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On the semiclassical description of quantum coherence
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An earlier paper of ours@J. Chem. Phys.108, 9726~1998!# used an approximate~linearized! version
of the semiclassical initial value representation~SC-IVR! to calculate reactive flux correlation
functions for a model of unimolecular isomerization, namely a 1-d double well potential coupled to
an infinite set of harmonic oscillators, obtaining excellent agreement with accurate quantum results
for this system. Here we analyze this linearized approximation~LA ! further, however, and show that
it is not capable of describing quantum interference/coherence effects in the longer time recrossing
behavior of the isomerization dynamics.~The recrossing effects seen in our earlier work were due
to classical mechanics.! To accentuate quantum effects in the recrossing dynamics, the present
article considers the double well potential without the harmonic bath, using both the LA and the full
SC-IVR. The results of the calculations show that the flux correlation functions given by the LA
agrees well with the exact quantum correlation function for times up to'\b, meaning that it
describes quantum effects in the direct or transition state theory like dynamics accurately. For the
longer time recrossing dynamics, however, it agrees with theclassical rather than thequantum
correlation function, i.e., it does not describe quantum coherence effects on this time scale. The full
SC-IVR calculations, however, are in reasonably good agreement with the quantum correlation
function for these longer times. ©1998 American Institute of Physics.@S0021-9606~98!02835-9#
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I. INTRODUCTION

Considerable progress has been made in recent yea
the development of rigorous quantum mechanical meth
for the efficient calculation of rate constants for chemi
reactions in small molecular systems.1–3 One version of
these approaches~actually the original one formulated b
one of us some years ago4! expresses the thermal rate co
stant as

k~T!5Qr~T!21 lim
t→`

Cfs~ t !, ~1.1!

whereQr(T) is the reactant partition function~per unit vol-
ume for a bimolecular reaction! andCfs(t) is the ‘‘flux-side’’
correlation function,5

Cfs~ t !5tr@ F̂~b!ĥ~ t !#; ~1.2a!

here F̂(b) is a combination of the flux operatorF̂ and the
Boltzmann operator exp(2bĤ), often taken in the following
symmetrized form:5

F̂~b!5e2bĤ/2F̂e2bĤ/2, ~1.2b!

and ĥ(t) is a time-evolved projection operator,

ĥ~ t !5eiĤ t/\ĥe2 iĤ t/\, ~1.2c!

whereh(q) is a function of coordinates that is 1~0! on the
product~reactant! side of the dividing surface separating th
two. @Ĥ is the Hamiltonian operator of the molecular syste
andb5(kBT)21.# The efficiency of the these approaches

a!Electronic mail: miller@neon.cchem.b
4190021-9606/98/109(11)/4190/11/$15.00
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primarily due to the fact that they focus directly on the ra
constant and avoid dealing with the complete state-to-s
reactive scattering problem. A variety of applications ha
been carried out for reactions of three- and four-atom m
lecular systems.1–3

The classical analog6 of Eqs. ~1.1!–~1.2! has been
widely used for treating reactions in condensed phases, a
is our goal to develop the quantum version of the theory
be able to describe quantum effects in such systems,
reactions in solutions, clusters, biological environments,
on surfaces. Quantum effects tend to be averaged out in c
plex systems, but processes that involve the motion of
drogen atoms—e.g., OH vibrations or bond breaking, H2O
reorientation, hydrogen bonding, and obviously electro
cally nonadiabatic processes~in photochemistry!—may often
be poorly described by classical molecular dynamics. F
thermore, one can never know the extent to which quan
effects are significant without having a theoretical approa
capable of describing them.

One strategy for doing this is to treat only a few degre
of freedom by quantum mechanics and the~many! others by
classical mechanics, i.e., the popular mixed quantu
classical~Ehrenfest! model7 that has been widely used bu
which can have problems.8 An alternative approach that w
have been pursuing is a semiclassical~SC! approximation to
the rigorous quantum dynamics, specifically the semicla
cal initial value representation~IVR!9–14 which is a poten-
tially efficient way of implementing semiclassical approx
mations. Within the framework of the SC-IVR, two of us15

have recently shown how one can degenerate the descrip
0 © 1998 American Institute of Physics
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of somedegrees of freedom to the classical level while s
retaining the full semiclassical description of the rest—i.e
mixed semiclassical-classical treatment. Ovchinnikov an
Apkarian16 have independently used this idea very effe
tively in applications to vibrational relaxation processes
clusters and liquids.

The purpose of the present article is to investigate
extent to which the semiclassical initial value representa
~SC-IVR! is able to describe quantum interference/cohere
effects in thermal rate constants, and also to determine
limitations of a much simpler linearized version of the fu
SC-IVR approach. In a recent paper8 we observed that this
linearized approximation to the SC-IVR fork(T) gave ex-
cellent results for a model of condensed phase unimolec
isomerization, specifically a 1-d double well potential
coupled to an infinite bath of harmonic oscillators for whi
Topaler and Makri17 have carried out essentially exact qua
tum path integral calculations. To accentuate quantum co
ence effects, in this article we omit the harmonic bath, wh
tends to quench them, and consider the 1-d double well po-
tential by itself, a model of unimolecular isomerization of
isolated molecule. In this caseCfs(t) does not reach a limit-
ing value ast→` @cf. Eq.~1.1!#, i.e.,k(T) does not exist, for
the particle oscillates back and forth in the double well f
ever. The dynamics of this coherent motion, as it manife
itself in the correlation functionCfs(t), however, is precisely
the phenomenon we are seeking to investigate, so it is
ideal test case for these purposes.

Section II A first summarizes the general SC-IVR a
proach, and thelinearization approximation~LA ! to the full
SC-IVR expression is described in Sec. II B. The Appen
presents a more general, pedagogical discussion of the
earization approximation, showing how it yields precise
the classical limit, without any quantum interference
coherence structure. Section II C shows how the LA can a
be applied to state-to-state reaction probabilities. The SC
proximations in Sec. II all pertain to the time evolution, i.e

the operatorĥ(t) in Eq. ~1.2!, while the operatorF̂(b) is
treated via exact quantum mechanics; Sec. III shows how
SC-IVR approach can also be used to approximate the B

zmann operator inF̂(b). Section IV then presents and di
cusses the results of the various approaches to describin
time dependence ofCfs(t) for the double well potential.

Of previous work, this article is most closely related
that of Voth, Chandler, and Miller,18 who used Eq.~1.2! with

various approximations for the time-dependent factorĥ(t),
applied to barrier crossing dynamics~but not the longer time
coherence effects investigated here!. The linearization ap-
proximation of Sec. II B has been used in various guises
many persons, e.g., Wolynes,19 Mukamel et al.,20 Cao and
Voth,21 and also recently by Pollaket al.22 who use it with
an approximation to the time-dependent factor similar
Voth et al.18 to obtain a ‘‘quantum transition state theory.
We also note related work by Filinovet al.23 based on the
Wigner representation of Eq.~1.2!.
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II. SEMICLASSICAL INITIAL VALUE
REPRESENTATION FOR THERMAL RATE
CONSTANTS

In this section we assume that the Boltzmannized fl
operator F̂(b) is evaluated by exact quantum mechani
which is trivial for the 1-d problem treated in this article bu
also feasible by Monte Carlo path integral methods even
complex systems~i.e., those with many degrees of freedom!.
Also, for the applications below we have used the Ku
version ofF̂(b), which corresponds toaveragingover how
the flux operator is sandwiched between the two Boltzma
operators,

F̂K~b![
1

b E
0

b

dle2lĤF̂e2~b2l!Ĥ; ~2.1a!

since

F̂5
i

\
@Ĥ,ĥ#, ~2.1b!

one can show18 that this gives

F̂K~b!5
i

\b
@ ĥ,e2bĤ#, ~2.1c!

for which the coordinate representation is

^q8uF̂K~b!uq&5
i

\b
@h~q8!2h~q!#^q8ue2bĤuq&. ~2.1d!

We also carried out some calculations with the symme
cally split version ofF̂(b) in Eq. ~1.2b! and found very little
difference in the results for the example considered belo

A. Semiclassical initial value representation for time
evolution

In a coordinate representation Eq.~1.2a! becomes

Cfs~ t !5E dqE dq8E dq9^quF̂~b!uq8&

3^q8ueiĤ t/\uq9&h~q9!^q9ue2 iĤ t/\uq&, ~2.2!

and we utilize the SC-IVR9–14 for the matrix elements of the
time evolution operator,

^que2 iĤ t/\uq0&[~2p i\!2F/2E dp0d~q2qt!

3FdetS ]qt

]p0
D G1/2

e2 ipn t/2eiSt~p0 ,q0!/\; ~2.3!

here (q0 ,p0) are the initial conditions for a classical traje
tory, qt5q(q0 ,p0 ;t) is the coordinate at timet along this
trajectory, andSt(q0 ,p0) the action integral along it:

St~p0 ,q0!5E
0

t

dt8F pt8
2

2m
2V~qt8!G . ~2.4!

The integern t , the Maslov index, is the number of zero
experienced by the Jacobian in the time interval (0,t); i.e., it
specifies the particular branch of the square root of the Ja
bian.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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There are several ways of implementing the semicla
cal approximation, Eq.~2.3!, in Eq. ~2.2!. Perhaps the sim
plest is to chooseq9 in Eq. ~2.2! as the initial valueq0 for
both propagators, and using the symmetry relations of
propagator matrix elements

^q8ue2 iĤ t/\uq&5^que2 iĤ t/\uq8&5^q8ueiĤ t/\uq&* , ~2.5!

one readily obtains the following SC-IVR expression for t
correlation function:

Cfs~ t !5
1

~2p\!F E dq0E dp0E dp08^qtuF̂~b!uqt8&h~q0!

3FdetS ]qt

]p0
DdetS ]qt8

]p08
D G1/2

e2 ip~n t2n t8!/2

3expF i

\
~St~q0 ,p0!2St~q0 ,p08!!G , ~2.6!

whereqt85qt(q0 ,p08). One thus runs two classical traject
ries, both beginning at the same positionq0 in the product
region, with different initial momenta. The only awkwar
feature of this expression is that the trajectories begin in
product region and must terminate in the transition state
gion ~where^quF̂(b)uq8& localizesq andq8!, and the sam-
pling of initial conditions for this purpose may not be ef
cient.

A second way of implementing the SC-IVR, in order
have the initial positionsq0 sampled from the Boltzmannize
flux factor, is to chooseq in Eq. ~2.2! to be q0 ; then q9
5qt(q0 ,p0), and q85qt8[q(qt ,p08 ;t). The expression for
the correlation function is

Cfs~ t !5
1

~2p\!F E dq0E dp0E dp08^qt8uF̂~b!uq0&h~qt!

3FdetS ]qt

]p0
DdetS ]qt8

]p08
D G1/2

e2 ip~n t2n t8!/2

3expF i

\
~St~q0 ,p0!2St~qt ,p08!!G ; ~2.7!

i.e., here one begins a trajectory at (q0 ,p0) in the transition
state region, runs it for timet into the product region, then
restarts it with a new momentump08 , runs it for timet, at
which time it must be back in the transition state regio
Figure 1 indicates these two possible strategies.

Finally, a third way of implementing the SC approach
to begin both trajectories in the transition state region@cf.
Fig. 1~c!#, i.e., to chooseq5q0 and q85q08 in Eq. ~2.2!,
whereby one obtains the following expression for the cor
lation function,
Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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Cfs~ t !5
1

~2p\!F E dq0E dq08E dp0E dp08^q0uF̂~b!uq08&

3dF~qt2qt8!h~qt!FdetS ]qt

]p0
DdetS ]qt8

]p08
D G1/2

3e2 ip~n t2n t8!/2expF i

\
~St~q0 ,p0!2St~q08 ,p08!!G ,

~2.8!

whereqt85q(q08 ,p08 ;t). The disadvantages of this approa
are clear: one has four~multidimensional! integration vari-
ables to integrate over, rather than three as in Eqs.~2.6! and
~2.7!, and the integral contains a delta function which r
quires the two trajectories to end at the same point in
product region. This later problem~the delta function! can be
ameliorated by switching to a modified version of the gen
alized Herman–Kluk~coherent state! IVR,11,12

^q8ue2 iĤ t/\uq&5
1

~2p\!F E dq0dp0Ct~q0 ,p0!

3^q8upt ,qt ;g t&

3^p0 ,q0 ;g0uq&eiSt~q0 ,p0!/\, ~2.9a!

where the coherent state wave functions are

FIG. 1. Sketch of trajectory configurations in coordinate space that h
nonzero contributions to the integrand in~a! Eq. ~2.6!, ~b! Eq. ~2.7!, ~c! Eq.
~2.11!, and~d! Eq. ~3.4!. The dashed trajectory in~d! is the imaginary time
trajectory on the upside down potential.
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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^qup0 ,q0 ;g0&5S g0

p D F/4

e2g0/2~q2q0!21 i /\p0•~q2q0!,

~2.9b!

similarly for ^q8upt ,qt ;g t&, and the pre-exponential factor

Ct~q0 ,p0!5detF1

2 S g t
1/2 ]qt

]q0
g0

21/21g t
21/2 ]pt

]p0
g0

1/2

1
i

\
g t

21/2 ]pt

]q0
g0

21/22 i\g t
1/2 ]qt

]p0
g0

1/2D G1/2

.

~2.9c!

The modification that we use here, theg0→` limit ~which
converts the initial coherent state into a coordinate sta!,
gives the following SC-IVR for the propagator

^que2 iĤ t/\uq0&5
1

~2p i\!F/2 E dp0 Dt~q0 ,p0!

3S g t

4p D F/4

^qupt ,qt ;g t&e
iSt~q0 ,p0!/\,

~2.10a!

where

Dt~q0 ,p0!5detF ]qt

]p0
1

i

\g t

]pt

]p0
G1/2

. ~2.10b!

@The g t→` limit of Eq. ~2.10! would convert it into the
previously used coordinate space SC-IVR, Eq.~2.3!.# Using
Eq. ~2.10! for the propagator, the following expression
obtained for the correlation function

Cfs~ t !5
1

~2p\!F E dq0E dq08E dp0E dp08^q0uF̂~b!uq08&

3^pt8qt8uĥuptqt&S g t

4p D F/2

Dt~q0 ,p0!Dt~q08 ,p08!*

3expF i

\
~St~q0 ,p0!2St~q08 ,p08!!G . ~2.11a!

Finally, because the coherent states are localized in posi
the following approximation should be reasonable,

^pt8qt8uĥuptqt&5h~qt!h~qt8!^pt8qt8uptqt&, ~2.11b!

where the coherent state overlap is

^pt8qt8uptqt&5expF2
g t

4
~qt2qt8!22

~pt2pt8!2

4g t\
2

1
i

2\
~pt1pt8!•~qt2qt8!G . ~2.11c!

Comparing Eq.~2.8! to Eq. ~2.11!, one sees that in the latte
the two trajectories are not required to land at the same p
but rather that the two final points in phase space, (qt ,pt)
and (qt8 ,pt8), are required to be in roughly the same pha
space cell.

All three strategies of implementing the SC-IVR—Eq
~2.6!, ~2.7!, or ~2.11!—are essentially equivalent; the choic
between them is purely one of convenience, and it is
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immediately obvious which will turn out to be most useful
applications to complex systems. For the present 1-d appli-
cation all are possible.

B. The linearization approximation

The most difficult aspect of a SC-IVR calculation, i.e
the evaluation of Eqs.~2.6!, ~2.7!, or ~2.11!, is due to the
oscillatory character of the integrand, i.e., the difference
the two action integrals in the phase of the integrand. I
thus useful to consider approximations for dealing with th

The lowest order approximation corresponds to expa
ing the phase difference in Eqs.~2.6! or ~2.7! to linear order
in p02p08 ,

St~q0 ,p0!2St~q0 ,p08!'
]St~q0 ,p̄0!

]p̄0

•Dp, ~2.12!

where p̄05(1/2)(p01p08) and Dp5p02p08 @or linearly in
p02p08 and q02q08 in Eq. ~2.11!#. By changing integration
variables in Eqs.~2.6! or ~2.7! from p0 andp08 to p̄0 andDp,
with the linearization approximation to the phase differen
Eq. ~2.12!, the integration overDp @Dp and Dq for Eq.
~2.11!# can be performed analytically. This analysis has be
carried out by us before,15 and the expression for the flux
side correlation function becomes

Cfs~ t !5
1

~2p\!F E dq0E dp0Fw
b~q0 ,p0!h~qt!, ~2.13!

where herep05p̄0 , with the ‘‘bar’’ having been dropped
and Fw

b(q0 ,p0) is the Wigner transform of the Boltzman
nized flux operator,

Fw
b~q,p!5E dDqe2 ip•Dq/\^q1Dq/2uF̂~b!uq2Dq/2&.

~2.14!

It should be immediately apparent how simple Eq.~2.13! is:
it is essentially a classical trajectory calculation with the d
tribution of initial conditions given by the Wigner transform
Fw

b(q0 ,p0) rather than by its classical limit,

Fw
b~q0 ,p0!→

CL
e2bH~q0 ,p0!

]h~q0!
]q0

•

p0

m . ~2.15!

As discussed in detail in the Appendix, however, this line
ization approximation produces onlyclassicalmechanics in
the real time dynamics, with no quantum interferenc
coherence; cf. the classical time-dependent factorh(qt) in
Eq. ~2.13!. The only quantum effects in Eq.~2.13! are from
the quantum treatment of the Boltzmannized flux opera
and the Wigner transform of it that results from the LA. Th
consequences of this will be seen in the results discusse
Sec. IV, whereCfs(t) of Eq. ~2.13! is observed to be accurat
only for times up to'\b. This is long enough, however, i
the dynamics is simple barrier crossing, with no recrossi
involved, as in the assumption of transition state theory. P
lak et al.22 have in fact used Eq.~2.13! ~with an approxima-
tion to the classical time-dependent factor! to define a quan-
tum transition state theory and seen it to work well f
examples involving only direct barrier crossing dynamics
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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C. Linearization approximation for state-to-state
probabilities

To complete the story of the linearization approximatio
we show here how it applies to the state-to-state transi
probabilities, first for the time-dependent case,

P2←1~ t !5u^c2ue2 iĤ t/\uc1&u2. ~2.16!

With the SC-IVR of Eq.~2.3! this becomes

P2←1~ t !5
1

~2p\!F E dp0dq0E dp08dq08
d

l
io
o

o

e-

Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to A
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3FdetS ]qt

]p0
DdetS ]qt8

]p08
D G1/2

3c2~qt8!c2~qt!* c1~q0!c2~q08!*

3ei ~St~q0 ,p0!2St~q08 ,p08!!/\, ~2.17!

where qt85q(q08 ,p08 ;t). Changing to sum and differenc
variables q̄5(1/2)(q01q08), Dq5(q02q08), p̄5(1/2)(p0

1p08), Dp5(p02p08), and expanding linearly inDq andDp
gives
P2←1~ t !5
1

~2p\!F E dp̄0dq̄0E dDpdDq det~Mqp!ei [ ~ p̄t
T
•Mqq2p̄0!•Dq1p̄t

T
•Mqp•Dp]/\c2S q̄t1

1

2
Mqq•Dq1

1

2
Mqp•DpD *

3c2S q̄t2
1

2
Mqq•Dq2

1

2
Mqp•DpDc1S q̄01

1

2
DqDc1S q̄02

1

2
DqD *

, ~2.18a!
tal

n-

tes

ntial

t-

.,
where the various matrices are defined as

Mqp5
]q̄t

]p̄0
, ~2.18b!

Mqq5
]q̄t

]q̄0
, ~2.18c!

and q̄t5q(q̄0 ,p̄0 ;t). If the integral overDp is changed to
that overDq8, where

Dq85Mqq•Dq1Mqp•Dp, ~2.19!
then Eq.~2.18! becomes

P2←1~ t !5
1

~2p\!F E dp0dq0r2~qt ,pt!* r1~q0 ,p0!,

~2.20a!

where the ‘‘bars’’ overq̄0 and p̄0 have been dropped, an
rn(q,p) is the Wigner function corresponding to staten,

rn~q,p!5E dDqe2 ip•Dq/\cnS q1
1

2
DqDcnS q2

1

2
DqD *

~2.20b!

for n51 and 2. Equation~2.20! has the very simple classica
structure of the overlap of the initial phase space distribut
for state 1 with the time-evolved phase space distribution
state 2.

A similar ~but slightly more involved! analysis can be
carried out for the energy-dependent transition probability
an isolated bimolecular collision. For a generic inelastic~or
reactive! collision theF-dimensional coordinate space (r ,R)
consists of the translational coordinateR and the~F-1! coor-
dinatesr for the internal degrees of freedom, with corr
n
f

f

sponding momenta (p,P). The S-matrix element for the 1
→2 transition in the internal degrees of freedom at to
energyE can be expressed as24

S2,152
\

m
Ak1k2e2 i [k1Rmax1k2Rmax8 ]E

0

`

dtE drE dr 8

3eiEt/\f2~r 8!^r 8Rmax8 ue2 iĤ t/\urRmax&f1~r !, ~2.21!

where$fn% are the wave functions for the asymptotic eige
states of the internal degrees of freedom,Rmax andRmax8 are
large values of the translational coordinate, and$kn% are the
magnitudes of the translational momenta~in units of \! de-
termined by energy conservation

kn5A2m~E2En!/\2, ~2.22!

$En% being the internal energies corresponding to sta
$fn%. ~Note that for areactivecollision (r ,R) and (r 8,R8)
are actually different coordinates, but that makes no esse
difference in the present development.! It is convenient to
turn Eq.~2.21! into a full coordinate space integral by inser
ing the factord(R2Rmax)d(R82Rmax8 ) into the integrand and
integrating overR andR8,

S2,1~E!52
\

m
Ak1k2e2 i [k1Rmax1k2Rmax8 ]E dtE dqE dq8

3eiEt/\c2~q8!* ^q8ue2 iHt/\uq&c1~q!, ~2.23a!

where hereq and q8 denote the full coordinate space, e.g
(r ,R), and

cn~q!5fn~r !d~R2Rmax!. ~2.23b!
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The SC-IVR, Eq.~2.3!, is now used for the matrix element o
the propagator in Eq.~2.23a! and the square modulus of th
S-matrix element formed to obtain the 1→2 transition prob-
ability

P2←1~E!5
\2k1k2

m2~2p\!F E dtdt8E dp0dq0E dp08dq08

3eiE~ t2t8!/\c2~qt!* c2~qt8!c1~q0!c1~q08!*

3FdetS ]qt

]p0
DdetS ]qt8

]p08
D G1/2

3expF i

\
~St~q0 ,p0!2St~q08 ,p08!!G , ~2.24!

whereqt85q(q08 ,p08 ;t). Changing to sum and difference in
tegration variables as in Eq.~2.18! above—and here also fo
t̄ 5(1/2)(t1t8) andDt5t2t8—expanding the difference o
the action to first order inDq, Dp, andDt, and performing
the integral over them as done in going from Eq.~2.18! to
~2.20!, gives

P2←1~E!5
\2k1k2

m2~2p\!F E
0

`

dtE dp0dq02\

3
sin~@E2H~q0 ,p0!#t/2!

@E2H~q0 ,p0!#
r2~qt ,pt!* r1~q0 ,p0!,

~2.25!

where the bars have been dropped fromp0 ,q0 ,t, and we
have used the fact that

]

]t
St~q,p!52H~q,p! ~2.26!

and

E
2 t̄ /2

t̄ /2
dDteiDt[E2H~q0 ,p0!]/\52\

sin~@E2H~q0 ,p0!# t̄ /2!

@E2H~q0 ,p0!#
,

~2.27!

which if t̄→`, it becomes 2p\d@E2H(q0 ,p0)#. In our
calculations, we found that it makes little difference wheth
we take the exact result of Eq.~2.27! or the delta function
limit of it, thus for simplicity we shall use the delta functio
approximation for here on. It is also easy to show that

rn~q,p!5rn~r ,pr !d~R2Rmax!, ~2.28!

wherern(r ,pr) is the Wigner function corresponding tonth
state of the internal degrees of freedom as defined in
~2.20b!. Combining all of these results together and writi
the phase space integral in Eq.~2.25! in terms of the internal
and translational variables thus gives

P2←1~E!5
\2k1k2

m2~2p\!F21 E dr0E dpr0E dR0E dP0

3E dtdFE2h~r0 ,pr0!2
P0

2

2mG
3d~R02Rmax!d~Rt2Rmax8 !

3r2~r t ,pr t!* r1~r0 ,pr0!, ~2.29!
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whereh(r0 ,pr0) is the asymptotic Hamiltonian of the inter
nal degrees of freedom. The three delta functions in the
tegrand of Eq.~2.29! allow the integrals overR0 , P0 , andt
to be performed, giving the final result

P2←1~E!5
1

~2p\!F21 E dr0dpr0

\2k1k2

uP0Ptu
r2~r t ,pr t!*

3r1~r0 ,pr0!. ~2.30!

Comparing this energy dependent result, Eq.~2.30!,
to the time-dependent one, Eq.~2.20!, one sees that it
involves an integral over the initial phase space va
ables only of the internal degrees of freedom, the initial v
ues of translational variables being given byR05Rmax, P0

52A2m@E2h(r0 ,pr0)#. The classical trajectories whic
give (r t ,pr t) in Eq. ~2.30! are of course computed in the fu
space of all degrees of freedom.

Equation~2.30! was proposed~with some minor differ-
ences! some years ago by Lee and Scully25 and tested for
collinear inelastic scattering of He1H2(v)→He1H2(v8),
for which they observed reasonably good agreement w
quantum coupled channel calculations.

III. SEMICLASSICAL APPROXIMATION FOR THE
BOLTZMANN OPERATOR

In Sec. II A it was assumed that the Boltzmannized fl
operator F̂(b) is obtained by fully quantum mechanica
methods, and this may indeed be feasible even for comp
systems. As an alternative and perhaps more efficient po
bility, however, we note that it can also be obtained by
semiclassical approximation. Referring to Eq.~2.1d!, one
thus needs to construct matrix elements of the Boltzm
operatore2bĤ, which is the same as the time evolution o
eratore2 iĤ t/\ for the imaginary timet52 i\b. It was noted
by one of us26 some years ago, though, that motion in ima
nary time is equivalent to motion in real time on the upsid
down potential energy surface; e.g., Newton’s equation

m
d2

dt2
q~ t !52

]V

]q
~3.1!

becomes

m
d2

dt2 q~t!51
]V

]q
, ~3.2!

wheret5 i t is a real timelike variable, which varies from
to \b to obtaine2bĤ. The SC-IVR expression for the Bolt
zmann operator, which is the analog of Eq.~2.3!, is therefore

^que2bĤuq0&[E dp̄0d~q2qb!

3FdetS ]qb

]p̄0
D /~2p\!FG1/2

e2Sb~q0 ,p̄0!/\,

~3.3a!
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wherep̄(t)5mq8(t) is the real momentumlike variable,qb5q(q0 ,p̄0 ;\b) is the coordinate that evolves along the classi
trajectory on the upside-down potential energy surface with initial conditions (q0 ,p̄0), andSb is the classical action,

Sb~q0 ,p̄0!5E
0

\b

dt
p̄~t!2

2m
1V@q~t!#. ~3.3b!

This semiclassical approximation for the Boltzmann operator is most conveniently implemented via Eq.~2.11! for the
flux-side correlation function. Together with Eqs.~3.3a! and ~2.1d!, it gives the correlation function as

Cfs~ t !5
1

~2p\!F E dq0E dp̄0E dp0E dp08
@h~qb!2h~q0!#

i\b FdetS ]qb

]p̄0
D /~2p\!FG1/2

e2Sb~q0 ,p̄0!/\^pt8qt8uĥuptqt&

3S g t

4p D F/2

Dt~q0 ,p0!Dt* ~qb ,p08!expF i

\
~St~q0 ,p0!2St~qb ,p08!!G . ~3.4!

One thus begins a purely imaginary time trajectory~i.e., real trajectory on the upside down potential! with initial conditions
(q0 ,p̄0) and integrates it for~imaginary! time \b to positionqb ; q0 and qb must be on the opposite sides of the dividin
surface. Fromq0 andqb one initiates trajectories with momentap0 andp08 and integrates for timet; the final coordinateqt

5q(q0 ,p0 ;t) andqt85q(qb ,p08 ;t) must land within the same phase space cell in order to contribute. Figure 1~d! shows this
schematically.

The semiclassical Boltzmann operator can also be employed with the linearization approximation for the re
dynamics, i.e., in Eq.~2.13!. The necessary steps, indicated below, are straightforward:

Cfs~ t !5
1

~2p\!F E dq0E dp0E dDq e2 ip0•Dq/\^q01Dq/2uF̂~b!uq02Dq/2&h~qt!

5
1

~2p\!F E dq0E dq08E dp0 e2 ip0•~q082q0!/\^q08uF̂~b!uq0&hFqtS p0 ,
q01q08

2 D G
5

1

~2p\!F E dq0E dp0E dp̄0

@h~q0!2h~qb!#

i\b
e2 ip0•~qb2q0!/\FdetS ]qb

]p̄0
D /~2p\!FG1/2

3e2Sb~q0 ,p̄0!/\hFqtS p0 ,
q01qb

2 D G . ~3.5!
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Again, the end points of the imaginary time trajectory w
initial conditions (q0 ,p̄0) must straddle the dividing surface
however, only one real time trajectory is run, its initial po
tion being the average of the end points of the imagin
time trajectory, (q01qb)/2, with initial momentump0 .

IV. RESULTS AND DISCUSSION OF TEST
CALCULATIONS

We wish to test the extent to which the SC-IVR of Se
II A, and the linearized approximation to it in Sec. II B, ca
describe coherence and other quantum effects in the the
rate constants. To this end we look at the flux-side corre
tion function Cfs(t) for a 1-d double well potential, for
which the Hamiltonian is

H5
p2

2m
2

1

2
mv‡2

x21
m2v‡4

16V0
x4. ~4.1!

This is the same system we considered earlier via the lin
ized approximation to the SC-IVR, but with a harmonic ba
coupled to it. As noted in the Introduction, without the ba
degrees of freedomCfs(t) does not reach a constant value
t→`—i.e., k(T) does not exist—but the recrossing dyna
ics manifested in Cfs(t) should accentuate coherenc
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interference effects, and this thus provides an even m
stringent test of the SC theories. The mass of the particl
that of a H atom, the barrier height,V052085 cm21

~'6 kcal/mol!, is typical of H atom transfer reactions, an
the imaginary barrier frequency isv‡5500 cm21. The cal-
culations were carried out forT5300 and 900 K.

Figure 2 first shows the results of the linearized appro
mation ~solid points! to the SC-IVR forCfs(t) given by Eq.
~2.13!, compared to the exact quantum~solid line! and the
completely classical~open points! results @given by Eq.
~2.13! with Eq. ~2.15!#. Several observations are appare
First note that for short times—up to;50 fs at 300 K@Fig.
2~a!# and ;25 fs at 900 K@Fig. 2~b!#—Cfs(t) takes on an
approximately constant or plateau value; this is the transi
state theory~TST! or barrier crossing rate constant@when
divided by the reactant partition function in Eq.~1.1!# that
would be thet→` limit if there were no recrossing dynam
ics. Theclassicalcorrelation function begins at its TST valu
at t50, but the quantum and semiclassical correlation fu
tions take a time of;\b ~27 fs for 300 K, 9 fs for 900 K! to
reach their plateau values. At 900 K@Fig. 2~b!# one sees tha
all three curves have approximately the same plateau va
but at 300 K@Fig. 2~a!# the classical plateau value is;25%
lower than the QM and SC value; this is due to tunneli
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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effects in the TST rate constant, and one sees that the lin
ized SC theory describes this quite well.~This is consistent
with earlier work9c in our group showing that the SC-IVR i
able to describe moderate levels of tunneling—e.g., tun
ing probabilities down to;1025 for H atom motion—
though not the ‘‘deep’’ tunneling region that requires expli
use of complex trajectories.27!

The time dependence beyond the plateau region in Fi
is the result of recrossing dynamics, and one sees that in
region the linearized SC approximation is essentially
same as the classical result. Furthermore, at 900 K@Fig. 2~b!#
the classical and SC correlation functions follow the Q
result fairly well up tot'150 fs and then deviate conside
ably; at 300 K they follow it not well at all past the platea
region. Thus the linearized SC approximation is able to
scribe quantum effects well in the short time regime of TS
like dynamics, but is not able to describe quantum effect
the longer time recrossing dynamics.

Figure 3 now shows the full SC-IVR results~solid
points! for the correlation function@calculated via Eq.~3.4!#
compared to the exact quantum~solid line! and linearized SC
~open points! values, and one sees that the full SC-IVR i
deed does describe the correct quantum behavior for ti
well into the recrossing regime~up to 200 fs, as long as th
SC-IVR calculations were carried out!. The comparison is
particularly revealing for 300 K@Fig. 3~a!#, where the linear-

FIG. 2. The correlation functionCfs(t) as given by the exact quantum
calculation ~solid line!, the linearized approximation of Eq.~2.13! ~solid
points!, and the fully classical method of Eq.~2.15! ~open points!. ~a! 300 K
and ~b! 900 K.
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ized SC results~open points! deviate drastically from the
quantum correlation function for times past the short-tim
TST plateau region. The effort required for the full SC-IV
calculation, however, is quite large; the integration over
initial conditions were carried out presently by an u
weighted Monte Carlo procedure~with finite cutoffs! and
required ;106 trajectories. A more sophisticated Mon
Carlo procedure would perhaps make this more efficient

The SC-IVR results in Fig. 3 used the semiclassical
proximation for the Boltzmann operator, Eq.~3.4!. To show
that this introduces little error, Fig. 4 displays a comparis
of the results obtainable with the linearized SC approxim
tion for the real time propagation with the quantum and
versions of the Boltzmann operator@Eq. ~3.5!#. One sees tha
the results obtained with the SC approximation to the Bo
zmann operator are in good agreement with the QM o
little error is introduced by the SC approximation, so that o
has a semiclassical description for both the imaginary
real time evolution.

Finally, Fig. 5 shows the results of the state-to-state
action probability given by the linearized SC approximatio
Eq. ~2.30!. The example is the H1H2(v50)→H2(v50)
1H collinear reaction on the LSTH potential energy surfa
One sees that the linearized SC approximation does a g
job of describing theaverageenergy dependences of th

FIG. 3. The correlation functionCfs(t) given by the exact quantum calcu
lation ~solid line!, the full SC-IVR model of Eq.~3.4! ~solid points!, and the
linearization approximation of Eq.~2.13! ~open points!. ~a! 300 K and~b!
900 K.
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P0,0(E), but it misses completely the resonance structure
E50.85 and 1.3 eV. In light of earlier discussions, this is n
surprising since one knows that resonances are an inte
ence effect between difference trajectories that form the
lision complex.28 This is therefore analogous to the inabili

FIG. 4. The correlation functionCfs(t) obtained with the linearization ap
proximation of Eq.~2.13!, where the matrix elements of the Boltzmanniz
flux operator are obtained quantum mechanically~dashed line! and semi-
classically via Eq.~3.5! ~solid line!. ~a! 300 K and~b! 900 K.
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of the linearized SC theory to describe coherence effe
in the longer time recrossing dynamics inCfs(t) as seen in
Fig. 2.

V. CONCLUDING REMARKS

The goal of this work has been to investigate the ext
to which the semiclassical initial value representation, a
the linearized approximation to it, are able to describe qu
tum effects in thermal rate constants. The conclusions
that the linearized approximation to the SC theory is able
describe quantum effects in the short time (t<\b) dynamics
that corresponds to direct barrier crossing, i.e., transit
state theory like dynamics, but the description of the lon
time recrossing dynamics is essentially that given by cla
cal mechanics. The complete SC-IVR treatment, howeve
able to describe the quantum effects in the longer time
crossing dynamics, though these calculations become
gressively more difficult the longer the time. Also, the S
approximation for the Boltzmann operator introduces ess
tially no error; one is thus able to have a complete semic
sical theory, i.e., for the imaginary time~Boltzmann opera-
tor! as well as real time propagation.

With regard to practical considerations, the lineariz
approximation to the SC theory is much easier to implem
than the full SC-IVR: the real time part of it is a classic
molecular dynamics calculation, with the imaginary tim
part ~i.e., the Boltzmann operator! treated either quantum
mechanically or semiclassically. The fact that it describes
short time TST-like dynamics correctly, and provides a cl
sical description of the longer time recrossing dynami
should make it very useful for many applications, partic
larly for complex molecular systems where quantum effe
are often quenched by the many coupled degrees of free
~as demonstrated in our previous article8!. The full SC-IVR
calculation is considerably more difficult because one ha
deal with oscillatory integrands. It does, however, allow o
to describe interference/coherence features in the longer
y,

i-
FIG. 5. The state-to-state transition probabilit
P0,0(E), for the collinear H1H2(v50)→H2(v50)
1H reaction, vs the scattering energy.~Note v is the
vibrational quantum number of H2.! The exact quantum
~solid line! is compared with the linearization approx
mation of Eq.~2.25! ~solid points! and the delta func-
tion approximation of Eq.~2.30! ~open points!.
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dynamics, so it behooves one to invest effort in learning h
to do these calculations more effectively.
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APPENDIX: THE LINEARIZATION
APPROXIMATION—A PEDAGOGICAL OVERVIEW

Here we explicitly consider a one dimensional integ
of the form

I 5E dxeiS~x!/\, ~A1!

but have in mind multidimensional integrals of this type th
represent quantum transition amplitudes. In the applicati
in this article, the integration is over the phase space (q0 ,p0)
of initial conditions for classical trajectories, but a ful
quantum path integral representation of the time evolut
operator is also a multidimensional integral of this form.

Standard semiclassical approximations24 result when one
evaluates the integral via the stationary phase approxima
~SPA!,

I SPA5(
k

S 2p i\

S9~xk!
D 1/2

eiS~xk!/\, ~A2a!

where$xk% are the points of stationary phase, i.e., the ro
of the equation

S8~xk!50. ~A2b!

Equation~A2a! is often suggestively written as

I SPA5(
k

Pk
1/2eifk, ~A3a!

where

Pk5
2p\

uS9~xk!u
, ~A3b!

fk5S~xk!/\1
p

4
Sign@S9~xk!#, ~A3c!

so that theprobability, or the observable,uI u2 has the form

uI SPAu25(
k

Pk1 (
k,k8

2APkPk8 cos~fk2fk8!

5uI CLu21 interference. ~A3d!

This is the typical semiclassical result for a transiti
probability,24 say, the classical result plus interference, i.
quantum coherence. If there are no real roots to Eq.~A2b!,
one may analytically continue the phase functionS(x) and
look for complex roots; the approximation foruI u2 then is24

uI u2'
2p\

uS9~xk!u
e22 Im S~xk!/\, ~A4!
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wherexk is the complex root for whichS(xk) has the small-
est positive imaginary part. In this case the transition is s
to be ‘‘classically forbidden,’’ or to proceed by tunneling~or
‘‘dynamical tunneling’’ in the multidimensional case!.

One would like to go beyond the stationary phase
proximation, e.g., to evaluate integrals of this type nume
cally, but the oscillatory character of the integrand preve
the straightforward use of Monte Carlo methods. There
ways of converting Eq.~A1! into an integral amenable to
Monte Carlo evaluation, such as various filtering method29

but another strategy is to deal directly with the probabilit

uI u25E
2`

`

dxE
2`

`

dx8ei ~S~x!2S~x8!!/\. ~A5!

~This arises most naturally when using a density matrix f
mulation.! Changing to sum and difference integration va
ablesx̄5(x1x8)/2, Dx5x2x8, gives

uI u25E
2`

`

dx̄E
2`

`

dDxei ~S~ x̄1Dx/2!2S~ x̄2Dx2!!/\, ~A6!

and the linearization approximation corresponds to expa
ing the phase difference to first order inDx,

SS x̄1
Dx

2 D2SS x̄2
Dx

2 D'S8~ x̄!Dx. ~A7!

The integral overDx is then immediately doable,

E
2`

`

dDxeiS8~ x̄!Dx/\52p\d@S8~ x̄!#, ~A8!

so that Eq.~A6! becomes

uI u25E
2`

`

dx̄2p\d@S8~ x̄!#. ~A9!

Having approximated the phase difference this way has
deed eliminated the oscillatory problem: the integral ovex̄
in Eq. ~A9! now involves a positive definite integral, and on
can readily proceed by Monte Carlo methods in the multi
mensional case. One immediately sees, however, that
~A9! gives only the classical probability: there are contrib
tions to the integral only at valuesx̄ for which S8( x̄)50, i.e.,
the stationary phase points, and the evaluation of the d
function integration gives

uI u25(
k

2p\

uS9~xk!u
, ~A10!

the classical part of Eq.~A3d!.30 One may thus say that tak
ing interference@i.e., the phase difference in Eq.~A6!# into
account only infinitesimally~i.e., to first order inDx! leads
only to the classical result; one cannot describe the quan
interference/coherence effects in Eq.~A3d! because these
arise from the difference of discrete points of stationa
phase,Dx5xk2xk8 .

One systematic approach for improving the linearizat
approximation is simply to carry the expansion in Eq.~A7!
to the next order inDx, which is S-(xk)Dx3/24. The inte-
gral overDx is then an Airy integral, and in this case E
~A6! becomes
IP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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uI u25E dx̄
2p\

e~ x̄!
Ai @S8~ x̄/e~ x̄!!#, ~A11!

where

e~ x̄!5\2/3S-~ x̄!1/3/2. ~A12!

The integrand here is also peaked at values ofx̄ for which
S8( x̄)50—these are the turning points, or Franck–Cond
peaks of the Airy function31—but there is some residual in
terference structure in the integrand. Equation~A11! should
indeed be a useful approximation because it is accurate w
the two interfering stationary points were not too far apa
which probably is the most important practical situation.~If
they are very far apart, the interference is presumably of v
high frequency and thus most easily quenched by any a
aging that one carries out.! The only problem is that the
generalized cubic expansion of the phase difference in
multidimensional case does not yield a separable integr
so theDx integration is not easily doable. If one attempts
direct numerical attack on Eq.~A6!, this sum and difference
analysis suggests that the integration over the sum variabx̄
could be treated by classical~Monte Carlo! methods, while
only integration over the difference variableDx must deal
with the interference nature of the problem.
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