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Abstract

We enrich propositional modal logic with operators ◇>n (n ∈ N) which are interpreted on
Kripke structures as “there are more than n accessible worlds for which ...”, thus obtaining
a basic graded modal logic GrK. We show how some familiar concepts (such as subframes,
p-morphisms, disjoint unions and filtrations) and techniques from modal model theory can be
used to obtain results about expressiveness (like graded modal equivalence, correspondence and
definability) for this language. On the basis of the class of linear frames we demonstrate that
the expressive power of the language is considerably stronger than that of classical modal logic.
We give a class of formulas for which a first-order equivalent can be systematically obtained, but
also show that the set of formulas for which such an equivalence exists is in some sense a proper
subset of the set of so called Sahlqvist formulas, a syntactically defined set of modal formulas
for which a corresponding formula is guaranteed to exist. Finally we show how, combining
the technique of ‘filtration’ with a notion of ‘copying worlds’ — in view of the “more than n”
interpretation, one cannot simply collapse worlds — for some graded modal logics (GrK, GrT,
. . . ), the finite model property (and also decidability) is obtained.

1 Introduction

We undertake some investigations in (specifically) the semantics of modal logic GrK, (GrT, GrKD4,
. . . ) which is obtained by augmenting the classical modal logic K (T, KD4, . . . ) with graded
modalities ◇>n (n ∈ N). ◇>nϕ is interpreted on Kripke structures as “more than n accessible worlds
verify ϕ”. This language was already mentioned in [Gob70] and studied in [Kap70] — as an extension
of S5 — and [Fin72] in the seventies, and rediscovered in [FatCar85] in the eighties, where the main
concern of those contributions was to obtain a sound and complete logic for this operator. In [Ben87a]
a fixed point theorem for this formalism was proven, which then was used to turn recursive implicit
definition of finite (tree) automata into explicit ones. Other applications of this enriched language are
to be found in the areas of epistemic logic (chapter five) and that of generalized quantifiers (chapter
six).

Here, we are concerned with the expressibility of the graded modal language and we whink that
the greater expressive power of the language (over that of modal logic) is appreciated when ‘standard’
modal techniques are applied to it in order to lay bare and discuss (a-)similarities with modal logic.
We present some expressibility results of this logic which are already interesting on their own, but
we consider the main contribution of our chapter lies in the use of adapted, or, in some cases new
developed techniques that are provided to obtain those results.

In section 2 we define our base logic GrK and derive some properties. We also introduce its
proper semantics and give some basic definitions. In section 3 we test our graded modal logic (GML)
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against some so called reflection and preservation operations known from modal logic (ML). It
appears that, with some adjustments, most of the results remain valid.

We then use those results to establish some expressibility results for GML in sections 4 and 5.
Also, we apply classical preservation results to argue that GML can distinguish more (properties of)
frames than ML. In section 4, we give some examples of such properties, but we also show that there
exist non-isomorphic frames which, graded modally, still cannot be told apart. We illustrate matters
using binary frames and linear orders. We show that, even in this simple class of frames, GML is
quite stronger than ML: although ML cannot distinguish between strict, weak and ordinary linear
orders, the graded modal theories of all those classes are different. We also show that within the
class of strict linear orders, however, the two languages are equally expressible.

Correspondence, yet another theme from classical modal logic, is studied in section 5. We show
that more first-order properties become definable in our enriched system. However, section 5.1 shows
that there are first-order properties that remain undefinable in GML. In section 5.2 we present a class
of GML-formulas, of which the first-order corresponding formula can be obtained systematically. This
class is a subclass of a (syntactically defined) set of ML-formulas for which such a result is known:
the so called Sahlqvist formulas. A negative example shows that it is indeed a strict subclass, leaving
the open question where the exact borders have to be drawn.

In section 6 we adapt the famous filtration technique of ML for our purposes. We provide a
technique to filtrate a model for a given formula ϕ into a finite model for that formula, obtaining
the finite model property (and hence, decidability) for several classes of models. Throughout the
chapter, we mention some open problems and directions for further research.

2 Language and semantics

In this section we define the language L for our graded modal logic GrK and provide it with a
semantics. L resembles very much that of ordinary modal logic. Its semantics is given by means of
Kripke structures, which is also standard (cf. [Che80, HugCre68]). The main difference is that we
have a possibility operator ◇>n for each n ∈ N with intended meaning of ◇>nϕ: “ϕ is true in more
than n possible worlds”.

Definition 2.1. The language L for our graded modalities is built according to the following rules:

(i) P = {p, q, r, . . .} ⊆ L
(ii) ϕ ∈ L ⇒ ¬ϕ ∈ L

(iii) ϕ,ψ ∈ L ⇒ ϕ ∨ ψ ∈ L
(iv) ϕ ∈ L ⇒ ◇>nϕ ∈ L, for each n ∈ N.

We also use brackets and standard abbreviations such as (ϕ→ ψ) ≡ (¬ϕ∨ψ), � ≡ (p∧¬p), � ≡ ¬⊺.
Moreover, we add:

• ◇⩾0ϕ ≡ ⊺ and ◇⩾nϕ ≡ ◇>(n−1)ϕ;
• ◇⩽nϕ ≡ ¬◇>nϕ and ◇<nϕ ≡ ◇⩽(n−1)ϕ;
• ◇=0ϕ ≡ ◇⩽0ϕ and ◇=nϕ ≡ ◇⩽nϕ ∧◇⩾nϕ, for n ⩾ 1;
• ◻⩽nϕ ≡ ◇⩽n¬ϕ and ◻<nϕ ≡ ◇<n¬ϕ.

With the intended meaning of ◇>nϕ given, it is easily verified that the reading of ◇=nϕ is “at exactly
n accessible worlds, ϕ is the case”, and of ◻⩽nϕ is “in at most n accessible worlds, ¬ϕ is the case”
(or “ϕ is the case in all accessible worlds except for at most n of them”). We will refer to formulas
of L as GML-formulas, as opposed to ‘pure’ modal formulas (ML-formulas). This terminology is
self-explanatory and extends to notions such as GML (ML) theorems, GML (ML) properties, etc.

The semantics of L is based on Kripke structures ⟨W,R,π⟩ (see [Che80, HugCre68]), where W ≠ ∅
is a set of worlds, R ⊆W ×W is an accessibility relation, and π∶W → (P→ {tt,ff}) a valuation.
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Definition 2.2. For a Kripke structure M we define the truth of ϕ at w ∈W inductively:

(i) (M,w) ⊧ p iff π(w)(p) = tt, for all p ∈ P;
(ii) (M,w) ⊧ ¬ϕ iff not (M,w) ⊧ ϕ;

(iii) (M,w) ⊧ ϕ ∨ ψ iff (M,w) ⊧ ϕ or (M,w) ⊧ ψ;
(iv) (M,w) ⊧ ◇>nϕ iff ∣{x ∈W ∶ Rwx and (M,x) ⊧ ϕ}∣ > n, n ∈ N.

Definition 2.3. We say that ϕ is true in M at w if (M,w) ⊧ ϕ. A formula ϕ is true in M (M ⊧ ϕ) if
(M,w) ⊧ ϕ for all w ∈W , and ϕ is called valid (⊧ ϕ) if M ⊧ ϕ for all M . A tuple F = ⟨W,R⟩ is called
a frame. (F,w) ⊩ ϕ (F ⊩ ϕ) means that for all π, (⟨F,π⟩,w) ⊧ ϕ (⟨F,π⟩ ⊧ ϕ, respectively). When a
model M (or frame F ) is discussed and we argue about a valuation π or world w, it is assumed that
M = ⟨W,R,π⟩ (F = ⟨W,R⟩) for some W and R, and that w ∈W .

Remark 2.4. Note that (M,w) ⊧ ◻⩽nϕ iff ∣{x ∈W ∶ Rwx and (M,x) ⊧ ¬ϕ}∣⩽n. The modal operators
◇ and ◻ are special cases of our indexed operators: ◇ϕ ≡ ◇>0ϕ and ◻ϕ ≡ ◻⩽0ϕ.

Definition 2.5. For a world w we define R(w) = {v ∣ Rwv}. Rnwv is inductively defined to be (w = v)
if n = 0 and ∃z (Rn−1wz&Rzv) if n > 0. We say that v is (R-)reachable from w if Rnwv for some
n ⩾ 0. The model generated by w, ⟨Ð→w ⟩, is the model containing all worlds that are reachable from w,
and in which the valuation and accessibility relation are the restriction of the original valuation and
relation, respectively, to those worlds.

The system K is known to be the weakest of all common modal systems. We call its graded
analogue GrK, and give its axioms and rules (from now on, n,m ∈ N).
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Definition 2.6. The system GrK has the following axioms and inference rules.

A1 the axioms of propositional logic
A2 ◇>n+1ϕ→◇>nϕ
A3 ◻(ϕ→ ψ) → (◇>nϕ→◇>nψ)
A4 ¬◇(ϕ ∧ ψ) → ((◇=nϕ ∧◇=mψ) → ◇=n+m(ϕ ∨ ψ))

R1 ⊢ ϕ, ⊢ ϕ→ ψ ⇒ ⊢ ψ
R2 ⊢ ϕ ⇒ ⊢ ◻ϕ

To see the system in action, we derive some of its theorems.

Proposition 2.7. The following are derivable in GrK.

(1). ◻(ϕ→ ψ) → (◻⩽nϕ→ ◻⩽nψ)
(2). ◇=nϕ→◇⩽mϕ (n ⩽m)
(3). ◇=nϕ→ ¬◇=mϕ (n ≠m)
(4). ◇⩽nϕ ↔ (◇=0ϕ ∨ . . . ∨◇=nϕ)
(5). ◇>n(ϕ ∧ ψ) → (◇>nϕ ∧◇>nψ)
(6). (◇>nϕ ∨◇>nψ) → ◇>n(ϕ ∨ ψ)
(7). ◇>n+m(ϕ ∨ ψ) → (◇>nϕ ∨◇>mψ)
(8). ◇⩾n(ϕ ∧ ψ) ∧◇⩾m(ϕ ∧ ¬ψ) → ◇⩾n+mϕ

Proof. ‘sub’ denotes the (derivable) rule of substitution: ⊢ α↔ β ⇒ ⊢ ϕ↔ ϕ[α/β].

(1) Recall that ◻⩽nϕ ≡ ¬◇>n¬ϕ. Then:

◻(ϕ→ ψ)
sub
⇔ ◻(¬ψ → ¬ϕ)

A3
⇒ (◇>n¬ψ →◇>n¬ϕ)

A1
⇔ (¬◇>n¬ϕ→ ¬◇>n¬ψ)

def
⇔ (◻⩽nϕ→ ◻⩽nψ).

(2) ◇=nϕ
def
⇔ (◇⩽nϕ ∧◇⩾nϕ)

A1
⇒ ◇⩽nϕ

A2
⇒ ◇⩽mϕ.

(3) Without loss of generality, n <m. Then:

(◇=nϕ ∧◇=mϕ)
A1
⇒ (◇⩽nϕ ∧◇⩾mϕ)

def
⇔ (¬◇>nϕ ∧◇>(m−1)ϕ)

A2
⇒ (¬◇>nϕ ∧◇>nϕ) ⇒ �.

(4) Easy direction: ◇=iϕ→◇⩽nϕ, for any i ⩽ n, by (2). Hence (◇=0ϕ ∨ . . . ∨◇=nϕ) → ◇⩽nϕ.
Hard direction (we omit ϕ everywhere): we will use that ¬◇=0 ≡ ◇>0 and for i > 0:
¬◇=i⇔¬(◇⩾i∧◇⩽i) ⇔ (¬◇⩾i∨ ¬◇⩽i) ⇔ (¬◇>(i−1)∨◇>i) ⇔ (◇>(i−1)→◇>i). Now we have:

¬(◇=0∨ . . .∨◇=n)
A1
⇔ (¬◇=0∧ . . .∧¬◇=n) ⇔ ◇>0∧(◇>0→◇>1)∧ . . .∧(◇>(n−1)→◇>n) ⇒ ◇>n⇔ ¬◇⩽n.

(5) Apply (A3) to ◻((ϕ ∧ ψ) → ϕ) and ◻((ϕ ∧ ψ) → ψ).

(6) Apply (A3) to ◻(ϕ→ (ϕ ∨ ψ)) and ◻(ψ → (ϕ ∨ ψ)).

(7) By contraposition, we shall prove: (◇⩽nϕ ∧◇⩽mψ) → ◇⩽n+m(ϕ ∨ ψ). We have:
◇⩽nϕ ⇒(4) ◇=kϕ, for some k ⩽ n (a).
◇⩽mψ ⇒(A3) ◇⩽m(¬ϕ ∧ ψ) ⇒(4) ◇=`(¬ϕ ∧ ψ), for some ` ⩽m (b).
Since ϕ and ¬ϕ ∧ ψ are incompatible: ¬◇(ϕ ∧ (¬ϕ ∧ ψ)), from (a) and (b) by (A4) we infer:
◇=k+`(ϕ ∨ (¬ϕ ∧ ψ)), or equivalently, ◇=k+`(ϕ ∨ ψ). Finally, by (2), we obtain ◇⩽n+m(ϕ ∨ ψ).

(8) Suppose (a) ◇⩾n(ϕ ∧ ψ) and (b) ◇⩾m(ϕ ∧ ¬ψ). For the sake of contradiction, assume ◇<n+mϕ.
◇<n+mϕ ⇒(5) ◇<n+m(ϕ ∧ ψ) ⇒(4) ◇=k(ϕ ∧ ψ), for some k < n +m; by (a), k ⩾ n.
Similarly, ◇=`(ϕ ∧ ¬ψ), for some ` ⩾m. Since (ϕ ∧ ψ) and (ϕ ∧ ¬ψ) are incompatible, by (A4)
we infer: ◇=k+`((ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ)), or equivalently, ◇=k+`ϕ. Since k + ` ⩾ n +m, this implies
◇⩾n+mϕ by (A2). This contradicts to our assumption and hence proves the claim.

Note that we can indeed consider GrK to be an extension of K, since we have all propositional
tautologies (A1), Necessitation (R2) and the K-axiom (Proposition 2.7(1) with n = 0). We end this
introduction into graded modalities by stating that the logic and its semantics perfectly fit:

Theorem 2.8 (Completeness, [Fin72, FatCar85]). For any GML-formula ϕ, we have:
GrK ⊢ ϕ iff ⊧ ϕ.
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3 Elementary model theory: preservation

An important tool when studying elementary equivalences (section 4) and deriving characterization
results (section 5) is the property of preservation. It helps us to derive definability results.

Definition 3.1. Let ThGML(M) = {ϕ ∈ L ∣ M ⊧ ϕ} be the graded modal theory of a model M and
ThML(M) the modal theory of M .

Definition 3.2. We say that a relation Q between models preserves GML-validity if (QM1M2 ⇒
ThGML(M1) ⊆ ThGML(M2)). If, instead of ‘⊆’, ‘⊇’ holds, we have anti-preservation (or reflection).

These definitions easily extend to frames and to ML-formulas. We start out with an easy example
of a preserving and reflecting relation (we omit the proof by induction of the complexity of formulas).

Fact 3.3. ≅ (being isomorphic with) preserves and anti-preserves GML-validity.

An example of an ML-preserving operation is provided by the notion of p-morphism, as defined
in section 2.13 of chapter 3. Theorem 2.14 of chapter 3 guarantees that, for models M and M ′ of
figure 1, and all modal formulas ϕ, we have (M,w) ⊧ ϕ iff (M ′,w′) ⊧ ϕ. That p-morphisms do not
preserve graded modal formulas is seen by observing that in w, ◇>1⊺ is true, whereas it is not so
in w′.

In [Hoe91d], we generalized this notion of p-morphism to a notion of p+-morphism, which does
preserve truth of graded modal formulas. Here, we will generalize the notion of bisimulation (cf.
[Ben83]) to the graded language, which is slightly more general than that of p-morphism.

Definition 3.4. For n ∈ N, we use the following abbreviations:

∃≠x1 . . . xnϕ ≡ ∃x1 . . . xn (⋀1⩽i≠j⩽n(xi ≠ xj) & ϕ)

∀≠x1 . . . xnϕ ≡ ∀x1 . . . xn (⋀1⩽i≠j⩽n(xi ≠ xj) → ϕ)

Definition 3.5. Suppose that Z ⊆W ×W ′ is a relation between worlds of the models M = ⟨W,R,π⟩
and M ′ = ⟨W ′,R′, π′⟩.

(i). Z satisfies n-forth choice if

∀x ∈W ∀x′ ∈W ′ ∀≠y0 . . . yn ∈W ( (Zxx′ ∧ ⋀
0⩽i⩽n

Rxyi) ⇒ ∃≠y′0 . . . y
′

n ∈W
′ ⋀

0⩽i⩽n
(Zyiy′i ∧R

′x′y′i) )

(ii). Z satisfies n-back choice if

∀x ∈W ∀x′ ∈W ′ ∀≠y′0 . . . y
′

n ∈W
′ ( (Zxx′ ∧ ⋀

0⩽i⩽n
R′x′y′i) ⇒ ∃≠y0 . . . yn ∈W ⋀

0⩽i⩽n
(Zyiy′i ∧Rxyi) )

(iii). Z is called GML-bisimulation between M and M ′ if it satisfies n-forth choice and n-back choice
for all n ∈ N, and moreover that ∀x ∈ W ∀x′ ∈ W ′ (Zxx′ ⇒ π(x) = π′(x′)). We say that M
and M ′ GML-bisimulate each other, M ≈M ′, if there exists a GML-bisimulation between them
(as is easily see, if Z is a GML-bisimulation, then so is Z−1). We then also say that M and M ′

are GML-bisimulated by Z. The relation Z is a GML-bisimulation between frames F = (W,R)
and F ′ = (W ′,R′) if it satisfies both n-forth choice and n-back choice for all n ∈ N.

(iv). A GML-bisimulation Z that moreover satisfies that domain(Z) =W and range(Z) =W ′ is called
a GML zigzag connection between M and M ′, and we write M -M ′ if such a relation exists
between M and M ′. In this dissertation, if Z is a function, we will call it a p+-morphism (in
fact, the p+-morphisms of [Hoe91d] are a special case of them). These notions also apply to
frames.
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The notion of zigzag connection (which is the relevant notion for standard modal logic) is also
called a p-relation (cf. [Ben83]). It was Segerberg who introduced the notion of p-morphism for
standard modal logic ([Seg70a]). If M and N are GML-bisimulated by B, then the condition on the
valuations, together with the fact that from any two worlds w and v for which Bwv holds, we can
go to the same number of accessible worlds (that are identified by B), yields the following result:

Theorem 3.6. If models M and M ′ are GML-bisimulated by Z, then, for all graded modal formulas
ϕ and all w ∈W and w′ ∈W ′ with Zww′, M,w ⊧ ϕ iff M ′,w′ ⊧ ϕ.

Proof. Suppose Bwv. If ϕ = p ∈ P, the theorem follows immediately from 3.5(iii). For ϕ = ¬ψ or
ϕ = ψ ∨ χ, the induction hypothesis is applied straightforwardly. Assume ϕ = ◇>nψ, and the theorem
proven for ψ. (⇒) If M,w ⊧ ◇>nψ, then w has distinct R-successors w0, . . . ,wn such that M,wi ⊧ ψ,
i = 0 . . . n. Since B satisfies n-forth choice, there are distinct S-successors v0, . . . , vn of v, in which,
using induction, ψ is true. So, N,v ⊧ ◇>nψ. The ⇐ part is proven in the same way, using n-back
choice.

Corollary 3.7. Suppose f ∶M →M ′ is a p+-morphism of models.
Then, for all graded modal formulas ϕ, M ⊧ ϕ ⇒ N ⊧ ϕ.

Proof. If M ′ ⊭ ϕ, there is some w′ ∈W ′ such that M ′,w′ ⊧ ¬ϕ. Since f is by definition surjective, we
can find a w for which f(w) = w′ and , using 3.6, M,w ⊧ ¬ϕ, i.e., M ⊭ ϕ.

Example 3.8. Let F = ⟨N,{⟨n,n+1⟩ ∣ n ∈ N}⟩ and F ′ = ⟨{0,1},{⟨0,1⟩, ⟨1,0⟩}⟩. The function f
defined by f(n) = n mod 2 is a p+-morphism from F onto F ′, not an isomorphism. Note that the
mapping f of figure 1 (see discussion after 3.3) is (indeed) not a p+-morphism.

Corollary 3.9. Suppose f ∶F → F ′ is a p+-morphism of frames. Then, for all GML formulas ϕ:
(i) For all w ∈W , F,w ⊩ ϕ ⇒ F ′, f(w) ⊩ ϕ
(ii) F ⊩ ϕ ⇒ F ′ ⊩ ϕ

Remark 3.10. Although not all p+-morphisms are isomorphisms, on the class of finite transitive
generated frames, the two concepts are equivalent. To see this, note that if F is generated by w, and
f ∶F = (W,R) → F ′ = (W ′,R′) is a p+-morphism, then f must be a bijection between w’s successors
and f(w)’s successors. However, since F is transitive and generated by w, the set of w’s successors
is just W . We leave it to reader to verify that F ′ is transitive and generated by f(w). Hence f is a

bijection between W = ⟨Ð→w ⟩ and ⟨
ÐÐ→
f(w)⟩ =W ′.

We can use 3.6 to establish related preservation results for the graded language.

Definition 3.11. M = ⟨W,R,π⟩ is a generated submodel of M ′ = ⟨W ′,R′, π′⟩, M ↪M ′, if W ⊆W ′

and ∀x ∈W ∀y ∈W ′: R′xy ⇒ y ∈W . Moreover, R = R′∣W (the restriction of R′ to W ) and π = π′∣W .
This definition naturally extends to frames.

Theorem 3.12. Suppose that M ↪M ′, w ∈W and ϕ ∈ L. Then:
(i) M,w ⊧ ϕ ⇔ M ′,w ⊧ ϕ
(ii) M ′ ⊧ ϕ ⇒ M ⊧ ϕ

Proof. For item (i), observe that {⟨w,w⟩ ∣ w ∈ W} is a GML-bisimulation between M and M ′, and
use 3.6. Item (ii) then follows easily.

Corollary 3.13. Let F ↪ F ′, w ∈W and ϕ ∈ L. Then:
(i) F,w ⊩ ϕ ⇔ F ′,w ⊩ ϕ
(ii) F ′ ⊩ ϕ ⇒ F ⊩ ϕ
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Definition 3.14. Let {Mi = ⟨Wi,Ri, πi⟩ ∣ i ∈ I} be a set of models and M ′

i = ⟨W ′

i ,R
′

i, π
′

i⟩, with
W ′

i = {⟨i,w⟩ ∣ w ∈Wi}, R′

i = {(⟨i,w⟩, ⟨i, v⟩) ∣ Riwv} and π′i(⟨i,w⟩) = πi(w). The disjoint union ⊎i∈IMi

of models {Mi ∣ i ∈ I} is the model ⟨⋃i∈IW
′

i ,⋃i∈I R
′

i,⋃i∈I π
′

i⟩. The disjoint union ⊎i∈I Fi of frames
{Fi ∣ i ∈ I} is the frame ⟨⋃i∈IW

′

i ,⋃i∈I R
′

i⟩.

Theorem 3.15. Let {Mi ∣ i ∈ I} be as above, w ∈Wi for some i ∈ I, and ϕ ∈ L. Then:
(i) ⊎i∈IMi, ⟨i,w⟩ ⊧ ϕ ⇔ Mi,w ⊧ ϕ
(ii) ⊎i∈IMi ⊧ ϕ ⇔ for all i ∈ I: Mi ⊧ ϕ

Proof. Observe that Mi ≅M ′

i and M ′

i ↪ ⊎i∈IMi. Now apply 3.3 and 3.12.

Corollary 3.16. ⊎i∈I Fi ⊩ ϕ ⇔ for all i ∈ I: Fi ⊩ ϕ.

Isomorphisms preserve GML-validity, but for modal logic we need not impose such a stringent
condition on mappings between frames to achieve this. In the literature, ([Seg71a]), a weakening of
isomorphisms to pseudo isomorphisms (or simply p-morphisms) is known which already is sufficient.

In the literature, one more anti-preservation result for modal formulas is known: that of ultrafilter
extensions (we refer to [ChaKei73] for the definition of ultrafilter). Although (in [Hoe91d]) we were
able, by using some ad hoc arguments, to prove that taking the ultrafilter extension of the frame
N anti-preserves graded modal formulas, as far as we know, the question about anti-preservation in
general (for the graded language) has not been settled yet.1

4 Expressive power 1: graded modal equivalence

We use the results of section 3 in obtaining expressibility results for GrK in section 4 and 5, using
the following general pattern: suppose we have a frame G = ⟨W,R⟩ satisfying some property A of the
accessibility relation R, and a frame G′ = ⟨W ′,R′⟩ that is obtained from G using some GML-validity
preserving operation, and of which R′ does not satisfy A. Then there is no way we can define A in
our graded language. For, the assumption

for all frames F : F ⊩ ϕ iff F satisfies A(R) (∗)

justifies the following argument: if G satisfies A(R) then, by (∗), G ⊩ ϕ. Since G′ is obtained from
G using some validity preserving operation, we have G′ ⊩ ϕ. Using (∗) once more, we conclude that
G′ satisfies A(R′) — a contradiction.

From the preservation theorem for p-morphisms (cf. theorem 3.14, chapter 3) we know that the
existence of a p-morphism f ∶F → F ′ implies ThML(F ) ⊆ ThML(F ′). The frames F1 and F2 based
on the models of figure 1 then are examples of frames for which ThML(F1) ⊆ ThML(F2), but at the
same time ThGML(F1) /⊆ ThGML(F2). This implies that using graded modalities, more frames can be
distinguished than in traditional modal logic.

Definition 4.1. Two frames F and F ′ are graded modally equivalent, F ≡GML F ′, if ThGML(F ) =
ThGML(F ′). If ThGML(F ) ⊆ ThGML(F ′), we say that F and F ′ are GML-comparable. Analogously,
we define modal equivalence (F ≡ML F ′ if ThML(F ) = ThML(F ′)) and ML-comparability (ThML(F ) ⊆
ThML(F ′)). The definitions can also be applied to models.

So we can rephrase the above observation by saying that the two frames F1 and F2 are ML-
comparable. Since, moreover, ThGML(F1) /⊆ ThGML(F2), (this will become obvious in the following
subsection) they are not GML-comparable.

Some interesting questions now immediately break surface. For instance, what does it mean
for two frames to have the same theory? Are there modally equivalent frames that are not graded

1Typist’s comment: it has been settled in a paper in AiML 2010.
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modally equivalent? If so, are there finite examples with that property? We will decide on this in this
section, showing how the results of section 3 can be fruitfully used here. We start out by comparing
ordinary equivalence with graded modal equivalence. Besides some simple finite frames, the class of
binary frames is the scenery in which we settle some questions. The restriction to binary frames is
not essential, but is rather made because of its conceptual simplicity and mathematical neatness. In
fact, in chapter 3 we already gave an example of the expressive power of the graded language. At
the end of this section, we will focus on a (mathematically) interesting subclass of all frames: that
of linear orders, which, on it turn, is important when studying logics of time (cf. [Ben82]).

On the class of finite frames, ≡GML and even ≡ML appear to be quite strong properties:

Theorem 4.2 ([Ben84a]). Let F and F ′ be finite, and generated by one element. Then:
F ≅ F ′ iff F ≡ML F ′.

Corollary 4.3. If F and F ′ are finite and generated by one element, then:
F ≅ F ′ iff F ≡GML F ′.

Proof. ‘⇒’ is obvious; for ‘⇐’, it is sufficient to notice that F ≡GML F ′ implies F ≡ML F ′.

We will see that there are non-isomorphic (even point-generated) frames that still cannot be told
apart, graded modally. Corollary 4.3 implies that they should be infinite. Another consequence of
4.2 and 4.3 is that if we are searching for possible frames that are ML-equivalent, but not GML-
equivalent, they have to be either not point-generated or infinite. It will turn out that in both cases
(4.4 and 4.6, respectively) such frames exist. We start by giving an example of two finite frames.

Theorem 4.4. There exist finite frames G and H for which the following hold:
(a) G ≡ML H, but also (b) G /≡GML H.

Proof. Consider the following frames:

F = ⟨ {a, b}, {⟨a, b⟩} ⟩
G = ⟨ {x, y, z}, {⟨x, y⟩, ⟨x, z⟩} ⟩
H = F ⊎G

There is a p-morphism G→ F , hence ThML(G) ⊆ ThML(F ). Then:

ThML(H) = ThML(F ) ∩ThML(G) = ThML(G),

and thus G ≡ML H. At the same time, G /≡GML H, since ◇=0⊺ ∨◇=2⊺ is valid in G, not in H.

In the above proof G↪H, hence ThGML(H) ⊊ ThGML(G), and there is no p+-morphism G→ F .

Definition 4.5. For each n ∈ N, we define Fn = {F ∣ F ⊩ ◇=n⊺} the class of frames in which every
element has exactly n successors. We call F2 the class of binary frames. A special binary frame in F2

is Fbin = ⟨Wbin,Rbin⟩ which can be viewed as a binary tree: it has a generating element root (= ε) and
each element has one unique predecessor. (See figure 3). Formally, Wbin = {0,1}∗, i.e., all sequences
containing 0’s and 1’s, including the empty sequence ε. Finally, Rbin = {⟨x, y⟩ ∣ y = x0 or y = x1}.

First, we use Fbin to discriminate between ≡ML and ≡GML:

Theorem 4.6. There exist point-generated frames F1 and F2 for which:
F1 ≡ML F2, but F1 /≡GML F2.

Proof. Let F1 = Fbin and let F2 be Fbin preceded by an element w. That is, we extend Fbin with a
world w and stipulate that R2 = Rbin ∪ {(w, root)}. Then ThML(F2) ⊆ ThML(F1) since F1 ↪ F2, and
ThML(F1) ⊆ ThML(F2) by the existence of a p-morphism f ∶F1 → F2: f(ε) = w, f(0x) = f(1x) = x for
all x ∈ {0,1}∗. However, ThGML(F1) /⊆ ThGML(F2), for which ◇=2⊺ is a witness. (∗)
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The latter argument, (∗), is easily generalized: if F1 ∈ Fn and F2 ∉ Fn for some n ∈ N, then
ThGML(F1) /⊆ ThGML(F2). We cannot reverse this observation. In terms of F2 again, not all bi-
nary frames possess the same graded modal theory. There are F1, F2 ∈ F2 for which ThGML(F1) /⊆
ThGML(F2). This is shown in 4.7(b). Theorem 4.7(a) shows that Fbin cannot be graded modally
defined. According to 4.7(c), Fbin is the ‘weakest’ frame in F2.

Theorem 4.7.
(a) There exists a frame F1 /≅ Fbin with F1 ≡GML Fbin.
(b) There are frames F1, F2 ∈ F2 for which F1 /≡GML F2.
(c) F ∈ F2 ⇔ ThGML(Fbin) ⊆ ThGML(F ).

Proof. Let F1 and F2 be as in figure 4.
(a). The reader is encouraged to verify that there exists a p+-morphism f ∶Fbin → F1 and that

also Fbin ↪ F1. Although obviously F1 /≅ Fbin, we can use 3.9 and 3.13(ii) to conclude F1 ≡GML Fbin.
(b). Note that ◇◇>1p→◇>1◇p ∈ ThGML(F2) ∖ThGML(Fbin).
(c). If ϕ ∉ ThGML(F ), there is some π and w such that ⟨F,π⟩,w ⊧ ¬ϕ. Since F ∉ F2, we can

‘unravel’ the frame F along Fbin, in a way that root validates the same graded modal formulas as w.
Let us denote this unravelling with f . Then f(w) = root , and if f(v) = x ∈ Fbin, we map the R-
successors of v onto the Rbin-successors of x. The valuation π′ on Fbin is defined by π′(f(v)) = π(v).
A simple induction shows ⟨Fbin, π′⟩, root ⊧ ¬ϕ.

Corollary 4.8. From 4.7(a) we see that 4.3 is generally not true for infinite frames: even for point-
generated frames, ≡GML does not imply ≅.

A natural question now is, whether the frames F , for which F ≡GML Fbin, can be characterized.
The positive answer is to be found in [Hoe91d].

Now we make a move to the realm of linear orders which have an incessant appeal on mathematics,
both for their simplicity and wide applicability. Also in modal logic it makes sense to study them,
especially in logic for time. A systematic modal approach to linear orders is to be found in [Ben82].
This section is, although much briefer and sketchier, very much inspired by it. Suggestively, we will
write ‘⩽’ for the linear order, and ‘<’ if it is strict.

Definition 4.9. Let Flo be the class of frames of which the accessibility relation is a linear order
and Fslo the class of strictly linear frames. Finally, Fwlo is the class of weak linear orders: here, the
relation need not be anti-symmetric.

Perhaps the most appealing frames in Flo are ⟨N,<⟩ and ⟨N,⩽⟩. However, they appear to be
rather rigid structures, witnessing the following theorems.

Theorem 4.10 ([Hoe91d]). If f ∶ ⟨N,<⟩ → ⟨N,<⟩ is a p-morphism, then f ≡ I (identity).

Of course, there are frames ⟨W,R⟩ that are non-trivial p-morphic image of ⟨N,<⟩, like ⟨{0},{⟨0,0⟩}⟩.
However, p+-morphisms even exclude this:

Theorem 4.11. If f ∶ ⟨N,<⟩ → ⟨W,R⟩ is a p+-morphism, then ⟨W,R⟩ ≅ ⟨N,<⟩ and f ≡ I.

Proof. We recall that transitivity, seriality and linearity are modally definable. Then, by 3.9(ii),
R must also have these properties. So, ⟨W,R⟩ is a linear structure, which possibly contains some
clusters (in which the relation is symmetric, and whence universal), cf. figure 5.

We consider the following a priori possibilities.

• R contains clusters C somewhere ‘halfway’. This cluster must be finite, and so there is a greatest
n ∈ N with f(n) = c ∈ C. By definition of cluster, Rcc, so by definition of p+-morphism, there
must be an m ∈ N with f(m) = c and m > n, contradicting our assumption about n. Conclusion:
if ⟨W,R⟩ contains a cluster, it must be at the end.
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• Assuming finiteness of this final cluster, it would yield finiteness of W . However, (N,<) ⊩ ◇>n⊺,
and since f is a p+-morphism, we would have (W,R) ⊩ ◇>n⊺ for all n ∈ N, which obviously
contradicts the finiteness of W .

• ⟨W,R⟩ has an infinite cluster, possibly R-preceded by a finite initial fragment. Without loss
of generality, we assume that this fragment is empty. f is surjective, so W is countable. This
situation does allow p-, but not p+-morphisms: let us write 0′,1′,2′, . . . for the members of W .
The function f ∶N→W that assigns 0′,1′,0′,1′,2′,0′, . . . to the natural numbers 0,1,2,3,4,5, . . .
is a p-morphism. However, using 3.9, there cannot be any p+-morphism: (◇=1p → ◇◻¬p) ∈
ThGML(N,<) ∖ThGML(W,R).

If we drop the strictness condition on ⟨N,<⟩, theorem 4.10 does not hold for p-morphisms. But
still then, p+-morphisms are more rigid, according to theorem 4.12.

Theorem 4.12.
(a) Not all p-morphisms f ∶ ⟨N,⩽⟩ → ⟨N,⩽⟩ equal I.
(b) If f ∶ ⟨N,⩽⟩ → ⟨N,⩽⟩ is a p+-morphism, then f ≡ I.

Proof. An example for (a) is f(n) = n/2 if n is even, (n − 1)/2 else. (b) follows from 4.11.

Let us leave N as it is and turn to the classes Fwlo and Fslo. Using an argument of Segerberg
([Seg71a]), one can ‘bulldoze’ a symmetric cluster into asymmetric orders (with the same modal
theory), so that:

Theorem 4.13 ([HugCre84]). ThML(Flo) ⊆ ThML(Fwlo). And hence, ThML(Flo) = ThML(Fwlo).

For GML, this bulldozing technique does not work, because it does not leave the number of
successors the same. Let us illustrate this by a simple example. Consider the frame F and its
‘bulldozed’ result f ′ of figure 6 (R is the transitive closure of the relation denoted with arrows). If
the valuations of F ′ respect those of F , it is obvious how a modal formula, true in a model on F ,
can be transferred to F ′. For instance, if ML-formula ϕ = ◻((p → ◇¬p) ∧ (¬p → ◇p)) is true at w,
we get an alternating sequence of p and ¬p worlds in F ′. However, it is impossible to do this with
the GML-formula ϕ∧◇=2⊺, showing that the bulldozing technique is inadequate for GML. Indeed, in
section 5.1, we shall show that ThGML(Flo) /⊆ ThGML(Fwlo).

Now we will show that in Fslo graded modalities do not supply a greater expressive power than
modalities (in section 5 we will see, that GML is important in defining Fslo, though).

Example 4.14. Consider F = ⟨W,R⟩ ∈ Fslo and suppose that ⟨F,π⟩,w ⊧ ◇>1p. Then w is accessible
to at least two p-worlds. Since R is antisymmetric, linear and transitive, it follows that one of those
worlds is reached before the other, whence ⟨F,π⟩,w ⊧ ◇(p ∧ ◇p). Conversely, if ◇(p ∧ ◇p) is true
at w, we use transitivity and irreflexivity of R to conclude that ⟨F,π⟩,w ⊧ ◇>1p. We thus have a way
to translate GML-formulas to equivalent ML-formulas.

Definition 4.15. We define the translation T ∶GML→ML as follows:
• T (p) = p, for propositional atoms p;
• T (¬ϕ) = ¬T (ϕ), T (ϕ ∨ ψ) = T (ϕ) ∨ T (ψ);
• T (◇>0ϕ) = ◇T (ϕ) and T (◇>n+1ϕ) = ◇(T (ϕ) ∧ T (◇>nϕ)).

Theorem 4.16. Let F = ⟨W,R⟩ ∈ Fslo and T as above. Then for all GML-formulas ϕ:
(i) for all π and w: ⟨F,π⟩,w ⊧ ϕ iff ⟨F,π⟩,w ⊧ T (ϕ);
(ii) for all π: ⟨F,π⟩ ⊧ ϕ iff ⟨F,π⟩ ⊧ T (ϕ);
(iii) F ⊩ ϕ iff F ⊩ T (ϕ).

Proof. Immediate (as in example 4.14, note that T (◇>1p) = ◇(p ∧ ◇p)), using the definition of
translation T and of strict linear order.
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We conclude this section by giving two examples of orders on the cartesian product F1×F2, where
F1 and F2 are linear orders. In the first (4.18), GML appears to be richer, in the other (4.19), we use
4.16 to show that ML is as adequate as GML here.

Definition 4.17. Let F1 = ⟨W1,R1⟩ and F2 = ⟨W2,R2⟩ be two linear orders. The direct product of
F1 and F2 is defined as F1 & F2 = ⟨W1 ×W2,R⟩, where R(x1, x2)(y1, y2) iff both R1x1y1 and R2x2y2.
The lexicographical product of F1 and F2 is defined as F1⊙F2 = ⟨W1×W2,R⟩, where R(x1, x2)(y1, y2)
iff R1x1y1 or (x1 = y1 and R2x2y2).

In what follows, Z stands for the frame ⟨Z,<⟩ with the strict order.

Theorem 4.18.
(i) ThML(F1 & F2) ⊆ ThML(F1) and ThML(F1 & F2) ⊆ ThML(F2).
(ii) There are F1 and F2 for which ThGML(F1 & F2) /⊆ ThGML(F1).

Proof. (i) It easily verified that the projections π`∶F1&F2 → F1 and πr∶F1&F2 → F2 are p-morphisms.
(ii) We claim that ThGML(Z&Z) /⊆ ThGML(Z). To see this, observe that ◇◇◇p→◇>3◇p is valid

on Z&Z, though not on Z. For, if ◇◇◇p is true at some world (x, y) ∈ Z×Z, then p is true for some
(x′, y′) with x′ ⩾x + 3 and y′ ⩾y + 3. But then there are at least four successors of (x, y) for which ◇p
is true: (x+1, y+1), (x+1, y+2), (x+2, y+1), (x+2, y+2). Finally, define π on Z such that π(x)(p) = tt

iff x = 4. Then, at 0, ◇◇◇p is true, but not ◇>3◇p, hence, ⟨Z,<⟩ ⊭ ◇◇◇p→◇>3◇p.

Theorem 4.19.
(i) ThML(Z⊙Z) = ThML(Q⊙Z).
(ii) ThGML(Z⊙Z) = ThGML(Q⊙Z).

Proof. (i) This is proven in [Ben82].
(ii) Z⊙Z and Q⊙Z are both strict linear orders, hence we can apply theorem 4.16 yielding:
ϕ ∈ ThGML(Z⊙Z) ⇔4.16 T (ϕ) ∈ ThML(Z⊙Z) ⇔4.19(i)

T (ϕ) ∈ ThML(Q⊙Z) ⇔4.16 ϕ ∈ ThGML(Q⊙Z).

5 Expressive power 2: correspondence

In this section we study first-order definability of graded modal formulas, i.e., the correspondence
between GML-formulas on the one side and (first-order) properties of the accessibility relation on
the other. In section 5.1 we give examples of first-order (f.o.) properties that can be graded modally
defined (the most interesting are of course those that were not modally definable). Then, negative
examples show some limitations on the expressive power of GML. For doing so, the tools developed
in section 3 and 4 appear to be helpful.

Section 5.2 is devoted to deriving f.o. properties from GML formulas. Then we know already
examples from section 5.1, but we will show how for some classes of graded modal formulas the
corresponding f.o. property can be derived systematically. We show that this is only one side of the
picture: there are modal formulas (the so called ‘Sahlqvist formulas’) that correspond to some f.o.
property, but as soon as graded modal operators are plugged in for ordinary modal operators, the
correspondence result is smashed up.

5.1 Definability of first-order properties

Definition 5.1. Let ϕ ∈ L and A(R) be a first-order property of relation R (possibly using ‘=’). We
say that ϕ corresponds to A iff

for all frames F : F ⊩ ϕ iff F satisfies A(R) (∗)
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We then also say that ϕ defines A(R). This definition easily extends to systems with multiple
modalities, allowing ϕ (a GML-formula in operators ◇>n

1 , . . . ,◇
>n
m to correspond with A(R1, . . . ,Rm).

We have relative correspondence if (∗) applies for all frames in some class F of frames. Then ϕ
defines A(R) in F.

Example 5.2. Graded modalities seem to pre-eminently suited to define ‘having at least (at most,
exactly) n R-successors’ (called “seriality” for n = 1). In chapter six of this thesis we explore this
feature to show that on models, any first-order quantifier is definable. From chapter 3 we also know
that the property R3 = R1 ∩R2 does not correspond to any (ordinary) modal formula, although it
does correspond to a GML-formula — provided that we first add an appropriate rule.

In this section, we will see that there exists a GML-formula that corresponds to transitivity and
irreflexivity, viz. ◇(p∧◇p) → ◇>1p (cf. 5.21). In section 4 we used the bi-implication ◇(p∧◇p) ↔ ◇>1p
to ‘unfold’ GML-formulas into equivalent ML-formulas on strict linear orders. It follows that the
expressive power of GML is equal to that of ML on Fslo. It turns out that this unfolding yields
equivalent formulas only on Fslo.

Theorem 5.3. F ∈ Fslo iff F ⊩ ◇>1p↔◇(p ∧◇p).

Proof. This follows immediately from our remark that ◇(p ∧◇p) → ◇>1p defines irreflexivity and
transitivity and the fact that right-linearity is defined by ◇>1p → ◇(p ∧◇p). The latter property is
also ML-definable by ◻(◻p→ q) ∨◻(◻q → p), but GML turns out to be more economical here: in ML
one cannot do this by using one propositional atom ([Ben83]).

Now that Fslo is GML-definable, we can distinguish the strict linear order from the weak linear
orders.

Corollary 5.4. ThGML(Fslo) /⊆ ThGML(Fwlo), although ThML(Fslo) ⊆ ThML(Fwlo).

Proof. ◇>1p↔◇(p∧◇p) ∈ ThGML(Fslo), but falsified on the Fwlo-frame F of figure 6: make p true only
in the world w1, then w satisfies ◇(p ∧◇p), but not ◇>1p. For the second part, cf. theorem 4.13.

Theorem 5.5. ThGML(Flo) /⊆ ThGML(Fwlo), although ThML(Flo) ⊆ ThML(Fwlo).

Proof. (◇=2p→◇◇=1p) ∈ ThML(Flo), but it is denied on the Fwlo-frame F of figure 6: make p true in
both w1 and w2.

We summarize the definability results of Flo, Fslo and Fwlo in the following theorem.

Theorem 5.6. For all classes F and F′ from {Flo,Fslo,Fwlo}, we have:
(a) ThML(F) = ThML(F′)
(b) F ≠ F′ ⇒ ThGML(F) ≠ ThGML(F′)
(c) ThGML(F) ⊆ ThGML(F′) ⇒ F′ ⊆ F

Apparently, on transitive frames, GML is quite stronger than ML. We give an application of this.
It is useful in logics of time, in which, in addition to an operator for the future, there is one for the
past. So we assume to have graded modalities ◇>n and x>n, n ∈ N. We call the system time-GML.

Definition 5.7. A frame F = ⟨W,R⟩ is connected if for all w,w′ ∈ W there is a finite sequence
w = w1, . . . ,wn = w′ such that, for all i < n, either Rwiwi+1 or Rwi+1wi.

Theorem 5.8. On the class of connected frames the structure ⟨Z,<⟩ is time-GML definable (up to
isomorphism).

Proof. Consider the following axioms for future modalities, and similar ones for past modalities:
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(1). ◇⊺
(2). ◇◇p→◇p
(3). ◻(◻p→ q) ∨ ◻(◻q → p)
(4). ◇(p ∧◇p) → ◇>1p
(5). (◇(p ∧ ◻¬p) → ◻◻¬p) ∨ ◇(◇p ∧ ¬◇◇p)
(6). ◻(◻p→ p) → (◇◻p→ ◻p)

Then, each connected frame F that satisfies (1)–(6) is isomorphic to ⟨Z,<⟩. For, if (1)–(6) are
valid at a world w, then, by (1), ⟨Ð→w ⟩ is serial (we initially consider the right-successors of w and
use the axioms with forward modalities, whereas the case of the past is argued symmetrically),
by (2) transitive, by (3) linear. Formula (4), with theorem 5.3 guarantees irreflexivity. On strict
linear orders, discreteness is defined by (5) (cf. [Ben82]). So, ⟨Ð→w ⟩ satisfies the axioms of ⟨N,<⟩. Its
nonstandard models are excluded by (6). Since ⟨←Ðw ⟩ satisfies the same properties, and F is connected,
we have F ≅ ⟨Z,<⟩.

In ML, ⟨Z,<⟩ is not definable (cf. [Hoe91d]). After this positive result about GML, we have to say
something about the limitations of definability (even on transitive frames) in GML now.

Theorem 5.9. The following f.o. properties of R do not correspond to any GML-formula:

(a) linearity: ∀xy (x = y)
(b) discreteness: ∀x (∃yRxy → ∃y (Rxy ∧ ¬∃z (Rxz ∧Rzy)))
(c) left-seriality: ∀x∃yRyx
(d) ‘selected’ reflexivity: ∀x∃y (Rxy ∧Ryy)

Proof. (a) Suppose linearity corresponds to ϕ. Then ⟨Z,<⟩ ⊩ ϕ and, by 3.16, ⟨Z,<⟩ ⊎ ⟨Z,<⟩ ⊩ ϕ,
yielding, with our assumption, that the latter is linear, which is obviously not.

(b) The structure ⟨N,{(n,n+1) ∣ n ∈ N}⟩ is discrete, its p+-morphic image ⟨{0},{(0,0)}⟩ is not.
Now use 3.9 and argue as in (a).

(c) ∀x∃yRxy is true in ⟨Z,<⟩ but not in ⟨N,<⟩. Observe that ⟨N,<⟩ ↪ ⟨Z,<⟩ and use 3.13.
(d) Here we use our reflection result about ultrafilter extensions as stated in section 3: the

ultrafilter extension ue⟨N,<⟩ of ⟨N,<⟩ satisfies ∀x∃y (Rxy ∧Ryy), whereas ⟨N,<⟩ does not.

Corollary 5.10. There are f.o. properties that do not have a corresponding GML-formula, even if
we restrict ourselves to transitive frames.

Proof. A witness is the part (d) of the previous theorem.

We end this section by stating another negative correspondence result, now adapting a technique
that was described for multi-modal logic in chapter 3, called unraveling. It appears that this technique
is useful also for GML. The definition of how to obtain unraveled model M∗

w = ⟨W ∗,R∗, π∗⟩, given
M = ⟨W,R,π⟩, is given in 4.4 of chapter 3 of this thesis. Recall that each world of M is copied in M∗

w

as many times as it is reachable from w: if in M we have Rwv, Rvu and Rwu, we distinguish in M∗

w

between an u-world that is a successor of v and one that is a successor of w, i.e., we get R∗⟨w⟩⟨wv⟩,
R∗⟨wv⟩⟨wvu⟩, R∗⟨w⟩⟨wu⟩ (cf. figure 7). We can also consider M to be the result of an identification
of different worlds in M∗

w, according to the following theorem.

Theorem 5.11. Let M be a model with a world w and M∗

w the unraveled result.
Then the function f ∶M∗

w → ⟨Ð→w ⟩ defined by f(⟨w,w1, . . . ,wn⟩) = wn is a p+-morphism.

Proof. From chapter 3 we know that f is a p-morphism. To show that it satisfies ‘n-forth choice’ and
‘n-back choice’, we show that, for each v ∈M∗

w, f is a bijection between R∗(v) and R(f(v)). Let ‘○’
denote the concatenation of sequences. To see that f is injective, take x ≠ x′ ∈ R∗(v). By definition
of R∗, we get x = v ○ ⟨y⟩ and x′ = v ○ ⟨y′⟩ for some y, y′ ∈ R(f(v)). Since v ○ ⟨y⟩ = x ≠ x′ = v ○ ⟨y′⟩, we
have f(x) = y ≠ y′ = f(x′).
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Corollary 5.12. For all models M and worlds w:
ThGML(M) ⊆ ThGML(⟨

Ð→w ⟩) and ThGML(M∗

w) ⊆ ThGML(⟨
Ð→w ⟩).

Proof. From 5.11 we know the existence of a p+-morphism from M∗

w to ⟨Ð→w ⟩, which on its turn is a
generated submodel of M . The corollary then follows from 3.7 and 3.12.

Theorem 5.13. There are no GML-formulas that correspond to antisymmetry, irreflexivity, asym-
metry or intransitivity.

Proof. Let A(x) be any of the four properties, and let F be a frame that does not satisfy A(x) at w.
Then ⟨Ð→w ⟩ does not satisfy A(x). If A would correspond to ϕ, then ⟨Ð→w ⟩ ⊭ ϕ. By 5.12, M∗

w ⊭ ϕ.
However, M∗

w does satisfy A. For, any world in the unraveled model M∗

w, which is a sequence (of
length, say, n) of worlds of ⟨Ð→w ⟩, has only access to sequence of length n+1.

Example 5.14. Figure 7 shows how a frame F is unraveled (from w) into a frame F ′. On easily
verifies that, although ⟨w⟩ is an irreflexive, intransitive, asymmetric and antisymmetric world, its
p+-morphic image w is not.

5.2 First-order definability of modal principles

Each positive result of 5.1 attaches a f.o. property to a given GML-formula. Two questions now
emerge: does there always exist such a f.o. property, and, if yes, is there any systematics in deriving
them? In order o systematically attach f.o. properties to GML, the following Standard Translation
(adapted from [Ben83], where it was introduced for ML) is useful.

Definition 5.15. ST translates GML-formulas to f.o. properties as follows:
• ST(p) = Px
• ST(¬ϕ) = ¬ST(ϕ)
• ST(ϕ ∨ ψ) = ST(ϕ) ∨ ST(ψ)
• ST(◇>nϕ) = ∃≠y0 . . . yn ⋀

0⩽i⩽n
(Rxyi ∧ [yi/x]ST(ϕ)),

where in the last item no yi (i = 0 . . . n) occurs in ST(ϕ), and [y/x]α is α with each free occurrence
of x replaced by y. For the definition of ∃≠ and ∀≠, see 3.4.

Example 5.16.

(a) ST(◻⩽nϕ) = ∀≠y0 . . . yn( ⋀
0⩽i⩽n

Rxyi → ⋀
0⩽i⩽n

[yi/x]ST(ϕ))

(b) ST(◻p→ p) = ∀y (Rxy → Py) → Px
(c) ST(◇>1◇p→◇>1p) = ∃≠y, y′ (Rxy ∧Rxy′ ∧ ∃u (Ryu ∧ Pu) ∧ ∃u′ (Ry′u′ ∧ Pu′)) →

∃≠z, z′ (Rxz ∧Rxz′ ∧ Pz ∧ Pz′)

Theorem 5.17. For all models M , frames F , and formulas ϕ in the propositions p1, . . . , pn:

(i). M,w ⊧ ϕ iff M ⊧ ST(ϕ)[w]
(ii). M ⊧ ϕ iff M ⊧ ∀x ST(ϕ)

(iii). F,w ⊩ ϕ iff F ⊧ ∀P1 . . .∀Pn ST(ϕ)[w]
(iv). F ⊩ ϕ iff F ⊧ ∀x∀P1 . . .∀Pn ST(ϕ)

Proof. Is an easy generalization of [Ben83].

Combining 5.16(b) and 5.17(iii), we get: F,w ⊩ ◻p → p iff F ⊧ ∀P (∀y (Rwy → Py) → Pw),
giving correspondence between a GML-formula and a second-order property. We give a sufficient
condition for turning this into a f.o. property (theorem 5.20) and illustrate the proof by an example.
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Definition 5.18. π ⩽p,F π′ if for all w ∈ W : π(w)(p) = tt ⇒ π′(w)(p) = tt. For each k ∈ N,
π ⩽p1,...,pk,F π

′ if π ⩽p,F π′ for all i ⩽ k. A formula ϕ ∈ L is called positive if it is equivalent to a
formula built with ⊺,�,∧,∨,◇>n,◻⩽n and propositional atoms. ϕ is monotonic in p1, . . . , pk if ϕ’s
truth is enduring under extended valuations; formally: ⟨W,R,π⟩,w ⊧ ϕ and π ⩽p1,...,pk,F π

′ imply
⟨W,R,π′⟩,w ⊧ ϕ.

Lemma 5.19 ([Ben83]). Any positive formula is monotonic in all its propositional atoms.

Theorem 5.20. Let ϕ be a GML-formula built using p1, . . . , pk,∧,∨,◇
>r, and ψ positive in p1, . . . , pk.

Then the GML-formula (ϕ→ ψ) corresponds to a f.o. formula, which can be systematically obtained.

Proof. We proceed in several steps, and we will exemplify each step (n) with the formula ◇(p∧◇p) →
◇>1p in step (n′); 5.22 provides other examples. The variable s ranges over {1, . . . , k}.

1. Obtain ST(ϕ→ ψ) = ST(ϕ) → ST(ψ) using different variables for each quantifier. Since ϕ only
consists of p1, . . . , pk,∧,∨,◇

>r, the formula ST(ϕ) only contains existential quantifiers, which
all can be moved to front, giving ∃y1 . . . ynϕ′.

1′. We get ST(◇(p ∧◇p) → ◇>1p) =
∃y1 (Rxy1 ∧ Py1 ∧ ∃y2 (Ry1y2 ∧ Py2)) → ∃≠u, v (Rxu ∧Rxv ∧ Pu ∧ Pv).
Here ST(ϕ) can be rewritten as ∃y1∃y2 (Rxy1 ∧ Py1 ∧Ry1y2 ∧ Py2).

2. Using f.o. logic, we can rewrite ST(ϕ→ ψ) into ∀y1 . . . yn(ϕ′ → ST(ψ)) =∶ α.

2′. α = ∀y1 y2 ((Rxy1 ∧ Py1 ∧Ry1y2 ∧ Py2) → ∃≠u, v (Rxu ∧Rxv ∧ Pu ∧ Pv)).

3. Let PsY = {yi ∣ Psyi occurs in ϕ′}. This set is finite, and we abbreviate ⋁u∈PsY (y = u) as
y ∈ PsY . Let the f.o. formula Φ→ Ψ be the result of replacing each occurrence of Psz in α by
(z ∈ PsY ). For the antecedent, this has only the effect that each occurrence of Psyi (in ϕ′) is
replaced by ⊺. (Φ→ Ψ)[w] is the result of replacing the free variable x in (Φ→ Ψ) by w.

3′. PY = {y1, y2}, so Φ→ Ψ =
∀y1, y2 ((Rxy1 ∧Ry1y2) → ∃≠u, v (Rxu ∧Rxv ∧ u ∈ {y1, y2} ∧ v ∈ {y1, y2}))

4. We claim that Φ→ Ψ corresponds to ϕ→ ψ, i.e., for all frames F and worlds w, we have:
F,w ⊩ ϕ→ ψ iff F ⊧ (Φ→ Ψ)[w].

4a. (⇒) If F,w ⊩ ϕ → ψ, then, by 5.17(iii), F ⊧ ∀P1 . . . Pk ∀y1 . . . yn (ϕ′ → ST(ψ))[w], and
F ⊧ ∀y1 . . . yn∀P1 . . . Pk (ϕ′ → ST(ψ))[w]. But (Φ→ Ψ) is only an instantiation of this formula:
take Psz = (z ∈ PsY ). Thus, F ⊧ (Φ→ Ψ)[w].

4a′. (⇒) If F,w ⊩ ◇(p ∧ ◇p) → ◇>1p, then, by 5.17(iii), F ⊧ α(w), see step 2′ for α. Taking an
instance of P as ‘being equal to either y1 or y2’ yields:
F ⊧ ∀y1, y2 ((Rwy1 ∧Ry1y2) → ∃≠u, v (Rwu ∧Rwv ∧ u ∈ {y1, y2} ∧ v ∈ {y1, y2})).

4b. (⇐) Suppose F ⊧ (Φ → Ψ)[w] and ⟨F,π⟩,w ⊧ ϕ. Since ⟨F,π⟩ ⊧ ST(ϕ)[w] and ST(ϕ) has the
prefix ∃y1 . . . yn, there are worlds w1, . . . ,wn (we denote the set of them by Wϕ) for which ϕ′ is
true in ⟨F,π⟩. Recall that ϕ′(w,w1, . . . ,wn) is built using only ∧, Rjw′w′′ and Pw′ for some
w′,w′′ ∈Wϕ. Let PsW = {w′ ∈Wϕ ∣ Psw′ occurs in ϕ′}. This is the minimal set (in ps) to make
ϕ′ true for the choices of Wϕ. We define π′ according to this minimal fulfillment: π′(x)(ps) = tt

iff x ∈ PsW . Then also ⟨F,π′⟩ ⊧ ϕ′(w,w1, . . . ,wn) (we did not change the assignment for p
at those whitewashes for ϕ′). Let Φ○ be the result of replacing each occurrence of Psw′ in
ϕ′(w,w1, . . . ,wn) with (w′ ∈ PsW ). By definition of π′, ⟨F,π′⟩ ⊧ Φ○(w,w1, . . . ,wn). Since Φ○

does not refer to any Ps, we even have F ⊧ Φ○(w,w1, . . . ,wn). (This amounts to saying that
at w, there are witnesses that allow a valuation to make ϕ′ true). Φ○ is an instantiation of Φ,
so, by our assumption, we have F ⊧ Ψ○, where Ψ○ is obtained from Ψ by performing the same
substitution. Ψ○ contains subformulas of the form (z ∈ PsW ), which was exactly the extension
of ps under π′. If we replace Psz for each (z ∈ PsW ) in Ψ○ (giving back ST(ψ)), we have
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⟨F,π′⟩ ⊧ ST(ψ)[w]. With 5.17(iii), we conclude that ⟨F,π′⟩,w ⊧ ψ. Since ψ is positive (in ps)
and π′ ⩽ps,F π, we have ⟨F,π⟩,w ⊧ ψ.

4b′. (⇐) Suppose F ⊧ ∀y1, y2 ((Rwy1 ∧Ry1y2) → ∃≠u, v (Rwu ∧Rwv ∧ u ∈ {y1, y2} ∧ v ∈ {y1, y2}))
and ⟨F,π⟩,w ⊧ ◇(p ∧◇p). Since w satisfies ST(◇(p ∧◇p)), there are worlds w1,w2 such that
ϕ′(w,w1,w2) = (Rww1 ∧ Rw1w2 ∧ Pw1 ∧ Pw2) is true in ⟨F,π⟩. Obviously, PW = {w1,w2}.
So, π′ makes p true only at w1 and w2, and ⟨F,π′⟩ ⊧ (Rww1 ∧ Rw1w2 ∧ Pw1 ∧ Pw2). After
substitution, we have ⟨F,π′⟩ ⊧ Rww1 ∧Rw1w2. Clearly, F ⊧ Rww1 ∧Rw1w2. The assumption
yields F ⊧ Ψ○[w], i.e., F ⊧ ∃≠u, v (Rwu ∧Rwv ∧ u ∈ {w1,w2} ∧ v ∈ {w1,w2}). Since under the
minimal assignment π′, p is true exactly at PW , we get ⟨F,π′⟩ ⊧ ∃≠u, v (Rwu∧Rwv∧Pu∧Pv),
i.e., ⟨F,π′⟩ ⊧ ST(ψ)[w]. So, we have ⟨F,π′⟩,w ⊧ ψ (= ◇>1p). Since π only extends π′, we
conclude ⟨F,π⟩,w ⊧ ◇>1p.

Corollary 5.21. ◇(p ∧◇p) → ◇>1p defines the conjunction of transitivity and irreflexivity.

Proof. From 5.20 item 4a′, this formula corresponds to

∀y1, y2 ((Rwy1 ∧Ry1y2) → ∃≠u, v (Rwu ∧Rwv ∧ u ∈ {y1, y2} ∧ v ∈ {y1, y2})).

The latter is equivalent to the property of R being both transitive and irreflexive (at x). The proof
of the equivalence of these f.o. properties in predicate logic is left to the reader.

Example 5.22.

(a) ◇>1p→◇(p ∧◇p) corresponds to right-linearity: ∀≠y, y′ ((Rxy ∧Rxy′) → (Ryy′ ∨Ry′y));
(b) ◇⩾np→ ◻⩽kp corresponds to having at most (n+k) successors (n ⩾ 1), i.e., to ◇⩽(n+k)⊺.

Proof. We proceed along the lines of 5.20.

a1. ST(ϕ→ ψ) = ∃≠y, y′ (Rxy ∧Rxy′ ∧ Py ∧ Py′) → ∃u(Rxu ∧ Pu ∧ ∃v (Ruv ∧ Pv))

a2. ∀y, y′ (ϕ′ → ST(ψ)) = ∀≠y, y′ ((Rxy ∧Rxy′ ∧ Py ∧ Py′) → ∃u(Rxu ∧ Pu ∧ ∃v (Ruv ∧ Pv)))

a3. PY = {y, y′}, so (Φ→ Ψ) becomes
∀≠y, y′ ((Rxy ∧Rxy′) → ∃u(Rxu ∧ u ∈ {y, y′} ∧ ∃v (Ruv ∧ v ∈ {y, y′})))
The latter formula is equivalent to right-linearity (it says that every two successors of x must
be accessible to each other (in at least one direction)).

b1. ST(ϕ→ ψ) = ∃≠y1 . . . yn ⋀
1⩽i⩽n

(Rxyi ∧ Pyi) → ∀≠z0 . . . zk( ⋀
0⩽j⩽k

Rxzj → ⋁
0⩽j⩽k

Pzj)

b2. ∀≠y1 . . . yn ( ⋀
1⩽i⩽n

(Rxyi ∧ Pyi) → ∀≠z0 . . . zk( ⋀
0⩽j⩽k

Rxzj → ⋁
0⩽j⩽k

Pzj))

b3. ∀≠y1 . . . yn ( ⋀
1⩽i⩽n

Rxyi → ∀≠z0 . . . zk( ⋀
0⩽j⩽k

Rxzj → ⋁
0⩽j⩽k

zj ∈ {y1, . . . , yn}))

The latter formula expresses that every set of n successors of x must have a world common with
any set of (k+1) successors of x, which is equivalent to saying that there are ⩽(n+k) successors
of x.

The following theorem shows that we may (at least carefully) allow for negative parts in the
antecedent. We omit a formal proof, since, with the substitution we provide, it is a technical exercise
in the spirit of 2.5.6 of [Hoe91d]. An example clarifies some matters.

Theorem 5.23. Let ψ be positive in p. Then ◇=n¬p→ ψ is f.o. definable.

Proof. The key observation is that, if we have exactly n successors of w that verify ¬p, we know that
any successor of w satisfying p must be different from them. More formally, denoting ϕ = ◇=n¬p:

ST(ϕ) = ∃≠y1 . . . yn (⋀
i⩽n

(Rxyi ∧ ¬Pyi) ∧ ∀z (Rxz ∧ z ∉ {y1, . . . , yn} → Pz))
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Denoting Y = {y1, . . . , yn}, we replace each occurrence of Pu in ST(ϕ→ ψ) with (u ∉ Y ), which yields
a formula Φ→ Ψ with Φ ≡ ∃≠y1 . . . yn ⋀i⩽nRxyi. Now the proof is continued similarly to that of 5.20,
and hence we will not spell it out here. (Note that the valuation π′ must be taken the same as π: if
the antecedent ϕ is true under π at w, this π is immediately minimal w.r.t. p, cf. example 5.26).

There is a straightforward way to combine correspondence results to new ones:

Theorem 5.24 ([Hoe91d]). Suppose (ϕ→ ψ) corresponds to α and (ϕ′ → ψ) to α′.
Then (ϕ ∨ ϕ′) → ψ corresponds to (α ∧ α′).

Corollary 5.25. Let ψ be positive in p. Then ◻⩽np→ ψ is f.o. definable.

Proof. ◻⩽np is equivalent to ⋁0⩽i⩽n◇
=i¬p, and ◇=i¬p → ψ is f.o. definable by 5.23, so ◻⩽np → ψ is f.o.

definable by 5.24.

Example 5.26. ◻⩽2p→◇p corresponds to ∃≠y1, y2, y3 (Rxy1 ∧Rxy2 ∧Rxy3).

The results of 5.23 and 5.25 suggest that theorem 5.20 might be strengthened in that we might
freely allow operators ◇=n and ◻⩽n in the antecedent. It appears that we may not, as we shall show
now. In modal logic, a substantial class of formulas is determined from which a corresponding f.o.
property can be obtained constructively. The class has been given the name of ‘Sahlqvist’ formulas,
after its ‘discoverers’, i.e., the following theorem was independently proven in [Sah75] and [Ben76].
In 5.28, we show that the restriction to ‘non-graded’ modalities is essential.

Theorem 5.27 ([Sah75, Ben76]). Let ψ be a positive ordinary modal formula.
Then ◇k◻np→ ψ is f.o. definable.
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Theorem 5.28. The formula ◻◻⩽2p→◇◇◻⩽1p is not f.o. definable.
The same holds for the formula ◻◻◇⩾2p→◇◇⩾3p, by contraposition.

Proof. The central tool here is the theorem of Löwenheim (cf. [ChaKei73]):

(LöSk) For each frame F = ⟨W,R⟩ and a countable U ⊆W , there is a frame F ′ = ⟨W ′,R′⟩ such that:
• W ′ is countable and U ⊆W ′,
• F and F ′ have the same f.o. theory.

Let ϕ = ◻◻⩽2p→◇◇◻⩽1p. To use (LöSk), we construct a non-countable frame F = ⟨W,R⟩ with

(1) F ⊩ ϕ, and
(2) indicate a countable U ⊆ W such that for no countable W ′ with U ⊆ W ′ ⊆ W , we have

⟨W ′,R′⟩,w ⊩ ϕ. (WHICH R’ and w????)

We define F = ⟨W,R⟩ as follows (cf. figure 8). Let the index set I = {1,2,3}, NI = N × I, and
FI = {f ∣ f ∶N→ I}.

W = {w} ∪ {u, a, b, c} ∪ {yn ∣ n ∈ N} ∪ {yni ∣ n ∈ N, i ∈ I} ∪ {zf ∣ f ∈ FI}.
R = {(w, yn) ∣ n ∈ N} ∪ {(w,u)} ∪ {(yn, yni) ∣ n ∈ N, i ∈ I} ∪ {(yni, a), (yni, b) ∣ n ∈ N, i ∈ I} ∪
{(a, a), (b, b), (c, c)} ∪ {(u, zf), (zf , c), (zf , yf(n)) ∣ n ∈ N, f ∈ FI}.

For this frame we prove (1) and (2).

(1) We show that F ⊩ ◻◻⩽2p → ◇◇◻⩽1p. Fix any valuation π on F , and denote M = ⟨F,π⟩. ◻⩽1p
is true at a, b, c, since these worlds have only one successor. Hence ◇◇◻⩽1p (and, thus, ϕ)
is true at a, b, c, zf , u, yn, yni for all f ∈ FI, i ∈ I, n ∈ N. It remains to check that ϕ is true at
w. If M,w ⊧ ◻◻⩽2p, then for each yn there must be at least one successor validating p, say,
{yn,f(n) ∣ n ∈ N} for some function f ∈ FI. Then all zf ’s successors that differ from c satisfy p,
so M,zf ⊧ ◻⩽1p. Then, since Rwu and Ruzf , also M,w ⊧ ◇◇◻⩽1p, thus M,w ⊧ ϕ.

(2) Let U = {w,a, c, b, yn, yni ∣ i ∈ I, n ∈ N}. Any countable W ′ ⊇ U lacks at least one element of
FI, say zf ∉W ′. Define π(v)(π) = tt iff v ∈ {yn,f(n), zg ∣ n ∈ N, zg ∈W ′}. Denote M ′ = ⟨F ′, π′⟩.
Then (WHERE IS R’ DEFINED???):

i. M ′,w ⊧ ◻◻⩽2p. (◻p being true at u, ◻⩽2 at yn, n ∈ N)

ii. M ′,w ⊭ ◇◇◻⩽1p. To see this, we will show that there is no world v that is both an
R′-successor of an R′-successor of w and satisfying ◻⩽1p: v cannot be yni, since each
yni ⊧ ◇>1¬p (p being false at a and b). v also differs from each zg ∈W ′: we have R′zgc
(and p false at c), but zg has yet another R′-successor satisfying ¬p. Since zg ∈W ′ and
zf ∉W ′, we have zg ≠ zf implying that, for some k ∈ N, g(k) ≠ f(k). By definition of π, p
is false at yk,g(k). Conclusion: ◇>1¬p is true at zg.

6 Filtration

We will now discuss a way to obtain a finite model for GrK-consistent formulas. Not all extensions
of GrK satisfy this property. For instance, adding the two schemes ◇⊺ and ◇>n⊺ → ◇>(n+1)⊺ is
sufficient to exclude all finite models. For ML, one way to distill a finite model M∗ that satisfies ϕ
from an arbitrary model M for ϕ if to filter M through (the subformulas of) ϕ (cf. [HugCre84]). The
gist of this technique is that worlds w of M are compressed to equivalence classes [w] containing
worlds that verify the same subformulas of ϕ.
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6.1 General filtration

Example 6.1. Consider M = ⟨N,<, π⟩, where π makes p true in all even numbers, and q in all
multiples of 3. Suppose we filtrate through p∧◇q which is true at, for instance, 2. In essence, there
are only four kind of worlds: each verifying one Boolean combination of p and q (the worlds all verify
the same modal formulas). Let us denote these worlds by 1, 2, 3 and 4, the worlds of M∗. Since for
each of these classes x and y, in M each x-world has access to a y-world, we take the accessibility
relation on M∗ to be universal. If π∗ treats x as π does x with respect to p and q, it is easily seen
that (p ∧◇q) is true at 1.

However, if we want to filtrate through a graded modal formula, it is obvious that we cannot simply
identify worlds with their equivalence classes, because in GML, we may want typically a number of
some classes. Of course, we may use copies at will, but how many? We give some preliminary
definitions before constructing the canonical model M∗ = ⟨W ∗,R∗, π∗⟩. These definitions will be used
throughout this section, without explicit reference.

Definition 6.2. Let Φ be the set of all subformulas of ϕ. The function S∶W → 2Φ defines the
equivalence classes on W (through Φ):

(1) S(w) = {α ∈ Φ ∣M,w ⊧ α}

(2) Let range(S) = {S1, . . . , Sm}. Then m ⩽ 2∣Φ∣. From now, i and j will range over {1, . . . ,m}. If
w ∈ Si, we will call w an Si-world, or of type Si.

(3) H = 1 +max{n ∈ N ∣ for some formula β, ◇>nβ ∈ Φ}.

(4) nj(w) = min(H, ∣{v∶ Rwv and S(v) = Sj}∣). Obviously, nj(w) ⩽H.

How many copies of each class Sj must be R∗-accessible from S(w) in our filtrate? We have to
take into account the possibility that S(w) = S(w′) = Si, although in the original modal w and
w′ are R-accessible to a different number of Sj-worlds. It turns out that we may freely choose
a representative for S(w) to determine the number of Sj-successors, but, in order to be able
to reason about the original modal M again (cf. 6.4), we have to do some bookkeeping about
which choice we make.

(5) For each class Si, we choose a unique representative wi, for which S(wi) = Si.

Finally, to build W ∗, the proper number of copies of each class Sj should be available, so we
define Ni, the maximum number of Si-worlds accessible from any relevant world:

(6) Nj = max{1, nj(w1), . . . , nj(wm)}.

Definition 6.3. Suppose for a model M = ⟨W,R,π⟩, we have M,w ⊧ ϕ. We define the filtrate
M∗ = ⟨W ∗,R∗, π∗⟩ of M through Φ, the set of subformulas of ϕ, as follows.

W ∗ of each Si ∈ range(S), W ∗ contains Ni copies of Si: S1
i , . . . , S

Ni
i

R∗ for any i, j ⩽m, the copy Sk
i of Si (1 ⩽ k ⩽Ni) is R∗-related to the first nj(wi) copies of Sj

π∗ for each Sk
i ∈W

∗, let π∗(Sk
i )(p) = tt iff p ∈ Sk

i .

Note that all copies of any Si are R∗-related to the same worlds (but not accessible from the same
worlds). The number of Sj-copies that are R∗-accessible from any Si-copy is completely determined
by the number of Sj-type worlds that are R-accessible from wi (which may be zero!).

Lemma 6.4. Let M∗ be a filtrate of M through Φ. Then, for all α ∈ Φ:
M∗,w∗ ⊧ α iff α ∈ w∗.
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Proof. The sets w∗ ∈W ∗ act like maximal consistent sets with respect to the formulas of Φ: we have
that for all (ϕ1 ∨ ϕ2) ∈ w∗ and ¬ψ ∈ Φ:
(i) (ϕ1 ∨ ϕ2) ∈ w∗ iff ϕ1 ∈ w∗ or ϕ2 ∈ w∗, and
(ii) ¬ψ ∈ w∗ iff ψ ∉ w∗.

Now, the lemma for α = p immediately follows from the definition of π∗. The cases α = (ϕ1 ∨ϕ2)
and α = ¬ψ are easy with (i) and (ii). We check α = ◇>nψ. Note that, since α ∈ Φ, we have n <H.

(⇐) Assume α ∈ w∗, so ◇>nψ must be true at the unique wi with S(wi) = Si. So wi in M had at least
n+1 R-successors at which ψ is true. We distinguish two cases:

1) There is j ⩽m such that ψ ∈ Sj and nj(wi) =H. Using the definition of R∗ and the induction
hypothesis for ψ, we get M∗,w∗ ⊧ ◇>Hψ. Since H > n, then M∗,w∗ ⊧ ◇>nψ.

2) No such j exists. Let j1, . . . , jr ⩽m be such that all ψ-successors of wi are of type Sj1 , . . . , Sjr .
Since wi is of type Si and ◇>nψ ∈ Si, nj1(wi) + . . . + njr(wi) > n, such that, by definition of R∗,
each Sk

i (k ⩽Ni) is accessible to more than n worlds that contain ψ and thus, using the induction
hypothesis, at which which ψ is true. Thus, M∗,w∗ ⊧ ◇>nψ.

(⇒) If M∗,w∗ ⊧ ◇>nψ, then (again let w∗ = Sk
i ) more than n R∗-successors of Sk

i verify ψ and, by
induction, contain ψ. Let, for j ⩽m, rj = nj(wi) if ψ ∈ Sj, 0 else. Then r1 + . . . + rm is the number
of R∗-successors of w∗ that contain ψ, so r1 + . . . + rm > n. Using the definition of nj(wi) and that
of rj, we see M,wi ⊧ ◇

>nψ. Hence, ◇>nψ ∈ Si, as required.

Corollary 6.5. Let M∗ be a filtrate of M through Φ. Then M,w ⊧ ϕ iff M∗, S(w) ⊧ ϕ.

Proof. M∗, S(w) ⊧ ϕ iff ϕ ∈ S(w) iff M,w ⊧ ϕ.

It is important to observe that the filtrate M∗ is constructed through a finite set Φ of formulas.
For instance, there is no such a filtrate through {◇>np ∣ n ∈ N}.

Corollary 6.6.
ThGML({M ∣M is a model}) = ThGML({M ∣M is a finite model});
ThGML({F ∣ F is a frame}) = ThGML({F ∣ F is a finite frame}).

Definition 6.7. A (graded) modal system S has the finite model property if each non-theorem of S
is falsified in a finite model.

Corollary 6.8. GrK has the finite model property.

Proof. Immediate from 2.8 and 6.6.

Theorem 6.9. GrK is decidable.

Since GrK is not finitely axiomatized (cf. (A2)–(A4) of definition 2.6, we cannot immediately
apply 6.8. However, from our construction of a filtrate, we can easily compute an upper bound on
the number of models to be considered when seeking a finite model for a consistent ϕ: it is 2∣Φ∣ ⋅H,
where Φ and H are defined in 6.2.
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6.2 Adding special conditions

Definition 6.10. For each class F of frames we define Ffin ⊆ F as all of F’s finite elemets. We say
that F is characterized by its finite elements (c.f.e.) if ThGML(F) = ThGML(Ffin).

We can now restate 6.6 by saying that the class F of all frames is c.f.e. We even have ThGML(F) =
ThGML(Ffin) = ThGML((Ffin)c) (where ()c is the complement). It is worthwhile to note that this c.f.e.-
property is not immediately inherited for subclasses of frames. The filtrate F ∗ of F ∈ F need not
itself be a member of F (cf. 6.15). We now give some classes for which c.f.e. holds. As we proceed,
the application of the filtration lemma becomes less straightforward.

Theorem 6.11. The class Fn (cf. definition 4.5) is c.f.e.

Proof. We filtrate M for which M,w ⊧ ϕ through (ϕ ∧◇=n⊺).

Theorem 6.12. Let FU be the class of frames in which R is universal: FU = {F = ⟨W,R⟩ ∣
∀x, y (Rxy ∧Ryx)}. Then FU is c.f.e.

Proof. We show that the filtrate M∗ of a universal model M is itself universal. Take two worlds Sk
i

and S`
j in W ∗. Since W ∗ has at least k copies of Si, there was a world w ∈W for which ni(w) ⩾ k.

Since R was universal, we have for all w′ ∈W that ni(w′) ⩾ k, in particular, ni(wj!) ⩾ k. By definition
of R∗, we see that each copy S`

j is accessible to at least the first k copies of Si, implying R∗S`
jS

k
i .

Remark 6.13. We thus have ThGML(FU) = ThGML((FU)fin). Although we also know that for each
universal model M with M,w ⊧ ϕ, there is a finite universal model M∗ and its world w∗ with
M∗,w∗ ⊧ ϕ, the converse is not true. For, if M is finite, we have M,w ⊧ ◇⩽n⊺ for some n, which
obviously fails in any infinite universal model.

Corollary 6.14. The system GrS5 = GrK+{◻p→ p}+ {◇>np→ ◻◇>np ∣ n ∈ N} has the finite model
property and is decidable.

Proof. Each GrS5-consistent formula is satisfiable in some universal model ([Kap70, Fin72]).

In chapter six, the system GrS5 is studied in more detail. It appears to provide a natural context
to study generalized quantifiers. It is shown that it has some very neat normal forms (for instance,
embedded modalities are superfluous) and also that the complexity of deciding whether a given
GML-formula is satisfiable, is PSpace. A special kind of semantic normal forms provide a technique
with which some questions, familiar from the field of generalized quantifiers, like obtaining a Lyndon
theorem (finding a syntactic characterization of upward-monotonicity), are very easily settled. We
think that applying those techniques to systems like GrK and GrT, although more complicated by
the lack of the mentioned normal forms, is worthwhile studying.

We now consider a class of frames which is not closed under filtration, but for which we can still
prove the c.f.e.-property.

Theorem 6.15. The class FR of reflexive frames is c.f.e.. Hence, GrT is decidable.

Proof. We now have ni(wi!) ⩾ 1. Suppose Sk
i is R∗-connected to the first t copies of Si: S1

i , . . . S
t
i ,

with t ⩾ 1. The problem is that, if St+1
i exists, it is not accessible to itself. We simply change R∗ as

follows: for each s > t, we withdraw R∗Ss
i S

1
i and replace it with R∗Ss

i S
s
i . Clearly this modified R∗ is

reflexive and, since we did not change any number of successors of any world, lemma 6.4 and hence
corollary 6.5 still hold.

The c.f.e. property is established for one more class of frames:

Theorem 6.16 ([Hoe91d]). Flo, the class of linear frames, is c.f.e.
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In order to warn the reader for some possible pitfalls, we round off with a negative example.

Theorem 6.17. Both the class of transitive irreflexive frames, and that of transitive antisymmetric
frames, are not c.f.e.

Proof. There is no finite transitive irreflexive model in which ◇⊺ ∧ ◻◇⊺ is true in any world. For,
suppose W is finite, and ϕ true at w. Then w and all its successors must have at least one successor.
Let W1,w2, . . . be a sequence such that w = w1 and Rwiwi+1. By transitivity, Rwiwi+n for each i, n ∈
N. Since W is finite, there must be n and i such that Rwi+nwi. Transitivity now yields Rwiwi,
contradicting our assumption about irreflexivity.

For transitive antisymmetric frames, we apply a similar argument to ◇>1⊺ ∧ ◻◇>1⊺. We need a
higher ‘grade’ in order to deal with ‘reflexive endpoints’ now: we find a pair for which Rwiwi+n and
Rwi+nwi and wi ≠ wi+n!

So, it is still an open question which transitive frames are c.f.e. (like those with a universal relation,
cf. 6.12) and which are not (like those with an irreflexive, or antisymmetric relation, cf. 6.17).
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