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An earlier paper of ourg]. Chem. Physl08 9726(1998] used an approximaiéinearized version

of the semiclassical initial value representati®C-IVR) to calculate reactive flux correlation
functions for a model of unimolecular isomerization, namely d deuble well potential coupled to

an infinite set of harmonic oscillators, obtaining excellent agreement with accurate quantum results
for this system. Here we analyze this linearized approximdtién further, however, and show that

it is not capable of describing quantum interference/coherence effects in the longer time recrossing
behavior of the isomerization dynamic3he recrossing effects seen in our earlier work were due

to classical mechanigsTo accentuate quantum effects in the recrossing dynamics, the present
article considers the double well potential without the harmonic bath, using both the LA and the full
SC-IVR. The results of the calculations show that the flux correlation functions given by the LA
agrees well with the exact quantum correlation function for times up-fig3, meaning that it
describes quantum effects in the direct or transition state theory like dynamics accurately. For the
longer time recrossing dynamics, however, it agrees withcthssicalrather than theguantum
correlation function, i.e., it does not describe quantum coherence effects on this time scale. The full
SC-IVR calculations, however, are in reasonably good agreement with the quantum correlation
function for these longer times. @998 American Institute of Physid$0021-960808)02835-9

I. INTRODUCTION primarily due to the fact that they focus directly on the rate
constant and avoid dealing with the complete state-to-state

Considerable progress has been made in rgcent Years \Bactive scattering problem. A variety of applications have
the development of rigorous quantum mechanical rnEIhOdBeen carried out for reactions of three- and four-atom mo-
for the efficient calculation of rate constants for chemical -3

lecular system$:

reactions in small molecular systeMs. One version of The classical analdgof Egs. (1.1—(1.2 has been

h roach lly the original one formul . . . . .
these approache@ctually the original one formulated by widely used for treating reactions in condensed phases, and it
one of us some years dtjexpresses the thermal rate con- . .

is our goal to develop the quantum version of the theory to

stant as be able to describe quantum effects in such systems, e.g.,
K(T)=Q/(T)~* lim Cg(t), (1) reactions in solutions, clusters, biological environments, or
whereQ,(T) is the reactant partition functiofper unit vol- on surfaces. Quantum effects tend Fo be averaged put in com-
ume for a bimolecular reactipmndCq(t) is the “flux-side” plex systems, but processes that involve the motion of hy-
correlation functior, drogen atoms—e.g., OH vibrations or bond breakingOH
L reorientation, hydrogen bonding, and obviously electroni-
Cr()=tr[F(B)h()]; (1.28  cally nonadiabatic processén photochemistry—may often

be poorly described by classical molecular dynamics. Fur-
thermore, one can never know the extent to which quantum
effects are significant without having a theoretical approach
R i capable of describing them.

F(B)=e AHREe-AHZ (1.2b One strategy for doing this is to treat only a few degrees
of freedom by quantum mechanics and theany) others by
classical mechanics, i.e., the popular mixed quantum-
ﬁ(t):eiﬁt/ﬁﬁe—iﬁt/ﬁ, (1.29  Classical(Ehrenfest model that has been widely used but
which can have problenfsAn alternative approach that we

whereh(q) is a function of coordinates that iS@ on the 46 peen pursuing is a semiclassi@t) approximation to
product(reactank side of the dividing surface separating the the rigorous quantum dynamics, specifically the semiclassi-

two. [H is the Hamiltonian operator of the molecular systemgg initial value representatior{lVR)°~** which is a poten-
N 4 ) .
and 3= (kgT) "] The efficiency of the these approaches isjq|ly efficient way of implementing semiclassical approxi-

mations. Within the framework of the SC-IVR, two of'ds
3Electronic mail: miller@neon.cchem.b have recently shown how one can degenerate the description

hereF () is a combination of the flux operatét and the

Boltzmann operator exp(8H), often taken in the following
symmetrized forn?:

andh(t) is a time-evolved projection operator,
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of somedegrees of freedom to the classical level while stillll. SEMICLASSICAL INITIAL VALUE

retaining the full semiclassical description of the rest—i.e., &REPRESENTATION FOR THERMAL RATE

mixed semiclassicatlassical treatment. Ovchinnikov and CONSTANTS

Apkarian®® have independently used this idea very effec- | this section we assume that the Boltzmannized flux

tively in appli_cat?ons to vibrational relaxation processes i”operatorﬁ(ﬂ) is evaluated by exact quantum mechanics,

clusters and liquids. which is trivial for the 14 problem treated in this article but
The purpose of the present article is to investigate theyso feasible by Monte Carlo path integral methods even for

extent to which the semiclassical initial value representatiotomplex systemé.e., those with many degrees of freedom

(SC-IVR) is able to describe quantum interference/coherence@lso, for the applications below we have used the Kubo

effects in thermal rate constants, and also to determine thg@rsion OflA:(,B), which corresponds taveragingover how

limitations of a much simpler linearized version of the full the flux operator is sandwiched between the two Boltzmann

SC-IVR approach. In a recent papave observed that this operators,

linearized approximation to the SC-IVR fd(T) gave ex- 1 (g R i

cellent results for a model of condensed phase unimolecular F(8)=—~ f dre MEe (B-MH: (2.1a

isomerization, specifically a #- double well potential B Jo

coupled to an infinite bath of harmonic oscillators for which since

Topaler and Makfi’ have carried out essentially exact quan-

tum path integral calculations. To accentuate quantum coher- F=

ence effects, in this article we omit the harmonic bath, which

tends to quench them, and consider thd flouble well po-  one can sho¥ that this gives

tential by itself, a model of unimolecular isomerization of a i )

isolated molecule. In this cagé(t) does not reach a limit- Fr(B)= h—[ﬁ,e‘EH], (2.10

ing value ag—oo [cf. Eq.(1.1)], i.e.,k(T) does not exist, for B

the particle oscillates back and forth in the double well for-for which the coordinate representation is

ever. The dynamics of this coherent motion, as it manifests i )

itself in the correlation functio€(t), however, is precisely (q'|Fx(B)|a)= ﬁ[h(q')—h(Q)]<ql|e_BH|Q>- (2.10

the phenomenon we are seeking to investigate, so it is an

ideal test case for these purposes. We also carried out some calculations with the symmetri-
Section Il A first summarizes the general SC-IVR ap-cally split version of= () in Eq. (1.20) and found very little

proach, and théinearization approximationLA) to the full  difference in the results for the example considered below.

SC-IVR expression is described in Sec. I B. The AppendiXa gemiclassical initial value representation for time

presents a more general, pedagogical discussion of the lignolution

earization approximation, showing how it yields precisely

the classical limit, without any quantum interference/

coherence structure. Section Il C shows how the LA can also , A ,

be applied to state-to-state reaction probabilities. The SC ap- CfS(t):f dqf dg f da’(alF(B)la’)

proximations in Sec. Il all pertain to the time evolution, i.e., I .

the operato(t) | : 2B) i x(a'le" ah(a)(q"le M a), (2.2

peratoh(t) in Eq. (1.2), while the operatoiF(g3) is

treated via exact quantum mechanics; Sec. Il shows how thand we utilize the SC-IVR**for the matrix elements of the

SC-IVR approach can also be used to approximate the Boltime evolution operator,

zmann operator i (). Section IV then presents and dis- .

cusses the results of the various approaches to describing tﬁ%|e_lHt/h|QO>E(27Tiﬁ)_mf dpod(a—ar)

time dependence dt(t) for the double well potential.

g[ﬂ,ﬁ], (2.1

In a coordinate representation H3.29 becomes

1/2
Of previous work, this article is most closely related to % de< ﬂ) e~ 1 m/2giSi(Po.do)lE, (2 3)
that of Voth, Chandler, and Mille who used Eq(1.2) with IPo
various approximations for the time-dependent fadtet), here @g,po) are the initial conditions for a classical trajec-

applied to barrier crossing dynami@sut not the longer time tory, g;=0(do,Po;t) is the coordinate at timé along this
coherence effects investigated Her€he linearization ap- trajectory, andSi(qo,po) the action integral along it:
proximation of Sec. Il B has been used in various guises by . p2

many persons, e.g., Wolyn&Mukamel et al?° Cao and St(vaqO):f dt’{—t'—V(qt,)] 2.4
Voth,2! and also recently by Polla&t al??> who use it with o [2m

an approximation to the time-dependent factor similar toThe integery,, the Maslov index, is the number of zeros
Voth et al™® to obtain a “quantum transition state theory.” experienced by the Jacobian in the time intervat)(d,e., it

We also note related work by Filinost al>® based on the specifies the particular branch of the square root of the Jaco-
Wigner representation of E@l.2). bian.

Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



4192 J. Chem. Phys., Vol. 109, No. 11, 15 September 1998 Sun, Wang, and Miller

There are several ways of implementing the semiclassi- @ “ T '
cal approximation, Eq(2.3), in Eq. (2.2). Perhaps the sim- P Product Region
plest is to choosg” in Eg. (2.2) as the initial valuey, for Transition {tate / s

both propagators, and using the symmetry relations of the Regionx
propagator matrix elements

(q'le” M |qy=(qle"M"|g")=(q'|e""|q)*, (2.5 (b)

one readily obtains the following SC-IVR expression for the
correlation function:

1 .
Cfs(t):mfdcbf dpof dpo(cklF(B8)[ayh(ao) ©
’ /2
X deq(ﬁ)de<ﬁ_qt/”l e im(n—v)2
dPo Po
i
xeX;{g(S[(qO,po)—St(qO,pé))}, (2.6

(d

whereq{ =0;(do.py). One thus runs two classical trajecto-
ries, both beginning at the same positigg in the product
region, with different initial momenta. The only awkward
feature of this expression is that the trajectories begin in the
product region and must terminate in the transition state reriG. 1. Sketch of trajectory configurations in coordinate space that have

; - ’ : ’ _ nonzero contributions to the integrand(® Eq. (2.6), (b) Eq. (2.7), (c) Eq.
g:pn (there<?||:(%)|q > Iica“ﬁesq andq )’ and thebsamff. (2.11, and(d) Eq. (3.4). The dashed trajectory ifd) is the imaginary time
p.m% of initial conditions for this purpose may not be effi- \:cciory on the upside down potential.
cient.

A second way of implementing the SC-IVR, in order to

have the initial positiong, sampled from the Boltzmannized
flux factor, is to choosey in Eq. (2.2) to be qy; thenq” 1 , , . ,
:qt(qupO)i and q’:qt’zq(qt ,p(’);t)_ The eXpI'ESSiOI’] for Cfs(t)_ (27Th)F f d%f dqof dpof de<QO|F(ﬂ)|QO>

the correlation function is
d aq,
oo e e G|
P Po

_ , i
X e I n )/Zexr{%(S[(QOapo)_St(q(,)ip(,)))}'

1/2
X 8e(d—q¢)h(qy)

1/2

< e-imn—v)2 (2.8

1 .
C)= oy | o [ oo | apigai (&l aihiao
whereq; =q(q;,ps;:t). The disadvantages of this approach

SEWE
dPo P

i , are clear: one has foumultidimensional integration vari-
XeXF{%(St(qO'pO)_St(qt ,po))}i (2.7 ables to integrate over, rather than three as in E2j6) and

(2.7), and the integral contains a delta function which re-

quires the two trajectories to end at the same point in the
product region. This later probleftthe delta functiopcan be
ameliorated by switching to a modified version of the gener-
alized Herman—KluKcoherent stapelVR,***?

i.e., here one begins a trajectory af (pg) in the transition
state region, runs it for timé into the product region, then
restarts it with a new momentupy, runs it for timet, at

which time it must be back in the transition state region. . 1
Figure 1 indicates these two possible strategies. (q'le”™"*|q)= (2af)F f ddoedpoCi(do,Po)
Finally, a third way of implementing the SC approach is
to begin both trajectories in the transition state redioh X{q'|p¢,0¢; Y1)
Fig. 1(c)], i.e., to choosegq=qy and g’ =qg in Eqg. (2.2, ) i
whereby one obtains the following expresqsion for the corre- *(Po,Go; yola)e' %P, (2.99
lation function, where the coherent state wave functions are
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0| A a2+ /B (G immediately obvious which will turn out to be most useful in
(alpo.do: Yo} = —| e 70/2(a= o) +i/hpo- (4= ao) applications to complex systems. For the preseiwt dppli-
(2.9b cation all are possible.

similarly for (q’|p;,q; ¥:), and the pre-exponential factor is

1 aq ap B. The linearization approximation
At 12, —12%Ft 12
ct<qo,po>=de{§(y% Yo VoY

o ° 9Po The most difficult aspect of a SC-IVR calculation, i.e.,
i ap P 1/2 the evaluation of Eqs(2.6), (2.7), or (2.11), is due to the
+ %yfl’zﬁ—qo Yo 1/2—iﬁyt1/2ﬁ—p0 é’zﬂ oscillatory character of the integrand, i.e., the difference of

the two action integrals in the phase of the integrand. It is
(2.99  thus useful to consider approximations for dealing with this.
The lowest order approximation corresponds to expand-

The modification that we use here, thg— limit (which . ) . )
g —oc ( ing the phase difference in EqR.6) or (2.7) to linear order

converts the initial coherent state into a coordinate state

gives the following SC-IVR for the propagator i Po—Po
. 9S(9o.Po)
: 1 - A PO
<q|e_'Ht/h|qo>: (277-|ﬁ)': f de Dt(qO!pO) Si(do,Po) St(q01p0) Po Apa (2.12

y, | Fl4 < o where po=(1/2)(po+pg) and Ap=py—pg [or linearly in
X(E) (alpy, 0y ; v,y €S do-Po/h Po—Po and go—dg in Eq. (2.11]. By changing integration
variables in Egs(2.6) or (2.7) from p, andp to po andAp,
(2108 \ith the linearization approximation to the phase difference,
where Eqg. (2.12, the integration oveAp [Ap and Aq for Eq.
(2.11)] can be performed analytically. This analysis has been

99 i op | carried out by us befor®, and the expression for the flux-
= R— + _ i 1
D1(do.Po) de{ o iy IPo (2.108 side correlation function becomes
[The y;—< limit of Eqg. (2.10 would convert it into the 1 8
previously used coordinate space SC-IVR, Efj3).] Using Crl(t) = 2nh)F J d%f dpoFi(do.Po)h(qy), (2.13
Eqg. (2.10 for the propagator, the following expression is - _
obtained for the correlation function where herep,=py, with the “bar” having been dropped,

1 and Fﬁ(qo,po) is the Wigner transform of the Boltzman-
! ’ £ / ized fl tor,
Cr(t) = W f dqu dqof deJ dp0<q0|':(:8)|%> nized flux operator

) J | F2 Fv’i(q,p)=f dAge™ P A¥(q+ Ag/2[F(B8)|a—Aa/2).
X(p{q{lhlptqo(E) D:(do,Po)D+(do.Po)* (2.14
It should be immediately apparent how simple Ej13 is:

) (2.113 itis essentially a classical trajectory calculation with the dis-
tribution of initial conditions given by the Wigner transform

Finally, because the coherent states are localized in positiofw(do:Po) rather than by its classical limit,

[
Xex[{%(st(%vpo)_st(%vp(l)))

the following approximation should be reasonable, Ffv(qo,po)i_e‘ﬁ'*(qo'po) ar;gqo) ‘ %. 2.15
(p{a|hlp:ar) =h(ah(a)){p;a; |pat), (2.11B , , N ° o
] As discussed in detail in the Appendix, however, this linear-
where the coherent state overlap is ization approximation produces ontyassicalmechanics in
y (pi—pl)? the real time dynamics, with no quantum interference/
(pt’qt’|ptqt>=exp{— Zt(qt—qt’)z— Ttﬁtz coherence; cf. the classical time-dependent fabiay) in

Eqg. (2.13. The only quantum effects in Eq2.13 are from
i the quantum treatment of the Boltzmannized flux operator
+ o7 (Pt p)-(G—ay) |- (2.110  and the Wigner transform of it that results from the LA. The
consequences of this will be seen in the results discussed in
Comparing Eq(2.8) to Eq.(2.11), one sees that in the latter Sec. IV, whereC(t) of Eq.(2.13 is observed to be accurate
the two trajectories are not required to land at the same poirdnly for times up to~#% 3. This is long enough, however, if
but rather that the two final points in phase spacg, ) the dynamics is simple barrier crossing, with no recrossings
and (@, ,p;), are required to be in roughly the same phasenvolved, as in the assumption of transition state theory. Pol-
space cell. lak et al? have in fact used Eq2.13 (with an approxima-
All three strategies of implementing the SC-IVR—EQgs. tion to the classical time-dependent fagttir define a quan-
(2.6), (2.7), or (2.1)—are essentially equivalent; the choice tum transition state theory and seen it to work well for
between them is purely one of convenience, and it is noexamples involving only direct barrier crossing dynamics.
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9 9 ’ 1/2
Newe
JPo JPg

C. Linearization approximation for state-to-state
probabilities X

To complete the story of the linearization approximation,

we show here how it applies to the state-to-state transition X (G ) 20D ™ #1(do) o) *
probabilities, first for ttwe time-dependent case, ¢ 61(S(Go.P) 5,85 PV (2.17
Paa()=(yole” "y 2. (2.16
With the SC-IVR of Eq.(2.3) this becomes where g; =q(do.Po; ). Changing to sum and difference
1 o T e, e, T
Paca(D= 5 7)F f dpod%f dpoddo gi\llags' P=Po™Po). panding YR P

*

1 1
O+ Equ-Aan Equ-Ap

1 o ) —
Po A= e f APy | AAPAAG deXM o) L o) 35 Mg 30

l *
X | Ot qu Ag- 2qu Ap) | Got 5 AQ) ‘/fl( EAQ) ; (2.183
|
where the various matrices are defined as sponding momentap(P). The Smatrix element for the 1
—2 transition in the internal degrees of freedom at total
a0 energyE can be expressed 4s
Mgp= i (2.18h
9Po "
J— Sz 1= - — klkzefi[klRmaerkZRr,nan dtJ' drf dl”
aq; ' %3 0
qu: -—, (218(}
aqo X IEt/ﬁ¢ <r R a)Je IHt/ﬁ|rRmaX>¢1 (221)
and g,=0(qo,Po;t). If the integral overAp is changed to
that overAq’, where where{¢,} are the wave functions for the asymptotic eigen-
states of the internal degrees of freedd®pq, and R/, ., are
AQ' =My Ag+Mg,-Ap, (2.19  large values of the translational coordinate, gkg are the
then Eq.(2.18 becomes magnitudes of the translational momefita units of ) de-
termined by energy conservation
1
P, 4(t dpod Py * \Po),
2c1(h)= (2ah)" f Poddop2(a:,P0)* p1(do,Po) k.= V22(E—E)JAZ (2.22
(2.203

. o {E,} being the internal energies corresponding to states
where the “bars” overqgo andpy have been dropped, and {4 1. (Note that for areactivecollision (r,R) and ¢',R’)
pn(d,p) is the Wigner function corresponding to state are actually different coordinates, but that makes no essential

difference in the present developmerit. is convenient to
1 1 * turn Eq.(2.2)) into a full coordinate space integral by insert-
a-+ EAq> ’l’n( a- EAq) ing the factor§(R— Rya) &R —R’..,) into the integrand and
(2.208 integrating oveR andR’,

pn(q,p)=f dAge P a9y,

for n=1 and 2. Equatiori2.20 has the very simple classical 5
structure of the overlap of the initial phase space dIStI’IbutIOI‘SZ 1(E)=— — VK kye ™ kiRmax+kzR max]J dtJ dqj dg’
for state 1 with the time-evolved phase space distribution of I
state 2. iEt/H 1INk /! | a—iHA
A similar (but slightly more involvell analysis can be xea(a) (a'le @ (@, (2233
carried out for the energy-dependent transition probability of
an isolated bimolecular collision. For a generic inelagtic ~ where hereq andq’ denote the full coordinate space, e.g.,
reactivé collision theF-dimensional coordinate space®R)  (r.R), and
consists of the translational coordind®eand the(F-1) coor-
dinatesr for the internal degrees of freedom, with corre- Un(d)= dn(r) S(R—Rpay - (2.23bh
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The SC-IVR, Eq(2.3), is now used for the matrix element of whereh(ry,p,o) is the asymptotic Hamiltonian of the inter-
the propagator in Eq2.239 and the square modulus of the nal degrees of freedom. The three delta functions in the in-
Smatrix element formed to obtain the-12 transition prob- tegrand of Eq(2.29 allow the integrals oveR,, Py, andt

ability to be performed, giving the final result
712K ks h2kqk
Poa(®)= ot [ atat | dpodas | dpiagg L ot e
wi(2mh)" P, 1(E) (2ah)F 1 drodpro [PoPy| p2(T¢,Prt)
X @By () * (0 ra(Qlo) Yr1(019)* X p1(Fo,Pro)- (2.30

r\ 112
de(ﬂ) de(ai> Comparing this energy dependent result, Eg.30),
JPo Py to the time-dependent one, EqR.20, one sees that it
i involves an integral over the initial phase space vari-
Xexr{g(st(%,po)—S[(QE),P(S))}, (2.24  ables only of the interngl degree_s of freedom, the initial val-
ues of translational variables being given By= Ry Po

X

whereq; =q(dy.py;t). Changing to sum and difference in- =~ vV2u[E—h(ro.pro)]. The classical trajectories which
tegration variables as in E(R.18 above—and here also for 9give (ry,py) in Eq.(2.30 are of course computed in the full

t=(1/2)(t+t') andAt=t—t'—expanding the difference of SPace of all degrees of freedom.

the action to first order im\g, Ap, andAt, and performing Equation(2.30 was proposedwith some minor differ-
the integral over them as done in going from E2.18 to  €NCe$ some years ago by Lee and Scéifland tested for
(2.20, gives collinear inelastic scattering of HeH,(v)—He+Hy(v'),

h
Po1(BE)= —WJ’ dtJ dpodge2f

where the bars have been dropped frpgmqg,t, and we
have used the fact that

and

J'

which if t—c, it becomes ZFhS|E—H(qg.pg)]- In our
calculations, we found that it makes little difference whether

t/2

for which they observed reasonably good agreement with
quantum coupled channel calculations.

sin([E—H(qo,po) ]t/2) N
=R po(0r,P0* p1(do,Po),  IIl. SEMICLASSICAL APPROXIMATION FOR THE
[ (do,Po)] BOLTZMANN OPERATOR

(2.29

In Sec. Il A it was assumed that the Boltzmannized flux

operator F(B) is obtained by fully quantum mechanical
methods, and this may indeed be feasible even for complex
systems. As an alternative and perhaps more efficient possi-
i =(a.p)=—H(a.p) (228 pjlity, however, we note that it can also be obtained by a
semiclassical approximation. Referring to EQ.1d), one

thus needs to construct matrix elements of the Boltzmann
AE—H(ag.po ]/ sm([E H(do, po)]t/z) operatorej/;”, which is the same as the time evolution op-
Uszte 00 [E-H(do.Po)] eratore” "% for the imaginary time¢= —i# 8. It was noted

by one of ué® some years ago, though, that motion in imagi-
nary time is equivalent to motion in real time on the upside-
down potential energy surface; e.g., Newton’s equation

we take the exact result of EQR.27) or the delta function d2 oV
limit of it, thus for simplicity we shall use the delta function m a2 q(t)=— E (3.1
approximation for here on. It is also easy to show that
Pn(Q,P) = pn(r,Pr) S(R—Rmax, (229  becomes
Wherepn(r,pr_) is the Wigner function correspondi_ng mh d2 oV
state of the internal degrees of freedom as defined in Eq. m PQ(T):+ a, (3.2

(2.20bh. Combining all of these results together and writing
the phase space integral in £8.25 in terms of the internal
and translational variables thus gives

wherer=it is a reql timelike variable, which varies from O
to 3 to obtaine #". The SC-IVR expression for the Bolt-

h2kqky zmann operator, which is the analog of E2.3), is therefore
Pa1(E)= 2 2ah)F T dro | dpro | dRy | dPy

P2 <QIe‘B“|qe>Ef dpod(a—dp)
xf dts E—h(ro,pro)—ﬂ
s
X 8(Ro— Rimay) S(Ri— Rz de‘( apo) (2h)"
X po(re,Pr)* pa(ro,Pro), (2.29 (3.33

12 B
e*SB(qO,po)/ﬁ,
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wherep(7)=mgq’(7) is the real momentumlike variablgg=q(do PoifB) is the_coordinate that evolves along the classical
trajectory on the upside-down potential energy surface with initial conditigagog), andSg is the classical action,

A2\ 2
p;;r; V(7). (3.3

_ hp
55(%'}30):]0 dr

This semiclassical approximation for the Boltzmann operator is most conveniently implemented v&al1Bgfor the
flux-side correlation function. Together with Eq8.39 and(2.1d), it gives the correlation function as

1 _ h(gz)—h(gg) d
Colt)= e | 0o o [ apo [ apy T KN {d <&Zﬁ)/<z hyF
Yt F/2
X(E

One thus begins a purely imaginary time traject@rg., real trajectory on the upside down potentiaith initial conditions
(0d0.Po) and integrates it fofimaginary time %3 to positionqg; go andgz must be on the opposite sides of the dividing
surface. Frong, andqg, one initiates trajectories with momenpg and py and integrates for time; the final coordinate,
=q(do.Po;t) andqg; =q(qgs.py;t) must land within the same phase space cell in order to contribute. FigdirgHows this
schematically.

The semiclassical Boltzmann operator can also be employed with the linearization approximation for the real time
dynamics, i.e., in Eq(2.13. The necessary steps, indicated below, are straightforward:

12 -~
e Ss(d-Poi(p/ g/ || p,ce)

Dt(qo,po)D?(qﬁ,pé)exr{,;—(st(qo.po)—st(qg ,pé))}. 34

1 : -
Clt)= oy | i [ dpo [ dg e 24" ay+ Aq2F B0~ AD(a0)

_1 ' ~ipo-(af— / do+do
:(27-rh)F qu"f dqof dpo €~'Po" (0 q°)’ﬁ<qo|?(ﬁ)qu>>h[qt(po,T”

— [h(go)— h(qB)] o Up v
(27Tﬁ)F qu"f dp"fd %8 Po (9l de< r?po) (2”’”1

Xesﬁ(qo’po)mh{q‘( 901@”- (3.5

Again, the end points of the imaginary time trajectory with interference effects, and this thus provides an even more
initial conditions @,po) Must straddle the dividing surface; stringent test of the SC theories. The mass of the particle is
however, only one real time trajectory is run, its initial posi-that ¢ a H atom, the barrier heightV,=2085 cni?
tion being the average of the end points of the imaginary(=6 kcal/mo), is typical of H atom transfer reactions, and
time trajectory, (lo+0p)/2, with initial momentump. the imaginary barrier frequency is*=500 cnm®. The cal-
culations were carried out fofF=300 and 900 K.
Figure 2 first shows the results of the linearized approxi-
IV. RESULTS AND DISCUSSION OF TEST . . . .
CALCULATIONS mation (solid point3 to the SC-IVR forCy(t) given by Eq.
(2.13, compared to the exact quantusolid line) and the
We wish to test the extent to which the SC-IVR of Sec.completely classicalopen points results [given by Eq.
Il A, and the linearized approximation to it in Sec. Il B, can (2.13 with Eq. (2.15]. Several observations are apparent.
describe coherence and other quantum effects in the thermglrst note that for short times—up te50 fs at 300 K[Fig.
rate constants. To this end we look at the flux-side correlag(a)] and ~25 fs at 900 K[Fig. 2b)]—Ci(t) takes on an
tion function Ci(t) for a 1-d double well potential, for approximately constant or plateau value; this is the transition

which the Hamiltonian is state theory(TST) or barrier crossing rate constajwhen
2 2 14 divided by the reactant partition function in E(..1)] that
p 1 2 m“w S ;
H=-—— —mo* x?+ x4, (4.1  would be thet—c limit if there were no recrossing dynam-
2m 2 16V,

ics. Theclassicalcorrelation function begins at its TST value
This is the same system we considered earlier via the lineaat t=0, but the quantum and semiclassical correlation func-
ized approximation to the SC-IVR, but with a harmonic bathtions take a time of-7 3 (27 fs for 300 K, 9 fs for 900 Kto
coupled to it. As noted in the Introduction, without the bathreach their plateau values. At 900[Kig. 2(b)] one sees that
degrees of freedor@;,(t) does not reach a constant value asall three curves have approximately the same plateau value,
t—oo—i.e., k(T) does not exist—but the recrossing dynam-but at 300 K[Fig. 2(a)] the classical plateau value is25%

ics manifested inC(t) should accentuate coherence/lower than the QM and SC value; this is due to tunneling
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FIG. 2. The correlation functiorC(t) as given by the exact quantum . ) )
calculation (solid line), the linearized approximation of Eq2.13 (solid ~ FIG. 3. The correlation functio€(t) given by the exact quantum calcu-
points, and the fully classical method of E€.15 (open points (2) 300 K lation (solid line), the full SC-IVR model of Eq(3.4) (solid points, and the
and (b) 900 K. linearization approximation of Eq2.13 (open points (a) 300 K and(b)
900 K.

effects in the TST rate constant, and one sees that the linear-

ized SC theory describes this quite wélrhis is consistent ized SC resultopen points deviate drastically from the
with earlier workC in our group showing that the SC-IVR is quantum correlation function for times past the short-time
able to describe moderate levels of tunneling—e.g., tunne ST plateau region. The effort required for the full SC-IVR

ing probabilities down to~10"° for H atom motion— calculation, however, is quite large; the integration over the
though not the “deep” tunneling region that requires explicit initial conditions were carried out presently by an un-
use of complex trajectorieg) weighted Monte Carlo procedur@vith finite cutoff§ and

The time dependence beyond the plateau region in Fig. Bequired ~1C° trajectories. A more sophisticated Monte
is the result of recrossing dynamics, and one sees that in th{Sarlo procedure would perhaps make this more efficient.
region the linearized SC approximation is essentially the  The SC-IVR results in Fig. 3 used the semiclassical ap-
same as the classical result. Furthermore, at 90Bi¢l 2(b)] proximation for the Boltzmann operator, E@.4). To show
the classical and SC correlation functions follow the QMthat this introduces little error, Fig. 4 displays a comparison
result fairly well up tot~150 fs and then deviate consider- of the results obtainable with the linearized SC approxima-
ably; at 300 K they follow it not well at all past the plateau tion for the real time propagation with the quantum and SC
region. Thus the linearized SC approximation is able to deversions of the Boltzmann operafdtg. (3.5)]. One sees that
scribe quantum effects well in the short time regime of TST-the results obtained with the SC approximation to the Bolt-
like dynamics, but is not able to describe quantum effects izmann operator are in good agreement with the QM one;
the longer time recrossing dynamics. little error is introduced by the SC approximation, so that one

Figure 3 now shows the full SC-IVR resultsolid has a semiclassical description for both the imaginary and
pointg for the correlation functioficalculated via Eq(3.4)] real time evolution.
compared to the exact quantysolid line) and linearized SC Finally, Fig. 5 shows the results of the state-to-state re-
(open pointg values, and one sees that the full SC-IVR in- action probability given by the linearized SC approximation,
deed does describe the correct quantum behavior for timesg. (2.30. The example is the HH,(v=0)—Hy(v=0)
well into the recrossing regim@ip to 200 fs, as long as the +H collinear reaction on the LSTH potential energy surface.
SC-IVR calculations were carried gufThe comparison is One sees that the linearized SC approximation does a good
particularly revealing for 300 KFig. 3(a)], where the linear- job of describing theaverageenergy dependences of the
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of the linearized SC theory to describe coherence effects
in the longer time recrossing dynamics @j(t) as seen in
Fig. 2.

V. CONCLUDING REMARKS

The goal of this work has been to investigate the extent
to which the semiclassical initial value representation, and
the linearized approximation to it, are able to describe quan-
tum effects in thermal rate constants. The conclusions are
that the linearized approximation to the SC theory is able to
describe quantum effects in the short tintes¢ 8) dynamics
that corresponds to direct barrier crossing, i.e., transition
state theory like dynamics, but the description of the longer
time recrossing dynamics is essentially that given by classi-
cal mechanics. The complete SC-IVR treatment, however, is
able to describe the quantum effects in the longer time re-
crossing dynamics, though these calculations become pro-
gressively more difficult the longer the time. Also, the SC
approximation for the Boltzmann operator introduces essen-
tially no error; one is thus able to have a complete semiclas-
sical theory, i.e., for the imaginary tim@oltzmann opera-
tor) as well as real time propagation.

With regard to practical considerations, the linearized
approximation to the SC theory is much easier to implement
than the full SC-IVR: the real time part of it is a classical
molecular dynamics calculation, with the imaginary time
part (i.e., the Boltzmann operatotreated either quantum
mechanically or semiclassically. The fact that it describes the
short time TST-like dynamics correctly, and provides a clas-
sical description of the longer time recrossing dynamics,
should make it very useful for many applications, particu-
larly for complex molecular systems where quantum effects

PodE), but it misses completely the resonance structure adre often quenched by the many coupled degrees of freedom
E=0.85and 1.3 eV. In light of earlier discussions, this is not(as demonstrated in our previous artftlérThe full SC-IVR
surprising since one knows that resonances are an interfecalculation is considerably more difficult because one has to
ence effect between difference trajectories that form the coldeal with oscillatory integrands. It does, however, allow one

lision complex?® This is therefore analogous to the inability

to describe interference/coherence features in the longer time

1.0 |

0.8 |

0.6 [

Py ()

04 |

0.2

FIG. 5. The state-to-state transition probability,
PooE), for the collinear H-H,(v=0)—H,(v=0)
+H reaction, vs the scattering energiote v is the
vibrational quantum number of4) The exact quantum
(solid line) is compared with the linearization approxi-
mation of Eq.(2.25 (solid pointg and the delta func-
tion approximation of Eq(2.30 (open points
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dynamics, so it behooves one to invest effort in learning howwherex, is the complex root for whicl®(x,) has the small-

to do these calculations more effectively. est positive imaginary part. In this case the transition is said
to be “classically forbidden,” or to proceed by tunnelitor
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APPENDIX: THE LINEARIZATION - -
APPROXIMATION—A PEDAGOGICAL OVERVIEW |||2:f dxf dx’ el (S =Sk, (A5)

Here we explicitly consider a one dimensional integral ) ) )
of the form (This arises most naturally when using a density matrix for-

mulation) Changing to sum and difference integration vari-
|:f dxdS/h (A1) ablesx=(x+x')/2, Ax=x—x', gives

but have in mind multidimensional integrals of this type that |l |2:f de dAxe (SXHAX2)=Sx=Ax2))/h (AB)

represent quantum transition amplitudes. In the applications o *°°

in this article, the integration is over the phase spagery)  and the linearization approximation corresponds to expand-

of initial conditions for classical trajectories, but a fully ing the phase difference to first order A,

guantum path integral representation of the time evolution

operator is also a multidimensional integral of this form. S
Standard semiclassical approximatith®gsult when one

evaluates the integral via the stationary phase approximati

= AX
X

_ AX _
—S(x— 7)~S'(X)AX. (A7)

%he integral overAx is then immediately doable,

(SPA),
2mih \ Y2 fw iS'(IAX/ _ e
oS, ( , ) oISOxIh. (A23) __dAxe 2mhi (S (%)), (A8)
K 1 S"(X)
where{x,} are the points of stationary phase, i.e., the roots© that Eq(A6) becomes
of the equation © _
L |2=f dx27h 5[ S (x)]. (A9)
S’ (%) =0. (A2b) o
Equation(A2a) is often suggestively written as Having approximated the phase difference this way has in-
_ deed eliminated the oscillatory problem: the integral aver
lspa= >, P2l %, (A3a)  in Eq.(A9) now involves a positive definite integral, and one
k can readily proceed by Monte Carlo methods in the multidi-
where mensional case. One immediately sees, however, that Eq.
(A9) gives only the classical probability: there are contribu-
27h . . — ; e .
Pi=ror— (A3b)  tions to the integral only at valuesfor which S’ (x)=0, i.e.,
|S" (x4 the stationary phase points, and the evaluation of the delta
- function integration gives
&= S(xh+ - Sign S'(x) 1, (A3c)
4 27h
. ) 12=2 = (A10)
so that theprobability, or the observablg)|* has the form k1S (xwl
the classical part of EqA3d).%° One may thus say that tak-
2__ / —
|IspA _Zk Pk+k<2k, 2VPiPy cos ¢ o) ing interferencdi.e., the phase difference in EGA6)] into
. account only infinitesimally(i.e., to first order inAx) leads
=l ¢ |?+interference. (A3d)  only to the classical result; one cannot describe the quantum

This is the typical semiclassical result for a transition/nterference/coherence effects in Eeh3d) because these
probability?* say, the classical result plus interference, i.e.2is€ from the difference of discrete points of stationary

quantum coherence. If there are no real roots to(B@h), ~ PNaSEAX=X, =X . , _ o

one may analytically continue the phase functi(x) and Ong systematic approach for improving t'he I!near|zat|on

look for complex roots; the approximation fpif2 then €4~ @PProximation is simply to carry the expansion in EA7)

to the next order imx, which is S”(x,)Ax3/24. The inte-

2mh S/ (A4) gral overAx is then an Airy integral, and in this case Eq.
(A6) becomes

|S"(x)] '
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|||2=J d?ﬁ Ai[S' (x/e(x))], (A11)
€(x)

where
e(X)=1233" (x)32. (A12)

The integrand here is also peaked at valuex &r which

S'(x)=0—these are the turning points, or Franck—Condon

peaks of the Airy functioft—but there is some residual in-
terference structure in the integrand. Equatisal) should

indeed be a useful approximation because it is accurate Wheré2
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