
ON THE SEMANTICS OF JAVASPACES

Nadia Busi Roberto Gorrieri Gianluigi Zavattaro

Dipanimento di Scienze deU'lnjormazione, Universitii di Bologna,

Mura Anteo Zamboni 7, 1-40127 Bologna, Italy.

busi,gorrieri,zavattar@cs.unibo.it

Abstract JavaSpaces is a coordination middleware for distributed Java prograrnming re

cently proposed by Sun Microsystems. It is inspired by the Linda coordination

model: processes interact via the output (write), consurnption (take), test for

presence (read) and the test for absence (takelfExists and readlfExists) of data

inside a shared repository. Three are the most interesting new features introduced

by JavaSpaces. The first one is an event notification mechanism (notify): a pro

cess can register interest in the incoming arrivals of a particular kind of data, and

then receive communication of the occurrence of these events. The second feature

is the so-called distributed leasing: at the moment a client outputs a tuple, it also

declares its required lifetime (that the server may satisfy only partially). The third

feature is a timeout on the blocking operation of input: if no instance is found

before the timeout expires, then the operation fails and terminates. We present

a structured operational semantics for a process algebra featuring these coordi

nation primitives. This abstract semantics is used to clarify possible ambiguities

of the informal definitions of JavaSpaces, to discuss possible implementation

choices and to compare the expressive power of the new primitives. Interestingly

enough, many subtle phenomena occur, some of which might lead to reconsider

the actual choice of primitives.

1. INTRODUCTION

Coordination middlewares are emerging as suitable architectures for mak

ing easier the programming of distributed applications. JavaSpaces [15] and

TSpaces [17], produced by Sun Microsystem and IBM respectively, are the

most prominent proposals; they are both based on the shared dataspace coordi

nation architecture, originally proposed in Linda (see, e.g., [9]). The basic idea

behind Linda is the so-called generative communication; its main features are

the following:

• Asynchronous communication: it is realized by means of a (conceptually

shared) communication medium (called tuple space) that is the actual

place where all messages/tuples are delivered and extracted by the pro-

http://dx.doi.org/10.1007/978-0-387-35520-7_21

4

cesses. Asender may proceed just after performing the insertion of the

tuple in the tuple space, while the receiver can remove the tuple at any

time after that tuple is in the tuple space. Hence, the asynchronous com

munication between the sender and the receiver is realized by means of

two synchronous operations with the tuple space.

• Read operation: a process can check the presence of some tuple, without

removing it from the space.

• Conditional input/read predicates: these are non-blocking variants of

the remove and read operations; if the required message is absent, the

process is not blocked and continues with a different alternative.

More recent extensions of the Linda paradigm (e.g., JavaSpaces and TSpaces)

include some new primitives useful for coordination of complex applications in

open, large, distributed systems. In this paper we will focus on some of them:

• Event notification. Besides the data-driven coordination typical ofLinda,

it may be very useful to include in a language an event-driven mechanism

of process activation. A process can register its interest in future arrivals

of some objects and then receive communication of each occurrence of

this event.

• Blocking operations with timeouts. The operations of removal or reading

of an object can be weakened by expressing the deadline beyond which

the operation fails.

• Guaranteed duration of service. An object inserted in the dataspace as

weH as the interest in an event notification need not to hold forever; in

many cases it is useful that the language has the capability to declare time

bounds on these operations, and even better to re-negotiate such bounds

ifneeded.

Despite of the clear relevance of such primitives for coordination middle

wares, very little has been done to define formaHy their semantics. One may

think that formalizing the intended semantics of these primitives is superfluous,

as their semantics could appear obvious. Unfortunately, this is not the case. In

places, the informal definition of these primitives in the available documenta

tion is quite ambiguous (e.g., variants of the same primitives exist in different

languages and even in the same language); this may have the effect of giving

too much freedom in the implementation choices, hence producing semanti

caHy different implementations. Moreover, awareness of the expressiveness

capabilities of the various primitives is often lacking, as weH as methods for

reasoning about programs written with these primitives.

On the Semantics 0/ JavaSpaces 5

The standard approach to solve the problems above is to give a formal se

mantics to the coordination language of interest. Such a semantics would fix

the actual interpretation of the primitives, can be a precise guide for the im

plementor as weIl as a tool for reasoning about language expressiveness and

program properties. For example, in [2] we have presented two alternative

formal semantics for a Linda-based process calculus related to two possible

interpretations of the output operations. In the first interpretation, called or

dered, the processes are synchronous with the tuple space, while in the second

one, called unordered, they are considered asynchronous. We have proved an

interesting gap of expressiveness between the two interpretations showing that

the calculus is Turing powerful under the ordered interpretation while this is not

the case under the unordered one. Another interesting phenomenon is that this

discrimination result holds only in the presence of test for absence operators;

indeed, the calculus with only output, input, and read operations is not Turing

powerful neither under the ordered interpretation.

In [6] we have initiated an investigation about the semantics of languages

like JavaSpaces and TSpaces, by abstracting the coordination primitives away

from the concrete language. To this aim, we use the mathematical machinery

developed by the process algebra community (see, e.g., [13, 11]) that seems

flexible enough to be useful for our aims. The approach adopted is to the

following: we have started from a Linda-based process calculus and the we

extend it with the new primitives sketched above: event notification, timeouts

on blocking operations, leasing for timing service requests.

In this paper we report (simplified versions of) the process calculi presented

in [6]. In addition to [6], we discuss for each of the extensions interesting

subtle phenomena which occur when alternative interpretations of the seman

tics are considered. The alternative interpretations are of two kinds: ordered

v.s. unordered interpretation for the output operation, and synchronous v.s.

asynchronous interpretation for the passing of time.

2. THE KERNEL LANGUAGE

In this section we introduce the syntax and the operational semantics of a

calculus comprising the basic Linda-like coordination primitives. It is a small

variant of a previous calculus formerly presented in [1].

Let Name be a denumerable set of object types ranged over by a, b, ... , and

Gonst be a set of program constants ranged over by K, K',

Let Gon! (ranged over by P, Q, ... , possibly indexed) be the set of the

possible configurations defined by the following grammar:

P .. - (a) I G I PIP

G .. - 0 I J-L.G I ry?G_G I GIG I K

where:

6

(1)

(3)

(5)

(7)

(9)

(11)

(a) Ci) 0 (2) write(a).P (a)IP

take(a).P P (4) read(a).P !!) P

take3(a)?P_Q P (6) take3(a)?P_Q Q

read3(a)?P_Q !!) P (8) read3(a)? P _ Q oa) Q

P Ci) pi P Ci) pi Q !!) QI

PIQ PIIQ'
(10)

PIQ PIQI

a # {
P oa) pi Q+

(12)
ä, ..;

K=P
(13)

Table 1 Operational semanties (symmetrie rules omitted).

J.t ::= write(a) 1 read(a) 1 take(a)

1J ::= read3(a) 1 take3(a)

Programs are represented by tenns C containing the coordination primitives;

the dataspace is modeled by representing each of its objects a with a tenn (a).
A configuration is composed of some programs and some available objects

composed in parallel using the composition operator I. A program can be a

tenninated program 0 (which is usua1ly omitted for the sake of simplicity),

aprefix fonn J.t.P, an if-then-else fonn 1J? P _ Q, the parallel composition of

subprograms, or a program constant K.

Aprefix J.t can be one of the primitives write(a), which introduces a new

object (a) inside the data repository, read (a), which tests for the presence of an

instance of object (a), and take (a), which consumes an instance of object (a).

The last two primitives are blocking, in the sense that a program perfonning

one of them cannot proceed until the operation is successfully completed.

The guards ofthe if-then-else fonns are read3(a) and take3(a), which are

the non-blocking variants of read (a) and take (a), respectively. The notation

is inspired by the similar operations readlfExists and takelfExists of JavaS

paces [15]. Their behaviour is represented by using tenns having two possible

continuations, e.g., read3 (a)? P _ Q. The first continuation P is chosen if the

requested object is available in the data repository; in this case the non-blocking

operations behave exactly as the corresponding blocking ones. On the other

On the Semantics of JavaSpaces 7

hand, if no instance of the requested object is actually available, the second

continuation Q is chosen and the data repository is left unchanged.

Constants are used to permit the definition of programs with infinite be

haviours. We assume that each constant K is equipped with one and only one

definition K = G; as usual we assume also that only guarded recursion is

used [13].

The semantics of the language is described via a labeled transition system

(Gonj, Label, --+) where Label = {T} U {a,Q, a, -,a la E Name} (ranged

over by a, ß, ...) is the set ofthe possible labels. The labeled transition relation

--+ is the smallest one satisfying the axioms and rules in Table 1. For the sake

of simplicity we have omitted the symmetric rules of (9) - (12).

Axiom (1) indicates that (a) is able to give its contents to the environment by

performing an action labeled with a. Axiom (2) describes the output operation:

in one step a new object is produced. Axiom (3) associates to the action

performed by the prefix in(a) a label a, the complementary ofa, while axiom

(4) associates to a read (a) prefix a label Q.

Axioms (5) and (6) describe the semantics of take:3 (a)? P _ Q: if the required

(a) is present it can be consumed (axiom (5», otherwise, in the case (a) is

not available, its absence is guessed by performing an action labeled with -.a

(axiom (6). Axioms (7) and (8) are thecorresponding axioms forthe read:3(a)

operator; the unique difference is that the label Q is used instead of a.

Rule (9) is the usual synchronization rule; while rule (10) deals with the

new label Q representing a non-consuming operation: in this case the term

performing the output operation (labeled with a) is left unchanged as the read

operation does not consume the tested object.

Rule (11) is the usuallocal rule, which is valid only for labels different from

-, a; indeed, an action of this kind can be performed only if no object (a) is

available in the data repository, i.e., no actions labeled with a can be performed

by the terms in the environment (rule (12». The side condition of rule (11)
considers also labels that will be defined in the following sections.

Thelastrule (13) allows a programconstantK defined by K = G toperform

the same actions permitted to G.

Note that rule (12) uses a negative premise; however, the operational se

mantics is well defined, because the transition system specification is strict1y

stratifiable [10], condition that ensures (as proved in [10]) the existence of a

unique transition system agreeing with it.

Reduction steps are those transformations which a configuration may have

when considered stand-alone, in other words, without environment. Opera

tionally, we denote reductions with P --+ P' defined as folIows:

p --+ p' if and only if P p' or P p' or P p' or P p'

where the last two labels will be discussed in the following.

8

We denote by P t the fact that P may give rise to an infinite sequence of

reduction steps, and by P -l- the fact that P has a finite sequence of reduction

steps leading to a configuration without outgoing reductions.

2.1. ORDERED V.S. UNORDERED INTERPRETATION

OF THE OUTPUT OPERATION

The semantics that we have defined assumes that the programs are syn

chronous with the dataspace, in the sense that the emitted object is surely al

ready available inside the data repository at the moment the write operation

terminates (see rule (2». In a previous paper on the semantics of Linda [3], this

kind of semantics is called ordered and alternative interpretations are presented,

among which the unordered one which assumes that programs are asynchronous

with the dataspace: the emitted object becomes available after an unpredictable

delay. OperationaIly, the unordered semantics is modeled by substituting the

rule (2) with the two following:

(2') write(a).P ((a))IP (2") ((a)) (a)

Let La [wrt] and Lu [wrt] the calculus without the read3 and take3 primitives

interpreted under the ordered and unordered interpretations, respectively; let

La [wrt3] and Lu [wrt3] be the calculi interpreted under the two interpretations.

The paper [2] shows the existence of an expressiveness gap between these

two alternatives. More precisely, adopting the result to the actual setting, we

have that La[wrt], Lu[wrt], and Lu [wrt3] are not Turing powerful as P t and

P -l- are decidable; on the other hand, La [wrt3] is Turing powerful and P t and

P -l- are both undecidable.

The decidability results are proved by resorting to a finite Placerrransition

net semantics (a formalism in which termination and divergence are decidable),

while the undecidability results are consequence of the fact that it is possible

to encode Random Access Machines (RAM), which is a weIl known register

based Turing powerful formalism, into the considered language.

3. EVENT NOTIFICATION

In this section we extend the previous calculus with an event notification

mechanism inspired by the notify primitive of JavaSpaces [15].

The syntax of the kernel language is simply extended by permitting a new

prefix:

J.L ::= ... I notify(a, C)

A program notify(a, C).P can register its interest in the future incoming ar

rivals of the data of kind a, and then receive communication of each occur

rence of this event. This behaviour can be modeled by introducing a new term

On the Semantics of JavaSpaces 9

(2') write(a).P (a)/P

(14) notify(a, Q).P on(a, Q)/P (15) on(a, P) P/on(a, P)

Q-.!J..+
(16)

P/Q P'/Q'
(17)

P/Q P'/Q

Q-.!J..+
(18)

P/Q P'/Q'
(19)

P/Q P'/Q

Table 2 Operational semanties of notify (symmetrie rules omitted).

on(a, C) (that we add to the syntax as an auxiliary tenn) which is a listener

that spawns an instance of program C every time a new object (a) is introduced

in the dataspace. This is modeled by extending the possible labels with the set

{ä, ä / a E Name}, by adding the rules in Table 2 (we omit the symmetric

rules of (17) - (19)) to the ones in Table 1, and by substituting the rule (2')
for the rule (2). Negative premises are used in the new rules (see rules (17)
and (19)), but the transition system specification is still stratifiable; thus, the

operational semantics is well defined.

The new labels äand ä represent the occurrence and the observation of the

event "creation of a new object of kind a", respectively. This event happens

when an output operation is executed; for this reason we change the label

associated to the prefix write(a) from T to ä (see the new rule (2')). Axiom

(14) indicates that the notify(a, P) prefix produces a new instance ofthe tenn

on (a, P). This tenn has the ability to spawn a new instance of P every time a

new (a) is produced; this behaviour is described in axiom (15) where the label

ä is used to describe this kind of computation step.

Rules (16) and (17) consider actions labelled with ä indicating the interest

in the incoming instances of (a). If one program able to perform this kind of

action is composed in parallel with another one registered for the same event,

then their local actions are combined in aglobai one (rule (16)); otherwise, the

program perfonns its own action locally (rule (17)). Rules (18) and (19) dea1

with two different cases regarding the label ä indicating the arrival of a new

instance of (a): if there are tenns waiting for the notification of this event are

present in the environment, then they are woken-up (rule (18)); otherwise, the

environment is left unchanged (rule (19)).
In the following we use Lo [wrt3n] and Lu [wrt3n] to denote the language

extended with the notify primitive interpreted under the ordered and unordered

10

semantics, respectively; on the other hand, Lo[wrtn] and Lu [wrtn] denote the

two sublanguages without the read3 and take3 primitives.

3.1. EXPRESSIVENESS OF NOTIFY

Two of the authors have investigated the expressiveness of the notify prim

itive in two related papers.

In [5] an interesting intermediary level of expressiveness is proved by show

ing that Lo[wrtn] permits to simulate RAMs, but only in a weak sense: this

means that the representation we give of RAMs in our language have several

possible behaviours among which one which corresponds to the one of the

considered RAM. Moreover, the presented encoding has the property that all

the other computations are ensured to be infinite; thus the encoding preserves

termination. For this reason, the property P -I. is not decidable. On the other

hand, it is proved that P t is decidable by providing a divergence preserving

encoding of the language in terms of Placerrransition nets extended with trans

fer arcs [8], a formalism in which the existence of an infinite computation is

decidable. Moreover, it is also provided an encoding of the notify primitive in

the language without event notification but with the test for absence operations.

The idea is that when a process registers its interest in some particular event,

it introduces a corresponding object into the shared repository. Every time a

write operation is performed, a protocol composed of three phases must be

executed: first it is necessary to count the number of registered listeners (by

counting the corresponding objects in the shared repository), then to commu

nicate to each of them the occurrence of the event, and finally to wait for the

total amount of acknowledgements. Moreover, this protocol must be executed

in mutual exc1usion. All the results proved in [5] for the language Lo[wrtn]

hold also for Lu [wrtn].

In [4] the relation between the ordered and unordered interpretation is revis

ited in the presence of notify. The interesting result is that the calculus becomes

Turing powerful also under the unordered interpretation, indeed we prove that

RAMs can be encoded into Lu [wrt3n]; moreover, the notify primitive allows

a faithful encoding of the ordered semantics on top of the unordered one.

All these results are reported in the Figure 1. The three layers of expressive

ness are described recalling, for each of them, whether termination or diver

gence are decidable properties. We call the intermediary layer weakly Turing

powerful for the fact that Turing formalisms can be simulated only in a weak

sense. The existence of these layers ensures that it is not possible to encode

one language inside a layer in another language inside a lower layer. Regarding

the languages in the top layer, the arrow represents the existence of encodings

from the language interpreted under the ordered semantics to the other two

languages.

On the Semantics 0/ JavaSpaces 11

Thring Powerlul

P t and P .j. Undecidable

/
L.(wrt3n] ___ ... L.[wrt3nJ

L.[wrt3]

L.(wrt]

Non Thrlng Powerlul

P t and P .j. Decidable

Weakly Thrlng Powerlul

Lu (wrt3] Lu [wrtn] P t Decidable

P .j. U n<lee; dable

L.[wrtJ

Figure 1 Overview of the results about notify.

(20)

(22)

(24)

(3') take(a, t)? P _ Q take(a}t? P _ Q

(4') read (a, t)? P _ Q read (a) t ? P _ Q

take{a}t?P- Q P

11tH? P - Q lIt? P - Q

(21)

(23)

(25)

read (a) t ? P _ Q Q) P

1I0?P-Q Q

Q+
PIQ -ÄP'IQ

Table 3 Operational semanties for timeouts (symmetrie rule of (25) omitted).

4. TIMEOUT

In this section we consider the problem of modeling operations equipped

with timeouts, which are used as extra parameters for the blocking operations

read and take in order to indicate a maximum amount of time during which the

presence of the requested object is investigated. If no instance is found before

the end of this period, the operation fails and terminates.

In order to model this kind of behaviour, we change the primitives read (a)
and take{ a) with the new read{ a, t) and take{ a, t) operations (where t defines

the timeout period). These operations are no more used as prefixes of terms of

the kind j.L .P, but as guards of if-then-else forms 1I? P _ Q. In this way, we can

describe both the program P, chosen if the operation succeeds, and the program

Q, activated if, on the contrary, the operation fails.

12

The way we represent time is inspired by JavaSpaces, where the current

time is represented by an integer which is incremented each millisecond. If the

execution of an operation with timeout period t is scheduled when the current

time is c, the operation fails at the end of the interval with current time c + t.
In our process calculus we do not use any value to represent the current

time, but we only consider the passing of time, which is considered as divided

into basic discrete intervals. Operationally, we model the instant in which an

interval finishes, and the subsequent start, by means of a transition labelled with

J. More precisely, we use P P' to state that the term P becomes P' due

to the fact that the current interval has finished, and the subsequent just started.

In this way, transitions related to the passing of time (labeled with J) and

standard transitions representing coordination operations (with label different

from J) cohexist in our labelled transition system. Morever, we do not put any

restriction on the way these two kinds of transitions are related one each other.

For example, we do not fix any bound to the number of standard transitions

which can be performed between two J transitions. This choice reftects the

fact that we do not make any assumption on the computation speed, thus neither

on the number of coordination operations which may be performed during one

basic time interval.

The terms of our process calculus are of two different kinds: those sensible

to the passing of time and those which are not. In the first case, the terms have

outgoing transitions labelled with J, while in the second they have not.

As an example, the term (a) representing an object of kind a inside the datas

pace, has no outgoing transition labelled with J; on the other hand, the program

take (a) t ? P _ Q, representing the execution of a take operation with a remaining

timeout period of t, has the transition take (a) t ? P _ Q take (a) t-l ? P _ Q.
Terms of the kind take (a) t ? P _ Q cannot appear as initial programs of a

configuration; they only arise as the result of the scheduling of a take oper

ation. The term take (a, t)? P _ Q is not sensible to the passing of time until

the execution of the take operation is scheduled; this instant is represented

by take (a, t)? P _ Q take (a) t ? P _ Q. The index t means that t complete

intervals should pass before the operation fails; the failure is modeled by the

transition take (a)o ? P _ Q Q (in this way the failure happens after that t -1

transitions labelled with J are executed).

We introduce the notation 'f}t ? P _ Q to denote either the term take (a) t ? P _ Q
or read (a) t ? P _ Q. The duration t is an integer number or a special symbol 00

which denotes an infinite duration (we assurne 00 - 1 = 00).

The new syntax is obtained by removing the read (a) and take (a) prefixes

and by extending the possible guards of the if-then-else forms:

'f} ::= ... I take(a, t) I read(a, t) I take(a)t I read(a)t

On the Semantics oi JavaSpaces 13

The new semantics infonnally described above is modeled by introducing the

new label .j and the axioms and rules reported in Table 3 (the axioms (3') and

(4') are substituted for (3) and (4), respectively).

Axioms (3') and (4') model the starting ofthe timeout periods. Axioms (20)

and (21) represent a successful execution ofthese operations, while axioms (22)

and (23) represent the passing of time; the subscript t in 'fit? P _ Q is decremented

if it is not 0 (axiom (22», otherwise the timeout period finishes and the second

continuation is chosen (axiom (23». The rules (24) and (25) describe how

the structured tenn PI Q behaves according to the passing of time. If both the

processes have an outgoing transition labeled with .j, they synchronize on the

execution of this operation; on the other hand, one of the two processes can

perfonn its own transition .j locally, only if the other one is not sensible to the

passing of time, i.e., it has no outgoing transitions labeled with .j. A negative

premise is used in the rule (25), but the labelIed transition system is still well

defined.

Observe that a timeout period may tenninate even if the sought object is

available. Thus, when an operation fails we cannot conclude anything about

the presence or absence of the requested object. We have adopted this weak

semantics as it seems the intended interpretation of JavaSpaces; see [15], where

in Section 2.5 we read ''A read request ... will wait until a matching entry is

found ... up to the timeout period". For example, in the configuration:

(a) I read(a, t)?O_ write(b)

object (b) may be produced if (a) is not found before the end of the timeout t.

4.1. SYNCHRONOUS V.S. ASYNCHRONOUS

INTERPRETATION OF TIME PASSING

We have modeled configurations in which the passing of time is global, i.e.,

it is the same for all the components. According to this approach, the time

passes synchronously. This is ensured by the side condition a =1= .j of the

locality rule (11), according to which a processes cannot perfonn locally its

own transitions .j. If we remove this side condition we obtain configurations

in which the time passes asynchronously, as their components may or may

not synchronize on the execution of their transitions labelled with.j. In the

following we use P ---+; P' to denote that a configuration P' can be reached

from P via a sequence of reductions under the synchronous interpretation, while

we use P ---+ pli to denote that pli can be reached under the asynchronous

one.

The synchronous approach is used to model centralized systems with aglobai

clock, while the asynchronous approach corresponds to distributed systems

where the global clock is not available. Distributed and centralized systems

usually present strongly different behaviours; however, we prove that for the

14

(2") write(a,t)?P_Q (a)t'IP with t' t

(2/11) write(a,t)?P_Q Q

(1') (ah 0 (26) (a)t+l (a)t (27) (a)o 0

Table 4 Operational semanties for leasing (symmetrie rules omitted).

calculus presented in this section this discrimination does not hold. On the

other hand, we will see in the next section that the introduction of leasing in the

calculus will permit to observe differences between the synchronous and the

asynchronous interpretations.

The equivalence between the two approaches is a consequence of the follow

ing theorem, stating that, given an initial configuration P, the configurations

that can be reached from P are exact1y the same under the synchronous and the

asynchronous approaches.

Theorem 1 Let P be a conjiguration not including terms 0/ the kind 'fit? P _ Q.
We have that P --+; P' if and only if P --+ P'.

The proof of the theorem is based on two observations: first, a computation

under the synchronous approach is trivially valid also under the asynchronous

one; second, the order of v' transitions in a computation under the asynchronous

approach can be changed in order to obtain another valid computation leading

to the same configuration such that the new computation can be mimicked under

the synchronous approach. Intuitively, this can be done because there is no way

to observe the instant in which a timeout period starts, instant which is modeled

by transitions labelled with T (see mIes (3') and (4'))

5. LEASING

Leasing represents an emerging style of programming for distributed systems

and applications. According to this style, a service offered by one object to

another one is based on a notion of "granting the service for a certain period of

time". In this way, objects which ask for services declare also the corresponding

period of interest in th<it service. The server decides whether to grant the service

for the complete period or for a shorter one. These are usually called leased

services.

In JavaSpaces the notion of leasing is introduced in relation to the write and

notify operations. In [6] we have modeled leased versions of these two opera

tors by adding an extra parameter which represents the duration of the interval

On the Semantics 0/ JavaSpaces 15

for which the emitted datum should be maintained inside the data repository

(for write) or the amount of time after which the listener for the event should

be removed (for notify). Moreover, two further primitives renewand cancel

are introduced in order to extend the duration or to terminate the leasing period

of a particular previously defined leased service.

For simplicity, in this paper we only present a modeling of leasing for the

write operation; moreover, we omit the renewand cancel operations (see [6]

for the complete treatment).

The syntax of the calculus extended with leasing uses the write operation

no more as aprefix, but as a guard of if-then-else form:

17 ::= ... I write(a, t)

In order to associate to the leased objects the indication of the remaining lifetime

t, we use a subscript notation t. Namely, we represent objects with (a)t to

indicate that the represented object will be removed after t basic time intervals

due to the expiration of the leasing period.

The operational semantics is redefined by adding the new axioms in Table 4

w here (1') is substituted for (1) w hile (2") and (2"') are substituted for (2').

Axiom (2") models a successful execution of an output operation; the side

condition represents the fact that the new object may be leased with a lifetime

shorter than the requested one. Axiom (2"') indicates that the output operation

mayaiso fail; in this case the second possible continuation is activated. The

other axioms describe the semantics for the shared objects (a) t which may be

readlconsumed (axiom (1'», may reduce their remaining lifetime as effect of

the termination of a basic time interval (axiom (26), or may be removed as

effect of lease expiration (axiom (27).

5.1. SYNCHRONOUS V.S. ASYNCHRONOUS

INTERPRETATION OF TIME PASSING

Also in the language extended with leasing, we could think to adopt either

the synchronous or asynchronous interpretations of time passing described in

the previous section. It is interesting to observe that the introduction of leased

resources permits us to distinguish between them, formally, the Theorem 4.1

does not hold any more. As a counter example consider the following program:

write(a, t).read(b, t + 1)?0_ take(a)

After the execution of the write operation the following term is obtained:

(ahlread(b, t + 1)?0_ take(a)

The right hand process requires the presence of object (b) in order to continue

its execution. As this object will never be produced, its behaviour consists of

16

waiting for a t + 1 long period, and then becoming process take (a). The object

on the left has a lifetime shorter than t + 1. According to the synchronous

interpretation, (a) t disappears before take (a) can be performed, while this is

not true under the asynchronous one. Thus, the take (a) operation may succeed

only under the asynchronous approach.

The above example shows that it is no more true that the configurations

reachable from an initial configuration are exactly the same under the two in

terpretations. The example uses a read operation with timeout. An even more

discriminating result between the two interpretations is proved in [7] for a

ca1culus without event notification and timeouts; in other words, a ca1culus cor

responding to the kemellanguage defined in Table 1 where the write operation

is substituted by the one defined in Table 4.

For this simple language we have proved a gap of expressiveness between the

two interpretations for the passing of time by considering the ability to encode

RAMs under synchronous and asynchronous time.

Conceming asynchronous time, we have presented a RAM encoding which

preserves termination, and we show the impossibility to define encodings which

preserves divergence. This result is achieved by proving that P t is a decidable

property in this language. Even more interesting is the analysis of synchronous

time; we show two possible encodings, the first which preserves termination

and the second which preserves divergence, and we prove the impossibility to

define encodings which preserves both termination and divergence. In order

to achieve this result we first observe that given an encoding which preserves

both termination and divergence, we have that for any RAM, the corresponding

encoding is uniform with respect to termination or divergence (i.e., its compu

tations are either all finite or all infinite). After, we prove that P t is decidable

for uniform processes.
The above results are summarized in the following table where we report also

the results proved regarding the relation between the ordered and unordered
interpretations for the output operation proved in [2] and recalled in the In
troduction. The table reports the properties that the encoding of RAMs may
preserve:

Termination Divergence Termination & Divergence

Ordered Output YES YES YES

Leasing Sync. Time YES YES NO

Leasing Async. Time YES NO NO

Unordered Output NO NO NO

6. CONCLUSION

We have proposed a formal semantics for primitives typically adopted by

Linda-like coordination middlewares, with a particular emphasis on the inno

vations introduced in JavaSpaces specifications.

On the Semantics 0/ JavaSpaces 17

In particular we have focused on alternative interpretations of two kinds:

ordered v.s. unordered interpretation for the output operation, and synchronous

v.s. asynchronous interpretation for the passing of time. The most interesting

results are:

1 The event notification mechanism introduces an intermediary level of ex

pressiveness: the calculus with output, input, read, and notify is Turing

powerful in the weak sense under both the ordered and unordered inter

pretations; the calculus extended with event notification becomes Turing

powerful also under the unordered approach.

2 The synchronous and asynchronous interpretations for the passing of

time are equivalent in the presence of time-outs only, while they are

discriminated by an expressiveness gap in the presence of distributed

leasing.

Moreover, further observations follows from the results reported in the table

of Section 5.1. The critical point is that under leasing, when an output operation

requires to place in the space a new object with a certain duration, "if the

requested time is longer than the space is willing to grant, you will get alease

with reduced time". This implies that the c1assic, persistent, (ordered) output

operation is no longer available. This suggests why the expressive power should

decrease, and indeed we formally proved that this is the case. Moreover, if

time is not global, then we loose also the possibility to observe the instant in

which alease expires. And this explains intuitively the second expressive gap.

Finally, we have that a language where there is control over the time a datum

is introduced in the dataspace, but little control on the time of permanence, is

more expressive than a language where there is no control over the time a datum

is introduced (unordered output), even if then the datum is persistent.

The results we have proved on our JavaSpaces based process calculi might

lead to reconsider the choice of the coordination operators and their semantics.

One idea, for example, could be to move from the ordered semantics to the

unordered one; indeed, we have proved that the presence of notify allows us

to simulate the ordered semantics (and this simulation can be exploited only in

those particular cases in which the order is strictly necessary). In other words,

we are convinced that these results can be considered not only a first step in

the direction of a better and formal understanding of the coordination model

advocated by JavaSpaces, but they also represents insights useful in the design

of new JavaSpaces-like languages.

18

References

[1] N. Busi, R. Gorrieri, and G. Zavattaro. A Process Algebraic View ofLinda

Coordination Primitives. Theoretieal Computer Scienee, 192(2): 167-

199,1998.

[2] N. Busi, R. Gorrieri, and G. Zavattaro. On the Expressiveness of Linda

Coordination Primitives. Information and Computation, 156:90-121,

2000. Extended abstract appeared in Proc. of Express '97.

[3] N. Busi, R. Gorrieri, and G. Zavattaro. Comparing Three Semantics for

Linda-like Languages. Theoretieal Computer Scienee, to appear, 2000.

Extended abstract appeared in Proc. of Coordination '97.

[4] N. Busi and G. Zavattaro. Event Notification in Data-driven Coordination

Languages: Comparing the Ordered and Unordered Interpretations. In

Proe. of SAC2000, pages 233-239. ACM Press, 2000.

[5] N. Busi and G. Zavattaro. On the Expressiveness of Event Notification

in Data-driven Coordination Languages. In Proe. of ESOP2000, vol

urne 1782 of Leeture Notes in Computer Scienee, pages 41-55. Springer

Verlag, Berlin, 2000.

[6] N. Busi, R. Gorrieri, and G. Zavattaro. Process Calculi for Coordination:

from Linda to JavaSpaces. In Proe. of AMAST2000, volume to appear of

Leeture Notes in Computer Scienee. Springer-Verlag, Berlin, 2000.

[7] N. Busi, R. Gorrieri, and G. Zavattaro. On the Expressiveness of Dis

tributed Leasing in Linda-like Coordination Languages. Technical re

port UBLCS-2000-5, Department of Computer Science, University of

Bologna, Italy. May 2000.

[8] C. Dufourd, A. FinkeI, and P. Schnoebelen. Reset nets between decid

ability and undecidability. In Proe. of ICALP'98, volume 1061 of Lee

ture Notes in Computer Scienee, pages 103-115. Springer-Verlag, Berlin,

1998.

[9] D. Gelernter and N. Carriero. Coordination Languages and their Signif

icance. Communieations ofthe ACM, 35(2):97-107, 1992.

[10] J.F. Groote. Transition system specifications with negative premises.

Theoretieal Computer Scienee, 118:263-299, 1993.

[11] C.A.R. Hoare. Communieating Sequential Proeesses. Prentice-Hall,

1985.

[12] J. McClain. Personal communications. March 1999.

[13] R. Milner. Communieation and Coneurrency. Prentice-Hall, 1989.

[14] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes.

Information and Computation, 100(1):1-77, 1992.

On the Semantics 0/ JavaSpaces 19

[15] Sun Microsystem, Inc. JavaSpaces Specifications, 1998.

[16] Sun Microsystem, Inc. Jini Distributed Leasing Specifications, 1998.

[17] P. Wyckoff, S.W. McLaughry, T.J. Lehman, and D.A. Ford. T Spaces.

IBM Systems Journal, 37(3):454-474, 1998.

	ON THE SEMANTICS OF JAVASPACES
	1. INTRODUCTION
	2. THE KERNEL LANGUAGE
	2.1. ORDERED V.S. UNORDERED INTERPRETATION OF THE OUTPUT OPERATION
	3. EVENT NOTIFICATION
	3.1. EXPRESSIVENESS OF NOTIFY
	4. TIMEOUT
	4.1. SYNCHRONOUS V.S. ASYNCHRONOUS INTERPRETATION OF TIME PASSING
	5. LEASING
	5.1. SYNCHRONOUS V.S. ASYNCHRONOUS INTERPRETATION OF TIME PASSING
	6. CONCLUSION
	References

