

HASSO - PLATTNER - INSTITUT
für Softwaresystemtechnik an der Universität Potsdam

Harald Meyer
Dominik Kuropka

Requirements for Service
Composition

Technische Berichte Nr. 11
des Hasso-Plattner-Instituts
für Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik

an der Universität Potsdam

Nr. 11

Requirements for Service Composition

Harald Meyer
Dominik Kuropka

Potsdam 2005

Bibliografische Information der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.ddb.de abrufbar.

Die Reihe Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der
Universität Potsdam erscheint aperiodisch.

Herausgeber:

Redaktion:
Email:

Vertrieb:

Druck:

Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam

Harald Meye, Dominik Kuropka r
harald.meyer; dominik.kuropka }@.hpi.uni-potsdam.de

Universitätsverlag Potsdam
Postfach 60 15 53
14415 Potsdam
Fon +49 (0) 331 977 4517
Fax +49 (0) 331 977 4625
e-mail: ubpub@uni-potsdam.de
http://info.ub.uni-potsdam.de/verlag.htm

allprintmedia gmbH
Blomberger Weg 6a
13437 Berlin
email: info@allprint-media.de

© Hasso-Plattner-Institut für Softwaresystemtechnik an der Universität Potsdam, 2005

Dieses Manuskript ist urheberrechtlich geschützt. Es darf ohne
vorherige Genehmigung der Herausgeber nicht vervielfältigt werden.

Heft 11 (2005)
ISBN 3-937786-81-3
ISSN 1613-5652

Requirements for Service Composition

Harald Meyer and Dominik Kuropka

November 1, 2005

Executive Summary

This document describes the requirements analysis of the service composition component. 33 re-
quirements are identified and categorised. A requirement is either mandatory or optional. The cat-
egorisation distinguishes between general, functional and non-functional requirements. In general
requirements automated service composition is justified. Functional requirements include require-
ments regarding:

• Elements of Composition defines the building blocks of composition.

• Control Flow defines the order of the elements of composition inside a composition.

• Data Flow defines how data is exchanged between the elements of composition.

• Data Model defines how data elements are described.

• Quality of Service defines how optimisations for compositions are described.

Non-functional requirements include the usage of WS-BPEL as the foundation for a service com-
position language, performance requirements, and the ability to flexibly react to unexpected events.
Table 6 gives a summary of all identified requirements.

2

Contents

1 Introduction 1

2 Use Case Scenarios 2

2.1 Attraction Booking . 2
2.2 Dynamic Supply Chain Management . 5

3 General Composition Requirements 7

4 Functional Requirements of Service Composition 9

4.1 Requirements on the Elements of Composition . 9
4.2 Control Flow Requirements . 11
4.3 Data Flow Requirements . 15
4.4 Data Model Requirements . 17
4.5 Quality Of Service Requirements . 19

5 Non-Functional Requirements 21

6 Conclusion 24

Bibliography 26

3

1 Introduction

To be successful, organisations cooperate on a global level. The key enabling cooperation is the
integration of their software systems inside the organisation and beyond organisational borders. Ser-
vice orientation proves to be a viable approach towards integration. Services are offered to requestors
inside and outside the organisation. Descriptions of services are published in a registry. Service com-
position yields the possibility to aggregate existing services into new composed services. Processes
are currently modelled manually. This leads to inflexible service compositions with no optimal qual-
ity as manual modelling prevents adjustments for individual service requests. Manually modelled
service compositions must suit a lot of different service requests. Hence individual requests are
possibly not served as well as possible. As services are registered and removed during run-time,
service compositions may fail if necessary services are no longer available. When new services are
registered they are not automatically used in previously modelled service compositions even though
they may enhance them. Automated service composition allows the on-demand creation of new ser-
vice compositions for requests. Therefore automated service composition increases flexibility and
quality and reduces the probability of enactment failures because of missing services.

Automated service composition represents a core concept of the Adaptive Services Grid (ASG)
project. One of the goals to achieve in the ASG project is to develop of a prototypical implementation
of a service composition component. It will enable us to compose individual service compositions
for service requests directed towards the ASG platform. Requirements analysis builds the founda-
tion for the development of this component. Requirements analysis is part of the ASG platform
development process described in the deliverable D6.IV-1 ASG Platform Development Process. It
leads to a set of unambiguous, correct, and testable requirements for the service composition com-
ponent. This includes functional requirements on the input and output of service composition but
also non-functional requirements like performance.

The usage scenarios of the ASG platform developed by the working group C-7: Usability and

Demonstration drive the requirements analysis. We will derive requirements from individual sce-
narios and demonstrate their importance through other scenarios and references to related work.
Requirements analysis incorporate the collection and categorisation of requirements. Categorisation
is performed on two dimensions: by importance and thematically. A requirement is either manda-
tory or optional. The thematical categorisation includes three main categories: general, functional
and non-functional. General requirements are mainly requirements derived from the overall require-
ments regarding the ASG platform. This includes for example that service composition must be
automated. While the general requirements can (and will) also be justified through the usage scenar-
ios they precess the other requirements temporarily and logically.

Following this introduction two scenarios are presented in the next chapter that form the basis
for our requirements analysis. General requirements regarding the service composition component
are covered in chapter 3. In chapter 4 we present the functional requirements. We show the non-
functional requirements in chapter 5. Chapter 6 contains a summary of all presented requirements
and an outlook on design and implementation of the service composition component.

1

2 Use Case Scenarios

Two scenarios are used to motivate the individual requirements. Figure 1 shows an evaluation of
selected scenarios. Based on this evaluation the selected scenarios are Telematics and Dynamic
Supply Chain Management. From the Telematics scenario only a subset called Attraction Booking
scenario is used here. It bases on the Tourist scenario presented in the deliverable D7-I.1 [13].
It plays an important role in the ASG project as it is implemented for the prototype of the ASG
platform. The Dynamic Supply Chain scenario demonstrates service composition very well. Both
scenarios are summarised in the following.

!"#$%"#&' (%#)*$' +,--./'!*�' 1%.%2&$#34' 560#$6"#0)' %768'

!"#$%#&'()*"+),'+-$#) ./) 012) 010) .13) /14)

5$%$*&6&'()#")7%89:;$+;) 31<) .1=) 01.) .1<) .1=)

!"#$%#&'()#")>$)&?@($?$%#$8) 3) .1<) 01<) 01.) /12)
!";;&>&(&#A)#")&?@+$;;)&%#$+%'()
5:;&%$;;)B%&#;) 21<) .1=) 01/) 01.) .1C)

D%#$+$;#)#")E"+-)E&#F) 21<) .1<) .13) .1<) .12)

!"#$%#&'()GHI)@F';$95)J'%8&8'#$;) 2) .1=) .1=) .1<) 01.)

K$?"%;#+'#&"%)5$%$*&#;)*"+)GHI) 2) .1<) .1L) .10) .1.)

I+'8$)"*)D%%"M'#&"%) <1<) /1=) /1L) /1=) /14)

))))))

GM$+'N$)O"#&%NP)) .13<) .1=C) .1<=) .102)

Q'%-P)) 9:' 9;' 9<' 9='

Figure 1: Evaluation of Scenarios [13]

2.1 Attraction Booking

The attraction booking scenario is a refinement of the Tourist scenario from the Telematics domain.
Customers, or as they are called in ASG end service consumers, can retrieve information about
attractions in the immediate surrounding using a mobile device. Additionally customers may re-
quest directions to the attraction or book tickets for them. Figure 2 shows the dialogs of the client
application on the mobile device.

Based on the customer’s current position and the specified query (dialog 1) the system compiles
a list of attractions (dialog 2). This list is displayed as it is or as a map showing the position of
the customer and the attractions found. The customer can then request additional information for
specific locations. This includes the address of the attraction, opening hours or price (dialog 3).
The customer can also request a route description to lead him to the attraction. If the attraction is
bookable (e.g.: if it is an event), the customer can book a digital ticket. The route description consists
of a map and a textual description (dialog 4). While the map shows streets and buildings, indicating

2

Figure 2: Attraction Booking: client application

3

the path as a coloured line, the textual description includes street names and directions (e.g.: where
to turn left or right). To book a specific attraction or event, the customer selects the number of people
to attend the event (dialog 5). The system then offers the customer a number of tickets for a certain
price category. If the customer decides to accept the offer, he is charged the specified amount of
money (dialog 6). In return he receives the given number of digital tickets for the event (dialog 7).
The Attraction Booking scenario encompasses three use cases:

• Find attractions

• Get route description

• Book attraction

All three are fulfilled through the enactment of service compositions. Figure 3 shows an example
composition for each use case. The process activities represent service invocations. The service
compositions result from service requests towards the service composition component. For example,
if the customer’s location is already specified in the service request, the invocation of a localisation
service is not necessary. A similar flexibility applies to the booking of an attraction. No payment
option is specified in the example. Instead the user selects a payment option during payment. But the
customer may have already specified his preferred payment option in a profile. The client application
on the mobile device then transfers the information about the preference and the customer does not
have to select a payment option. If service providers register new attraction information services
or remove old services, future queries for attraction information will incorporate these changes of
the service landscape. In this scenario automated service composition allows changes in the set
of available services and in the client application (new use cases, additional information) without
requiring manual adjustment of the service compositions.

Find attractions

Find attractions

Find attractions

Consolidate
attractions *

Create route
description

Calculate routeLocate customer
*

Locate customer

Order
tickets

Confirm
reservation

Reserve
ticket

Charge
phone bill

Charge
credit card

Confirm
order *

Find attractions:

Get route description:

Book attraction:

payment
option?

phone
bill

credit
card

Figure 3: Example compositions for attraction booking use cases

4

2.2 Dynamic Supply Chain Management

To be successful, companies must be able to integrate services offered by their suppliers quickly. In
the Dynamic Supply Chain Management scenario this integration should be achieved for the domain
of Internet Service Providers (ISP).

Nowadays ISPs not only provide broadband Internet access but bundle it with additional services
like webspace provision or domain name registration. Bundling can be done in advance by a product
manager or on-demand when the customer requests a product bundle. Bundled services may not be
provided by the ISP itself but by one of its suppliers: While the ISP owns the infrastructure for
providing access to the Internet, it purchases the actual broadband lines connecting customers (e.g.:
ADSL line over a regular telephone line) from line carriers.

If a customer orders a bundled package, the online shop of the ISP creates a service request that is
send to the ASG platform. Based on this request a fitting service composition is created. The use case
for this scenario is ordering of a broadband Internet access bundle. Figure 4 displays a composition
example for this use case. The customer requests a bundle containing broadband Internet access,
web space and the registration of domain names. Service enactment can enact all three activities
in parallel. To provide Internet access the ISP not only orders a ADSL line from a carrier, but also
performs setup activities for its internal infrastructure (e.g.: account to log in). While ordering an
ADSL line and registering a domain name are displayed as activities, they are actually compositions
themselves. Figure 5 shows the actual service invocations for ordering an ADSL line. An availability
check is performed for each ADSL provider. The provider is added to the list of possible providers,
if the check returns a positive result. When the provider check is complete, the best offer (e.g.: least
cost) is selected.

Provide
webspace

⊞

⊞

Order
ADSL line

Register
domains

*

Setup internet
access

Figure 4: Example composition for Dynamic Supply Chain Management

||

Order from
least cost
provider

Check
availability

Add to
provider listyes

for each ADSL provider

*

*

no

available?

Figure 5: Sub process ADSL line ordering

Automated service composition allows customers to select individual bundles including only the
desired products. The service composition component can flexibly compose the ordering service of

5

the ISP according to the requested bundle. Automated service composition also enables the ISP to
have business relations with a lot of different suppliers. The best provider for a concrete product is
then selected dynamically. New business relations can therefore be established on the fly and old
ones can end.

6

3 General Composition Requirements

This chapter gives an overview of general requirements towards service composition in ASG.

Req. 1: Service Composition is automated (mandatory) Service composition can be per-
formed manually, semi-automatically, or automatically. Systems following the paradigm of service
orientation are open: Service requestors appear and disappear, and service providers register new
services, and change or unregister existing services. Service requestors are the customers of the end
service provider. In the Attraction Booking scenario the customer is somebody who wants to find
and book an attraction. In the Dynamic Supply Chain Management scenario the customer wants
to order bundled ISP services. The end service provider is the organisation that offers the actual
service to this customer. He provides the client application, the server application and often also
the ASG platform. End service providers may change their applications. New customers may have
new demands. Handling these demands with manually modelled compositions can be inadequate
or impossible. In Dynamic Supply Chain Management a lot of different services are available that
can be bundled into even more packages1. Manually modelled service compositions that handle all
this different cases are complex. Complexity increases, if dependencies between services exist (e.g.:
domain registration is only possible if web space is ordered, too) or if providers register or unregister
services.

Service providers register their services and offer them to customers. A provider of a route plan-
ning service is an example for a service provider in the Attraction Booking scenario. For Dynamic
Supply Chain Management an example is the provider of ADSL lines. In both cases providers can
register new services. This includes not only new route planning services or ADSL line ordering
services but also new types of services. A provider of e-mail accounts may want to offer its services
in the Dynamic Supply Chain Management. With manual or semi-automatic service composition
the service provider asks the end service provider to adjust its service composition in order to allow
customers to include an e-mail account in their package. If the end service provider uses automated
service composition, new services will be used automatically. A service provider may also change
or unregister its services. Again this will result in manual modelling if no automated service com-
position is used.

Finally, the end service provider can change its application. Using automated service composition,
he only needs to change the service requests. The service composition component automatically
adjusts the service compositions. If the provider decides that the information about an attraction
should include a live picture of the location, he only changes the goals of the service request. Without
automated service composition, he would have to change the service compositions himself.

Each situation presented above involves some change in the service compositions. For manual
or semi-automatic service composition this means that a person has to change the compositions
manually. This is time-consuming and costly. With automated service composition no service com-
positions to change exist. Adaptation to changes resulting from the above mentioned openness of

1If five service are available and a bundle may include each service once, 32 packages are possible.

7

service oriented architectures is therefore easier.

Req. 2: Service request describes the goal of composition (mandatory) A service
request is the input for automated service composition. If service enactment executes the resulting
service composition, its effect should be in line with the service request.

To allow automated service composition a service request includes initial state, goal state and
request data. The initial state describes the current situation before enacting the service composition.
The goal state describes the state of the world that should be reached. Request data includes concrete
data elements that are available in the initial state. In the Attraction Booking scenario this includes
for example the customer’s telephone number.

Req. 3: Service Composition according to service request (mandatory) The service
composition component creates compositions, that accord the service request: The service composi-
tion is enactable in the initial state with the given request data and enacting the service composition
leads to a state that fulfils the criteria defined for the goal state.

Req. 4: Information gathering services invocable during composition (optional) One
can distinguish information-gathering and world-altering services [9]. Information-gathering ser-
vices only fetch new information without changing the state of the world. In the Attraction Booking
scenario the services to fetch information about attractions and to locate customers are only informa-
tion gathering2. In contrast, ticket booking leads to a change in the state of the world: Fewer tickets
are available and money is transferred. Therefore the booking service is world-altering.

In the classical view of automated service composition neither information-gathering nor world-
altering services are called during service composition. Instead the service composition component
puts the selected service into the service composition. The service is therefore only invoked during
service enactment, While this separation of concerns normally makes sense, it can lead to bloated
service compositions. If a search for attractions is performed in the Attraction Booking scenario, all
attraction information services regardless of the location of their attractions are used. This happens
because the location is determined during enactment. If the service for locating the customer could
be invoked during composition time, the number of applicable attraction information services is
reduced dramatically.

While some research on the enactment of information-gathering services during composition time
exists [9] this interweaving of composition and enactment can be problematic: How should the ser-
vice composition component decide whether to invoke a service itself or to let the service enactment
component do this? Is an information-gathering service that costs money still information-gathering?
Another problem is that only very few information gathering services are actually invocable during
composition time as they depend on world-altering services [17].

2Only if they do not cost any money.

8

4 Functional Requirements of Service

Composition

In this chapter we elaborate the functional requirements towards the service composition component
and the composition language. The composition language defines how service compositions in ASG
look like. The requirements are ordered according to the following categorisation:

• Elements of Composition defines the building blocks of composition.

• Control Flow defines the order of the elements of composition inside a composition.

• Data Flow defines how data is exchanged between the elements of composition.

• Data Model defines how data elements are described.

• Quality of Service defines how optimisations for compositions are described.

Following this model the requirements are described in the following.

4.1 Requirements on the Elements of Composition

The elements of composition are the building blocks from which service compositions are composed.
The service specification language defines their concrete format. Requirements toward the service
specification language are defined the deliverable D1.I-1 Requirements Analysis on the ASG Service

Specification Language [14].

Req. 5: Elements of composition are services interactions (mandatory) The elements
of a composition are activities that perform a task. In ASG the only activities are service interactions.
Besides invoking services, a composition can itself be invoked as a service. The result of compo-
sition includes service interactions only on the specification level without a binding to a concrete
implementation. The Negotiation Manager later binds the specifications to concrete implementa-
tions. If an external service provides more than one method, each method is mapped to a distinct
ASG service. Therefore no stateful interactions with services containing more than one method are
supported.

For the scenarios this means that every activity must be invocable as a service. This restriction
includes all internal activities. For example in the Dynamic Supply Chain Management scenario the
activities to create an account and to reserve disk space on a web server are services, too.

9

Req. 6: Elements of composition are service compositions (optional) Service interac-
tions are the atomic elements of composition. To improve reusability existing service compositions
are used as elements of composition as well. These existing service compositions can be manually
modelled or stored results of previous automated service composition.

Using manually modelled composition certain sequences of services can be prescribed to the
composer. In the Attraction Booking scenario such a predefined fragment could be the charging
process. Instead of recomposing it for each request, it could be predefined dictating a certain order
in which the different charging services are used (e.g.: charging by money transfer only if no other
payment options succeeds.). Reusing previous automated service compositions makes sense in most
scenarios especially if often similar or equal requests are served. The amount of automated service
composition is reduced and reply times are decreased.

Req. 7: Services have input and output parameters (mandatory) Services perform a
specified functionality. Often this functionality is parameterised with data provided in the service
request. The localisation of a customer for example needs the customer’s telephone number as input
data. Services also return a result (e.g.: the customer’s location). To allow the input and output of
data, parameters are needed. A service has zero or more input and output parameters.

Req. 8: Service functionality is described semantically (mandatory) Service function-
ality is described semantically to allow automated service composition. Besides input and output
parameters, specifications of services include preconditions and effects. These four elements of a
semantic service specification can be mapped to the WSMO constructs of assumption, precondition,
effect, and post-condition. The terminology is derived from automated planning in Artifical Intelli-
gence [7] and is in line with the current ASG terminology. Preconditions and effects are specified
using function-free first-order logic. This allows semantically rich specifications while preserving
decidability [7]. Preconditions and effects describe the state of the world and the state of available
information. To do so, it is possible to define logical relations between input parameters, between
output parameters and between input and output parameters. To describe functionality often addi-
tional variables that are not parameters are necessary.

Req. 9: Services can have more than one precondition or effect (mandatory) It is
common that a service has more than one precondition or effect. For example the service to provide
web space in the Dynamic Supply Chain Management scenario has the preconditions that enough
disk space is available and that the load on the machine is acceptable. It has the effects, that web
space is reserved and that an account for the user is created. All of the preconditions must hold in
order to execute the service and all effects of the service happen if the service is executed.

Expression

Conjunction
1

*

Disjunction
1

*

Figure 6: Composition of logical expressions

10

Expressions are defined in first-order logic. Therefore expressions can be conjunctions or disjunc-
tions of other expressions (Fig. 6). Conceptually services have only one precondition and one effect.
If more than one precondition or effect is needed, both can be conjunctions of other expressions.
The logical expression for the precondition of the above-mentioned service could look like this:

spaceAvailable ∧ loadAcceptable

Req. 10: Services can have disjunctive preconditions (mandatory) Besides having
multiple preconditions that all must be true in order to invoke the service, a service can have disjunc-
tive preconditions. The service is invocable, if just one of the preconditions is true. An actual web
space provisioning service could be responsible for multiple web servers. So it is sufficient that web
space is available on just one web server. The precondition of the service managing web servers A
and B then looks like this:

(spaceAvailable(A) ∧ loadAcceptable(A)) ∨ (spaceAvailable(B) ∧ loadAcceptable(B))

Again, we can use just one expression from first-order logic to express disjunction. It is therefore
sufficient that we still limit services to just one precondition. If disjunctive preconditions are not
available, they can be simulated using several distinct services (e.g.: service for web server A,
service for web server B).

Req. 11: Services can have disjunctive effects (mandatory) Disjunctive effects are
necessary to express services that can have several different effects. The web space provisioning
service that is responsible for multiple web servers is an example for such a service. Depending on
the selected web server, the web space will be provided on just one of the managed web servers.
In the Attraction Booking scenario a service to determine the city in which a customer is located
delivers different results according to the actual city.

Implementation-wise disjunctive effects are more complicated. While missing disjunctive precon-
ditions can be simulated, this is not possible for disjunctive effects. Disjunctive effects also increase
the complexity of automated service composition [5, 7].

4.2 Control Flow Requirements

The control flow of a process or service compositions defines the order in which the elements of
composition are enacted. This includes simple sequential ordering but also complex parallel or
alternative control flows. In the usage scenarios we have already seen some examples for control
flows. Figure 3 for the Attraction Booking scenario and Figures 4 and 5 for the Dynamic Supply
Chain Management scenario included sequential, parallel, and alternative control flows.

Requirements regarding control flow can be separated into two types of requirements: Require-
ments regarding the composition functionality and requirements regarding features of the compo-
sition language. With workflow patterns [18] a categorisation for different control flow constructs
exists in workflow management. Requirements analysis regarding control flow will be performed
according to these patterns.

11

Req. 12: Composition of sequential control flow (mandatory) In a Sequence of activities
the activities are enacted one after another in a well-defined order. Figure 7 shows examples for the
usage of Sequence in both scenarios. In the Attraction Booking scenario the customer is located, then
a route is calculated based on the location and finally a description for the route is generated. In the
Dynamic Supply Chain Management example only a small part of the process is actually performed
sequential. If an ADSL line is ordered by a customer, the actual line is ordered from the ADSL
line provider and then Internet access is activated for this line. In both scenarios sequentialisation is
necessary to ensure correct working.

Create route

description

Calculate

route

Locate

customer *

Attraction Booking:

Provide

webspace

⊞

⊞

Order

ADSL line

Register

domains

*

Setup internet

access

Dynamic Supply
Chain:

Sequence

Figure 7: Usage of Workflow Pattern: Sequence

Req. 13: Composition of parallel control flow (mandatory) Parallel control flow allows
the parallel invocation of activities. We have seen an example for parallel control flow in the Dy-
namic Supply Chain Management scenario in Figure 7. It is also used in the Attraction Booking
scenario. In general every usage of parallel control flows can be sequentialised. Instead of execut-
ing ADSL line ordering, web space provisioning and domain registration in parallel, they could be
executed in sequence. But sequentialisation can dramatically reduce process performance. For the
application to real world scenarios it is therefore mandatory.

Parallel control flow is realised by two different patterns: Parallel Split and Synchronization. A
Parallel Split splits a single thread of control into multiple threads. A Synchronization merges them
later. Figure 8 identifies both patterns in an example from Attraction Booking.

Parallel Split

Find attractions

Find attractions

Find attractions

Consolidate
attractions *

Locate customer

Synchronization

Figure 8: Usage of Workflow Patterns: Parallel Split and Synchronization

12

Req. 14: Composition of alternative control flow (mandatory) Alternative control flows
are parts in a process where – depending on some condition – one out of many possible control flows
is selected. One example from the Attraction Booking scenario is displayed in Figure 9. It shows the
realisation of an alternative control flow using the workflow patterns Exclusive Choice and Simple

Merge. Depending on the preferred payment type, either the customer’s phone bill or his credit card
is charged. Conditions are often either decided by user provided data (like here) or by services with
disjunctive effects.

Order
tickets

Confirm
reservation

Reserve
ticket

Charge
phone bill

Charge
credit card

Confirm
order *

Exclusive Choice Simple Merge

payment
type?

credit card

phone bill

Figure 9: Usage of Workflow Patterns: Exclusive Choice and Simple Merge

The patterns Exclusive Choice and Simple Merge constitute the simplest form of alternative con-
trol flow: Exactly one of the alternative control flows is selected. If a Multiple Choice is used instead,
multiple alternative flows can be taken. To merge them three different patterns Synchronizing Merge,
Discriminator and Multiple Merge can be used. Only Synchronizing Merge performs synchronisa-
tion of control flows. In contrast to Multiple Merge, the Discriminator pattern executes subsequent
activities only once.

In general the service composition component should support at least Multiple Choice as a split-
ting pattern. It can simulate Parallel Split and Exclusive Choice as special cases. Merging patterns
are more complex. Of the synchronising pattern – Synchronization, Simple Merge and Synchronizing

Merge – only the last one is necessary. Non-synchronising patterns are currently not possible with
automated service composition algorithms.

Req. 15: Composition of multiple instances of sub-compositions (optional) Some-
times it is necessary to execute certain tasks not only once, but multiple times. ADSL line ordering in
the Dynamic Supply Chain Management scenario is one example (see Figure 5). Several providers
for ADSL lines exist. They differ in availability and price. So an availability check for each provider
must be performed and the cheapest one is selected. The availability check for each provider is
a realisation of one multiple instance pattern: Multiple Instances with a priori known design time

knowledge. Of the four different multiple instance pattern it is the only one that can be composed
automatically. As the number of providers is already known at design time (here: composition time)
parallel branches for every provider are created (Figure 10).

Other multiple instance workflow pattern capture situations were the number of instances is known
only at runtime or not known at all. Composing this automatically is not possible. Nevertheless,
situations where the number of instances is known at run time can be handled through the Negotiation
manager of ASG.

13

||

Order from
least cost
provider

Check
availability

Add to
provider listyes

for each ADSL provider

*

*

no

available?

Order from
least cost
provider

Check
availability

Add to
provider listyes

*

no

available?

Check
availability

Add to
provider listyes

no

available?

Check
availability

Add to
provider listyes

no

available?

Figure 10: Multiple Instance pattern example and its composition

Req. 16: Composition Language supports workflow patterns (mandatory) So far all
control flow requirements were requirements regarding the functionality of the composition compo-
nent. The actual output as an instance of the composition language is important as well.

The basic requirement on the composition language regarding control flow is the support of the
above-mentioned required workflow pattern. This can be achieved through a graph-structured or a
block-structured approach. In a graph-structured approach activities are vertices that are connected
through edges that symbolise ordering constraints. In a block-structured approach structured activi-
ties exist that contain other activities and determine their enactment order. While a graph-structured
approach is more generic, is a block-structured approach easier to visualise and reason about. Rea-
soning on process structures is for example necessary during negotiation to adhere to quality of
service properties. In general it is best to support both approaches like WS-BPEL [12] does. The
composition language should also support the patterns that cannot be composed automatically. This
makes sense as automated composition can reuse manually modelled process fragments.

Req. 17: Composition is block-structured (optional) Supporting structured activities in
the composition language does not mean that the composer outputs a block-structured result. Ac-
tually, service composition generates a partially-ordered set of services that can be represented as
a graph. As already mentioned block-structuring has its advantages and should be preferred when
possible. To have block-structured compositions, either the composition algorithm could support
them directly or post-processing could be performed. The first approach is a new research area,
so it is unclear whether it can be successful. Hierarchical-Task-Network planners [15, 4, 11] gen-
erate block-structured plans. But they do not actually generate block structures, but rather reuse
them. Post-processing rises the problem of complexity. As shown in [2] reordering compositions
subsequently can be as complex as composition itself.

14

4.3 Data Flow Requirements

The data flow of composition defines how data is exchanged between the service. Services have input
and output parameters. Output parameters of one service can be the input for other services. Data
flow requirements include for example the ability to exchange data and the usage of process input
data. The following four requirements regarding data flow are all defined over activities instead of
services. This is valid as the activities represent invocations of services and the actual data exchange
is done between the activities.

Req. 18: Activities exchange data (mandatory) The fundamental data flow requirement is
the ability to exchange data. Exchanging data between activities and therefore data flow is supported
in nearly all process meta-models [3, 10]. Activities have formal parameters that are replaced by
actual data when invoked. This data can either be process input data or output from other activities.

Create route
description

Calculate routeLocate customer
*

:PhoneNumber :Coordinates

:Attraction

:Route

:RouteDescription

Figure 11: Data flow in the Attraction Booking Scenario

Data flow is used in both use case scenarios. Figure 11 illustrates it for one composition from the
Attraction Booking scenario. The green rectangles are data elements that are exchanged between
the activities. An arrow leading to a data element means that it is created by the originating activity.
The customer coordinates are for example created by the customer localisation service. An arrow
leading from a data element to an activity symbolises that this data element is an input parameter for
the activity. For example, the coordinates are input to the route calculation service.

In workflow management, two different approaches to model data flow are in use. With the first
approach all data is stored on the process level. Input parameters of activities are read from this
central storage. Output parameters are stored in this central storage or – as it is called – blackboard.
With the second approach, data actually flows between activities. Explicit data flow connectors
connect the outputs of one activity with the input of another one. So the main difference is that
in the first approach all data exchange must be done through the central storage. If the output
of one activity is used by two other activities, it is still written only once to the storage and read
twice. In the second approach two distinct data connectors exist. WS-BPEL uses the blackboard
approach through process variables [12]. In contrast, Leymann and Roller [10] propose a meta-
model, used in IBM MQSeries Workflow, that facilitates explicit data connectors. The flexibility
gained by the blackboard approach, stands in contrast to its harder to follow – implicit – data flow.
This requirement and service composition in general are agnostic to the actual approach selected.

15

Req. 19: Activities use process input data (mandatory) Figure 11 shows the data flow for
an example composition of the Attraction Booking Service. Certain data elements, like PhoneNum-

ber and Attraction, are not produced by any activity. These data elements are part of the process
data and are inputs for the process. Processes must have such data, and activities must be able to use
them.

Req. 20: Data exchange implies control flow (mandatory) Control flow embeds an order-
ing constraint between two activities if one activity depends on another one. Dependencies are for
example causal links (e.g.: an activities creates the precondition of another one) or the protection of
causal links. Causal links do not only exist on the level of semantic service descriptions, but also for
input and output parameters. If one activity uses the output of another activity as an input a causal
link between the two activities exist. Therefore an ordering constraint between the two activities
must be included.

Calculate routeLocate customer

:Coordinates

implied
control flow

Figure 12: Control flow implied by data flow

For example see Figure 12: Even if the customer localisation service and the route calculation
service are not linked through preconditions and effects, it is necessary to add an ordering constraint
between them as the route calculation service uses the coordinates created by the localisation service.

Req. 21: Activities create new variables (mandatory) While this requirement sounds
trivial and self-evident, it actually is not for automated planning. Activities create new variables,
means that activities do not just write data into already defined variables, but they create variables
on the fly. With automated planning this is normally not possible. All the variables that are usable
during composition must be defined in advance. This includes also intermediate variables that are
neither used in the input nor in the output. When retrieving a route description in the Attraction
Booking scenario, a coordinates variable must be defined. This coordinates variable is never used
in the input or the output. It is also not obvious why such a variable could be necessary. Hence, by
adding this variable we are encoding assumptions about automatically created service composition
into the service request. This is bad as it hampers flexibility. Other service compositions are possible
that do not need this variable. Figure 13 shows such an example. If a combined localisation and route
calculation service exists, the customer’s coordinates are not necessary.

Defining all necessary variables requires a lot of information about the available services and at
least a rough idea on how the composition could look like. Therefore it is required here that activities
can create new variables and that the service composer takes these into account.

Req. 22: Scoping of process data (optional) Scoping introduces the concept of local vari-
ables. The advantage is that sub-processes can define their own variables without fearing to clash

16

Create route
description

Locate customer &
Calculate route *

:PhoneNumber

:Attraction

:Route

:RouteDescription

Figure 13: Data flow using combined localisation and route calculation service

with variables defined in other sub-processes or in its super-process. As mentioned, the output of
composition is normally is partially ordered set of service invocations. As such a service composi-
tion is flat, scoping is not required. If service composition composes structured activities, scoping
of process data must be supported.

4.4 Data Model Requirements

The data model defines how data elements are described. The data model is of importance for the
service composition component, as it has to use data elements to replace the formal parameters with
actual parameters.

Req. 23: Data elements are typed (mandatory) Data elements are exchanged between
services as parameters. To ensure that only valid data elements are passed as parameters it makes
sense to type them. Besides predefined types, user-defined types are necessary as well. In the
previous section we have seen that in the Attraction Booking scenario types like PhoneNumber,
Coordinates, and Route exist. By typing parameters we know for example what the localisation
service requires as an input: Neither a string nor a number, but a phone number.

But type-safety not only prevents service enactment from invoking services with wrong parame-
ters, it also eases planning. In the initial state of the Get Route Description use case of the Attraction
Booking scenario a phone number and an attraction is known. With typed data elements and pa-
rameters the service composer knows that it can only use the phone number as a parameter for the
localisation service. So the composer can already eliminate half of the potential compositions. Later,
when more data is available this reduction is even more drastical. Optionally if types are not needed
a generic type (e.g.: Object) can be used.

Req. 24: Data element types are defined in an ontology (mandatory) Service specifi-
cations are annotated semantically to allow automated service composition. Service specifications
therefore include preconditions and effects. Both are modelled as logical expressions. To use input
parameters, output parameters and variables in these logical expressions, the types of data elements
are described in an ontology.

An ontology defines concepts and their relations. Figure 14 shows the ontology of the Attraction
Booking scenario modelled using the Unified Modelling Language. A concept can be a sub-concept

17

PhoneNumber
countryCode: String
areaCode: String
number: String

Coordinates
longitude: Float
latitude: Float

Attraction
name: String
description: String

Visual
RouteDescription

map: Image

Textual
RouteDescription

text: String

location

RouteDescription

stepsRoute

Figure 14: Extract from the Attraction Booking ontology

of another concept (inheritance). Aggregation and composition relations can also exist between
concepts. As the example shows all these different relations are necessary.

As no mediation is supported, all concepts used in one scenario have to be defined in one ontology.
A service provide is therefore required to use only these concepts to describe his services.

Req. 25: Composer is aware of data element structure (mandatory) Besides having
data elements with ontology-based types it is also necessary that the composer is aware of the internal
structure of data elements described using an ontology. In the Attraction Booking scenario the
composer must be aware of the fact that an attraction has a coordinate. Only then it is possible to
express that the use case Get Route Description delivers a route to the attraction.

To do so the composer has to not only understand function-free first-order logic but also Frame
Logic [8]. Frame logic is an enhancement of first-order logic as it adds object-oriented concepts like
object identity, inheritance and complex objects. An expression to model that we want to have a
route that leads to the location of a given attraction looks like the following in Frame Logic:

Attraction[location → ALoc] ∧ Route[endCoordinates → REnd] ∧ ALoc = REnd

Req. 26: Data elements can be used to evaluate control flow conditions (mandatory)

Requirement 13 above stated that the composer can compose alternative control flows. An alternative
control flow can be the result of an Exclusive Choice or a Multiple Choice. Both have one incoming
and multiple outgoing control threads. To decide which control threads are actually executed, con-
ditions are assigned to the individual threads. In the Attraction Booking scenario alternative control
flows are used to determine the payment type. In the Dynamic Supply Chain Management alterna-
tive control flows are necessary when the list of ADSL providers is generated. Based on the result
of the availability check the provider is added to the list or not.

In both cases conditions are necessary. In the Attraction Booking scenario it is the payment
type. In Dynamic Supply Chain Management the result of the availability check. The condition is
expressed over data elements. So the composer must be able to model such conditions.

18

Req. 27: External application data exists (optional) The data we have seen in both scenar-
ios until now always was structured and rather small. In other scenarios unstructured, huge amounts
of binary data are exchanged between services. One example is the E-Government scenario intro-
duced in the deliverable D7-I.1 [13]. The goal of this scenario is to give people access to information
about legislation in progress. The law texts can be rather large documents stored in a central repos-
itory. Such documents tend to be several megabytes of data large. Often it does not make sense to
model this data as implied by the previous requirements. Instead of transferring them as message
parts, it makes more sense to just send references to them and tread their internals as a black box [1].

The implication of having such application data is that this data cannot be used as control flow
data to evaluate conditions at for example a Multiple Choice. The service composer can also only
handle the document through the reference. It cannot look at its internal structure and reuse parts
of it. The support for external application data is an optional requirement as it is not necessary in
the scenarios. In exchange for reduced performance, it is in most cases possible to work without
external application data even if large documents are transferred.

4.5 Quality Of Service Requirements

The quality of service (QOS) requirements here are part of the functional requirements. They de-
scribe functionality that is needed to ensure quality of service properties for service compositions
defined in a service request. The requirements on the representation of quality of service properties
for service requests and service specifications is out of scope of this requirements analysis. They
were already defined in Requirements Analysis on the ASG Service Specification Language [14].

Req. 28: Composition uses static quality of service properties (optional) Services
have static and dynamic quality of service parameters. Static QOS properties define ranges or enu-
merations of possible values. The actual values are negotiated during run-time by the Negotiation

Manager. For example, ordering an ADSL line in the Dynamic Supply Chain Management scenario
costs a setup fee of 10 to 20 e. The actual value depends on the selected provider and on negotiated
service level agreements.

As negotiation takes place after service composition, the negotiated values cannot be used during
service composition. Hence, only static values can be used. Despite their fixed values, it makes
sense to use them. The service composer can select service with equivalent functionality based on
quality of service properties. Negotiation gets the best prerequisites to negotiate optimal service level
agreements. This requirement is optional as the process of composition, negotiation and enactment
works without it, too.

Req. 29: Composition fulfils quality of service properties from service request (op-

tional) To use the quality of service properties to select the best service compositions, it is im-
portant to describe the relevant quality of service properties and their desired values in the service
request. A service request in the Attraction Booking scenario could state that finding attractions costs
at most 0.10 e. Accordingly, all services invoked can only cost 0.10 e. Then the service composer
selects and composes service compositions according to these quality of service parameters.

If the composer is able to find a composition that cost a maximum of 0.05 e, it is ensured that
the Negotiation Manager is able to negotiate a valid service level agreement. If costs range between

19

0.05eand 0.15e, the composer cannot ensure that negotiation is successful. Depending on negotia-
tion skills and external events (e.g.: high load on service, that leads to higher prices), no valid service
level agreement may be negotiable. Finally if minimum costs are 0.15 enegotiation is unnecessary
as it will fail.

Therefore it makes sense for ASG platform that the service composer tries to fulfil quality of
service properties using static values, as we can decide after composition whether negotiation makes
sense.

20

5 Non-Functional Requirements

In the previous section the functional requirements for the service composer have been elabo-
rated. Non-functional requirements exist as well. These non-functional requirements are only non-
functional requirements regarding the service composer and not non-functional properties of the
composition result.

Req. 30: Service composition language bases on WS-BPEL (mandatory) WS-BPEL [12]
is a language for the modelling of web service compositions. WS-BPEL processes can be enacted
automatically using a workflow engine. While WS-BPEL originated like most other WS-* stan-
dards from industry efforts, recently a technical committee was founded at the OASIS to standardise
WS-BPEL.

As one of the goals of the ASG project is the use and enhancement of existing standards it is
sensible to use a standardised language as the composition language. A further advantage is the
wide-spread availability of workflow engines supporting WS-BPEL. This includes not only open
source developments but also mature products. To strengthen the interoperability and reusability of
the service composer, WS-BPEL should be supported.

Req. 31: Services are specified using the ASG Service Specification Language

(mandatory) In the deliverables D1.1-1 Requirements Analysis on the ASG Service Specifica-

tion Language requirements regarding the service specification language in ASG were captured.
These requirements are the basis for deliverable D1.1-3 where the service specification language
will be elaborated. The service composer will use service specifications in this language to perform
automated service composition.

Req. 32: Service composition time must not exceed advantages from automation

(mandatory) Automated service composition has the advantage of gained flexibility and poten-
tially better service compositions. Service compositions are better according to quality of service
properties like cost and time. Automating service composition only makes sense if the cost for
automation are justified by its advantages.

Figure 15 displays three situations. In the first situation a manually modelled service composition
is used. Compared to the two other situations enactment time is rather high. But as the composition
is modelled manually in advance, no additional composition time is needed unless changes (e.g.:
available services) occur. In the two other situations automatically composed service compositions
are used. The compositions take less enactment time, as an adjustment to the exact service request
has been performed. But despite lower enactment time, automated service composition only makes
sense in the situation displayed in the middle. Combined composition and enactment time is less
than the original enactment time. In the last situation displayed, the combined duration is higher
than the original enactment time. Here automated service composition does not give advantages for
the quality of service property execution time.

21

time

automatically

composed

manually

modelled

enactment time

composition time

Figure 15: Possible advantage of automated service composition

Similar assessments must be performed in regard to other quality of service properties. While
automated service composition reduces the costs for the enactment of individual compositions, it
yields preceding costs for modelling ontologies and semantic service specifications.

To ensure this requirement two different approaches are used simoultaneously. Firstly, we must
ensure that automated composition has as few drawbacks as possible. Composition time and mod-
elling efforts should be as low as possible. Secondly, we must assess the usage of automated service
composition individually for new scenarios. For this purpose the possible advantages (e.g.: flexibil-
ity, reduced enactment time / cost) and disadvantages (e.g.: modelling cost, composition time) must
be reviewed in the context of these scenarios. It should only be applied were it gives advantages.

Req. 33: Flexible reaction to unexpected events (mandatory) The final requirement
for the service composer is about possible reactions to unexpected events. Unexpected events are
for example errors in service invocation, violation of non-functional properties. From a more gen-
eral perspective unexpected events are not always bad. The addition of a new service that reduces
enactment time is an example of a positive, yet unexpected, event1.

In general failure handling in workflow management and service composition is done through
exception handling [10, 1]. An exception handler defines activities to perform in case of specific
failures. This approach has two drawbacks. Firstly, it is inflexible. Failure handling is only possible
if an exception handler for this failure is provided. Secondly, all these failure handlers are modelled
manually. This leads to complex and hard to understand service specifications.

To solve this problem of inflexible, manually modelled exception handlers one could compose
these exception handlers automatically, too. But this leads to complex service compositions and
works only if all possible exceptions are defined and described semantically. In ASG another ap-
proach is used. During composition exceptions are not taken into account. Instead a composition
is created that only works if no exceptions happen (optimistic approach). If an exception happens,

1Of course ÃƒÂt is not unexpected that services are registered. But the registration of a specific service with distinct
functionality cannot be expected.

22

service enactment terminates enactment. It then hands the current enactment status over to a compo-
nent called Mediated Replanning. This component uses the enactment status to create a new service
request for which the composer creates a new composition. The new service request has the same
goal as the original request. The initial state of the request is adjusted according to already invoked
services. It must be ensured that still running service invocations are reflected in the new service re-
quest and composition. Therefore the initial state of the new service request incorporates the effects
of the running invocations and the new composition contains the running invocations[16, 6]. The
composer must support this concept, called re-composition.

23

6 Conclusion

In this document we presented the requirements on the service composer in the ASG project. The
requirements were derived and justified using scenarios developed by the work component C-7 Us-

ability and Demonstration.
All together 33 distinct requirements have been identified. This includes four general requirements

like the automation of composition, 25 functional requirements and 4 non-functional requirements.
Functional requirements have been categorised according to a predefined schema.

The next steps after requirements analysis are the development of the service composition al-
gorithm and language according to the defined requirements. Table 6 gives a summary of these
requirements.

24

General Composition Requirements

1 Service Composition is automated mandatory
2 Service request describes the goal of composition mandatory
3 Service Composition according to service request mandatory
4 Information gathering services invocable during composition optional

Functional Requirements

Elements of Composition Requirements
5 Elements of composition are services interactions mandatory
6 Elements of composition are service compositions mandatory
7 Services have input and output parameters mandatory
8 Service functionality is described semantically mandatory
9 Services can have more than one precondition or effect mandatory

10 Services can have disjunctive preconditions mandatory
11 Services can have disjunctive effects mandatory
Control Flow Requirements
12 Composition of sequential control flow mandatory
13 Composition of parallel control flow mandatory
14 Composition of alternative control flow mandatory
15 Composition of multiple instances of sub-compositions optional
16 Composition Language supports workflow patterns mandatory
17 Composition is block-structured optional
Data Flow Requirements
18 Activities exchange data mandatory
19 Activities use process input data mandatory
20 Data exchange implies control flow mandatory
21 Activities create new variables mandatory
22 Scoping of process data optional
Data Model Requirements
23 Data elements are typed mandatory
24 Data element types are defined in an ontology mandatory
25 Composer is aware of data element structure mandatory
26 Data elements can be used to evaluate control flow conditions mandatory
27 External Application data exists optional
Quality of Service Requirements
28 Composition uses static non-functional properties optional
29 Composition fulfils quality of service properties from service request optional
Non-functional Requirements

30 Service composition language bases on WS-BPEL mandatory
31 Services are specified using the ASG Service Specification Language
32 Service composition time must not exceed advantages from automation mandatory
33 Flexible reaction to unexpected events mandatory

Table 1: Summary of Requirements

25

Bibliography

[1] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services – Concepts,

Architectures and Applications. Data-Centric Systems and Applications. Springer, 2004.

[2] Christer Bäckström. Computational aspects of reordering plans. Journal Of Artificial Intelli-

gence, 9:99 – 137, 1998.

[3] Bill Curtis, Marc I. Keller, and Jim Over. Process modeling. Communications of the ACM,
35(9):75 – 90, 1992.

[4] Kutluhan Erol, James Handler, and Dana S. Nau. Semantics for hierarchical task-network
planning. Technical Report CS-TR-3239, UMIACS-TR-94-31, ISR-TR-95-9, University Of
Maryland, 1994.

[5] Kutluhan Erol, Dana S. Nau, and V.S. Subrahamnian. Complexity, decidability and unde-
cidability results for domain-independent planning: A detailed analysis. Technical Report
CS-TR-2797, UMIACS-TR-91-154, SRC-TR-91-96, University Of Maryland, 1991.

[6] Michal Gajewski, Harald Meyer, Mariusz Momotko, Hilmar Schuschel, and Mathias Weske.
Dynamic failure recovery of generated workflows. In Proceedings of the 16th International

Conference and Workshop on Database and Expert Systems Applications. IEEE Computer So-
ciety Press, 2005.

[7] Malik Ghallab, Dana Lau, and Paolo Traverso. Automated Planning - theory and practice.
Morgan Kaufmann, 2004.

[8] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-oriented and
frame-based languages. Journal of the Association for Computing Machinery, 42(4):741 –
843, 1995.

[9] Ugur Kuter, Evren Sirin, Dana Nau, Bijan Parsia, and James Hendler. Information gathering
during planning for web service composition. In Proceedings of the Third International Seman-

tic Web Conference (ISWC), number 3298 in Lecture Notes of Computer Science. Springer,
2005.

[10] Frank Leymann and Dieter Roller. Production Workflow: Concepts and Techniques. Prentice
Hall, 2000.

[11] Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, William Murdock, Dan Wu, and Fusun
Yaman. Shop2: An htn planning system. Journal on Artificial Intelligence Research, 20:379 –
404, 2003.

26

[12] Organization for the Advancement of Structured Information Standards (OASIS). Web Services

Business Process Execution Language (WS-BPEL), 2004. http://www.oasis-open.

org/committees/tc_home.php?wg_abbrev=wsbpel.

[13] Bernhard Peissl et al. ASG Based Scenarios in Telecommunications, Telematics and Enhanced
Enterprise IT. Deliverable D7.I-1, NIWA Web Solutions, 2005.

[14] Dumitru Roman et al. Requirements Analysis on the ASG Service Specification Language.
Deliverable D1.1-1, DERI Innsbruck, 2005.

[15] Earl Sacerdoti. The nonlinear structure of plans. In Proceedings of the International Joint

Conference on Artificial Intelligence, pages 206 – 214, 1975.

[16] Hilmar Schuschel and Mathias Weske. Triggering replanning in an integrated workflow plan-
ning and enactment system. In Proceedings of 8th East-European Conference on Advances

in Databases and Information Systems, volume 3255 of Lecture Notes in Computer Science,
pages 322–335. Springer, 2004.

[17] Mithun Sheshagiri. Automatic composition and invocation of semantic web services. Master’s
thesis, University of Maryland, 2005.

[18] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
patterns. Distributed and Parallel Databases, 14(3):5 – 51, 2003.

27

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

ISBN 3-937786-81-3
ISSN 1613-5652

	Introduction
	Use Case Scenarios
	Attraction Booking
	Dynamic Supply Chain Management

	General Composition Requirements
	Functional Requirements of Service Composition
	Requirements on the Elements of Composition
	Control Flow Requirements
	Data Flow Requirements
	Data Model Requirements
	Quality Of Service Requirements

	Non-Functional Requirements
	Conclusion
	Bibliography
	Umschlagtitel.pdf
	Requirements for Service Composition
	Potsdam 2005
	
	Bibliografische Information der Deutschen Bibliothek
	Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
	Postfach 60 15 53

