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1. INTP.ODUCTION

Suppose that a proglr"arnrning ianguage involves, among other familiar I'ays of
composing col'nnands C, 

' 
a t'parallelr' constnuct (C., par C,r) . One expects, when using

this language, that a sequence such as

x := O; y := I; (x := I par (while x: O do y :: y+1))

should be Suar"anteeC to terminate in whatever ccntext it is executed. The cornrnand

x:= 1:nust be executed some time, and terninates the whil-e command; both arms of the
panallel oair a:'e then complete, and thene is nothing else left to be done. Moneover

the fact of terr:rination is iinpcrtant enough, one fee1s, tc be deducible from the
formal senantics of the prcgnamming language. There are obviously rnany sirnilar contexts
in which the tenmination, and therefo::e the correctness, of programs may Cepend on

such points. Neve:'theless , the appnopniate gener-al- constraint ( the faintess or finite
delql prcpenty), wheneby commands executed in parallel are each given as iarge amounts

of time as they need to terminate, is notoriously hard to reconcile with nethods which

suffice to specify othen features of programs. There is a crucial distinction involved,
between "unbcunded but finiterr anC rrpotential-l--y infinite" attributes of the abstract
cbjects i,nvolved in the specification. The distincticn is closely related to the issue
of trtbotrtded' ncndeterminisn. Because of this we will spend some time discussine such
generalities, with a view to exorcism.

The approach to fairness which we will suggest is a development fnom the use of
fixpoints to obtain reLational senwntics, as in Hitchcock g park t 6 I and in de

Bakken & ce Roeven [ 3 ] . The account is relatively info::ma1, in order to rnake the
algebr"aic ideas as accessible as possibJ-e. A rnore formal account of nondeterministic
nel-ational sernantics, including a discussicn of the Hi'tchcock-park nethod for proving
termination, can be fourrd in de Bakker I Z ]



2. NASTC CONCEPTS

Given a set A, P(A) denotes its pouer-set, the set of all subsets of A, and Rr(A)

denotes the set P(An) of n-ary relations on A. Ttre usual mathematical notation is
used here to denote combinations of reLations and to abbreviate assertions about then.

In particuLar, tt.e set abstractiorz nctation

t'l ------- )

is used to denote the set of all those values of the term r for which a- given properry
holds of the corresponding values cf variables mentioned. The usual conventicns as to
l*-hich variables are bound in this usage wiLi replace the more formal alternatives for
variable binding,

A funcrionF: Frr(A)*Fr(B) Lsmonotone if X Ey*F(x) Str'(y). As is well-known,

every monotone function F: Rr(A) + Fn(A) has a rainirnal fixpoint
ur' = n{xl r(x) s x} (2.1)

satisfyine f'(p.t') = !F. .

In the inforrnal- development here, we have in nind a written forrn F(X) for the
function F, and wilL use the notation pX.F(X) for uF.

$chemes for denotational semantics adopting "the fixpoint approach" use the

fixpoiai oPerator as the basic creans for describing functions computed using iteratiorr
or recu,rsion. Iir rthe relational approach the only functions fixpointed are qn relation
algebras, or on products of relation algebras. For exampJ-e, the conraand

while B do C

should denote the relation (presunably the graph of a function)

uX.{(x,y)l(" / S, and * = y) or (x e S, an{

(1")((x,z) e P.c arrg (z,y) e x))I e.z)

This denotes a binary relation on states, assuming that S, is the set of states
satisfying B, and Ra is the input-output relaiion corresponding to the 

"oo-,iand 
C.

From the form (2.1.) for pF follows the principie (someiimes referred to as
ttrecursion inductiont') :

fixpoint induction plinciple:
TtF(z)Sz thenp.FsZ eJ)

Many "inductivert arguments from rqathEmatics can be regarded as instances of this
principle, for suitable F and Z. "Induction axious", in this 1ight, are constraints
on uFi typically that it is the whole of the nathenatical structure in question.



Slighrly rnore familiar than (2.L) is tbe alternative in the case that F is

o-continuous as well as monotone.

ur-continuity: tr' (X) is ur-continuous in X if , whenever XOS Xf gXZ 5.. ., then

r(i%xil = .Uortxr) (2.4)

In thi.s case, there is the aLternative expression

ur = E% llcll (2.5)

In fact, (2.5) ext,ends to the case that .tr' is only known to be monotone, at the

expense of iterating .t' into the transfinite ordinals. (Hopefully the reader will not

take fright at this notion; all that need concern him here are that the ordinals are

linearly ordered, that each is either the successor of an ordinal or the least upper

bound of its predecessors, and that the first such linit ordinal is ur, not couuting 0.)

For each ord.inal 
", 

f (O) is defined by

f @) = r(rB(O)) i6 o = p+1

re(g) = gr.ot6(d) if a is a lirnit ordinal.

Then for any Eonotone .t'

ur = .Fg (0) for some ordinal a (2.6)

In fact, once (2.6) holds for sone c, ic h"olds for all. larger d, from the definition

above and rhe fixpoint property; so (2.6) holds fon aLL suffieiently Large e. In the

case that F is ur-continuous, d can be taken as o; indeed (2.5) is just Ft'<Al.

(Z.S) is usually taken as the basis for Scott induction; however (2.6) pernits

a generalization to fixpoints of monotone, not necessarily continuous' functions.

But first the full definition of continuity is needed.

continuity: G(Y) is continuous'in Y if, for any ordinal cr, and any sequence Y^, I(c,

such that tr < U o Yl S Yr, we have

c( rYs Yr) = tYo c(Yl)

(ur-ccnrinuity is just the 
"n""i"f 

case c = o; the definition here is equivalent to

the more usual definition through directed sets - assuming the Axiom of Choice.)

The following is a statement oi Scott induction in a notationaLly tolerable special

case.

Sccrt inductio-n principle:

If (a) Gi(Yl, Y2) are continuous in Yr, YZ, i=L,Z.

(b) ri(x) are monotone in x, i=1,2.

(c) cr(6, 6) = Gr($., A)

(d) whenever Gr(fl, Y2) = Gr(Yr, t2)
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then Gt(Ft(Yl), F2$)) = G2(r1(y1) , F2$))
then we can conclude from (a)-(a) that

c, (ux.F, (X) , px.F, (x) ) = Gr(vx.Fl(x) , px.r, (x) ) '(g,7,

The justification for this version of the principle is by a transfinite induction
argrrrreot., showing that

or(4 @>, rl(d)) = Gzolo), Flo))

for ali ordinals ), 3 c. The important continuity constraint (a) is necessary in the
case thaL ).is a linit ordinal.

Finally, we sketch the generalizations !fiich are needed in the case of
simultcleous reculsions. We are then deaLing with functions on products of relation
algebras

Fr, rodr"rr.(ei) +.Ro.(Aq) t< j<N
J I=Iri-r' 

J -

with each 
"j 

(", , XZr... o, \) raonotone in each X. .

Ncw the N functions Ir, , FZr. .. rF11 e.an be thought of as cornbined into a single
functioa on the prcduct algebra, defined by

,'(x1' x2'...' \) = (Fl(xl,...r\)r...o,, fN(xlr....'\))

lbreover the structure on the product algebra is essentially just that of an algebra
of subsets of a disjoint union of the sets Arai. We can indicate this notationally:

0n = (0, 6,...., A)

(x1' x2'...' \) 5l (yr yzr..,, y*) iff Xi g yi, 1 s i < N
and so oa. with further definitions of r,,, 

^n 
in this style we can proceed to recast

the deveLopment for siraple recursions into one wtrich applies to the simultaneous
case as wel!.. In particuiar we bave

gr = nn{X[ r(X) snX.]

= I*(An) for suitable s.'
rf the functions F. are defined by forns ri(\,...., \), 1 i i s N, lre use

,iXtXz...\.(FI(Xrr..., X*) r...., FN(XI'....\))

to denote the i-th cornponent of the fixpoint pF.

we wil!- not write out the generalizations of fixpoint induction and scott
induction principLes here. The fcLlor,-i-ng principle needs to be emphasized. rt arlows
one either to eliminate simultaneous fixpoints in favour of sinpLe fixpointsr orr
use'c in the reverse direction, to riove fixpoint operators outwards from expressions
to achieve one simultaneous fixpoint, with no fixpoint operators in the expressions
for the functions invorved. I{e state just the special case for N = 2.



Beki&-Scott pri-nciple :

If r' . (Xl , XZ) -are monotone in XL, XZ, i=L,2, then

ulxlxz. (r1 (xl ,x2) , Fz(xt, xz) ) = uXt.rt (xt , vx2.F2 (xt, x2) )

pzxtXz. (r1(\,X2), FZ(*t, x2)) = pX2.FZ(uxr.r1(\, XZ), Xz)

3. TI{E PROBLEM OF T]NBOIJNDED NONDETERMINACY

It is well-known that fair paraLlelism and unbounded nondeter-minacy are

interrelated problems. Both the nat-ure of the latter problere and the reason for
the rel.ationship can be seen from the introductory example in Section 1. Under

fair scheduling the example exhibits unbounded nondeterminacy in the sense that
(a) the program te:minates whatever; and (b) the final value that y takes is not,

in principle, bounded; any value from the infinite set {!,2r3,......} is possible.

In view of this relationship, any [so]-ution" to the fairness problem would also

seem to provide a mechanism to implenent unbounded nondeterminacy, Since there

are doubts as to the feasibiLity of such a mechanism, it would be as well to

focus on them in order to understand what sort of solution we might expect.

We proeeed in the foLlowing steps; first, we look at the technical difficulty
as it presents itsel-f in an abstlact setting, by looking at the "power-do-ein"
construetions available for providing senantics for nondeterminism in the Scott-
Strachey etyie; then vre examine the tecLnical difficulties as regards a relational
treatment - here we discover that these are not so severe as is inplied by the

disgussion in Dijkstra[4]; last1y, we discuss the reasons given for considering

this sort of feature unfeasible and/or undesirable.

Since rte rsant to contemplate unbounded nondeteminacy by itself, it rrill be

convenient to Postulate a programoing feature intended to exhibit it. The most
naturaL device in the context of our first example would be an expression which
takes, nondeterrninistically, any'positive integer value; writing this as "an1posint",
the example program is then to be equivalent to

x := 1; y := anyposint ;

3.1. NondeEerninism and Power-donains

Power-domain constructir:ns are intenc'.e<l to augment the system of domains used

in the Scott-Strachey style of description so as to providei denotations for non-

deterministic prograns. If q, E are dornains, andP(S)i* the power-domain obtained



frorn E by this construction, the "nondeterministic functions" from D to E are to
be identified with elernents of (D * P (E) ) , the domain of continuous funcrions (in
the donain theoretic sense) from D to p (E) . The case we should be imnediately

interested in is the case in which D, E are the same "f1at domaint', obtained by

adjoining a mininal element 1 ("nontermi-nationrr) to an otherwise unstructured set

of ttnachine statestt .

Quite apart from the issue of continuity ( which we will be discussing later,
in the context of a relational developraent), the power-domain construction provides
a setting for a slightly different issue. It turns out that the objects in each power-

domain RE) nust be obtained by rnaicing identifications between subsets of E. The

identifications which concern us occur in all" three constructions knom to the author;
in Plotkints original proposal [5] , in the varianE due to Snyth [81 , and in the

eonstruction based on the lattice of Scoct-closed subsets - which resuLts from

folLoving up the convere to Sneythrs ordering. In Plotkints terminology, the

identificacion involved is that of a set with its Cantnr elosure - the closure

with respect io a certain topology on the donain. But we can iook at r+hat is
involved in a sLightly differe.nt light - by appealing to eonstraints on how subsets

X of E are to be characterized.

What is needed to specify this constraint is sorne notion of "finite fact" about

elements of E. The collection of such t'finite facts" about elements which are

consistent $'ith membership in X shoul<i then be the rrost we can use to characterize X.

excJ-usion criterion: for an object x to be definiteLy excluded fron menbership in. x,
fact" which holds of x but which holds of no element of x.

An object x, therefore, for'which there is no such finite fact, can be adjoined
to X without affecting its characterization. So at least to this extent distinctions
between sets in P(E) are blurred (and in practice Ehere is more "bl,urring" before
a partial ordering structure can be obtained rnaking p(t) an acceptable donain).

It remains to choose an appropriate notion of ttfinita fact". The obvious choice
connected with Cantor closure fits i.n well with other intuitively appealing aspects
of domains - relating all coryutationall-y relevant structure to properties of a

denumerable set of basis elements.

finite fact about x: any boolean combination of assertions of the form e

be any basis element of E.

tr

there must be some "finite

x is the given el-ement and e may

x, trhere



Itre general constraint that results fron these considerations is the identifi-
cation of sets with their Cantor closures. fn our case E is a t'flat" 

domain,

satisfying

xFyc?(x=lorx=Y)
Every elenent is a basis element. The Cifficulty over unbounded nondete:minism

appears when we aPPly the exclusion criterion to t., with X an infinite set. For

consider any finite fact true of f, and suppose it to be in disjunctive normal

form. At leasE one disjunct rrust be true of'x= 1, and each such disjunct rogst be

equivalent to a conjunction of the form

.r{ x and 
"z* * and......_1d "o{ x (3.1.1)

for soire n, since r E x is true.of all x, and no other assertions e E x are true
of r. But any statement of the fona (3.1.1) is true of all but a finite nunber

of elements of E, so must be true of sorne elenent of X. t' can therefore not be

excluded from X - and this is essentially the difficulEy we expected.

s9=t Plotkin invokes the notion of "finitel;u generablet'set to put an initial
constraint on p(E), and it is tenpting look for significance in this aspecr of the
construction rather than elservhere. But in fact every Cantor closed set is finitely
generable, as Pl-oEkin points out; so the initial constraint was not, after all,
essential. The same structure is obtained by partitioning all subsets with the-help
of the cLosure operator.

This difficulty in the context of pover-domains nakes it apparently inpossible
to find a reasonabLe eemantics refleeting fair parallelisn in the way one would

liker, i.e. to find a e'unotsion ara.pping parallel.programs to denotationsrib,ich are

elements of some dornain, of ttnondete:ministic functions" perhaps . This does not

at all rule out, hovever, denotaiions obtained as - aubsets (in the conventional

sense) of domains - and research in this direction seems called for. IJtrat seens

to require. careful fo:mulation'is the problem of choosing appropriate douains

for use in continuation semantics cast in such a style, since analogs of the

reflexive donains needed Eray not be constructible.

3.2. Relational semantics for nondeterminism.

The outcome of a relationai 
"etantics 

for a deterr.rinistic program can be

quite straightfonrard. One characterizes a set S of "urachine statest'r and produces,

for each program C, a denotation }{CI€ n2(S), which is to be the rel,ation betseen

input and corresponding output stares of C. But in the nondeterministic case there

is an extra conpiication concerned with termination. lhe input-output relation by



itself will not distinguish between the following trvo trivial programs

skiP

skip or (I!!19 true do :!!g)

(3.2.1)

(3 .2.2)

lut the second of these has a possible non-tern-ination, whereas the first does not.

But one clearly wants to distinguish between such programs. One can cope with this

problera either by adding an elernent Jto S, to signify nonternination in the style

of Scott - this is the device adopted by de Bakkent3l- or' as we do here, by

adding an additional semantic function. For each program C, we will aim to give a

denotation corlposed of two sets:

uflcn e Rr(S) the relation eonptLted by C

r[c\ ,s, s tlae ternination domain of C

The inrended significance is that all executions of C terminate iff C is started

from a scare in fllC]. fhe fi{o programs (3.2.1), (3.2.2) are then distinguished

by T, which yields S for the forzrer and Q for the lat,ter, presumably. In the

deterninistic case f is unnecessary , since it nay be derived from M - unless

it is intended to attach some Eeaning to termination without a value as opposed

to nonremination. At the end of this articLe we will give definitions for M' ?

for a "!oy" language in which comrands are permitted to exhibit unbouhded nondeterm-

inism. But we should first discuss the argurnents that seen to inply this is an

unreasonable goal.

The most influential critique of unbounded nondeterminacy appears to be that

embodied in Chaptex 9 of Dijkstra [t+]. In this section we wilL concentrate on the

technical difficulties discussed by hin, setting aside conceptual problems for the

moment.gur observations here foLlow lines largely developed by de Bakker[3]and de

Roever [7].

There are some awkward superficial obstacles first of al-l. Dijkstra talks of
Itpredicates" and t'conditionstt, hihere lve are inclined to talk in terns of sets, so

the reader shouil.d be prepared to substitute propositional notions (gtd'g, o etc.)

for the corresponding set-theoretic notions. (fi, U, g etc.) in order to translate

between our principles and those enunciated by Dijkstra, and vice versa. lloreover,

we will want to regard the fixpoint operator u as applicable in either context' so

that the principles sketched in Secti-on 2 should be regarded in that light as well.

For example, there will be a fixpoint induction principle applicable to predieate

transformers F(R)

if I'(R) .+ R then ptr' .+. p (3.2.3)

Secondly, Dijkstra is intent on obtairring axionns for the wp predicate transformer,

and not on obtaining denotations for prograrns. But his criticisms urust appl.y to

our efforts as well, since wp can be characterized in terms of our M and T.
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wp(c, n)(s)(*(s e f{cn and (V"')((s,s')
Thirdly, we prefer to talk about programs constructed

achieve nondeterninacy either through an g conctruct

possibly nondeterninistic basic cormnand, rather than

fornaalisia. We hope these details are only superficial

eM I c\ * R(s ') ) ) (3 .2.4)

from ,whil-e statements, and to

on conmands or through a

through the guarded cornnand

obstacles to understanding.

Dijkstra proceeds by enunciating a continuity property - that wp(c, R) is
o-continuous in R, irr-just the. sense of Section 2, though translated into
propositional terms. He then shows that the language he has developed to that
point has this proPerty' but that the cornmanci which we have written x := anlposint
does noi, since 

-,
wp(x := anyposiot,$* <. i))

is true of all states, but

r{p(x := an)aposint, x < i)
is true of none. This is quite correet, and an important exarnple; failures of the

continuity property are ineonvenient - many proofs depend critically on continuity
assumptions, which are often enbedded in principles for reasoning aboug progratns

C".g. condicion (a) of our version of scott induction). oijtstra, however, appearg

to overestimate the inconvenience. The reason for ihis is that there is, in effect,
a hidden continud,ty assunption in his rules for reasoning about the repetitive
construct. Iie notices this, but faii-s to not,ice that it can be fixed elegantLy.

In our notation, his exanple is the follorring corou:rand:

while x*o d" (if x,< o thenx:= anyposint else x:= x - 1) (3.2.5)
consrand WIIILE, and the component conditional IF; what is wp(I,,rHILE, true)?Call this

Following

To see

help to

Dijkstra, we have 
@

nrp (I,ftIrLE, rrue) =M"r. (3 . 2.6)

where HO = (x = 0)

Hi*l =(*p(rr, n.) g Hi)

by induction on i, then (assuming we know alL about wp(IF, R))

H. =(osx<i)1-

but then, plugging bac,p inco (3.2.6)

wp (h'HILf,, true) = (x b O)

and this is clearly wrong - IIHILB terminates for all x, positive or negative.
But there is another version of (3.2.6), using U:

wp (I'IHIIE, true) = uX. (x = O _oJl wp (IF,X) ) ( 3.2.1,
i.e. I1>(WHILE, true) is the strcngesi conCition X such that

X = (x = O gI wp(IF, X))

that (3.2.7) shouLd give the correct resuLt for wp(wHrLE, true), it may

nove to the formul-ation using sets. The analogorrs function is
r(x) = ({o} u {"lx < 0 and N+ s x} u {x[x-r e X] )
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where N+ = {yly t O}; (we are assuming that "states" are just values of x -

bur this is not essential to the result of (3.2.7)); now r.re have

F(q) = Q

F2@) = Io, t erc., and

f@) = Or'i(O) = {o} uN+
i=0

And we nust now go transfinite - but for just one step; putting N = tyly . O)

r'*t(o)={o}uN u N+

which is now correct. So this was a case where a fixpoint of a non-continuous F

is called for - noreover an .t' with uf * f @>.

The

general

nature of the error and the way to fix it now begins to be clear. The

formulation for the while statenilent should be

*p(I!|l= B do C, R) = ux.((lo" B and R) g (B ggg wp(c, x))) (3.2.8)

If the right hand side of this is abbreviated pX.f-(X), the analog of Dijkstra'g

rule woulci be

rrp(gife B do C, B.) = Fo'(f"l"g) (3.2.g)
.tt

This latter formulation is quite correct provitied.t'* is continuous, which in

turn is true provided there is no possibility of unbounded nondeterminism.

This is not the end of the sr-ory, but to continue would take us too far from

the theme of this article. Clearly (3.2.8) is also correct in the continuous case,

provided (3.2.9) captures this speeiaL case of Di.jkstrars axiom correctly. But it
also remains to justify (3.2.8) in the monotone case, and to verify that the other

main principle underlying Dijkstra's discipLine, with the exception of the continuity
property, are stil-l valid. The fixpoint principles of Section 2 can, in fact, be

used to justify Dijkstrars properties 1-3 ("excluded rniracle", monotonicity end

rnuLtipLicativeness of the wp function). And the "loop invariance theorern" also

turns out to be a nice instance of the fixpoint induction principle uhen the

fixpoint version of wp is adopted for the repetitive construct.

3.3 Continuity and irnplernentability.

l{any theoreticians accept the thesis that objects which are "computablet'or
I'effectively given" *"y be obtained by considering only continuous operations on

a tightly constrained systen of dcnains and/or relation algebras. On the other

hand, they would be inclined to accept the constraints that our "exclusion
principle" puts on what sets can be regarded as effectively given - and insist
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on sets which are "Cantor closedtt with respect to solle domain structure. But Ehe

denotations of programs invoking fair paralLelisrn or unbounded nondeterminism

appear to violate both these constraints - and, superficially, nothing could be

more effectiveLy given than the denotation of a computer programo But there is one

observation which appears to dodge the conflict, which concentrates on the roLe

actually played by nondeterninisn in the Languages being discussed. One can ask

the question - what is it that rnekes an imple.inentation of such a language correet?

fhe answers classify into one of two categories:

tight nondetermi-nisrn: each correct inplenenEation must, according to some precise

sense of t'possible resultrr, produce all and only those possible results which the

semantics of the language prescribes.

loose nondeter-mitt1"*t there may or

can p::oduce nore than one result;

ie one of those prescribed by the

uay not be a sense in which the iraplernentation

the only constraint is that every result produced

sernantics.

In loose nondeierminism the requirement that all prescribed outputs be "possible"
disappears. In this sense, any innplenentaiion of

x:= I

is , loose1y, an implemeatation of

x := an)?osint

licw it is imediately clear that the sense in which fair paraLle1isrn is
nondeterministic is a loose one. Noone requires of a correct implementation for
parallelism that there be an appropriate sense in vhich all scheduling algorithns
be possible in it, only that there be one such scheduiing algorithra, and if
fairness be required that the scheduler be fair. on considering other Inond,eter-

ministict features of actual languages, the reaCer shoul.d also be able to convince
hinself that the nondeterminism intended is in the loose sense (the onLy exceptions
seem to be in the realm of probabilistic algorirhus),

With this observation the conflict begins to fade; there is still perplexity,
nevertheless- Firstly, if the class of possible inplenentations is in no sense

computable, there nay be no effective test that an inplementation is correct. As

regards *'he fairness of schedulers, this is quite true - and. can be derived as an

unsolvability result in the classical sty1e. Nevertheless, fairness is a property
that can be fornally established, just as totality can for recursive functions on

the inEegers - a property with just che same status as fairness.
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Secondly, one can doubt that tfairnesst and similar properties are real).y

useful, since no very useful consequences can be deduced from them a1one, and/or

since reliance on them atone for correctness is not good progranming practice.

This vies bases itself on scepticism as regards the value of guaranteed termination

in the absence of bounda on termination time. If there is a defense to the view

as applied to practical programs, it depends on the utility of separating

ternination proofs from the derivation of more detailed tirce estimates. In the

case of detenoinistic programs, this separation appears to be real enough, if

on1-y because termination is usuall-y just logic, and easy - whereas obtaining

ter-mination bounds (even quite loose ones) is mathematics, uses (so far) rather

different methods and standards of rigour, and may be just that much harder to do.

One rnight expect the saue experience to recur as regards properties deducible

frorn fairness alone, as against properties deducible from more detailed knowledge

of scheduling. But to support the defense would need more experience in using

fairness, etc. in proofs than we now have.

4. STRA}IGE FI)POINTS A^\D TIIEIR USES

4.L llaxinal Fixpoints.

Over relation al.gebras the properties of the miniual fixpoint operator U

dualise in a straightforward way, to properties of tb.e marinal firpoint operctont[;

thus
I

t[x.r(x) = u{x lx g r(x) i (4.1.1)

fot F (X) any function monotone in X, Or we can, in effect, turn the algebra

upside-dolTr to obtain an expression with three nested complement eigns-t
d x.F(x) = px. (F6) (4.L.2)

Similarly, if we let lf stand for the naxinal uniuersal set in the algebra, Ite can

proceed downwards from the top of the algebra to obtain a qlaximal fixpoint:
ro (r4 = Ar

.ra(u) = f(rB(lr) if a = I + 1

FsQll = gnatr''(u) if tr is a linit ordinal
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With these definitions, we have

r{x.ftxl = .Fo(u) for all suff iciently large c
and t{x.r(x) = rr(1f) in rhe case rhar F is u-cocontinuous

o-cocontinuity: F(x) is ur-coconrinuous in x if, whenever xg ? xf ? xz 2 ..., then

r(iioxi) =4Eor{"r)

Similarly' we can proceed to define general cocontinuity, and to derive dual
inference principles to those of Section 2. Indeed they can be deduced from the
principl-es of that section using the expression (4.1.2). He will not explicitl_y
forrnulate these duals here.

4.2 Excencied Languages,

Given any set x, the set If of e*tend.ed. sequences oxer t is the set x* of
finite seguences over I together with the set Io of infinite sequences over I.
so lf - x*uxo- we will consider subsets of l'l as eatenc"ed. Loquages, a precext
for borrowing notation.by analogy with standard notation for finite sequences.

So, for o e x, xry € xT, Xry c xT:

,1, denotes the nul L sequence

<o> denotes the corresponding sequence of unit length
ox denotes the resulc of prefixing o to x
xy denotes the concatenation of x and y, if * . I*

and denotes x, if x e Io.
XY cienores {xylx e X, y e y}

This exiended notation of concatenation, while degenerate on infinite sequences,

can easily be seen to have the elenentary algebraic properties of the standard
notion:

l,x = xl=x
x (yz) = (xy) z

x(Yz) = (XY)z

X(YuZ)=XYUXZ
(x u Y)z = x7, v'lz
XA=OX=Q

etc.
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Thu Slgr-"1o"rr" operator on languages (subsets of l*; can be defined using a

minirnal fixpoint. For extended languages, the same expression provides the

expected generalisation of the notion. BuE we can talk.now of ome$,a-closur.et

dagg_er-clogure as well. For an extended language A I f,', we have

*
star-clsf;ure gfrA: A-- = ;.tX. (LX u {f })

oro"g"-"fo"rr.. oj .e', A' = Jx.ax
+r

dagger-closurggf A: A' = dx.(rui u tr])

It is easy to see that

A*={r}uAuA2u'..

since the right-hand side has the form f @ and is a fixpoint of F(X),

taking f(X) = AX u {l}. In fact this F(X) is easily seen to be continuous in X -

concatenation of extended languages is continuous. Notice that the above

definitions of ttomega-closurett, "star-closure" do not correspond to intuition

in the cases that the null string ). e A, since in thie case At = Ao = Xt is the

universaL set. We should verify the following basic properties:

1. If I y' A, then Ao = {totlt2 ..r lw. e A}:

Abbreviate the right-hand side as A- for the moment. A- = AA- satisfies

the fixpoinr equation defining Ao, 
"o 

fc A' - by the dual of the fixpoint

rule (2.3) - if A- t Al\- then A- I X.AX = Ao. Conversely, suppose w e Ao,

then w e tr,1\o - so hr = *ott, with wo e A and wt e A6; similarly wr = wldt

with w, e A, and so ono So w e Ao.

Z. At = Ao u A*: this is the special case of (3) below in which B = {l}.

l',,*
3. t{x. (aX u f) = A* u A B! this gives an opportunity to extribit the dual

am e.l) in an eremenrary context. consider the

equation:
*

X=YUAB
(a) both sides of the eguation are cocontinuous in X,Y;

(b) the functions AX u B, AX are monotone in Y;

(c) 'lf ='lfu AoB
*

(d) whenever X = Y u A B, then

AXuB=A(YuA*n)uB
*

=AYUAABUB
*

= Ay u (ee u {r})B

=AYuA*B

The conclusion of the dual principle follows, viz.
,l*

trJ x. (lx u s) =rlx.Ax u A B
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*
4. px.-(AI g B) =-A3 : follows directly from a conventional Scott induction.

5. rf r/A aird B + O, rlj:Jr_l.5 = Ab ,. a\ oJ*
=/l UAjB: that Abg = Abfollows from

fron (2) as follows
(1) above. The other eguation is derived from this and

A*B = (A' u A*18 = AoB u r\*B ='Ao u A*B

No3e: while (1) above looks straightfomard, ir should be noticed that tbe maximalI
fixpoint A*= n{x.AX is not necessaril.y reeched in u steps, fron which it is crear that
the function Ax is not always cocontinuous. The sort of exanple which sbows this
wes noticec by Tiurln [9] in che context of algebras of infinite trees.
Exangle lPatsrson): take X= {O, 1, 2} , a .X+ defined by.

. a=21o1oo1o0o1oooo1 =ZLoLoZLo3Io41...
A = {2LoIo21....1on1 | n >o} u to}

then a e (zLoLozL... .on-11;6n-1xt c A\+ for each

In fact the concatenation function I(X, y) =

coco;rtinuo'rs in either: X or Y, (tlough it is
sequences). To see that cocontinuity fails
consider just

xi = {tj lj'it
tiren xilt'i = tltu), n(xilu') = {1o}

But oL = 0, ao (rX.)ft = 0.

n; so a € p, ([i); but a / A6.=r(*,

XY on extendeC languages is not
cocontinuous on languages of finite
in the first argument position

l{axiraai', rather than minimal, fixpoints are appropriate when defining funetions,
predicates recursively on f,t. Tbe folloving tr,-o ,,definitionsr,, of concat6aati6n
aod eguality respectively, could werl senre as -axioms for xt under concatenatioa'll.

{(x,y,*v) | x,yexr} =dx{(r,},y) | y.rf} u t(ox,y,oz) | (x,r, z)exrs-e [D

{(ox,oy) | {*,y;eX, oe f,};

tharr J, what are obtained are concttenation
, and undefined for xeXo.

{ (x,x) | x.rt} = J*. ({ (r,r) } u

Notice that if U is used rather
and identity restricted so that :<<f,*
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4.3 The I'fair Berge" problem.

One. can approach the fair scheduling problern by first of all tackling the

problen of defining a ttfair" merge on f,' , a nondeterministic function which

interleaves pairs of possibly infinite sequences in such a way that all of any

infinite sequence provided is absorbed, A functional relevant to finding the

fair merge relation is the foLlowing

frs(x) = {(r,x,x) | xert} u {(x,l,x) | xerfl
u {(oxryroz) | oer, (x,yrz)eX}

u {(x,oy,oz) | oer, (x,y,z)eXi (4.3.1)

Unfortunatel5r, neither uFh nor r/Oro i" the required relation. For p.ttn produces

no nerges from pairs of infinite sequencesrwhileJfr ptoauces merges which are

not fair. Thus

(0trltrx)epFg for no xe{0,1}t

while 100,10,00)46r, for exampre.

A clue to the appropriate solution is given by concentrating just on the

fair merges of Oo and 10, which is tle sgt of -aU -sequencee 
with infinite-nunpgrs

of both 0rs and 1rs. This set can be specified nicely using the operators of

4.2 as

(o*11*o)t
*trul

or (1 OO f)

* * u | . * *
Now (o-'11-'of = tJ x.( o 11 ox )

=J*.( o*luY. (oxury) )
I

= t{x.( uZ (oZu luY. (oxuly) ) )

= J*.( vZ(F(.Z,uY.F(x,Y) ) ) )
where F(X'Y) = OX u lY.

Proeeeding by anal-ogy, we-first distinguish the two occurrences of X in Fh(X):

frn(X,Y) = {(lrxrx) | *<r+} u {(xr)',x) | *tft}
u{ (oxry,sz) | sel, (xryrz)e X]

u{ (xroy,oz) | oe x, (x,yrz)eY} (4.3.2)

Then def ine 
fairnerge = Jr. u, . (Fm(z,uy.rhr(x,y) ) ) (4 . 3. 3)
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The dual of the Beki6-Scott principle allows us to rerrite this, after noting

that Jx.e = A if A is independent of X. Thus

f airnerge = ilr*, .yz. (F\a(Z,t*{,,uy.Ftn(\ ry) ) )

=dt

where, for i=l12, 
"1, 

= Jr*r"r.<1t2.tu(z,xr),uy.trh(xt,y)>. (4.3.4)

lle can now note that fairaerge = { *"o, using three applications of the

fixpoint propertys

1tl{, = vZ.Fb (2,i2)

4 = l,Y.nn ,/r,",

applying the fixpoint properiy to the sinui.taneous fi:rpoint

Eence 4 = *c441

and ,{, = 
^4,41

applying tbe fi:rpoint properry ro the two u-ee:essions , (4 . 3.5) (4, 3. G) .

This synmetry allows us to reverse the Bekid-Scott arguiileuc to obtain the
fourth form

fairmerge = t.uY.Fn(uZ.Fn(Z,X),y) (4. 3.9)

that we now have also,

(4.3. s)

(4, 3.6)

(4.3.4)

(4.3.7)

(4.3.8)

We now have four forsrs for fairnerge. Note incidentally,
from (4.3.7) tbat

fainaerge = Jtn(f aircrarge, f airnerge)

so that our relaEion is certainly a fixpoiot of the original Frn - but neither
ite naximal nor its urininal fixpoint.

lle should show now how to verify that fai:rrerge corresponds to our
original idea. One way to simplify the manipuiarious needed to verify this is,
tenporarily, to extend even further the notioa of ccncaie-?tion used in the
previous section, so as to apply io triples (xryrz) of worcs from rf, so that
(x,yrz) (urvrwr) P 1*.r,y.r,*n), to replace i, by the triple-. (lrlrl) and to define
eorresponding closure oPerations on sets of tripies. Tire properties of *rf ,r,r

given in (4.3) generalise, excepr that the condition,'144'in (l)r (5) of (4.3)
rnust be strengthened to ".xryrz€A =r * * l and y + f and z * ltt. With this
device, th(Y,Y) simplifies to

trb(X,Y)=AuBXuCI
where A = t(I,x,x) t xertl u {(x,l+.) | *.rt}

B={(o,tr,o)lo<[]
C = t().ro,o) | oel)
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rhen f airmerge =J*.vl. (A u BZ u c uY. (A u BX u cY) )
/)l

=t/x.vz.(A u BZ u cc-'(A u Bx))
t:**

=r/x.B (A u cc (A u BX))
lx***

= ^T{K. ((B U CC )A U B CC BX)
**+*Jc

= (B cc B)'(B u CC )A

= 1B*cc*810 u (s*cc*s)n(r* , cc*)a
**

since B CC B contains no tripl-e with a null component. ltre final expressions

simplifies to

fairmerge = 1B*cc*B;t u (n u c)*R (4.3.10)

With the given definition of A,B,C, the reader should see rhat this is indeed

the expected fair merge. The ternn (B u C)*A defines merges on pairs one of which

is finite - in which case fairmerge is not in question. fhe term (s*cc*n)'

provides the fair merges of pairs of infinite sequences.

Fairmerge is, of course, coumutative and associati.ve, in the sense that

fairmerge (4.3.11)

fairmerge (4.3.L2)

e fairrnerge, for aomew'.

(xryrz) e faitmerge + (yrxrz) e

(xryru) e fairnerge & (urzrv) €

* (yrzrw) e fairmerge & (xrwrv)

An easy proof of conrmutativity springs fron the two s)rmmetric forms (4.3.3)

and (4.3.9). But it is not clear how best to prove associativity formally. In
view of the fact that concatenation is not cocontinuous, dual Scott induction
seems to be of linited used in proofs, and other algebraic insights seem to be

ealled for to obtain general principles applicabLe to expressions involving
oceurrences of Tl as well as p. Recent work by Tiuryn t 9 I by Arnold and Nivat [ 1

and by Wadge and Faustini IIO ] seem to suggest some directions in which such

insights raight be sought.

5. AN E)A].PLE LANGUAGE

In the appendix is specified a relationaL semantics for a toy language

with a fair parallel constraint, using the notational devices introduced in this
article and a format adapted fron various models in the Scott-Strachey sty1e.
rn order Eo acconmodate parallelism, the semantic functions lrtcl
(r.1"tio""1_r.r"igg) , r[cX (9.*i"Sqi." d.g"g) .are facrored, so rhar
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rvtCl = RM(/ylcI)

?[C]l = rD(//[cn)

where /i [cn is an internediate entity, the set of abstract paths

corresponCing Eo the cornsrand C

/t[cn s Rz(s)+

Abstract paths are therefore finite or infinite sequences of state rel.ations,
rrith the intention that each elernent of a seguence correspcnds to an atonic
("uninierruptible") action. The choice of abstract paths, rather than naue

sequences (or trees), is cornparaiivel-y arbitrary, and is rnctivated by the wish
to factor out inessentiaL sl'niactic (and other) detail at ',he earliest op?ortunity.

It should now be possibLe to foresee how proofs rnight be shaped in a

properly foruulated formal systen. We can consider the task of proving that
the counnand

c : (D par while n go_ Sk:!I) (5.1)

always terninates, assuming D is atonic and makes B false.

1. Let AT0MIC (3) abbreviate

CVEI 6e3+lengrh(g).. 1 (5.2)

and TOT (3) abbreviate

TD(3't=$ (5.3)

We must establ-ish:

if ATolcc ( D[Dn) and RM(DIDIBIBI ) * A

then Tcr( /l/ [cn) (s.4)

2. The following generar results shourd be available
if ATOMTC (3i), i=Lr? 13, and x d zz

. +_- rt +
rhen FM(E1,32'33) - ?2 (!1(32'33) u, 313r) (5"5.)

TOT(EI) & RM (31) = A + TOT (3132) (5.6.)

ror (31) & ro? (32) TOT (ilE2) (5.7)

& ror (r, u rr) (s.8)
*

& ror (!1 32) (5.9)

AroMrc (:) o ror (t) (5.10)

Arolfic( stcn) 1s.11)
Aroac( E'fcX) 

1s.12)
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3. From the Semantics

/Y [Cn = /Y [ (D 3ar yhile B do gkip)n

= rlr(D[Dn, B[BnrttBn )

= E'[sll*(r[Dn(8tBtrt Ftsnl , Flnnptpn) (5. 1 3)

fron (5.5.)

Expand etrn+ F[sn = (EtBnE[Bnt r-[rn u FtnD (s.14)

TOT ( ff[Ctr) then follows, using, in turn, (5.6), (5.7), (5,g)

and (5.9) to work the T0T property outwards.

We hope these very sketchy ideas wiLl serve aB a stimulus towards a motre

detailed and rigorous development of such a fornal system. Our prine ain in
thi.s article has been to show that the fairness property can be reasonably

characierised in a relational styLe, and this, we feelrhas now been achieved.
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APPEIiDIX.

Relational Seuantics for a t laneua involvi fair rallelisn, and rsritt
unbounded nonde te rrninisn:

Slrntactic Classes and Notation:

(Cornoands)

(Basic Conditions)

(Basic Cor,".rnands)

C i: Cnd

B e BCond

D e BCrnd

SJmtax:

C ::= D I skip I

(C., or C.,)
z-

| (c, ; cz) | it g rhen c, else C, I

-p.r. Cz)

(States)

(State-sets)

(State relations)

(Relation sequencea, paths)

(Path sets)

(Basic comnbnd apecs)

(Basic condition specs)

e s] u { (R|, x, y) I Glz)((x,
e ! & (8, x, I) e run)

)u t(nE, x) | (t")((x, z) e R

(t. x) e tdorn))

whileBdoCl

z) e R & (E, z, !) e

+(E, z) e Y)))

abort

| (c,

Basic Senantic l{otions and Notation:

xe S

X e P(51

R e Er(S)

E e 8, (s)f

3 e P (fiz(s)t)

e P(,?r(s)t t s2)

,P(RZ(s)t' s)

: BCnd * Ar(S)t

: BCoud+P(S)

Derived Semantic Notions :

$g.xi l- iary 4gl a-tiogs.:

run +0. ({ (I, x, x) | x

RM(3) ={(x, y) | Glg)t
tdom = uY. ({ (1, x) lx e s

TD(3.)={xl(Y€)(g€3,+

Cra * P. l (Abstract paths)
Cmd + fr2(S) (Denoced relation)

Cmd + P (s) (Terminarion donain)
: BCond *p(Fz(S)t)

0

Y

D

B

N:
Mz

r:
E.E

0)l)
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fairc.erge -- see rnain text (4.3.2), (4.3.3).

ru(=l , v2) = {E leert(tE2}t1 e' 31r EZ. ?Z' (tl ' E2' E) e fairmerge}

Senantlc Eguatiogs. '

EtBj = i.t(x, x) | x € B[B!]>]

Etnl = i<{(x, x) | x / BlBn}>}

Mtci = Rlt(lv[c]l)

rtcl = m(r{cn)

It'[Dtr = D[Dn

iV[skipJ = {I}
t/[abortl = F2(S)or

rv[ (ct: cz)n = ff[clnjffc2n

iv[if B rhen cl _e]Sg "zl 
= rlBtriy[cln u E[rtrrtcr!

jr/fiwhir.e B do c]l= (E[Btrtrtcn)t Efgtr

lrt(cr g: cz)n = Iir[cr! L ivtcr!

iut(cr par Cr)ll = FM(fi[Crn, fi[c2n)


