(iii) #C_ E × E - (<_ U >_) is the symmetric conflict relation, 

Ov) A: E -+ A is the labelling function. 

Note that we do not require Winskel's axiom of conflict heredity. Two events in E are concurrent 
if they are neither comparable nor in conflict, that is 

~ = a ~  ExE-(<u>u#) 

This is a symmetric irrefiexive relation. Note that by definition _< u >, #, and .~ set a partition 
upon E x E. 

We shall always draw structures up to isomorphism, that is omitting the name of events; in 
the figures the order < increases downwards and only one of the remaining relations is explicitely 
shown. For instance 

a ~-~ b 

I 
C 

is a structure with three events e, e r and e 'f respectively labelled a, b and c such that e causes e", e 
and e' are concurrent and e' and e r~ are in conflict. In what follows we let a, b, c , . . .  range over A. 

We use £(A) °° for the set of A-labelled event structures and Z(A) for the set of finite ones. 
In this paper we shall only take finite structures into consideration (a more general study may be 
found in [2]). This set is naturally supplied with an algebraic structure: let V be one of _<, --J, # 
and So, $I be A-LES's; then So(V)S1 is the structure we get by juxtaposing So and $I and setting 
the V relation between the events of So and $1. When V is _< this is called sequential composition 
of So and $1 and denoted So ; $1, whereas if V is --~ this is the paralIel composition So ][ $t and 
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in the case V = # this is the sum So + $I. The formal definition is the following: assuming 

Si = (Ei, <i ,  #i, Ai) for i E {0,1} 

one defines So(V)SI to be (E, _<, #, A) where 

E = Eo ~ E1 
ix <_ iV 
ix # jy  
~(i=) = ~,(=) 

i.e. E = { 0 } E 0  U {1}El 
¢~ i = j a n d x < i y o r V = < , i = O a n d j = l  
¢~ i = j a n d x # i y o r V = # a n d i # j  

These operations are naturally defined up to isomorphism. That  is, denoting P ~ Q the relation 
up and Q are isomorphic", 

P ,-~ P '  and O ~ O' { P ; Q ~ P ' ; Q '  
P + Q ~  P' +Q' 
P li Q ~ P' II Q' 

Thus £ ( A ) / ~  inherits the algebraic structure. 
All that  means is that  we have a syntax to denote finite A-LES's. This abstract syntax is the 

set T(A) of terms built according to the following rules: 
(i) ~ is a term and every atom a £ A is a term, 

(ii) if p and q are terms then so are (p; q), (p [[ q) and (p + q). 

Let J(p) be the labelled event structure denoted by the term p, defined as follows: 

J (~)  = (O,0,0,0) (the empty structure) 

j (~)  = ({~}, = ,0 ,  ~) with ~(~) = 
: ( p ;  q) = (:(p) ; J(q)) 
; (p  II q) = (:(p)tl  :(q)) 

: (p  + q) = (;(p) + :(q))  

The symbol ~. wilI be used also for the empty structure and its isomorphism class. Let us see a 
few examples: the term (a + b) ; (c II d) denotes the structure 

a b 

IXI 
c --~ d 

This and the simpler term (a + b) ; c show why we cannot assume Winskel's axiom of conflict 
heredity [32]. The term (a tl b) + c is interpreted as 

a # c # b  

(where a --- b, and there is no non-trivial causal dependency) and is an example of "symmetric 
confusion" (see [9,20]). 

In the next section we shall characterize both the set of structures which are interpretations 
of terms up to isomorphism and the interpretation equality 

p =J q *~do~ J(v) ~ ;(q) 
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2.2 Characterization. 

One may remark that  in £ ( A ) ° ° / ~  the three operations previously defined axe associative and 
have 11 as neutral element; moreover the sum and parallel composition are commutative. This 
suggests the following definition: 

DEFINITION. A trloid is an algebra (T, ;, H, +,  l) satisfying the axioms 

(i) (T, ;, 1) is a monoid: 

A0: (v;  (q; r)) = ((p; q) ; r) 
u0: (p; 1) = p = (1 ;p) 

(ii) (T, H, 1) is a commutative monoid: 

AI:  (p I] (q ]l r)) = ((p ]l q) ]I r) 
UX: ( p i l l ) = p = ( l i l P )  
c r  (v II q) = (q I! v) 

(iii) (T, + ,  1) is a commutative monoid: 

A2: ( p + C q + r ) ) = C ( p + q ) + r )  
u2: (v + 1) = v = (1 + v) 
c2:  (p + q) = (q + p) 

Let (9 be the equational theory whose axioms are A0 to A2, U0 to U2, C1 and C2, and let = e  
be the congruence on T(A)  generated by these equations. Then we have an obvious soundness 
property: 

P = e q  ~ P = j q  

We now wish to check whether a converse compIeteness property holds. First  we shall see that  not 
all finite labelled event structures are interpretations of terms. As a mat ter  of fact the structure 

a b 

c d 

(without conflict) is known to be the typical one that  cannot be expressed by means of sequential 
and parallel composition, cf [10,12,27], We thus want to find a class of A-LES's which does not 
contain N. In order to define this class and state our characterization result we need to introduce 
some notations. Let R C E × E be a relation on a set E.  

(i) R e = R U R -1 U R e is the reflexive and symmetric closure of R, what we shall call the 
R-comparabili ty relation. 

(ii) $(R) = (E × E) - R ~ is the symmetric, irreflexive R-incomparability relation. 
(iii) m R = (R U R - l )  * is the equivalence generated by R whose classes are the connected compo- 

nents with respect to the R-comparabili ty relation. 

For instance the comparability relations determined by # and ,~ are simply their reflexive closure, 
whereas the <-comparabil i ty is _< U > what we denote (>. In order to avoid many useless repetitions 
,he shall name each of the relations <,  #~ -~ a connective of a given structure S. 

The first property we shall require is N-freeness; an A-LES S is N-free if it satisfies 

N-freeness 

for U a connective of  S 
i[ eo U el and eo ~(U) e~ 
i f  e~ U ea and el $(U) e3 
then eo U ea ~ e2 U el 
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This property, which is obviously preserved by isomorphism, may be drawn 

eo e2 

. -I  
U U U 

t . .  \ 1  
el e3 

This typically precludes a structure such as a # b # c # d (where a ~ e, b ~ d, and a ~-~ d) which 
is derived (see [20]) from the Petri net 

a b e d 

N-freeness is also related to Petri's notion of K-density [22], see [13,25]. 
N-freeness is not enough by itself to characterize the class of A-LES's denoted by terms. Here 

we need another requisite which we may call the triangle property: a structure S satisfies this 
property if it does not contain a configuration 

A e Q  e t # e  t t , -~e  

This precludes the typical situation of "asymmetric confusion" (cf [9,20] ). 
In fact the "behavloural" properties of N-freeness and triangle may be combined in a single 

one - which is less readable but somehow more natural when looking for a property preserved by 
the operations. 

LEMMA. An A-labelled event structure S satisfies N-freeness and the triangle property if and 
only if  it satisfies the property 

X 

for U and V among <,#,~-~ with U • V 
if eo U ~ el and eo :~(U) e~ 
if e2 U ~ e3 and el $(U) es 
then eo V e3 ~ {eo, el} x {e2,e3} C_ V 

In the course of the proof (see [2]) we use the fact that N-freeness implies 

for U among <>,#,,-, 
N'  if eo U el and eo $(U) e2 

if e2 U ea and el ~(U) es 
then eo U es ~ e2 U el 

This fact will be also used later. We can finally define the intended class of structures as follows: 

DEFINITION. The set X (A) is the set of finite A-LES's satisfying the X property. 

The set of structures Z (A) is a generalization of Grabowski-Gischer's class of N-free pomsets 
[12,10]. Clearly the X property is hereditary; this means that if 

f s = (~, <,~, ~) and 3 F  c E 
s ' c s  ~,~o~ 1. S'=S[_~=(F, <_n(F×f ) ,#n(F×F) ,~ [F)  

t h e n S ' _ _ . S & S C Z ( A )  =~ S ' E X ( A ) .  
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We can now state the announced result~ which generalizes Grabowski-Gischer's one. 

T~OR~M 1. The structure (Z (A) /~ ,  ;, it, +, ~ ) is the free trioid generated by A. One especially 
has 

(3) S E Z ( A )  ~, 3 p E T ( A )  J ( p ) ~ - S  

(ii) p = j q ~ p = e  q 

The complete proof is rather long, involving some straightforward parts.  Here we only sketch 
it; more details may be found in [2]. One has to prove that  Z ( A ) / ~ -  is a trioid isomorphic to 
T ( A ) / = e .  We have already seen that  the algebra ~(A)/~---- is a model of the theory ~.  Thus the 
first thing to see is that  the operations preserve the X property; an immediate consequence will 
be that  X(A)/~-- is a trioid which contains the interpretation of every term. 

LEMMA 1. II So, S1E X(A) then So ; S1, So + S1 and SoilS1 are in Z(A)  

The proof proceeds by case inspection ,, 

Next one has to show that  each element of f (A)/~-- is denoted by a term of T(A), univocally 
up to = e .  As usual this completeness property lles upon the existence of normal forms for terms. 
These can be described as follows: let Xt(A) = {~} U ~(A)  where ~ ( A )  is the least set of terms 
built according to the rules 

(i) every atom a E A is in ]~ (A) and has no head operator, 

(ii) i f p  E )~(A) does not have ; (resp. II, +) as head operator and if q E ~ ( A )  then (p ;q)  (resp, 
(p II q), (p+ q))is in X(A) and has ; (resp. II, +) as head operator. 

One gets normal forms by cancelling the unit and using associativity to shift arguments to the 
right. 

PROPOSITION. Let F be the theory whose axioms are A0 to A2 and U0 to U2, and T be the 
theory consisting of A0 to A2, C1 and C2. Then 

(i) for each term p C T(A) there exists a normal form t E )¢(A) such that p = r  t, 

(ii) f o r twonormaI fo rms t ,  ff E jg(A) t = o f f  ,~ t = T t '  

This is a s tandard result. The proof is omitted. 
The crux of the characterization theorem's proof is the following property: for every finite non- 

empty non-atomic labelled event structure satisfying the X property, the set of events is connected 
for exactly one of the connectives <:, ~ ,  # (in fact this is a purely graph-theoretical result); this 
relation gives the head operator of the term which denotes the structure. The existence of such a 
connective comes from the triangle property, whereas uniqueness comes from N-freeness (or more 
accurately from 1N'). 

LEMMA 2. Let S = (E, <,#,A) be an A-LES in X(A).  

(i) there exists a connective U o r s  for which E is connected, that is ~ ( E / ~ u )  = 1; 

(ii) moreover if ~ ( E )  > 1 then Z is not connected for the U-incomparability relation $(U), and 
thus is not connected for any of the other connectives. 

PROOF. We first show that  there is one such relation U, for each S E f (A). Suppose not, and let 
C be a maximal (w.r.t. inclusion) subset of E connected for some connective. From our assumption 
C # E,  so let e E E - C. Then e is connected in the same way (<>, # or ,--') with all the elements 
of C, otherwise E would contain a triangle. But then {e} tJ C is, for some connective, a connected 
subset of E which strictly contains C. 

Now to prove the second point let us assume that  E is connected for both U and ~:(U) for U 
among <> (since E _<-connected ~=> E <>-connected), # and --~. Let F be a minimal (w.r.t. inclusion) 
subset of E which is both V and $(U) connected and such that  # ( F )  > 1. Then ~ ( F )  > 2 since 
one cannot build a two element structure which is connected for two exclusive relations. So let 
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ea E F;  since F - {ea} is not connected for both U and :~(U), let us assume for instance that  
F - {es} is not  connected for U, that  is 

( F -  { e a } ) / ~ u  = { F I , . . . , F , ~ }  with m > 1 

Then  
~i (1 < i < m) ~e e F, ea ~(U) e 

otherwise F could not  be :~(U)-connected. Similarly 

V i ( l < i < r n )  S e E F i  e a U e  

So let G be an Fi such tha t  3 e C F i  e s$ (U)  e a n d H b e  U Fj.  Since 
iCj 

3 e E G e a : ~ ( U )  e and 3e I ~ G e a  U e  I and G i s  U - c o n n e c t e d  

ODe has 

3 e o E G S e l e G  es U e o  a n d e o  U e l  a n d e l $ ( U )  ea 

If we choose an e2 E H such that  e3 U e2 we may figure the si tuation as 

F 
By definition of G and H, eo :~(U) e2 and 
is a consequence of the X property. 

\ 
U U 

e3 

H 

el :~(U) e2, but  this contradicts the N t property, which 

The proof  is the same when F - {ea} is not :~(U)-conneeted a, 
We can now prove 

vs  e x(~)  3~ e ~(A) j(t)  ~- s 

by induction on the size ¢~(E) of S (in fact the induction hypothesis states tha t  the head operator  
of the t e rm t corresponds to the unique connective, if it exists, for which E is connected).  

If • (E)  < 2 then this is trivial: t is either 11 or an a tom (given by the labelling function). 
Otherwise by the previous lemma there exists a connective U for which E is connected and not 
:~(U)-connected. Let 

{ c1 , . . . ,  C,,,} = E/ -$ (~)  

Then 1 < m _< # ( E ) .  From the definition of the Cg's it cannot be the case that  e$(U)e'  for 
some e E Ci and e' E Cj (i ~ j) .  Suppose now that  U is <_ (the other  cases where U is # or --~ 
are similar, and even simpler). Let us see that  if e < e I for some e E Ci and e I E C 1 then for 
all e rr E C a' e < e II whence Ci x Cj C < .  Otherwise there would be e0 and el in Cj  such that  
eo < e < el, thus eo < el ,  and eo # el or eo ~ el,  which is a contradiction. Thus we may assume 
that  { C 1 , . . . , C m }  is enumerated in such a way that  el < " '" < em for some ei E (7/. For all i 
(1 < i < m) s r o i  E Z(A) since the X proper ty  is hereditary. Thus by induction hypothesis there 
are terms t l , . . . , t m  of ~ (A) (whose head operators are not  ;) such that  

Then  
s ~ j ( ( t ,  ; (... ; ~, ,) . . .))  

To conclude the proof of the theorem we must  show 

t , t '  e J4(A) =ez J(t) ~- J(t') ~g- t =T t' 

The proof of this last point  is omi t ted  -- 
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3. O p e r a t i o n a l  s eman t i c s .  

3.1 Transitions on labelled event structures. 

The interpretation equality = e  is too dk~criminating; from a behavioural point of view we would 
llke to identify the terms p + p and p - in the introduction we have seen another example. Thus we 
cannot consider equality of event structures to be the equality of their domains of configurations (see 
[20] ). Nevertheless, the equality we look for is based upon a notion of computation which would be 
Winsket's notion of finite configuration if we had assumed the axiom of conflict heredity. Note that 
computations are deterministic: choices (or conflicts) are resolved while a ~program" computes. 
Computations bear some analogy with processes of Petri nets ([9,11]) or more accurately with 
l~eisig's abstract processes [28]. 

DEFINITION. Given an A-labelled event structure S = (E,<,# ,A)  a computation of S is a 
structure S[F  where 

(i) F is a ~nite subset orE ,  
(ii) S I R  is connict-free: e E F & e' e F ~ -~(e # e') 

(iii) S [F is closed under non-conflicting causes: 
e E F & e ' < _ e & e ' ¢ F  => ~ e " E F  e " # e '  

Note that  we only allow finite computations, thus we cannot deal with fairness; an idea could 
be that  fair computations are the - possibly infinite, but satisfying an axiom of ~finite causes ~' - 
maximal computations, w.r.t, the ordering C. 

We shall name action an isomorphism class of computations. In this paper we restrict our 
attention to A-LES's of f (A). The computations of such structures are rather special: they are 
finite conflict-free (eiementary in Winskel's terminology) A-LES's satisfying the X property. We 
denote by 2(A) the set of these computations and by D(A) = ?(A) / ,  ~- the set of actions they 
determine. In fact D(A) is exactly the set of what Prat t  and Gischer [10,27] call finite N-free 
pomsets. From a theorem of Grabowski-Gischer P(A) is the free "dioid" (Grabowski calls it 
"double monoid"), which is the same as a trioid but  without sum. All that  means is that  actions 
are denoted by terms built  without sum, up to the equational theory A whose axioms are A0~ A1, 
U0, U1 and C1. The set of these "deterrninistic" terms will be denoted D(A). 

For instance, making a confusion between terms and the structure they denote, (a ; c) and 
(b ; e) are computations of ((a + b) ; c), while ((a ; b) It c) is a computation of (a ; (b + d) IIe ; e). 
For F C E let 

#(F)  = {e l3e '  e F # e} 

From a computation P = S I F  of S we build a structure called the residual of S by P which is 

(8/P) S[ (E  - (F u 

This structure is "what remains of S after removing P while resolving the conflicts". Clearly 
S E X(A) implies (S /P)  ~ X(A).  We are now ready to introduce the main definition which brings 
a structure of transition system on event structures. Let us recall the terminology: a (labelled) 
transition system E = (Q, Act, T) is a structure where 

(1) Q is the set of states, 
(ii) Act is the set of actions, 

(iii) T C_ Q x Act × Q is the transition relation, p ~ p' will denote (p, a,  p') E T. 

DEFINITION. The transition relation ~ between A-tabelled event structures is given by 

-~ S' 4~de f P is a computation of S and S' = (S/P). S 

Here one can see some analogy with the construction hi be fo re  h2 g i v e s  h of Degano and 

Montanari ([7]) if one reads it h hi> h2 • 
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For instance, still using terms in place of the structures, we have 

(a;c) ~l 
((a + b) ;c)  '7 ((~ + b)II ~) ~ 

One may remark that  from the definition a computation of a LES S cannot introduce causal 
dependencies which would not be already present in S. For instance (a ; b) is not a computation 
of (a I[ b). We could say that  in our behavioural semantics 

causality =~ temporal ordering 

for we have 

converse is false (consider (a H b) + b --~ 2-). Thus our semantics makes a strong But the 

distinction between sequence of transitions and "transitions of  a sequence" - compare with the 
CCS "action" a.p. 

One may also note that  the behavioural interpretation of parallel composition is not inter- 
leaving, but contains it. This is clue to the fact that  an A-LES  may always perform the empty 
computation; we may interpret 11 as "skip" - when regarded as a computation - or "termination" 

for instance in a transition S ~ ti. Our semantics of paraIleI composition is generalization a 

of the MEUE"asynchronous" operator [1] - related to Milner's synchronous product [18] and to 
the notion of "step" transition of Petri nets [32,28]. 

3.2 Transitions on terms. 

Since we are interested in labelled event structures denoted by terms of T(A)  an obvious question 
is: is there any syntactic notion of transition which reflects the semantic one? In fact the (positive) 
answer is rather simple; let p be the least subset of T(A)  x D(A)  x T (A)  satisfying the following 
clauses or rules 

11 
R0: }- p - - - + p  

RI: a E A ~- a a_+ 1] 

R 2 : p ~ v '  ~ (v;q) u ( / ; q )  

R3: v ~ v' = e  2., q ~ q' ~ (p;q) (~ ;~), q' 

R4: p u p , ,  q v_+ q, ~_ (pliq) ( u l ] v )  (P'Hq') 

R6: q v q, a v ~ 4 e  2. b ( p + q )  v qt 

(note that  r = o  2. can be proved or disproved using only the axioms UO to U2). Since p is the 

least relation satisfying the given clauses, a transition p ~ p' cannot hold unless it has a proof or 
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construct ion according to these rules. For instance we have 

RI : - -  
a 

a -?-- ,  2- 

R5° 

P 
R3 .  

R I  : - -  

C c72.  

( a ; c )  2. 
((a + b) ;c) P 

Now we state  the adequation result  making the correspondence between transi t ions on terms and 
transi t ions on event s tructures.  

THEOREM 2. 

(i) p u q ~ 2U J(u) ~ U SQ J(q) ~ Q J(p) U Q 
p 71 

(ii) J(p) U,7 Q ~ 3u J(u) ~- U ?q J(ql ~ Q p -~ q 

P / 
The proof  lies upon an analysis of S - -~ S when S is (So ;$1), (So + $1) or (So ][ $1) for So # 2. # $1; 

here one meets a t ransla t ion of the rules R2 to R6 m 

4. S e m a n t i c s .  

4.1 Equipoflence. 

Relative to any t ransi t ion system ~ = (Q, Act, T) one may define the well-known Park and Milner 
notion of bis imulat ion [21,18]. Here we adap t  Brookes and Rounds terminology (see [3,1]): 

a relat ion R C_ Q × Q is 

(i) invariant with respect to T if and only if it satisfies 

p R q  and p ~ p ~  =~ 3q I p ' R q t  and q -~a  q~ 
T T 

(ii) a blsimulation (w.r.t. T) if it is a symmetr ic  invariant relat ion,  

(iii) an equisirnuIation if it is a bisimuIation and also an equivalence. 

The invariance proper ty  is usually drawn 

p - -  R - -  q 

i 

p~ . . .  R , . -  ~ 
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The following fact is standard: 

LEMMA. Given a transition sys tem ~ let us define 

P ×~' q *~def 3R bisimulation p R  q 

Then x T is an equisimulation and it is the coarsest one. 

The only point to check is that  the composition of invariant relations is itself invariant m 

We shall call this equisimulation the equipollence with respect to T and sometimes use the alter- 
native notation p × q (T) instead of p x T q- 

We are in fact interested in transitions labelled by actions, that  is classes of structures or 
terms. Let us ambiguously denote ~PI and IP~ the isomorphism class of the A-LES P and the 
=e-class of the term p. Then we define the transition relations ~ and 

s s '  , dof 3 Q = P  s s' 
n 

[u~ pj 
P-- - -+  *~def 3 v = e u  P V_+pr 

P 

We can show that  there is an exact correspondence between the "syntactic" and "semantic" equlpol- 
tences: 

p × q (#) ¢~ J(p) × J(q) (FI) 

(see [2] for a proof). Since isomorphism of A-LES's is an equisimulation a consequence is that 

P = e q  =ez p × q ( ~ )  

Moreover these equipollences are also congruences with respect to the algebraic structure, that is 
compatible with the operations ;, + and II. 

The equipollence ×(~) is what we regard as defining the semantic equality of terms. Thus we 
just use × to denote it. For instance the three terms (att b), (a; b) + (b ; a) and (a; b) + (a I[ b) + (b; a) 
are pairwise distinct with respect to × since the first cannot perform the action (a;  b) whereas the 
second cannot perform (a ]] b). Another example is 

Ca; b LI c) Ca II ; b + a ; (b II c) 

4.2 Axiomatiza$ion. 

In this section we aim to set up a "proof theory" of ×.  It should be clear that  F/-equipoltence of 
elements of P (A) is exactly ~,-~-, for 

PeP(A) (P 11 ,Q=P) 

Thus any intended axiomatization essentially states properties of the sum. As a matter  of fact 
there is  a standard way to solve the problem, by means of sumforms as Hennessy and Milner have 
shown in [14] what we will briefly recall now. For any set Act of actions let K ( A c t )  be the set of 
terms built according to the following rules: 

(i) 11 is a term, 
(ii) for every a E Act if p is a term then a • p is a term, 

(iii) if p and q are terms then so is (p + q). 
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Let if2 be the theory whose axioms are A2, U2, C2, and 

I: ( p + p ) = p  

and g '~he least transit ion relation on K(Act) given by the rules 

R01: F a , p a% p 

R5": p a_~p, I- (p +q )  a p, 

R6*: q ~ q' ~- ( p + q )  ~ q' 

Then the Hennessy-Milner theorem roughly states 

THEOREM. Any state of a ~nite acyclic transition system on Act is denoted by a term of K(  Act). 

For such terms 
p ×~ q ~ p =e~ q 

From this result, we just  have to find a suitable translation from T(A) to K(Act) (that is an 
expansion of terms into finite acyclic transition systems) in order to solve our axiomatization 
problem. A first step is to extend our set of terms to T'(A) which is built as T(A) but with the 
additional formation rule: 

(iii) if a e D'(A) and p e T'(A) then (a * p) e T'(A). 

where D'(A) is the set of terms built from A using ; and ]1 (without ~.). We also extend the 
transition relation p to p' with the supplementary rule R0' and adopt the previous convention for 
the meaning of fi'. Axiom A2 allows us to use an ambiguous notation ~ pi for a (finite) sum of 
terms. Then our axiomatization is as follows: let ~ be the (heterogeneous) theory whose axioms 
are those of ® plus I and (omitting some parentheses) 

BI:  a . ll. =: a for a E A 

B 2 :  ( E - ,  • pi) ; q = E ( @  • pi) ; q) 
i i 

J i J 

B4:  ( a . C ~ a { . p i ) ) ; q = a . ( Z ( a i * p i ) ; q )  
i i 

Bs: (Ea 'p IiE*j'qA=Ea '(p IIEZj'qj) + 
i i i i 

E((a~  II Z~') * (p~ It qi)) + 

j i 

THEOREM 3. The congruence of algebra -=~ generated by • is invariant with respect to ~t 
Moreover for each p E T(A) there exists an r e K(D'(A)) such that p = ¢  r. Therefore for 
p, q E T ( A )  p × q ( f i )  ¢~ p----¢q 

The first statement,  which implies soundness, namely p = ¢  q =~ p × q (7'), can be shown by 
a straightforward ease inspection. For the second one, we can prove by induction on p E T'(A) 
that  such a term is convertible by means of the given equations into a "normaI form", which is 
here either ~. or a term ~-~i a l  • pi where each Pi is again a "normal form". A consequence is 
completeness: p × q (fi) =t, p =¢ q (note that  ¢ contains the equality theory A for the actions, 
which is needed to apply Hennessy-Milner theorem) m 

One could have the idea that  this result expresses a reduction of concurrency to sequential 
non-determinism; however this is not quite right, since actions are posets irreducibly involving 
parallelism. So the expansion theorem is not so bad. From a semantical point of view, the 
technique we used is still unsatisfactory since it gives no indication of how one could describe 
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the equipollence classes of A-LES's. Nevertheless our purpose is achieved: we can prove semantic 
equalities of terms, such as the distributivity properties 

f o r e a c h p ~ . a n d q ~ l ~  ( p + q ) ; r × p ; r + q ; r  

We can also prove 

(a II (b + c)) + (a II b) + ((~ + ~) II b) ~ (~ II (b + c)) + ((~ + ~) II b) 

or other absorption phenomena (r is absorbed by p if p + r × p, cf [5]). This example can be 
arbitrarily complicated (see [5] ), so that the existence of a finite axiomatization without extending 
the syntax or introducing an absorption preorder is doubtful. Note: it can be proved that our 
equipollence is weaker than the notion of distributed blsimulation of [5]. M. Hennessy has found 
an example which proves that it is strictly weaker; namely 

( a IIb + c) + a ; (b + c) --I- ( a N b) + C a [[ c) × (b + ~) + (~ 1t g) + (~ tt c) 

but these two equipollent terms are not d-bisimilar. 
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