Journal of Privacy and Confidentiality (2014) 6, Number 1, 1-16

On the ‘Semantics’ of Differential Privacy: A
Bayesian Formulation

Shiva Prasad Kasivisiwanathan* and Adam Smith'

1 Introduction

Privacy is an increasingly important aspect of data publishing. Reasoning about privacy,
however, is fraught with pitfalls. One of the most significant is the auxiliary informa-
tion (also called external knowledge, background knowledge, or side information) that
an adversary gleans from other channels such as the web, public records, or domain
knowledge. Schemes that retain privacy guarantees in the presence of independent re-
leases are said to compose securely. The terminology, borrowed from cryptography
(which borrowed, in turn, from software engineering), stems from the fact that schemes
that compose securely can be designed in a stand-alone fashion without explicitly taking
other releases into account. Thus, understanding independent releases is essential for
enabling modular design. In fact, one would like schemes that compose securely not
only with independent instances of themselves, but with arbitrary external knowledge.

Certain randomization-based notions of privacy (such as differential privacy, due to
Dwork, McSherry, Nissim, and Smith [i7]) are viewed as providing meaningful guarantees
even in the presence of arbitrary side information. In this paper, we give a precise
formulation of this statement. First, we provide a Bayesian formulation of “pure”
differential privacy which explicitly models side information. Second, we prove that the
relaxed definitions of Blum et al. [2], Dwork et al. [6] and Machanavajjhala et al. [i4]
imply the Bayesian formulation. The proof is non-trivial, and relies on the “continuity”
of Bayes’ rule with respect to certain distance measures on probability distributions.
Our result means that techniques satisfying the relaxed definitions can be used with
the same sort of assurances as in the case of pure differentially-private algorithms, as
long as parameters are set appropriately. Specifically, (e, d)-differential privacy provides
meaningful guarantees whenever ¢, the additive error parameter, is smaller than about
€2 /n, where n is the size of the data set.

Organization. After introducing the basic definitions, we state and discuss our main
results in Section B. In Section B, we relate our approach to other efforts—subsequent
to the initial version of this work—that sought to pin down mathematical precise for-
mulations of the “meaning” of differential privacy. Section B proves our main theorems.
Along the way, we develop lemmas about (e, §)-indistinguishability—the notion of sim-
ilarity that underlies (e, §)-differential privacy—that we believe are of independent in-
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terest. The most useful of these, which we dub the Conditioning Lemma, is given in
Section B-3. Finally, we provide further discussion of our approach in Section {.

1.1 Differential Privacy

Databases are assumed to be vectors in D™ for some domain D. The Hamming distance
dp(x,y) on D" is the number of positions in which the vectors x,y differ. We let Pr][]
and E[-] denote probability and expectation, respectively. Given a randomized algo-
rithm A, we let A(x) be the random variable (or, probability distribution on outputs)
corresponding to input x. If X and Y are probability distributions (or random vari-
ables) on a discrete space D, the statistical difference (a.k.a., total variation distance)
between X and Y is defined as:

SD (X,Y) = max |Pr[X € S] - Pr[Y € 5].
ScD

Definition 1.1 (e-differential privacy [7]). A randomized algorithm A is said to be
e-differentially private if for all databases x,y € D™ at Hamming distance at most 1,
and for all subsets S of outputs,

PrlA(x) € S] < e - Pr[A(y) € 5].

This definition states that changing a single individual’s data in the database leads
to a small change in the distribution on outputs. Unlike more standard measures of
distance such as statistical difference or Kullback-Leibler divergence, the metric here is
multiplicative and so even very unlikely events must have approximately the same prob-
ability under the distributions A(x) and .A(y). This condition was relaxed somewhat in
other papers [, 9, B, B, B, I35, 0d]. The schemes in all those papers, however, satisfy the
following relaxation (first formulated by Dwork, Kenthapadi, McSherry, Mironov, and
Naor [6]):

Definition 1.2 ((e, §)-differential privacy [B]). A randomized algorithm A is (e, d)-
differentially private if for all databases x,y € D™ that differ in one entry, and for all
subsets S of outputs,

PriA(x) € §] < ¢ - PrlA(y) € 8] + 4.

2 Semantics of Differential Privacy

There is a crisp, semantically-flavored[] interpretation of differential privacy, due to
Dwork and McSherry, explained in [6]: Regardless of external knowledge, an adversary
with access to the sanitized database draws the same conclusions whether or not my
data is included in the original database. One might hope for a stronger statement,

IThe use of the term “semantic” for definitions that deal directly with adversarial knowledge dates
back to semantic security of encryption [I0].



namely that the adversary draws the same conclusions whether or not the data is used
at all. However, such a strong statement is impossible to provide in the presence of
arbitrary external information (Dwork and Naor [8], Dwork [B]; see also Kifer and
Machanavajjhala [1Z]), as illustrated by the following example.

Example 1. Consider a clinical study that explores the relationship between smoking
and lung disease. A health insurance company who had no a priori understanding
of that relationship might dramatically alter its “beliefs” (as encoded by insurance
premiums) to account for the results of the study. The study would cause the company
to raise premiums for smokers and lower them for nonsmokers, regardless of whether
they participated in the study. In this case, the conclusions drawn by the company
about the riskiness of any one individual (say Alice) are strongly affected by the results
of the study. This occurs regardless of whether Alice’s data are included in the study.
¢

In this section, we develop a formalization for Dwork and McSherry’s interpretation
and explore its relation to standard definitions. To proceed, we require a mathemat-
ical formulation of “external knowledge,” and of “drawing conclusions.” The first is
captured via a prior probability distribution b on D™ (b is a mnemonic for “beliefs”).
Conclusions are modeled by the corresponding posterior distribution: given a transcript
t, the adversary updates his belief b about the database x using Bayes’ rule to obtain a
posterior b:

Pr{A(x) = 1]b[x]

Y] = P = o] !

When the mechanism A is interactive, the definition of A depends on the adversary’s
choices; for legibility we omit the dependence on the adversary in the notation. Also,
for simplicity, we discuss only discrete probability distributions. Our results extend
directly to the interactive, continuous case.

For a database x, define x_; to be the same vector except position ¢ has been replaced
by some fixed, default value D. Any valid value in D will do for the default value. We
define n + 1 related games, numbered 0 through n. In Game 0, the adversary interacts
with A(x). This is the interaction that actually takes place between the adversary and
the randomized algorithm A. The distribution by is just the distribution b as defined
in ().

In Game i (for 1 < i < n), the adversary interacts with A(x_;). Game ¢ describes
the hypothetical scenario where person i’s data is not usedf In Game i > 0, given a

transcript ¢, the adversary updates his belief b about database x again using Bayes’ rule
to obtain a posterior b; as follows:
PrlA(x_;) = t]b[x]
>, PrlA(z—i) = t]blz]
2Tt could happen by coincidence that person 4’s data equals the default value and hence that
x = x_;. This doesn’t affect the meaning of the result since the default value is chosen independently

of the data. Readers bothered by the possible coincidence may choose to think of the default value as
a special value L (e.g., “no data”) that does not correspond to any real record.

bi[x|t] = (2)




Through these n + 1 games, we get n+ 1 a posteriori distributions bg, . . ., by, where
bo is the same as b (defined in ([)), and b; (i > 0) is the posterior distribution obtained
when the adversary interacts with A(x_;) and uses this interaction to update his belief
distribution (defined in (P)).

Given a particular transcript ¢, we say privacy has been breached if the adversary
would draw different conclusions about the world and, in particular, about a person i,
depending on whether or not i’s data was used. One could formally define “different”
in many ways. In this paper, we choose a weak (but popular) measure of distance
between probability distributions, namely statistical difference. We say the adversary
has learned something, if for any transcript ¢ the distributions by[-|t] and b;[-|t] are far
apart in statistical difference. We would like to avoid this from happening for any
potential participant. This is captured by the following definition.

Definition 2.1 (e-semantic privacy). A randomized algorithm A is said to be e-
semantically private if for all belief distributions b on D™, for all possible transcripts t,
and for alli=1,...,n:

SD (bo[-|t] , bi[-]t] ) <e.

Our formulation of semantic privacy is inspired by Dwork and McSherry’s interpre-
tation of differential privacy [8]. We now formally show that the notions of e-differential
privacy (Definition [[[1]) and e-semantic privacy (Definition B.1]) are essentially equiva-
lent.

Theorem 2.2. For all € > 0, e-differential privacy implies €-semantic privacy, where
E=e“—1. For 0 <e<0.45, ¢/2-semantic privacy implies 3e-differential privacy.

The proof of this and all other results in this section may be found in Section B.

We can extend the previous Bayesian formulation to capture situations where bad
events can occur with some negligible probability. Specifically, we formulate (e, d)-
semantic privacy and show that it is closely related to (e, §)-differential privacy.

Definition 2.3 ((e, §)-semantic privacy). A randomized algorithm is (e, d)-semantically
private if for all belief distributions b on D™, with probability at least 1 — & over t ~
A(x) (t drawn from A(x)), where the database x is drawn according to b, and for all
1=1,...,n:

SD (bo[-|t] , bil-}t] ) < e.

The (e, 0)-privacy definition is most interesting when e > §, since every (¢, §)-private
algorithm is also (0, + (e — 1))-differentially private. Below, we assume € > §. In fact,
many of our results are meaningful only when ¢ is less than 1/n, while e must generally
be much larger than 1/n to allow for useful algorithms.

Theorem 2.4 (Main Theorem).

(1) If €, > 0 and 6 < €%/n, then (e, 6 )-differential privacy implies (€',0")-semantic
privacy on databases of size n with € = e3¢ — 1+ 2v/nd and &' = 4v/nd.



(2) If ,6 > 0 and e < 0.45, then (¢, d)-semantic privacy implies (3¢, 20)-differential
privacy.

In Appendix [, we discuss a stronger notion of (e, d)-semantic privacy and show
that (e, §)-differential privacy need not imply this stronger semantic privacy guarantee.

Remark 1. The implications in Theorems .2 and B4 would not hold if differential
privacy were defined in terms of statistical difference (total variation distance) or mutual
information instead of the multiplicative metric used in Definitions [[]] and [.2. For
example, one could change the last line of the Definition [[Z to

Pr[A(x) € S] < Pr[A(y) € S]+ esp - (3)

For this modified definition to allow publishing useful information, one would need
esp = (1/n) (otherwise, data sets that differ in all n elements would still be hard to
distinguish). However, in that parameter range there is a mechanism that satisfies the
new definition but does not satisfy “semantic” privacy for any reasonable parameters.
Namely, consider the mechanism which on input x = (21, ..., 2,) samples a uniformly
random index 7 € {1,...,n} and outputs (i,z;). This mechanism is intuitively unsat-
isfactory, since it always outputs some individual’s data in the clear. It also does not
satisfy semantic privacy for any pair (¢,0) where ¢ < 1 and 6 < 1. Nevertheless, it does
satisfy the requirement of (J) with egp = 1/n. The same mechanism also satisfies the
natural variant of differential privacy based on mutual information (for example, where
the mutual information between A(x) and z; is required to be small for all indices 7 and
product distributions on x).

2.1 Related Approaches

Prior to Posterior Comparisons. In the original paper on differential privacy, Dwork et
al. [7] defined a notion of “semantic” privacy that involved comparing the prior and
posterior distributions of the adversary. In the language of the preceding section, they
require that SD (b[] , b;[-|t] ) < € for a subclass of belief distributions, called “informed
beliefs,” in which all but one of the data set entries are fixed (constant). They show
that this definition is equivalent to differential privacy. Kifer and Machanavajjhala [I3]
use this prior-to-posterior approach to generalize differential privacy to other settings.

However, the impossibility results of Dwork and Naor [8, 8] and Kifer and Machanava-
jjhala [7], exemplified by the smoking example in Example [ll, imply that no mechanism
that provides nontrivial information about the data set satisfies such a prior-to-posterior
definition for all distributions.

This impossibility motivated the posterior-to-posterior comparison espoused in this
paper, and subsequently generalized by Bassily et al. [I]. In contrast to the prior-
to-posterior approach, the framework discussed in this paper does generalize to arbi-
trary distributions on the data (and, hence, to arbitrary side information). Bassily et
al. [0] suggest the term “inference-based” for definitions which explicitly discuss the
posterior distributions constructed by Bayesian adversaries.



Hypothesis Testing. Wasserman and Zhou [I6] relate differential privacy to the type I
and IT errors of a hypothesis test. Specifically, fix an e-differentially private mechanism
A, an i.i.d. distribution on the data x, an index 4, and disjoint sets S and T' of possible
values for the i-th entry z; of x. Wasserman and Zhou [06] show that any hypothesis
test (given A(x), and full knowledge of the input product distribution on x and the
differentially private mechanism .A4) for the hypothesis H; : z; € S versus the alternative
H, : x; € T must satisfy

1-p8<ea, (4)

where « is the significance level (maximum type-I error) and 1 — 3 is the power (max-
imum type-II error) of the test. In other words, the test rejects the hypothesis with
approximately the same probability regardless of whether the hypothesis is true. This
perspective was extended to (e, d)-differential privacy by Hall et al. [I)].

This is a reasonable requirement. Note, however, that it holds only for product
distributions, which limits its applicability. More importantly, a very similar state-
ment can be proven for the statistical difference-based definition discussed in Remark [I.
Specifically, one can show that

1-8<a+esp, (5)

when the mechanism satisfies the definition of Remark [l. Equation (f) has the same
natural language interpretation as Equation (), namely, “the test rejects the hypoth-
esis with approximately the same probability regardless of whether the hypothesis is
true.” However, as mentioned in the Remark [, the statistical difference-based defini-
tion allows mechanisms that publish detailed personal data in the clear. This makes the
meaning of a hypothesis-testing-based definition hard to evaluate intuitively. We hope
the definitions provided here are easier to interpret.

3 Proofs of Main Results

We begin this section by defining (¢, §)-indistinguishability and stating a few of its basic
properties (Section B, with proofs in Appendix [[1]). Section B9 gives the proof of our
main result for e-differential privacy. In Section B we state and prove the Conditioning
Lemma, the main tool which allows us to prove our results about (e, ¢)-differential

privacy (Section B.4).

3.1 (¢, 0)-Indistinguishability and its Basic Properties

The relaxed notions of (e, d)-differential privacy implicitly use a two-parameter dis-
tance measure on probability distributions (or random variables) which we call (e, §)-
indistinguishability. In this section, we develop a few basic properties of this measure.
These properties listed in Lemma B.3 will play an important role in establishing the
proofs of Theorems B.2 and P4

Definition 3.1 ((¢,d)-indistinguishability). Two random variables X,Y taking val-



ues in a set D are (e, 0)-indistinguishable if for all sets S C D,

PriX € S]<efPr[lY € S|+ and PrlY € S] <efPr[X € S]+4.

We will also be using a variant of (e, §)-indistinguishability, which we call point-wise
(€, §)-indistinguishability. Lemma .3 (Parts [[ and ) shows that (e, d)-indistinguishability
and point-wise (¢, 0)-indistinguishability are almost equivalent.

Definition 3.2 (Point-wise (e, §)-indistinguishability). Two random variables X
andY are point-wise (e, §)-indistinguishable if with probability at least 1—§ over a drawn
from either X orY, we have:

e “Pr[Y =a] < Pr[X =a] <e“Pr[Y =al.

Lemma 3.3. Indistinguishability satisfies the following properties:

1. If X, Y are point-wise (€, 0)-indistinguishable then they are (e, §)-indistinguishable.
2. If XY are (¢, 0)-indistinguishable then they are point-wise (2¢, e%‘i)—indistinguishable.

3. Let X be a random variable on D. Suppose that for every a € D, A(a) and A'(a)
are (€, 0)-indistinguishable (for some randomized algorithms A and A'). Then the
pairs (X, A(X)) and (X, A'(X)) are (¢,0)-indistinguishable.

4. Let X be a random variable. Suppose with probability at least 1 — 6, over a ~ X,
A(a) and A'(a) are (¢, 0)-indistinguishable (for some randomized algorithms A and
A'). Then the pairs (X, A(X)) and (X, A(X)) are (e, + 01)-indistinguishable.

5. If X, Y are (¢, 0)-indistinguishable (or X,Y are point-wise (¢, 0)-indistinguishable),
then SD (X,Y) < €+ 0§, where € = e — 1.

The lemma is proved in Appendix [T

3.2 Case of «Differential Privacy: Proof of Theorem 2.2

Theorem P.7 (restated) (Dwork-McSherry). ¢/2-differential privacy implies €-
semantic privacy, where € = e — 1. €/2-semantic privacy implies 3e-differential privacy
as long as € < 0.45.

Proof. Consider any database x € D". Let A be an ¢/2-differentially private algorithm.
Consider any belief distribution b. Let the posterior distributions by[x|t] and b;[x|t] for
some fixed ¢ and ¢ be as defined in ([[) and (B). €/2-differential privacy implies that for
every database z € D"

e~ ?Pr[A(z_;) = t] < PrlA(z) = t] < e“/?Pr[A(z_;) = 1].



These inequalities imply that the ratio of by[x|t] and b;[x|t] (defined in ([[) and (B)) is
within e*€. Since these inequalities hold for every x, we get:

Vx € D", e b;[x|t] < bo[x|t] < e“b;[x]t].
This implies that the random variables bg[-|t] and b;[-|¢] are point-wise (e, 0)-indistinguish-

able. Applying Lemma B.3 (Part ) with § = 0, gives SD (bo[-|t],bi[-|t]) < & Re-
peating the above arguments for every belief distribution, for every ¢, and for every ¢,
shows that A is é&-semantically private.

To see that e-semantic privacy implies 3e-differential privacy, consider a belief dis-
tribution b which is uniform over two databases x,y which are at Hamming distance
of one. Let ¢ be the position in which x and y differ. Fix a transcript ¢t. The distri-
bution b;[-|t] will be uniform over x and y since they induce the same distribution on
transcripts in Game 4. This means that bo[-|¢] will assign probabilities 1/2 + € to each
of the two databases (by Definition B.T). Working through Bayes’ rule shows that (note
that b[x] = bly])

+ €

— €

Pr[A(x)
PrlA(y)

ol
S
sl
S

< e*(since € < 0.45). (6)

t J—
t] bolylt]

|
IA
SIS

Since the bound in (B) holds for every ¢, A(x) and A(y) are point-wise (3¢, 0)-indistinguish-

able. Using Lemma B-3 (Part [l), implies that A(x) and A(y) are (3¢, 0)-indistinguishable.
Since this relationship holds for every pair of neighboring databases x and y, means that
A is 3e-differentially private. |

3.3 A Useful Tool: The Conditioning Lemma

We will use the following lemma to establish connections between (¢, ¢)-differential pri-
vacy and (e, d)-semantic privacy. Let B|a—, denote the conditional distribution of B
given that A = a for jointly distributed random variables A and B.

Lemma 3.4 (Conditioning Lemma). Suppose the pair of random variables (A, B)
and pair of random variables (A’, B') are (e,d)-indistinguishable. Then, for é = 3¢
and for every 6 >0, the following holds: with probability at least 1 — 6" over t ~ A
(or, alternatively, over t ~ A'), the random variables Alp—; and A'|pi—; are (€,6)-
indistinguishable with 6" = %‘S + 20

eec
We can satisfy the conditions of the preceding lemma by setting b=2¢"= O(V59).

However, the proof of our main theorem will use a slightly different setting (with 6"
smaller than 9).

Proof. Let (A, B) and (A’, B') take values in the set D x E. In the remainder of the



proof, we will use the notation A|; for A|g—; and A’|; for A’|p/—;. Define,

Bady, = {t € F : 3S; C D such that PI‘[A|t c St} > ef PI‘[AI‘t S St] + 8}

Bady = {t € E : 35, C D such that Pr[A|; € S;] > et Pr[Al, € Si] + 5} .

To prove the lemma, it suffices to show that the probabilities Pr[B € Bad; U Bads| and
Pr[B’ € Bad; U Bads] are each at most 6”. To do so, we first consider the set

Bady={t€ E : Pr[B=t] <e **Pr[B'=t] or Pr[B=t] > e Pr[B =1]} .
We will separately bound the probabilities of Bady, Bad} = Bad; \ Bady, and Badl, =
Badg \ Bado.

To bound the mass of Bady, note that B and B’ are (e, §)-indistinguishable (since
they are functions of (A4, B) and (A4’, B’)). Since (e, §)-indistinguishability implies point-
wise (2¢, 22)-indistinguishability (Lemma B.3, Part [), we have

7 ee€

20
Pr[B € Bady) < —.
ee€

We now turn to Badj = Bad;\ Bady. For each t € Bad), let S; be any set that witnesses
t’s membership in Bad; (that is, for which Pr[A|, € S;] exceeds e Pr[A’|, € S + 9).
Consider the critical set

= |J Six{t}.

teBad)

Intuitively, this set will have large mass if Bad] does. Specifically, by the definition of
Si, we get a lower bound on the probability of 77:

Pr((A,B)eTi] = Y  Pr[A]; €S]Pr[B=1
teBad)
> > (e°Pr[A'], € 8] +0)Pr[B =1
teBad)

= > e Pr[A'|, € S| Pr[B =1] | +§Pr[B € Bad,].
teBad)

Because Bad) does not contain points in Bady, we know that Pr[B = t] > e~2¢ Pr[B’ =
t]. Substituting this into the bound above and using the fact that é = 3e and Pr[4’|; €
Sy =Pr[A’ € S| B’ =], we get

Pr[(A,B) e Th] > Z e Pr[A’ € S, | B = t]le 2 Pr[B’ = t] + § Pr[B € Bad)]
teBad)

= ¢ Pr[(A",B') € T\ + § Pr[B € Bad,].
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By (e, d)-indistinguishability, Pr[(4, B) € T3] < efPr[(4’, B') € T1] + §. Combining the
upper and lower bounds on the probability that (A, B) € Ty, we have § Pr[B € Bad}] <

6, which implies that R
Pr[B € Bad}] <6/6.

By a similar argument, one gets that Pr[B € Badj] < §/. Finally,

Pr[B € Bady U Bady] < Pr[B € Bady] + Pr|B € Bad}]| + Pr[B € Bady)]
2% 5§ 5 2 25
ti4z=— =4

eec 55 e

By symmetry, we also have Pr[B’ € Bad;UBads] < %4— %. Therefore, with probability
at least 1 — 8", Al and A’|; are (¢,4)-indistinguishable, as claimed. O

3.4 The General Case: Proof of Theorem 2.4

Theorem R.4 (restated).

(1) If ,6 > 0 and § < €%/n, then (e, 6 )-differential privacy implies (¢',4')-semantic
privacy on databases of size n with € = e3¢ — 1+ 2v/nd and &' = 4v/nd.

(2) If ,6 > 0 and € < 0.45, then (e,0)-semantic privacy implies (3¢, 20)-differential
privacy.

Proof. () Let A be an (¢, 0)-differentially private algorithm. Let b be any belief distri-
bution and let x ~ b. Let A;(x) = A(x—;), i.e., A; on input x constructs x_; and then
applies A on it. From Lemma B.3 (Part [J), we know that (x,.A(x)) and (x,.4;(x)) are
(¢, 0)-indistinguishable for every index i =1,...,n.

Apply Lemma B.4 with A(X) = A(x), A (X) = Ai(x), € = 3¢, and 6 = v/nd. We get
that with probability at least 1 — ¢" over ¢ ~ A(x), the random variables x| 4(x)—+ and
x| 4, (x)=¢ are (€, §)-indistinguishable, where 6" < 26/64268/(eef) < 26/6+25 /e < 4,/5/n.
Note that € > § = v/nd (a condition assumed in the theorem).

Let &' = nd”; note that ' < 4v/nd. Taking a union bound over all n choices for the
index i, we get that with probability at least 1 — ¢’ over the choice of t ~ A(x), all n
variables x| 4,(x)=¢ (for different i’s) are (¢, 0)-indistinguishable from x| 4(x)—-

To complete the proof of (), recall that (€, 3)—indistinguishability implies statistical
distance at most 3 — 1+ = €.

(B) To see that (e, §)-semantic privacy implies (3¢, 26)-differential privacy, consider
a belief distribution b which is uniform over two databases x,y which are at Hamming
distance of one. The proof idea is the same as in Theorem E.2. Let ¢ be the position in
which x and y differ. Let A be an algorithm that satisfies (e, §)-semantic privacy.

~ In Game i, x and y induce the same distribution on transcripts, so the distribution
b;[-|t] will be uniform over x and y (for all transcripts t). We now turn to Game 0 (the



11

real world). Let E denote the set of transcripts ¢ such that bo[-|t] assigns probabilities
in 1/2 + € to each of the two databases x and y. Let A denote the (random) output
of A when run on a database sampled from distribution b. The semantic privacy of A

implies E occurs with probability at least 1 — ¢ over t ~ A. Working through Bayes’
rule as in Theorem EZ4 shows that

e 3 PrlA(y) = t] < Pr[A(x) = t] < ¢* Pr[A(y) = t]

for all t € E. (This last step uses the assumption that e < 0.45). Moreover, since
A is an equal mixture of A(x) and A(y), the event E must occur with probability at
least 1 — 2§ under both ¢t ~ A(x) and t ~ A(y) Hence, A(x) and A(y) are (3e,20)-
indistinguishable. Since this relationship holds for every pair of neighboring databases
x and y, A is (3¢, 20)-differentially private. O

4 Further Discussion

Theorem P4 states that the relaxations of differential privacy in some previous work
still provide meaningful guarantees in the face of arbitrary side information. This is not
the case for all possible relaxations, even very natural ones, as noted in Remark [I.

Calibrating Noise to a High-Probability Bound Local Sensitivity. In a different vein,
the techniques used to prove Theorem P4 can also be used to analyze schemes that do
not provide privacy for all pairs of neighboring databases x and y, but rather only for
most such pairs (remember that neighboring databases are the ones that differ in one
entry). Specifically, it is sufficient that those databases where the indistinguishability
condition fails occur only with small probability.

We first define a weakening of Definition B-J so that it only holds for specific belief
distributions.

Definition 4.1 ((¢,d)-local semantic privacy). A randomized algorithm is (e,0)-
local semantically private for a belief distribution b on D™ if with probability at least
1—¢ overt ~ A(x) (t drawn from A(x)), where the database x is drawn according to b,
and for alli=1,...,n:

SD (bo[-|t] , bi[-[t] ) <.

Theorem 4.2. Let A be a randomized algorithm. Let
E = {x:V neighbors y of x, A(x) and A(y) are (¢, 0)-indistinguishable}.

Then A satisfies (€,8")-local semantic privacy for any belief distribution b such that
bE] = Pryp[x € €] > 1 — &1 with € = €3 — 14 /ndy and &' < 4y/nds as long as
€ > \/ndo, where 69 = 6 + 01.

Proof. The proof is similar to Theorem P4 ([]). Let b be a belief distribution with
b[€] > 1 — 61 and let x ~ b. From Lemma B.J (Part f]), we know that (x,.4(x)) and
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(x, A;(x)) are (e, § + 01 )-indistinguishable, where A;(x) = A(x_;). The remaining proof
follows exactly as in Theorem 2.4 ([l)). O

We now discuss a simple consequence of the above theorem to the technique of
adding noise according to local sensitivity of a function.

Definition 4.3 (Local Sensitivity, [I5]). For a function f : D™ — R, and x € D",
the local sensitivity of f at x is:

LS¢(x)= max_ |f(x)— f(y)l|

y:dm(xy)=1

Let Lap(XA) denote the Laplacian distribution. This distribution has density function
h(y) x exp(—|y|/A), mean 0, and standard deviation A. Using the Laplacian noise
addition procedure of [, 5], along with Theorem, .2 we getfj

Corollary 4.4. Let & = {x : LSy(x) < s}. Let A(x) = f(x)+ Lap(2). Let b be a
belief distribution such that b[E] = Pryplx € E] > 1 — 1. Then A satisfies (€',8")-local
semantic privacy for belief distribution b with € = €3¢ — 1+ v/nd; and §' < 4v/né; as
long as € > v/néy.

Proof. Let x ~ b. If x € £, then it follows from [, [H], that A(x) and A(x_;) are (e, 0)-
indistinguishable for every index ¢ = 1,...,n. We can apply Theorem IJ to complete
the proof. O

The approach discussed here was generalized significantly by Bassily et al. [M]; we
refer to their work for a detailed discussion.

1 Appendix
1.1 Proof of Lemma 3.3
Proof of Part[l. Let Bad be the set of bad values of a, that is
Bad ={a : Pr[X =a] < e “Pr[Y = a] or Pr[X =a] > e*Pr[Y = a]}.
By definition, Pr[X € Bad] < §. Now consider any set S of outcomes.
Pr[X € S] < Pr[X € S\ Bad] + Pr[X € Bad].

The first term is at most e Pr[Y € S\ Bad] < e*Pr[Y € S]. Hence, Pr[X € S| <
e“Pr[Y € S]+ 4, as required. The case of Pr[Y € S] is symmetric. Therefore, X and Y
are (e, §)-indistinguishable.

3Similar corollaries could be derived for other differential privacy mechanisms like those that add
Gaussian noise instead of Laplacian noise.
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Proof of Part3. Let S = {a : Pr[X = a] > e**Pr[Y = a]}. Then,
Pr[X € S] > e* Pr[Y € §] > e (1 +¢)Pr[Y € §] = Pr[X € §] — e Pr[Y € §] > ee“ Pr[Y € S].

Since Pr[X € S| — e“Pr[Y € S] < §, we mush have eePr[Y € S] < §. A similar ar-
gument when considering the set S = {a : Pr[X = a] < ¢ **Pr[Y = a]} shows that
ee“Pr[Y € §'] < §. Putting both arguments together, Pr[Y € S U S'] < 2§/(ee®). There-
fore, with probability at least 1 — 2d/(e€) for any a drawn from either X or Y we have:
e *Pr[Y = a] < Pr[X =a] < *Pr[Y =ad.

Proof of Part B. Let (X, A(X)) and (X, A’ (X)) be random variables on D x E. Let S be an
arbitrary subset of D x E and, for every a € D, define S, ={b€ E : (a,b) € S}.

Pr((X,A(X)) €S] < Y PrlA(X)€ S.|X =a|Pr[X =
< > (e Pr[A(X) € So| X =a] + 6) Pr[X =]

< S+ Pri(X, A(X)) e S

By symmetry, we also have Pr[(X, A'(X)) € S] < § + e Pr[(X, A(X)) € S]. Since the above
inequalities hold for every selection of S, it is implied that (X, A(X)) and (X, A'(X)) are
(€, 0)-indistinguishable.

Proof of Part[]. Let (X, A(X)) and (X, A’(X)) be random variables on D x E. Let T C D be
the set of a’s for which A(a) < e‘A’(a). Now, let S be an arbitrary subset of D x E and, for
every a € D, define S, = {b€ E : (a,b) € S}.

Pr[(X, A(X)) € 5]
= Z PrlA(X) € So | X =a]Pr[X =a] + Z Pr[A(X) € So | X = a]Pr[X = q]

a¢T a€T
<> PrX=a]+ ) PrlA(X) € Su| X =a]Pr[X =
agT a€T
=Pr[X ¢ T+ Y PrlA(X) € Su| X = a] Pr[X = q
<d+ Z:(e6 Pr[A'(X) € Sa| X = a] + §) Pr[X = d

<5461 + e Pr[(X, A (X)) € S].

By symmetry, we also have Pr[(X,A'(X)) € S] < § + d1 + e Pr[(X, A(X)) € S]. Since the
above inequalities hold for every selection of S, it is implied that (X, A(X)) and (X, A’ (X))
are (€, + 01)-indistinguishable.

Proof of Part . Let X and Y be random variables on D. By definition of statistical difference
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SD (X,Y) = maxscp |Pr[X € S] — Pr[Y € S]|. For any set S C D,

2| Pr[X € S]—Pr[Y € S]]
= [Pr[X € S] - Pr[Y € S]| + [Pr[X ¢ S] — Pr[Y ¢ 5]

= §€:S(Pr[x = —Prly =d)| + %(Pr[X = —Pr[y =)

< ;IPr{X:d—Pr[YZC]I+Z¢;IPr[XZC]—Pr[YZC]I

- ZD [Pr[X = ] — Pr[Y = (]|

< CEZ(J Pr[Y =+ 6 —Pr[Y =c]) + > _(e“Pr[X =+ — Pr[X =])
= zstJr (e =1) ) Pr[y =d + (e - 1)% Pr[X = (]

< 2(ef 1)+ QSG:D 2€ + 26. -

This implies that |Pr[X € S] — Pr[Y € S]| < €+ 4. Since the above inequality holds for
every S C D, it immediately follows that the statistical difference between X and Y is at most
e+d. O

1.2 Another View of Semantic Privacy

In this section, we discuss another possible definition of (€, §)-semantic privacy. Even though
this definition seems to be the more desirable one, it also seems hard to achieve.

Definition 1.1 (reality-oblivious (e, d)-semantic privacy). A randomized algorithm is
reality-oblivious (e, §)-semantically private if for all belief distributions b on D™, for all databases
x € D", with probability at least 1 — § over transcripts t drawn from A(x), and for all i =
1,...,n:

SD (bo[-|t] , bil-]t] ) <e.

We prove that if the adversary has arbitrary beliefs, then (¢, ¢)-differential privacy doesn’t
provide any reasonable reality-oblivious (€, §')-semantic privacy guarantee.

Claim 1.2. (¢, )-differential privacy does not imply reality-oblivious (€', 8")-semantic privacy
for any reasonable values of € and &'.

Proof. This counterexample is due to Dwork and McSherry: suppose that the belief distribution
is uniform over {(0™),(1,0™ ')}, but that the real database is (1"). Let the database x =
(x1,...,2n). Say we want to reveal f(x) = >, x;. Adding Gaussian noise with variance
o® =log (3) /€ satisfies (e, §)-differential privacy (refer to [, 5] for details). However, with
overwhelming probability the output will be close to n, and this will in turn induce a very non-
uniform distribution over {(0™), (1,0""*)} since (1,0™") is exponentially (in n) more likely to
generate a value near n than (0™). More precisely, due to the Gaussian noise added,

PrlA(x) =n|x=(0")] exp(;—f) — oxp —2n+1 .
X (2

exp (—(r;;l)? 20



15

Therefore, given that the output is close to n, the posterior distribution of the adversary would
be exponentially more biased toward (1,0™" ') than (0™). Hence, it is exponentially far away
from the prior distribution which was uniform. On the other hand, on x_1, no update will
occur and the posterior distribution will remain uniform over {(0™), (1,0""")} (same as the
prior). Since the posterior distributions in these two situations are exponentially far apart (one
exponentially far from uniform, other uniform), it shows that (e, §)-differential privacy does not
imply any reasonable guarantee on reality-oblivious semantic privacy. O

The counterexample of Theorem [ implies that adversaries whose belief distribution is
very different from the real database may observe a large change in their posterior distributions.
We do not consider this a violation of “privacy,” since the issue lies in the incorrect beliefs, not
the mechanism per se.
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