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ON THE SEMIGROUP OF BINARY RELATIONS ON A FINITE SET

STEFAN ScHWARZ, Bratislava
(Received August 8, 1969)

Let Q = {a,. a, ..., a,} be a finite set with n > 1 different elements.

By a binary relation ¢ on the set Q we mean a subset of @ x Q. The diagonal 4, =
= A is the set {(a,, a,), ..., (a,, a,)}. The universal relation is the set ® = Q x Q.
The empty relation is denoted by z.

Let B, be the set of all binary relations on Q. If ¢ € B, we denote

a0 ={xeQl|(a,x)ee}, ca,={yeQ|(v.a)eq}.

If M is a subset of Q, then Mg is defined as the set {J a,0.
aieM

Further we denote
Prx(g) = ea;, sz(Q) =Uaje
i=1 j=1

In B, a multiplication can be introduced. Let be o, 6 € B,. Then (a, b) € g5 if
there is an x € Q such that (a, x) € ¢ and (x, b) € 0. If pry(¢) N pr,(o) is empty, we
define go = z. The multiplication just introduced is associative, so that B, becomes
a semigroup with 4 as the unit element and z the zero element.

For further notations we note the following. ¢ < o means that g is a subset of o.
We shall often say that ¢ is a subrelation of ¢. In particular z < ¢ for any o € B,,
In B, we can perform the operations of union and intersection. If ¢, N g, = z, we
shall say that the relations g, ¢, are disjoint.

The semigroup By, contains many interesting subsemigroups.

There exist many papers concerning the abstract characterization of By, and its
subsemigroups. Also there exist investigations under what conditions a given semi-
group can be represented as a semigroup of binary relations of a given type (e.g.
reflexive reldtxons) on a suitably chosen set Q.

Various questions concerning B, have been treated by J. RIGUET ([21])
DusrerL ([4]), V. V. Waacner ([36]), B. M. Sain ([33], [34], [35]), K. A. ZARECKY
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([41]—[43]) and many others. An extensive list of publications concerning By, (even

in the case that n is infinite) can be found in V. V. WAGNER [36] and B. M. Sai~ [35].
Very interesting results in the case n = finite have been recently obtained by S. L

MONTAGUE - R. I. PLEmMoNs ([44]) and R. 1. PLemmons - M. T. Wesr ([45]).

Relations on compact spaces have been studied by A. D. WALLACE, R. D. BEDNA-
REK and others. (See the bibliography in [38] and [39].)

In this paper we shall deal in essential with one relation ¢ € By, the cyclic semigroup
generated by ¢, and with some further relations which naturally appear in this study.
These are primarily unions of some powers of .

Since a relation can be considered as an oriented graph there is on some places
a close connection with some recent results obtained by graph-theoretical methods
in the study of some questions concerning non-negative matrices. [ See mainly the
work of A. L. DULMAGE - N. S. MENDELSHON ([ 5] —[8]) and B. R. HEAP - M. S. LYNN
([1]-[13])]

Our method can be considered as an algebraization of some graph-theoretical
methods. It also leads to new problems which hardly occur using purely graph-
theoretical methods.

Some of our results (mainly those concerning irreducible relations in § 7) are implic-
itly (i.e. in other forms) known. Some of them are going back to G. FroBenius ([9]).
Our proofs are new and they arise naturally from general considerations using in
essential simple semigroup methods.

Since » is finite a number of interesting arithmetical questions will arise.

Some problems concerning the structure of By as a whole will be treated elsewhere.

1. THE POWERS OF A RELATION
In all of the paper @ = {ay, ..., a,} is a set withcard @ = n > 1.

Lemma 1,1. For any ¢ € By and any s = 1 we always have

Scougiu...ug".

@

Proof. If ¢ = z, there is nothing to prove. Suppose first s = n + 1. The elements
of ¢""* are products of n + 1 couples (a;, a;). Such a product is z except the case
when the subscripts follow in the following order:

(1’1) (il’ iZ)’ (iZa ij)’ rers (in+19 in+2) “.

Since the numbers iy, i,, ..., i, cannot be all different, there exist two integers, say
m < 1, such that there is a segment in (1,1) of the form

o (im"l’ lm)’ (im’ it 1)1 cr (il——ls im)? (im’ i1s 1)’ T
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We now can delete (i, i+ 1) ---» (i1~ 15 i) Without changing the value of the product
corresponding to (1,1). The product contains then at most » factors, i.e. it is contained
inogue*u..,ug.

nt 1 n+ 1

Nowg"t'lcpup?u...ug'impliesg"? c p?ugdu...ug" "t cpu’u...
... U @" and by repeating the same argument we have ¢° = g U @* U ... U @" for any
s = 1.

A binary relation ¢ is called transitive if 6* < o.

For any binary relation the set § = g U > U ¢ U ... is transitive and it is called
the transitive closure of g.

Our result may be stated as follows:

Lemma 1,2. For any binary relation ¢ on a set Q with card Q = n the transitive
closure of ¢ is the relation g = o U @* U ... U o™

Let ¢ € B,,. Consider the sequence

(1,2) 0, 0%, 0% ...

This sequence contains only a finite number of different elements (relations).

Let k = k(o) be the least integer such that ¢* = ¢’ for some I > k. Let further I =
= k + d(d 2 1) be the least integer satisfying this relation. Then the sequence (1, 2)
is of the form

k+d—llgk,‘ k+d—1}”.

Q,...,g"'ligk,...,g . O

It is well-known from the elements of the theory of semigroups that the set G(g) =
= {¢* """, ..., ¢***" !} is a cyclic group (with respect to the multiplication of
relations). The unit element of G(g) is ¢", where k < r < k + d — 1. More precisely:
Let B = 1 be the uniquely determined integer such that ¥k < Bd < k +d — L.
Then r = fd.

We introduce a further constant which is associated with any relation on a finite
set Q. We have just seen that there is an integer » = 1 such that ¢?" = ¢". Denote by
t = 1 the least integer s = 1 such that g° is transitive, i.e. 0%
exists and we clearly have t < r. We state it explicitly:

< ¢°. Such a number

Lemma 1,3. To any binary relation g on Q there exists a least integer t = 1(g) = 1
such that ¢* is transitive.

Remark. The integer t may be much larger than n. Later we shall see that for
some classes of relations (called irreducible relations) it is aproximatively of order
at most n%. Note also that ¢* may be equal to z.

To any binary relation ¢ we have associated four integers k = k(g), d = d(@),
r = r(g), t = t(0). We shall try to clarify the relationship between them.
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Lemma 1,4. If ¢°, s = 1, is transitive, then ¢" < ¢°. More generally: ¢" < ¢s+H
for any integer 1 = 0.

Proof. The sequence g%, 9%, ¢ ... contains a unique idempotent (idempotent
relation) namely ¢". Hence there is an integer v = 1 such that ¢** = ¢". The transitivity
implies

s r

o> e¥ ... .op"=¢".

r+1d r+1id

Further ¢" = ¢° implies ¢ < ¢**!. Since ¢"*" = ¢, our Lemma is proved.

Remark. Clearly, if ¢° is transitive also 0%, %, ... are transitive.

Lemma 1,5. If ¢° is transitive and g n A £ z,then g N 4 < ¢°.

Proof. Let (a;, a;) € 4 n ¢. Then there is a h;, 1 £ h; < n, such that (a;, a,) e o™
For any integer I > 0 we clearly have (a,, a;) € o"’. Since some power of ¢" is ¢, we
have (a;, a;) € ¢" and by Lemma 1,4 (a;, a;) € ¢" < ¢*

Lemma 1,6. If 4 n g = A, then the sequence (1, 2) contains a unique transitive
relation, namely ¢".

Proof. Let ¢° be transitive. By Lemma 1,5 4 < ¢°. Hence ¢* = 0*4 < ¢%¢° = 0%,
On the other side by transitivity ¢>° < ¢°. Hence ¢° = ¢, and since there is a unique
idempotent in the sequence (1, 2), we have ¢* = ¢', q.e.d.

Lemma 1,7. The group G(o) = {d*, ..., @""*"'} contains exactly one transitive
relation (namely ¢").

Proof. Suppose that ¢*, k < s < k + d — 1, is transitive. By Lemma 1,4 ¢" < ¢°;
hence ¢"** < ¢%* < ¢°. On the other side ¢” is the unit element of G(g). Henee ¢"** =
= ¢"¢* = ¢’. The inclusion ¢* < ¢** < ¢° implies ¢* = ¢** and ¢° (being an idem-
potent) is equal to ¢". This proves our Lemma.

Lemma 1,8. If ¢® is transitive, then d [ s. In particular, d [ t.

Proof. We first show that ¢" = ¢"*%. Since 20" = ¢¥0% < ¢"0° = ¢°**, we

conclude that ¢"** is transitive. Further ¢"** € G(g), hence (by Lemma 1,7) ¢"** = ¢".

Suppose now that d } s and write s = [;d + I,, where I; = 0 is an integer and
0 < I, < d. We then have

e r+lid+ 1

g =¢

— Qr+11dglz —_ Q'le — Qr+b-

This contradicts to the fact that G(g) is of order d.
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Lemma 1,9. If o® is transitive and d > 1, then none of the relations

s+1 s+ 2 s+d~-1

Q QQ s e @

is transitive. In particular: None of the relations

t+1 t+2 t+d—1

g L0 ,...,8
is transitive.

Proof. If ¢*** 1 £ 1< d — 1 were transitive, Lemma 1,8 would imply d|s
and d | s + 2, which is impossible.

We can visualise the situation by arranging the powers of g in the following way:

2 t—1 t t+1 t+d—1
2,Q,..,0 lQa Q s e @ »
t+d t+d+l t+2d~1
Q ., @ e @ >
t+2d t+2d+ 1 t+3d—-1
\- 39 "'3Q b
¥ r+1 r+d—1
Q, [ s @

Since d |~z and d | r there is necessarily an integer I 2 O such that r = ¢t + Id. The
{ + 1 rows contain certainly all different powers of g. The last row contains at least
one element € G(e) which does not occur in the foregoing row. This means: It may
happen that to obtain all different powers of g it is not necessary to consider the whole
last row, but in any case the first element ¢" contained in it.

All transitive relations are contained in the column ¢, o'*?, ..., ¢", but, in general,
we cannot state that all these powers are transitive.

Lemma 1,4 implies the following
‘Corollary. If t°< r, we always have

r—d

(1.3) dcongtn..ng

If t = r, then by Lemma 1,7 there is a unique transitive relation and the assertion
of’our Corollary is trivial.

/Remark If t < r, then r 2 2d and we have 2(1 —d) = 2(r — 4r) = r. Since
d[ r — 2d, we have o?*™ 9 = Q”"(' 29) = o" < ¢"%, hence "¢ is transitive. This
says that on the right hand side of (1, 3) the first and last member is always transitive.

We are also able to give an estimation for the number ¢ = t{p).

Lemma 1,10. For any binary relation ¢ we haver/n £t < r
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Proof. It is sufficient to prove t = r/n. By definition of ¢t = t(g) we have o' o
> 0% o 0% o ... Let a; be any element € Q. We then have

t

(1’4) ae’ o aiQm > a’

DL,

a) If a; € a0, we get (multiplying by o) a;0" = a;0** and by (1,4) a,0* < g,0* <
< a;0". Hence a;0' = a;0*".

b) If a; ¢ a;0’, then a0 contains at most n — 1 different elements ¢ Q. The set
a;0*" is either equal to a0’ or contains at most n — 2 elements € Q. Repeating this
argument we conclude that there is either an integer 1 £ I, £ n — { such that
a;"" = a,"* V" or a;¢" = @. In the first case we have certainly a,0®-1t = g4 .

In both cases a) and b) we have a,0" = a,0*" for every a; € Q. Hence g™ = o2
so that ¢"* = ¢". This implies nt = r, q.e.d.

1

Remark. This estimation is sharp in the sense that there are relations for which

t = r/n.Letbe,e.g,Q = {a, a5 ..., a,p and o = U {(a;, a,), (a5, a2), ..., (a3, a;_ 1)}
i=2

It is easy to see that r = n (as a matter of fact we have ¢" = z but ¢""! » z). On the
other side t = 1 (since g itself is transitive), so that we have t = r/n = 1.
We summarise:

Theorem 1,1. To any binary relation g there is a least integer r = r(Q) such that ¢
is an idempotent € By, Further there exists a least integer t = t(0) < r such that o'
is transitive.

a) If ¢’ is transitive, then d | 5. In particular, d | tand d | r.

b) The group G(g) contains a unique transitive relation (namely ¢").
¢) We always have 1(g) = r/n.

d) If t < r, then (1,3) holds.

Consider now the (formally infinite) sequence

t+24d t+(I—-1)d t+ild t+(1+1)d
> > s 3 ey

oot e cnd =0 o', 0

where all powers beginning with ¢" are equal. Since the greatest common divisor
(g.c.d.) of the sequence of integers t,t + d,t + 2d, ..., is exactly the number d,
we have proved:

Theorem 1,2. The integer d(g) = card G(g) is the greatest commom divisor of all
integers s > O such that ¢° is transitive. :

The group G(g) = {¢", ¢**", ..., @**¥7'} is cyclic. There exists therefore an in-

“tegeru, k £ u £ k + d — 1, such that
Gle) = {¢" ™, ... a™} .
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The number u is, in general, not umquely determined. It is clear that we > may
choose any integer u with (u, d) =

In what follows we shall choose u = r + 1. This is possible since d [ r implies
(r + 1, d) = 1.

Denote § = ¢"*!. We then have 8% = @?* ¥ = gfg"*2 = o"*2, §% = o"*3, ..
.., 8 = g". This choice of  will be consequently used over all the paper (and will
be very convenient in particular in § 6).

The group G(g) can be then written in the form

G(o) = {5, 8% ..., %

and 6% is the unit element € G(o).

In conclusion to the foregoing we mention two transitive relations which are
intimately connected with any relation g.

Lemma 1,11. For any binary relation ¢ the following relations are transitive:
a)o=08udu.. us
byt =0ndé*n...ns.
Proof. a)
4 d 24
=ysyd=yo.
I=1 Ii=1 h=2

1+ :
Since each member 6'*" i5 contained in G(g), we clearly have ¢* < 6. We have more-
over ¢* = o, since also § = §7+! is contained in o>

b) We have

=16né*n..né) cwntd’n...awdl.
Now for anyl 1 l< d we have

(1,5) 6 =0nsn... NN et Nt ndtt =

=86nd*n...nd.

Since the right hand side of (1,5) is exactly 7, we have t* < 7. (Note that © may also
be the empty relation.)
r-—d'

Remark. An analogous argument shows that 7, =o' ne*n...Nn¢ is

also a transitive relation.
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The following natural question arises. What is the relation between

6 =6udiu..ud
and

g, =0uUp*uU...uQ".

(We write here — for a while — g, instead of g.)

Firstog = {§ ud*U... U s ¢ = {6 US> U ... U U} = g Therefore g’ =
= ¢ for every integer I > 1. In particular, oo, = o-{g U U Q"} =

By Lemma 1,1 we have g6, < 6,. This implies

Gy D 06y D 0°6y O ...
We easily obtain an upper bound for the lenght of this chain. Let a; be any element
€ Q. We then have

(1,6) a;060 2 4,00, > a,0°04 > ...

a) If a;ea,09 = a;{ou ... U "}, there is an I, 1 < I £ n, such that a; e a0,
hence a,0, = a;0'c,. By (1,6)

a0, < a;0'cy < a0’ "oy < ... < a0, < a6, .

Hence a6, = a,00,. Using the fact that go, = 6,0 and multiplying successively
by o, 0%, ... we have a;0, = a;00, = ... = a;0" 'o,.

b) If a; ¢ a,04, then a,0, contains at most n — 1 elements € Q. a,00, is either
equal to a;0, or it contains at most n — 2 elements € Q. Repeating this argument
we see that there is either an integer [, 0 < I, £ n — 2, such that a,0''oy = a;0'*'o

or a;0" o, = 0. In the first case we have the more a;0" ?g, = a;0" ‘0.

Both cases a) and b) imply a,0'c, = a,0" "6, for every I = n — 1 and every
a;€ Q. Hence g'oy = ¢" apfor 1l = n — 1.
Now

k k+d—1 k+ad

Fu...ug = gty .. gFTedtent

for any integer « = 0. Choose « such that I = k 4+ ad = n — 1. We then have

6=00,=1{0U..0d g, ={Ug"U...U" '} g, =

= glogU...u g e, = g" o, U ... U@ o, =

= Qn—-lo_o — Q"UI{QUQZU-.-UQ"}.
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We have proved:

Theorem 1,3. For any binary relation ¢ we have
dudtu..ud =0 uo"ttu.. Ut

Remark. The result of Theorem 1,3 is sharp in the sense that there are relations
for which s U...ud =" 1 Ug"U...up* 2 does not hold. Let, e.g., Q =

= {a,, a,} and ¢ = {(a,, a;)}. Then & = z while ¢"~' = g. Note explicitly that
though it may happen that ¢ & o, we always have ¢ = ¢"~'g,. It is worth to mention
(and we shall show it later on examples) that d may be much larger then n. [In con-
tradistiction to this there is an important class of relations, called irreducible relations,

for which we always have d < n. See § 6.]
By revising the proof we easily find that we have proved a somewhat sharper result,

namely: To any binary relation ¢ there is an-integer [, 0 £ I < n — 1 such that
Su...udl=9o"tu. . Ut

In particular we prove:

Corollary 1. If 4 < o, then
Sdudtu...ud=pugtu..ug".
Proof. In this case a; € a,0, for every a; € Q. Hence, by the proof of Theorem 1,3,
a6, = a,00, for every a; € Q. Therefore o, = go,, and o, = ¢'g, for | = 1. This
implies
0 =00, ={0U...ud gy =20dd,U...08% =0,.

We also mention

Corollary 2. For a binary relation ¢ we have

n

Su..ud=puU...Uug

if and only if
gulu..ug'=0"ugttu...ug™ L.

We conclude with a further (in no way trivial) result:

Theorem 1,4. For any binary relation g we have

dudu..ud=(udiu..ug).

Proof. We have

03 =(QuU...U@") gs = 005U %0, U ... U "0y .



Now, since
2 3
000 D @°0p D 070 D ...,

we obtain ¢ = gg,. Further o3 = g0 = 0%gy, 06 = 0°0y, ... and finally ol =
=¢"Y5, = 0" Meutu..ug) =0

Remark. Here again the result is sharp in the sense that, in general, the exponent n
cannot be replaced by a smaller one.

2. SOME REMARKS ON THE MATRIX REPRESENTATION
OF BINARY RELATIONS

To any ¢ € B, we can associate an n x n “matrix” M(g) = (e;;) with elements 0
and 1 by writting e;; = 1 on the place (i, j) if (a;, a;) € ¢ and e;; = 0 otherwise.

We define the product M(g¢) M(c) by the usual multiplication of matrices, where
for the elements 0 and 1 the addition and multiplication is defined by the following
rules:

0+0=0, 1.0=0,
0O+1=14+40=1, 0.1=1.0=0,
1+1=1, 1.1=1

Further we define the sum of two “matrices” M(g) U M(o) as the ordinary sum of
two matrices, where the addition of the elements satisfies the above rules.

Finally M(0) n M(0) is again an n x n “matrix”, where the elements of the result-
ing matrix are constructed elementwise by means of the rules 0 N0 =01 =
=1n0=0,1n1=1.

The correspondence ¢ — M(g) is an isomorphism of the semigroup B, onto the
semigroup of all such “matrices”.

In particular

00 = M(g) M(c) = M(go) .

Also gu o - M(g) u M(c) = M(gu o) and ¢ N o — M(e) n M(c) = M(g N o).

Note that z — M(z), where M(z) is an n x n “zero-matrix” and w — M(w),
where all entries in M(w) are 1. Further M(4) is the “unit matrix” of order n.

The isomorphism ¢ — M(e) seems to have been first considered in extenso by J.
Riguet ([21]). )

In the following we shall often use (mainly in examples) this matrix representation
of binary relations.

In a series of papers ([23]—[29]) I have dealt with the properties of non-negative
matrices. Since I have been mainly interested in properties that depend only on the
distribution of zeros and non-zeros I used a method which may be considered in
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some sense as a converse approach. To any non-negative n x n matrix M = (a;))
we may associate in an obvious way a binary relation g, written in its matrix represen-
tation M(g), by writing 1 on the places where a;; > 0 and 0 otherwise. The semigroup
of all n x n non-negative matrices is in this way homomorphicaly mapped onto B,
This has led me to the present investigations.

But the study of non-negative matrices even from the point of view of the distribu-
tion of zeros and non-zeros is not the same as the study of binary relations. The
following simple example will provide some insight into the situation. Consider the

binary relation ¢ on @ = {a,, a,} with M(g) = (: ?) Clearly, ¢ is an idempotent

. . . 0\ . s
€ B,,. But there does not exist a non-negative matrix <Z > with abc > 0 which is
c

idempotent. This makes it clear that the types of idempotents € B, are much richer
that the types of idempotents in the semigroup of all non-negative matrices.

I recall — for further purposes — that a non-negative n x n matrix M is called
reducible (more precisely: permutation—reducible) if there is a permutation matrix P

such that PMP~" is of the form (A“ 0 >, Ay, A,, being (non-negative) square

21 A22 i
matrices. Otherwise it is called irreducible. It can be easily shown that to any non-

negative matrix M there is a permutation matrix P such that PMP ™! is of the form

A4,,0 ... 0
Ay Ayy .. 0

2.1

Asl As2 e Ass

where A;; are irreducible, including the case that some of the 4;; may be zero matrices

of order 1.
Example 2,1. Let M be the non-negative matrix

a; a, 0 a,
b, b, 0.5,
¢y ¢; 0cy
0 0 00/

with a;b;c; > 0, i = 1, 2, 4. Choosing

0001
0100
1000
0010
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we obtain

PMP™!' =

¢y €3 ¢y |0

Here A, = 0. It should be noted that there does not exist a permutation matrix Q
such that in QM Q™! the matrix A4, is a non-zero matrix. This remark should under-
line that the positions of the matrices 4;; in the main diagonal are not arbitrary.

We cann apply the preceding remarks to binary relations. If ¢ € B,, we define ¢~
as follows: (a;, a;) € ¢" < (a; a;) e g.

A relation 7 € B, is called a permutation relationifand only if in ™! = n7'n = 4.

To any g € B, there is a permutation relation n such that the matrix representation
of ¢ = men™" (i.e. M(c)) is of the subdiagonal form (2,1), where A;; is either a “zero
matrix of order 1” or A;; corresponds to an “irreducible subrelation ’of ¢ in a sense,
which will be later precisely defined.

It should be noted in advance that the notion of ‘‘reducible relation’ will be defined
in §4 in a somewhat other form than the reducibility of non-negative matrices.
(Roughly to say our definition will exclude superflous zero rows and zero columns.)

Note also that if (o) is any of the functions k(g), d(g) r(), t(¢), we have f(p) =
= f(mgn™"), so that it is sometimes useful to consider ¢ transformed to the “normal
form” (2,1). ‘

3. THE BEHAVIOUR OF THE “ROWS”

For a given binary relation ¢ and an element a; € Q consider the sequence
(351) E aigaaig2: aiQS: v

The elements of this sequence are subsets of @ (including sometimes the empty
subset 0).

Denote by k; = kg) the least integer such that a;0* occurs in (3,1) more than once.
Let further d; = dg) be the least integer =1 such that a;0** = a,0**. Then (3,1)
is of the form

kitdi—1 I a

ki—1 ki k;
aQ, ..., a0 |aiQ s e 440 i@ e

For any integers u = k;, v 2 k; we have a;0* = a;0" if and only if u = v(mod d,).
Clearly k; £ k(¢) and d; < d(g). For further purposes denote k* = max k; and
d* = [dy, dy, ..., d,] (the least common multiple of the ds). P=Lyem
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With k* just defined we have k* < k, and a;0" = a;0*"* *' for any integer A, > 1.

Choosing in particular 1; = d*/d; we have a;0*" = a;0""** (for all a, € Q). Hence
0" = ¢"**". This implies k* > k and d | d*. Therefore k = k*. On the other side
¢ = ¢*** implies a,0* = a;g**?, hence k = k + d (mod d,), i.e. d;|d. Therefore
[d,dy, ..., d,]| d, ie. d*|d. Finally d = d* We have proved:

Theorem 3,1. For any binary relation ¢ we have

a) k(o) =_~1]n?x k{o);

b) d(Q) = [di’ d27 tey dn]‘

The computation of d; and k; can be sometimes simplified by means of the fol-
Towing

Lemma 3,1. Let a0 = {o,, ag, ..., a,}. Then

a) di I [da’ dﬂ, CERTY dv]:
b) k; < max {k,, kg, ..., k,} + L.

Proof. For any e {«, 8, ..., v} we have

aggkg — aégkéugagl
Denote k' = max {k,, ..., k,}, d' = [d,, dj, ..., d,]. Then for any Ze{a, B, ..., v}
and any integer 4, = 1 we have

k' k' +igd
a0" = a0 3%,

Put 1, = d’[d.. We then have
a0 = a‘:Qk’+d"
Summing through all ¢ we obtain

k' +d’

(o;ie) ¢,

(ai0) &*

P N T I
a0 = a;0 .

Hence k; < k' + 1 and d; | d'. This proves our Lemma. .
If a; ¢ a0, then we certainly have d; | [d,,...,d;—y, d;y,, ..., d,] so that we get
the following Corollary:

Corollary. If a; ¢ a0, then

dle) = [dy,...dioi, divys-on dy] -



We now turn our attention to the collection of sets

ki+1

R; = {a;¢", a; 0", .., a4 1}

It follows from the definition of k; and d, that any segment of length d; and beginning
with a,¢', where I 2 k;, gives (up to the order) the same sets. In particular,

R; = {aiQr+ls aiQr+25 ceey aiQHd'} :
Using our notation d = o"*! §% = ¢"*2 ... we get the following
Lemma 3,2. With the notations introduced above we have
{aiQk*, . aiQk"‘L""’l} = {aié, ad?, ..., aiéd‘} .

Remark. Note that a,8' = a,6" iff | = [, (mod d;). In particular, 4,6 = a,6™
for any integer « = 1.

Definition. We shall say that the couple (a;, a;) is accessible by the relation ¢ if
(a,a)eeuo*u...ug"=¢.

A couple which is not accessible by g is called inaccessible by o.

If (a;. a;) € o' for some | = 1, then (a;, a;) € o for any integer & > 1. In particular,
we have
(3,2) (@ a)cdud’u...ud=o0.

Conversely, if (a;, a;) € 6, then since o = g, (a;, a;) is accessible by ¢. Now (3,2) is
equivalent ot the fact that

a,eadvadsiu...uad.

With respect to Lemma 3,2 and the remark thereafter we have: The couple (a,, a;) is
accessible by g if and only if

(3.3) : a,eaduadtu...uad.

Suppose now that (a;, a;) is accessible by o. Then (3,3) implies that there is an integer /,
1 £ 1 £ d,, such that q, € a,6'. This implies

ad < ad¥ .. cadt cadtt = g8,
Hence a,6' = a,6%. We have proved:
Lemma 3,3. If (a;, a;) is accessible by ¢, then among the sets
ad, ad?, ..., ad"

there is a unique set containing a;, namely the set a ;6.
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Lemma 3,4. Suppose that (a;, a;) is accessible by . If a; € a;0', then d; | 1.
Proof. a; € a;o' implies
aeap caplc ... captcagtt ...

There exists therefore an integer s such that a0 = a;,0**"!. By definition of d; we
have d; | (s + 1)1 — sl, i.e. d;| I, q.e.d.

Corollary. Suppose that (a;, a;) is accessible by ¢. Denote by h; 2 1 the least
integer such that a; € a;¢", then d; | h,.

Notation. In the following h; will always have the meaning introduced in the last
Corollary.

Remark. Since h; < n and d,; [ h;, we have d; < n. (This will be proved again and

independently from the above considerations in Theorem 4,1.)

Example 3,1. In general it is not true that d; = h;. Let, e.g., ¢ be the relation with

001
M(g)={101
110

It is easy to compute that a, € a,0?, so that h; = 2, while d, = 1. [This follows
also from the next Theorem 3,2, since we have (a,, a;) = (ay, as)(as, a;) € 0%,
(ay, a;) = (ay, a3) (a3, a;) (as, a;) € @*, ice. a, € a,0” and a, € a,¢>.]

Theorem 3,2. Suppose that (ai, a,) is accessible by g. Then d; is the greatest common
divisor of all integers A for which a; € a,0™.

Proof. Consider the sequence

a0, .. ad "t agh a0, a0tt! | aid**e, ...
Let ' < A" < ... < A be the set of all A < r for which a; € a;0* holds. By Lemma
34d,| X, d; |2, ..., d; | A*. By Lemma 3,3 for 2 2 r + 1 we have a; ¢ a;0* if and
only if A = r + d,, r + 2d;, ... Each of these numbers is divisible by d, and, more-
over, d; is clearly the greatest common divisor of all these numbers. This proves our
statement.

We have seen that a,6¢ = a,6%. This will be used in the proof of the next Theorem.

Theorem 3,3. If a,0% + 0, then there is at least one element a; € a,8% such that
(ag, a;) is accessible by g.
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Proof. Suppose without loss of generality that a,6¢ = {a;, az, ..., a}, 1 £ s < n.
Since §*4 = &, we have o, 6! = {a,8% a,8% ..., a,0"}. Hence we can find integers
iy, 0py e gy, g all €{1, 2, ..., s} such that

d d d d
ai€a,d, a; €a,8% a;,ea,d, .., a;,_ €a;0°.

The s + 1integers I = iy, iy, ..., i, cannot be all different. There is therefore a couple
l+1l+h(0<I1<s—1,1=1+ h < s)suchthat i; = i;,, We than have

d d d __ d
a; € ail+16 > diy, € al'nz& yeres Qigayoy € ail+h5 - ahé .

This implies

d\ Sd __ d d d
aile(aiuzé )5 - al'u-za < ains(s <. & air(s :

The relation a; € a;,8? says that (a;, a; ) is accessible by g. This proves our Theorem.
I 1 i 1

Remark. Note that if ;0 = 0, then a,g need not be empty. Of course, in this case
we have d; = 1.

Example 3,2. In general it is not true that if a;6* # 0, it contains only such ele-
ments a, for which the couple (a;, a) is accessible by ¢. This shows the example of
the relation g with

0000
1100
M(@) =111 00
1111

Since ¢ = o2, we have ¢ = &% Here a,0% = a0 = {ay, a,, as, a,}, while (a3, a;) is
inaccessible by g.

Lemma 3,5. If a,0 = {a,, ag, ..., a,}, then d; | [d,, dy, ..., d,].

Remark. This is analogous to Lemma 3,1 and the result is non-trivial only if
a; ¢ a;0%, ie. (a;, a;) is inaccessible by ¢.

Proof. By definition of d,, dg, ..., d,, we have for any integers A, = 1, 4; =
z2L.., 421

a0

a,0 = aﬁéi,ﬁdﬁﬂ ,

aaélad,-rl ,

I

Denote d* = [d,, d,, ..., d,] and put A, = d*/d,, ..., A, = d*/d,. Summing all these
sets we get :
(@ Qgs oo v} 6 = {0, ap, ..., a,} 671,
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: di+1+d*
aiéd,i-l — a‘(s i .

This implies d; | d* = [d,, ..., d,], q.e.d.

Remark. If (a;, a;) is inaccessible by ¢, then for any a, € a;6% we have a; ¢ a,5’.
For, a; € a,* would imply a; € a,0° = (a;:67) 8 = a;6, contrary to the assumption
that (a;, a;) is inaccessible.

Lemma 3,6. Let (a;, a;) be inaccessible by ¢ and a0 = {a,, a,, a,, ..., a,}. If
(9 a,) is inaccessible, then d, | [dg, d,, ..., d,].

Proof. a8 = {a, ...,a,} implies a0 = {a,8% a8, ..., a,0°} = {a, ..., a,}.
Therefore a,0? is a subset of {a,, a, ..., a,} which does not contain a,. Hence (by
Lemma 3,5) d, | [dg, d,, ..., d,]. Now d; | [d,, dg, ..., d,] implies d, | [dy, d,, ..., d,].

Remark. In Lemma 3,6 we have proved: If a6 = {a,, ..., a,}, then on the “right
side” of d; ] [d,, ..., d,] it is allowed to delete any d; corresponding to an inaccessible
couple (a;, a;). But we have not proved that it is allowed to delete simultaneously
more than one of these numbers. This will be proved in Theorem 3,4.

Lemma 3,6 may be reformulated in the following way.

Lemma 3,6a. Let (a;, a;) be inaccessible by ¢ and a,6° < {a,, a,, ..., a,}. If (a, a,)
is inaccessible, then d; | [d,, ..., d,].

Proof. If a, € a,5%, we may delete d, by Lemma 3,6. If a, does not belong to a;6%,
then (again by Lemma 3,6) we have d, | [d;, ..., d,], so that in both cases d, may be
deleted.

Theorem 3,4. Let (a;, a;) be inaccessible, a;0° % 0, and let ag,, ay, ..., a; be
those elements € a;0° for which (ag,, ay,), ..., (ay,, as,) are accessible. Then d, |

l [dﬂn’ dﬂz’ nhe d/f.;]'

In other words: If a4* = {a,,a,, ..., a,}, then on the “right side” of
d;| [days doys -, d,,] we may delete all d, corresponding to the inaccessible couples
(a4 aq,)-

Proof. We prove it by induction. Suppose that if (a;, a;) is inaccessible and
ap' < {a,, ..., a,}, we have yet proved that on the “right side” of d; | [d,,, ..., d, ]
it is allowed to delete simultaneously any m-tuple corresponding to inaccessible
couples. We shall prove that it is allowed to delete any (m + 1)-tuple (if, of course,
such an (m + 1)-tuple exists).

By Lemma 3,62 our statement is true for m = |.
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Suppose without loss of generality that (a,,, a,,), ..., (@a,» @a,), (as,., ,, 4,,.,) are
inaccessible. We have

i _ - d 4 d
;8% = {ay,, Quyy ooy g Ay s ooos Qs oo g} = {0,,0% .0, 8% ... a, 8% .

1. Suppose first that none of the elements a,, ..., a,, is contained in a,,, &%
Then a,,, 6% is a subset of ;0 which does not contain a,,, ..., a,, and, of course,
it does not contain a,,, , also. Hence by Lemma 3,5

[dlnn-z’ dﬂnn—s’ e dﬁl’ e d/’u] :

..] implies by the inductive supposition
dg,s ...

Gm+1

(3.4) d

Now d; ][dal,.. d,.d

d l [dan +12 41m+2’ *
o dy, ]

2. Suppose next that at least one of the elements a,,, a,, --., a,,. say a,,, is con-
tained in a, % Then by the remark preceding Lemma 3,6 we have a, ., ¢ a, 8"

Am+ 12 ﬂtm+2’ ‘

-] and with respect to (3,4) we have d, | [d

A+ 2° dm+3’ e

L + 1

Now a,,6%is a subset of a;6% and

.
00 {Ayys o eos gy Qg s Gps - oos Ag )

Therefore
d,, ] [da‘, sy Ao s dﬁv] .

By the inductive supposition it is allowed to delete the m numbers d,, ..., d, , i.e.

(3’5) dax [ [ddm—nﬂ M4 dﬂu] -
Now d,|[d,,, ... d,,, dy,, s .- dg,]. By the inductive supposition we may delete
dyys - o> Ao, do,, . > SO that

di| [days dyy s - dp,] -

With respect to (3,5) we finally have d; | [d
tion.

2m e -+ » dg, ] This completes our induc-

3. We now easily conclude the proof of our Theorem.

With respect to the result just obtained we may d:lete in d; ] [daps das -y dg ]
simultaneously all d, corresponding to inaccessible couples (a,,a s a ) so that we obtain
di|[dg,, ... dy,], where all (az, a,,) are accessible. With respect to Theorem 3,3
(since a,0 + 0) there remains always at least one d, . This completes the proof of
our Theorem.

We now sharpen Theorem 3,1.

Theorem 3,5. Let ¢ be a binary relation for which 3 N A % z. We then have
d(o) = [di), diyy -, dy,), where {(a;,, a,), ... (a;, a;)} = 8 0 4.
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Proof. By Theorem 3,1 we have d(¢) = [d}, d>, ..., d,]. If a;6° = 0, then d; = 1
and d, can be deleted. If a,6? # 0 and (a;, a;) is inaccessible, then by Theorem 3,4 d;
divides the least common multiple of some d, which correspond to accessible couples
(ag, ag). Hence again d; may be deleted. Deleting the d;’s corresponding to these two
types of “rows” we obtain our statement.

The next Theorem gives a further characterization of the number d(p).

Theorem 3,6. Suppose that § N A + z. Then d(g) is the least integer s = 1 for
which g 0 A < 6° holds.

Proof. Suppose that g n 4 = {(a, a,), ..., (a,,a,)}. By Lemma 3,3 we have
(az a;) €% for A =a,...,v. Since by Theorem 3,5 [d,,...,d,] = d, we have
onA4cd

On the other side if (a,, a;) € 6* = ¢*"*" (for 2 = a, ..., v), then by Lemma 3,4
we have d, ] s, hence d | s. This proves our Theorem.

We conclude this paragraph with the following

Theorem 3,7. If g N A = z, then d(g) = 1 and k(g) < n.

Proof. It follows by Theorem 3,3 that § n A = z if and only if ;0% = a,6? = 0
for every a,e Q. Hence &% = z, i.e. § = z, and d(g) = 1. Further by Theorem 1,3
we have ¢" = z, which implies k(g) < n.

4, SOME ESTIMATES FOR k(¢) AND d(o)

Lemma 4,1. If (a,, a;) is accessible by ¢, then there is an integer k;, 1 £ h; < n,
such that a,0 = a,o"t*!.

Proof. By supposition there is an integer h;, 1 < h; £ n, such that a; € a;o".
Hence a0 < a1,

Lemma 4,2. If (a;, a;) is accessible by ¢ and ao contains g; 2 1 different elements
€ Q, then

a) kié(n—gi)hi+ I3
b) dll his henCe di é n.

Proof. By Lemma 4,1 we have

a0 < aiQhH‘l - aiQZhi'*’l c...c aiQ(n‘yl)hH’l

- aig(n—y1+1)h,+1 .

Since a0 contains g, > 1 elements e ©, the set a,0"** is either equal to a0 or contains
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atleast g; + 1 different elements e Q. Further, a,0***! is again either equal to a;0" **
or contains at least ¢; + 2 elements € Q. Etc. The chain cannot have more than
n — g; + 1 different members. There exists therefore an integer , 0 <1 < n — gy,
such that g™ %! = g+ Dhi+1

This implies:

a) k; < Thy + 12 (n—g)h, + 1
b) di| (1 + 1) hy + 1= (In, + 1), ie. d; | hy.

This proves Lemma 4,2.

Lemma 4,2 implies:

a)Ifg;z2and1 S h, <n,wehavek; <(n —2)n+ 1 =(n— 1)

b)If g;=1 and 1 <h,<n-1, we have ;= (n—1)(n - 1) + 1 =
=(n-172+1L

c)ifg;=1andh, =n,wehavek, <(n — )n +1=n>—n+ 1

We show that the result sub c) can be sharpened.
We formulate this as a Lemma:

Lemma 4,3. With the notations introduced above we have: If g; = 1, h; = n, then

a) either k; = 1 and d, = n,
b)ork;<(n—172+1landd;, <n — 1.

Proof. Note that the supposition implies that in this case a; € a;0" and a; ¢ a;0"
for h < n.

We first show that in this case a;0", 2 £ I £ n, contains exactly one element € Q
which is not contained in L = a;,g U ... U a,0' ™.

The set a,0' contains at least one element not contained in L. Fora,o' < ao v ...
..U a' ! implies a,0'tt catu...uaQ capu...uapE'”!, and repeating
this argument we get a,0" < a,0 U ... U a;0'"!. Since a;€ a;0" < L, there is h,
1<hsl-1%<n~—1,suchthat a; € a;o" This is a contradiction to &, ¢ a," for
h < n.

Note, by the way, that this implies that Lcontains at least I — 1 different elements
e Q. '

Suppose now that a,0' contains at least two elements not contained in L. Then
Ly a;0" would contain at least | + 1 different elements € Q. This would imply in an
obvious manner that a,0 U ... U a;0" ! contains all elements e , a contradiction

to a; ¢ a;0" for h < n. This proves our assertion.
Consider now the finite sequence a;0, a;0%, ..., a;0" a;o"**.
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1. Suppose that each of the sets a;o' (I =1,...,n + 1) contains exactly one
element € Q. Then a;€ a;0" implies a; = a;0" and a;0 = a;0"*", hence k; = 1,
d; = n.

2. Suppose next that at least one of the sets a;0' (I = 1,..., n + 1) contains more
than one element. Let I, be the least integer such that a;0" contains more than one
element € Q. By supposition I, 2 2. Further I, + n + 1 since (as we have just seen)
the supposition that a,0" contains a unique element € Q implies a;0 = a,""?, ie.
a,0"*! contains a unique element € ©, a contradiction. Hence 2 £ [, £ n.

Write a0 = {a,}, a;0> = {az}, ..., a0 " = {a,}. Since a;0" contains at least
two elements € Q and only one not contained in {a,,, gy -y av}, there is a a, e
€{a, ag, ..., a,} such that {a,} € a;p. Consequently there is an integer u, 1 <
< u < ly — 1, such that {a;} = 4,0°7" = a,0". This implies

—u lo+u lg+(n—1)u

a0 " < apP® c gt < .. coagp

This chain of n + 1 sets cannot have all members different one from the other. There

is therefore an integer v, —1 £ v £ n — 2, such that

lo+ou Ig+(v+)u

a;e = a0
This implies:
kkslhh+ously+(n—2)(,—1)=
=) = (=2 a1~ (1 =2 = (n— 12 +1,
and
di|lo + v+ D)u— (I + vu),

ie. d; l u, whereu £ I, — 1 £ n — 1;in particular, d; £ n — 1. This proves Lemma
4,3.
Lemma 4,3 together with the cases a), b) considered above imply:

Theorem 4,1. If (a;, a;) is accessible by ¢ we always have

a) k; = (n — 1) + 1,
 b)d; = n

It can be proved on examples that these results cannot be sharpened.
We next give an estimation for k; if (a;, a;) is inaccessible. (Recall that card Q 2 2.)

“Theorem'4,2. If (a;, a;)'is inaccessible by g, then k; < (n — 2)* + 2.

Proof. I. We shall prove it by induction with respect to the number n. The Theorem
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holds if n = 2, since it is easy to see (by considering all possible cases) that in this
case we have k; < 2.

Let card Q@ = n = 3 and suppose that our Theorem holds for relations defined on
any set Q, with card Q, =n-1

2. Suppose that (a;, a;) is inaccessible by ¢. Denote 4; = a0 U ... U a,0" and
B; = Q\ A,. Since g; € B;, B;is not empty.

We first state that the rectangle A; x B; does not belong to ¢. For, if for some
a, € A; and some a, € B; there were (@, ag) € 0, i.e. a € a0, we would have

apea < (aeu...uap)e =
=ap*u..vaQ Tt capu...uap = A;,

contrary to the assumption.

Denote a;0 = {a,,, @yy ---» G,,}. By Lemma 3,1 we have k; < 1 + max k,,.
J=1,....5

If a, is any element € A;, we have a;0 = 4,0 = (a;e U a@* v ... U aQ") e < A,
Consider the relation ¢, = ¢ N (4; x 4,). Since for any a, e 4; we have a,0 < A,
we clearly have a,0 = a,0, for all a; € A;,. This implies that for any subset 4" < 4,
we have A'¢g = A'g,. In particular: a,0 = a,0, Further a,0” = (a,0)0 =
= (a,,00) 0 = (a4,00) 00 = a,,05 (we have used that a,@, = A;). Analogously
a,0" = a,,0y holds for any integer u = 1.

Therefore k,(0) = k.(¢o) and d,,(0) = d,(eo)-
Now g, is a relation defined on 4; = Qand card 4; < n — 1.

If a,€a;0 < A; and (a,, a,) is accessible by ¢, we have (by Theorem 4,1) k, <
<(n—1-1+1.
If a, € A; and (a,, a,) is inaccessible, we have by the inductive supposition &, <
< (n—1—2)* + 2. Hence
ki <1+ max k, £ 1+ max{(n -2+ 1,(n—-3>+2}=(n-27+2,
Ji=1,... s

for n = 3. This proves our statement.

Remark. It can be shown on examples that the result of Theorem 4,2 cannot be
sharpened.

Theorem 3,1, Theorem 4,1 and Theorem 4,2 imply:

Theorem 4,3. For any binary relation ¢ on Q (with card Q = n) we always have
k(o) £ (n — 1) + 1.
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Remark. (Important.) If (a;, a;) is inaccessible, then d{g) £ n need not hold.
This can be shown on the example of the relation ¢ with

101100000 0
[Joooooo
00j01000]0
0000100
Me@)=160/00010
0000001
0010000

01000601

(=2 = = I = R )

Here (ag, ag) is inaccessible, and dg = 10. It is easy to compute (in simplest way by
considering the corresponding oriented graph) that

agQ = {aza 07} age® = {az, as} ago® = {azv ‘15}
‘1892 = {ap 03} asQ6 = {au 47} ast = {an 06} )
ag0® = {a,, a,} age’ = {a,, a3} age'' = {a;, a;} = ago.

‘1894 = {au as} a898 = {au a4}

i

This shows that kg = 1 and dg = [2, 5] = 10. (This is in essential the simplest example
of the kind required.)

5. REDUCIBLE AND IRREDUCIBLE RELATIONS
In the following we shall denote
(e) = pri(e v @') = praiev ')
Clearly we always have ¢ < II(g) x II(¢) and card IT(¢) = n, < n.

Definition. A relation g is called a square if II{g) x II{g) = o.

A square has always a non-empty intersection with the diagonal.

Definition. A relation g is called reducible if I1() can be written as a union of two
disjoint non-empty sets II(g) = AU B, AnB=0,and g = (4 x A) U (B x 4A) U
v (B x B). g is called completely reducible if moreover ¢ = (4 x A)w (B x B).

A relation which is not reducible is called irreducible.
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Remark. When speaking (in all what follows) about irreducible relations we shall
always suppose that ¢ # z, hence card IT(¢) = 1. If card/I() = 1, then g is ir-
reducible.

A square is always irreducible. The diagonal is completely reducible.

Example 5,1. Consider the set Q = {a,, a,, a5} and the relation ¢ with

1
0

fe I N

0
0
0

Here II(g) = {a;, a,} and ¢ = II(¢) x I(g). In the sense of our definition ¢ is
irreducible. [In the sense of the theory of non-negative matrices the matrix M(g) is
reducible. From our point of view there is a superfluous zero row and zero column. ]

Example 5,2. Consider the relation g on Q = {a;, a,, a, a,} with

M(o) =

[en I
O = =
[== R R B ]
O e =

Here II(¢) = Q. Write 4 = {ay, a,, a,}, B = {a3}. Then ¢ = (4 x 4) U (B x A),
so that g is reducible.

Lemma 5,1. If ¢ is irreducible, then pri(e) = pra(e) = II(g).

Proof. For any a;ell(o) we have a0 + 0. For, a0 = 0 would imply ¢
< {({e)~ a;) x (H(e)\ a)} v {(I1(¢) N a;) x a;}, contrary to the assumption of
irreducibility. This proves pr,(¢) = II(g). Analogously pr,(g) = II(o).

Clearly g is irreducible if and only if g* is irreducible.

Lemma 5,2. Let ¢ be irreducible. Let M be any proper subset of H(g). Then Mg
contains at least one element not contained in M.

Proof. Let M = {a,, a,, ..., a,} be a non-empty proper subset of /I(g). Suppose
for an indirect proof that

{a, a5 ...a,} 0 = {a, aps-.na,} .

Let be (a,, a;,)eq. If a,e M, then we necessarily have a; e M. In other words:
If a, e M, a, ell(o)\ M = B, then (a,, a,) ¢ ¢. Hence ¢ = (M x M)u (B x M)u
U (B x B). This says that g is reducible, contrary to the assumption.
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Remark. Lemma 5,2 need not be true if g is reducible. Let be Q = {a,, a,, a,, a,}
and p the relation with
1000
1000
1100
1110

M(o) =

Here IT(g) = Q. Take M = {a,, a,}. Then Mg = a,0 U a,¢ = {a,}. Hence Mg =
o M.

Put in Lemma 5,2 M = a;0. We then have the following important

Corollary. Suppose that ¢ is irreducible, a,eIl(o). If a0 & (), then a,0®
contains at least one element € II() which is not contained in ag.

Lemma 5,3. Suppose that ¢ is irreducible and a; e I1(g).

a) If a,o contains g, = 1 elements, we have a;0 U a,0* U ... U a" **"' = Il(o).
b) In particular, for any a;eIl(g) we always have a,p L a*u ... U ag" = II(g).
c) If a;ell(g) and i % j, we have aje aou a;@> U ... U a0 .

Proof. Note first: Since a;0 = [I{g), we also have a;0* = (a0)0 = U a0 =
< II(p). Analogously a,e' = I(g) for any integer I > 1. ax€ait
a) By the last Corollary a;0 v a,0* contains at least min (n, g; + 1) elements
€ I1(g). Applying Lemma 5,2 we obtain that (a0 U a0®) v (a0 v a®)e =
= a;0 U a;0* U a0 contains at least min (n,, g; + 2) different elements eI1(g).
Repeating this argument we obtain our result.

b) This follows from the fact that a;0 is not empty, so that g; = 1.

c¢) By Lemma 5,2 a; U a;0 contains at least two elements € I1(g). By the same argu-
ment as sub a) a; U a0 U a;e® contains at least three elements GH(Q). Finally we
obtain a; U a,o U ... U ag™ ' = II(g), from which our statement follows.

Lemma 5,4. If ¢ is irreducible and a, €TI(o), then (a;, a;) is accessible by o.

Proof. Follows from pr,(¢) = II(¢) and Lemma 5,3 (assertion b).

Lemma 5,5. If ¢ is irreducible, then II(g) = II(¢") for any integer v = 1.

Proof. If g is irreducible, then[1(¢) ¢ = U a;0 = pra(e) =I1(g). Hence II(g) ¢° =
aiell(e)

= I1(g) for any integer v = 1. This proves pr,(¢®) = I1(¢) and a fortiori pr,[(¢") '] =

=11(g). Analogously ¢I(0) = U ea; = pry(e) = (e), hence ¢"M(g) = II(g).

o sell

(o)
This proves pr,(¢%) = I(g). Now pry[e® L (¢)7 '] = H(e), hence I1(¢*) = II(p)-
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-Theorem 5,1. 4 binary relation g is irreducible if and only if
euoiu...u g
is a square, namely I1(g) x II(o).

Proof. a) Suppose that ¢ is reducible and IT(¢) = AUB, AnB =90, (4,B
non-empty), and
e (4 xA)u(Bx A)u(B x B).

Then it is clear that no power of ¢ can contain (a;, a;) with a; € A, a;€ B, so that
ou @?uU ... U @™ cannot be a square.

b) Denote (a;, M) = U (a; a;). If ¢ is irreducible, Lemma 5,3 (assertion b)
implies oM

(ai a)u(a, a0®) U ... U (a;, ae™) = (a, (o)) .
Summing through i = 1, 2, ..., n, we have:
evtu...u " =1(0) x M(g).

A relation ¢ on @ may have but need not have irreducible subrelations. We shall
be interested in “maximal” irreducible subrelations of a given ¢ (if such exist).

Lemma 5,6. If ¢y, 0, are two irreducible subrelations contained in ¢, and g, N
N @, + z, then g, L 0, is an irreducible subrelation of ¢.

Proof. It is sufficient to prove that the transitive closure of g, v g, is a square,
namely (I(g,) v I{e,)) x (M(e;) v H(g,)) = .
a) First it is obvious that ¢, U ¢, < .

b) Let (a;, a;) be any element e 1. Suppose e.g. that a;€1(g,), a;€I(g;). (The
remaining three cases can be handled analogously.) By supposition there is at least
one couple (xo, yo) such that (xo, yo) € ¢; N ;. Since a; e (g,), xo € H(g,), there is
an integer & such that (a,, x,)€ ¢}, 1 £ h < n,, < n. (We use Theorem 5,1.) Since
(%> ¥o) € 01, We have (a;, xo) (Xo, ¥o) = (a; ¥o) € 0" 1. Now since yo €I(g,), there
is an integer /, 1 < 1 < n,, < n such that (y,, a;) € 05. Therefore

(@i ¥o) (vo» a;) = (ap a)) € 1705 < (0, v @)t <

< (QlUQZ)U(QlUQz)ZU-~-U(Q1U92)"'=Q1UQ2-

Hence © < (g, U g,). This proves t = ¢, U g,.

Definition. An irreducible relation g, is called maximal in g, if ¢, < ¢ and for
any irreducible relation ¢’ for which g, < ¢" < ¢ we have g, = ¢'.
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Remark. If g is irreducible, it is itself the unique maximal irreducible subrelation
of p.

Lemma 5,7. The intersection of two maximal distinct irreducible subrelations
of ¢ is the empty relation z.

Proof. Suppose that g, and g, are two maximal irreducible subrelations of ¢ and
01 N 02 F z. We cannot have ¢, < g, (or 0, < gl) since otherwise one of them would
not be maximal. Hence g, v @, is larger than ¢, and ¢, and by Lemma 5,6 irreducible,
contrary to the assumption of maximality. Therefore 9; N ¢, = z.

Theorem 5,2. Any relation ¢ on a finite set Q can be written as a union of disjoint
relations in the form

(5.0) 0=g,U...Ug, UV,

&

where o, (i = 1,...,v) are maximal irreducible subrelations of ¢ and v is either z
or a relation which does not contain irreducible subrelations. The decomposition
(5,0) is (up to the order of summands) uniquely determined.

Proof. If ¢ does not contain an irreducible subrelation there is nothing to prove.
Let ¢, be any maximal irreducible subrelation of ¢. Write ¢ = g, U 0,0, "0 = z.
If ¢, is an other maximal subrelation we have by Lemma 5,7 ¢, < ¢ and we may
write ¢ = 9, U 0, U 0 (gz Noy = z). By this proceeding we obtain a decomposition
into disjoint summands ¢ = ¢, U g, U ... U @, U v, where v is either z or does not
contain an irreducible subrelation. Suppose that there is an other such decomposi-
tion ¢ = 01 U 03 U ... U g, U i, where o} are again maximal and irreducible and u
u
has no irreducible subrelations. Taking the intersection with ¢, we get ¢, = U (¢} N

i=1
A o) [ e If o, were different from all the g}, then by Lemma 5,7 we would
have 9, = i n g, a contradiction with the supposition that u has no irreducible
subrelation. Hence ¢, is equal to one of the ¢}, say ¢; = ¢]. Repeating this argument
we prove that the sets {o,} and {o;} are identical, and moreover i = v.

Before proving Theorem 5,3 giving a criterium for the existence of irreducible
subrelations we prove the following Lemma which will be needed also later.

Lemma 5,8. The relation
g = {(ah’ aiz)’ (alz’ aia)’ (aiz’ ai4)’ AR (ail—l’ aiz)’ (ail’ aix)}
is irreducible.

Proof. Clearly II(g) = {a;,, ay,, ..., a;,}. The relation ¢* contains all couples with
the subscripts (iy, is), (i, is), .., (irs iz). The relation ¢* contains the couples with
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the subscripts (iy, is), (iz, is), ..., (i 13), a.s.0. Therefore gu > U ... U @' is the
square IT(g) x I(p), q.e.d.

Theorem 5,3. A relation ¢ on Q contains an irreducible subrelation if and only if
the transitive closure g of ¢ has a non-empty intersection with the diagonal 4.

Proof. The condition is necessary. If g, is an irreducible subrelation of g, then the
transitive closure of g, is a square, hence it has a non-empty intersection with 4.

Suppose conversely that g = gu @ U ... U g" [n, = card [I(g)] contains at
least one element € 4, say (a;, a;). Then ¢ contains (at most n,) elements of the type
(ai. a; ) (a;,, aj,), ..., (a;,, a;) such that their product is (a;, a;). By Lemma 5,8 the
relation go = {(a; a;,). (a;,, a;,), ..., (a;,, a;)} is irreducible. Hence ¢ contains an
irreducible subrelation ¢4, q.e.d.

Theorem 54. If ¢ does not contain an irreducible subrelation, then ¢" = z,
hence d(g) = 1.

Proof. Suppose that ¢" + z. Then g™ contains a product of n, terms of the form

(aix’ aiz) (aiz’ ais) cet (ai > 4 + ) .
Ao ny+ 1

Since the set of integers {iy, i, ..., iy l,,gﬂ} contains at most n, different numbers,
there is an « < n, + 1 such that i, = i; for some > « But then 0f~* (where
B — 2 < n,) contains

(@ipai,,) - (ai,_pa;,) =(a,a,)ed.

The more the transitive closure § = g U 0% U ... U @™ has a non-empty intersection
with 4. This is a contradiction to Theorem 5,3.

The final goal of the next considerations is to prove Theorem 5,6.

Let ¢ be reducible, [I(¢) = AU B, An B =0, A, B non-empty, and ¢ = (4 x
x A)u (B x A)u (B x B).

Denote ¢ N (4 x A) = 044 ¢ 0 (B x A) = g4, 0 0 (B x B) = ggp, so that o =
= 044" 04\ Cpp-

Denote further k(o44) = ki1, k(ess) = ka2, d(04a) = dy1s d(0gs) = d2.

Lemma 5,9. If 044 is irreducible, then g4, is a maximal irreducible subrelation

of ¢.

Proof. Let g, be a subrelation of ¢ such that ¢44 & Qo 1t is sufficient to show
that g, is reducible.

Since 0p < 044V Qg4 Y Opp We have either go M @pa + Z OF Qo N Qpy + Z (or
both). In any case II(go) M B # 0. Denote II(eo) N B = By. By supposition [I(g,4) +

659



+ 0. Further g4y = 4 x A and g,, < ¢ imply (o) = A nII(g,). Hence
M(go) 0 A # 0. Denote I1{go) N A = Ay, so that I(gy) = A, U B,, where 4, N
n B; = 0 and A,, B, are non-empty. We have
0 = (4, VB,) x (4, UB) =
= (4, x A))v (4, x B,)U (B, x A;)U (B, x B,).

Since ¢ N (4; x B;) = ¢ (A4 x B) = z and g, < g, we have g, N (4, x B,) =
= z,s0thatg, = (4; x Bi) U (B, x A,)u (B, x B,). This says that g, is reducible.

Theorem 5,5. With the notations introduced above, we have d(o) = [d,,, d2,]-

Proof. Note first that (4 x 4)(B x A) = (4 x A)(B x B) = (B x 4)(B x
X A) = z. The more 0440p4 = C44Qpp = C0pslps = .

Consider now the product

(5,1) " = (QAA U Qpa Y QBB)W .
This set is a union of summands each of which contains w factors. Such a factor is =+ z

if and only if it is of the form

w

a) either gY ,,

b) or opp,
C) Or Qpi0pAQuY Wy + Wy = w — L
Hence
(5.2) 0" =044V 05Vl U 05s0pa0iy)

wytwry=w~1

The last union is clearly contained in the rectangle B x 4 and we immediately get
0" N (4 x A) =04y, 0" (B x B) = ghp

1. By definition of the numbers k = k(g), d = d(g) we have ¢* = ¢**% Therefore
(A x A) =" (4 x A), ie ¢y = o' and analogously gy = g3*. This
implies d,, | d, d,, | d, and denoting d* = [d,,, d,,], we have d* | d.

2. Consider again (5,1) and (5,2).

a) Put w = k* = k;, + k,,. Then we have either w; = k;; or wy = kj,. (For

wy Sk —1, w, £k, —1 would imply w, + w, £ w — 2, contrary to the
assumption.) If w, Z kyy, then o33 = 053", 0Bi0sa0iy = 053 “opa0iy I wi 2

S 4%
2 kyy, then @3 = 044", 050404y = Opa0paQiy * - Hence

Kebdt _ kt+dr

¢ = (QAA Y Qpsa Y Qas)k* < (0aa Y QB4 Y 085 e
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This implies
(5’3) Qk*+d* c QkH-ld* .

b) Put w = k* + 2d*. Then analogously as above we have either w, = k;; + d*
or wy ; k22 + d*.

—d* 3 wy oo

Wwy 2 kyy + d* then 0p20p40%y = 0530504y © - 1wy Z kay + d*, 053054004 =
. awa—d* Wy
= Opg  @ppQay

Hence

(5’4) QA o gt

54

The “inequalities” (5,3) and (5,4) imply ¢“"**" = ¢*"*?*". Hence d(o) | d*. Now d | d*
and d* | d imply d = d*, which proves our Theorem.
By the way we obtained the following Corollary

Corollary. With the notations introduced above we have k(o) < ki, + k5 +
+ [dy1, dys )

Remark. The result of the Corollary is sharp in the sense that there are reducible
relations ¢ for which k() = kyy + k5 + [dy, d5,] holds. It is easy to derive from
this result that for any reducible relation we always have k(g) < (n — 1)*> + 1 but
it is not possible to get immediately the result of Theorem 4,2.

Theorem 5,6. If 04, 0,5, ..., 0, is the set of all maximal irreducible subrelations
of g, then

d(e) = [d(e,). d(02), ..., d(e,)] -

Proof. Suppose that ¢ is reducible and write in the sense of the foregoing Theorem
€ = 044" Qs 0pp- Then d(Q) = [d(QAA)a d(@ss)]-

If g4, does not contain an irreducible subrelation, we have d(¢,,) = 1 [hence
d(e) = d(ezs)].

If ¢, is irreducible, then by Lemma 5,9, ¢4 is a maximal irreducible subrelation
of g, and it is sufficient to examine in the following ggp.

If 044 is reducible, we may write A = A, U 4,, 4, " A, = 0, (A, A, non-empty),
and with ¢4,4, = Qa4 0 (Al X Al)v Quray, = Cau O (Az X Al)? Qard, = Q4q O (Az X
x A;). we have 044 = Qu,u, Y Curay VY Oaya,r Hence dloas) = [d(ou,a,) d(0a,4,)];
therefore d(g) = [d(04,4,) d(04,4,) d(05s)]-

Since, by Theorem 5,2, the set of all maximal irreducible subrelations of ¢ is
uniquely determined, it is clear that by this proceeding we get in a finite number of
steps Theorem 5,6.
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6. IRREDUCIBLE RELATIONS

In this section we shall suppose that g is irreducible and without loss of generality
we shall suppose that IT(¢) = Q. Recall the notation Q x Q = w.

We have seen that in this case pr,(¢”) = pr;(¢*) = @ for any integer v = 1, and
every (a;, a;) is accessible by ¢. Moreover by Lemma 1,5 and 1,6 4 < ¢". Note also
that wo = g0 = w. '

By Theorem 5,1 we have

7

ougiu..ug=o.

The more

ou@tu..ugtudu. Ut = .

Multiply tﬁis relation by ¢". On the right hand side we get ¢"w = . On the left hand

side we get @U@t u... U ! or ~ what is the same — g*u Tt u ...
... U @"*t¥7 L Therefore

(6.1) Fudttu. .. Ul = .
Conversely, if (6,1) holds, then by Lemma 1,1 we have
o=0u..udttcgugiu..ug".
We have proved: '
Theorem 6,1. A binary relation ¢ with I1(¢) = Q is irreducible if and only if
(6,2) sudtu..ud=0.
Remark. (Compare with Theorem 1,3.) For any relation we always have

Sudtu..udcougu..up".

But the sign of equality here may hold even if ¢ is reducible. Take, e.g., the relation ¢
with

i

10
M(g) = |11
01

(= =R o)

Thern o? is idempotent,

(= == i v

/1o

M(g?) =11

11

Wehaved = g%, d = 1,k = 2and § = ¢*> = pu g% U @*.
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Since a;0 = £, (6,2) implies
(6,3) adugdiu..uad =0
fori = 1, 2, ..., n. By definition of the number d; we have
(6,4) adugdu..uadt=Q.

By Lemmg 3,3 we have a; € a;6%, a; € a;6%. By (6,4) there are integers «, § such
that a; € a;6%, a; € a;6°. Hence

a; € aj(sa < ﬂiaoﬁp , GG € aiéﬁ c a].é“""ﬂ ,
a;€a;8" © g, 00" < a0
a;€e ad® < ai5ﬂ+d.~ - aj5a+ﬂ+d,- )
This implies »
di|a+ B, d;|a+ B,
and

dila+B+d;, dj|a+B+d,.

Hence d, | d; and d, | d,, i.e. d; = d,. Since moreover d = [dy, dy, ..., d,], we have:

Theorem 6,2. For an irreducible relation ¢ we have

di(e) = dy(e) = ... = d,fe) = d(o) -

Corollary. If g is irreducible, we have A < &%, while An (6 U d*U...u & ") =
=z

Lemma 6;1. If o is irreducible, then ¢ = §, 0> < 8%, ..., ¢% = &

Proof. Since 4 < 6%, we have p =4 < ¢.¢ = ¢ "' =4. This implies ¢?
- Ql(r+1) - 52’ . Qd - Qd(r+1.) = &

Theorem’6,3. If g is irreducible, the relations 6, 6%, ..., 8 are pairwise disjoint.

Proof. Suppose for an indirect proof that there is a couple 8,8, 1 £ i<j<d
such that 6' n &/ + z.

Consider the relation

a<f

1= nd), a=1,2,..,d-1; B=23,..4d.
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‘By supposition 7 # z. Clearly
TSOUR it

so that T N 4 = z. Further (since ' n 5é+1 _ 50 &)

5f=5U[6"m55]CU[51+105ﬂ+1]cr.
a<p a<f
This implies
N N A Sy Uy

Therefore t = 6t = 6%t = ... §% and
T=08tuUdTU... U = (Bu...udYT=or.
Since T # z, there is a couple (a;, a;) € 7. Hencé
£ = 002 00 )2 (a5 a) (a5 ) = (4.0)

This is a contradiction to 4 N 7 = z, and this contradiction completes the proof of
our Theorem.

Corollary. If ¢ is irreducible and a,-el'l(g), then the sets a8, a8, ..., a
pairwise disjoint.

d
0%, are

Theorem 6,3 and Lemma 6,1 imply:

Theorem 6,4. If ¢ is irreducible, then g, g%, ..., o* are pairwise disjoint. More
generally: Any d consecutive powers @', o'+, .. o'" 9" gre pairwise disjoint.

Multiply gug*uU...u@" =w by o". We have o"T' U 2L ... U™ = o,
ie. dud*uU...ud" = w Comparing with § U ... U ¢ = w, in which no summand
can be deleted, we have:

Theorem 6,5. For an irreducible relation with card [1(g) = n we always have
1 <dle) £n.

Remark 1. It can be proved (see Corollary 2 to Theorem 7,2) that there is an ir-
reducible relation ¢ with d(g) = I for any / satisfying 1 £ I < n.

Remark 2. Theorem 6,5 follows also from Theorem 6,2 and Theorem 4,1, taking
account of the fact that for an irreducible ¢ all couples (a » a;) are accessible by q.

Remark 3. By the argument used in Lemma 6,1 we have ¢**# < 6 for any in-
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tegers o = 0, = 1. This implies

0 Ut UMt L. <4,
UL My L. < 82,
fue up¥ u.. <.

This can be sharpened, using the fact that g = ou...Ug@"=du...ud in the
following way: Write n = ad + s, where « = 1 is an integer and 0 < s < d. We
then have

(65) 0 U Qd+1 U Q2d+1 ..U Q(afl)d+1 U Qad-H =g ,
‘s U O(H-s U Q2d+s U U Q(a~l)d+s U 0:1d+s — 55
@ 0 N
Qs+l u Qd+s+l v Q2d+s+1 UL U Q(m—l)d+s+l — 5s+1 ,
0w LM U...u g™ =4,

Hereby, if s = 0, then ¢° means ¢? and 6° means &°.

It follows from the Corollary to Theorem 6,2 that 4 may have a non-empty inter-
section only with some of the powers o9, 0%, ..., 0¥~V where fd = r, and 4 is
contained in o, ¢"*% 0 "%, ... Since r=pd, r+d=(B + 1)d, r+2d =
= (B + 2)d, ..., the integer d is clearly the greatest common divisor of all exponents
just mentioned. We have proved:

Theorem 6,6. If ¢ is irreducible, then d(g) is the greatest common divisor of all
integers o = 1 for which A N ¢* =+ z.
We shall next deal with proper irreducible subrelations of a given irreducible

relation g.

Theorem 6,7. If an irreducible relation ¢ contains an irreducible subrelation o,

then d(g) | d(o).

Proof. Consider the sequences

ey

0, 0% ..., QO | GO, FOTI@ 1] g

6,02, ..., g1 l gt ., ghlorra@ 1 ] gk .

Put I = max [k(g), k(c)]. By supposition

! 1141 1+1 I+d()—1 [+d(@)—1
¢ cg,0 < o't ..., ¢'ti@ @=1

<@
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Since ¢!, o', ..., o' T¥@1 are pairwise disjoint, we conclude that o', ¢'*!, ...

., 64O~ are pairwise disjoint, so that d(a) = d(g). Now ¢! = ¢' "4 < o'+4®
n ¢ implies o' "4 = ¢!, hence d(g) | (o), g.e.d.
The one point relation o = {(a;, a;)} is irreducible with d(c) = 1. This implies:

Corollary. If an irreducible relation g contains at least one element (a,, a;) of the
diagonal 4, then d(g) = 1.

Definition. Let ¢ be irreducible. An irreducible subrelation ¢y, z + 9o < 0, is
called minimal if for any irreducible g, z + ¢ < gy, We have ¢ = g,.

Definition. A relation of the form

Q = {(aix’ aiz)’ (aiz’ aia)’.' s (aix’ ai,)}

is called a cyclic relation of the length .

If all elements in {i,, i,, ..., i;} are different one from the other, g, is called an
elementary cycle.

Clearly the length of any elementary cycle is <n.

Lemma 6,2. Let ¢ be irreducible. Then g, < ¢ is a minimal irreducible subrela-
tion of ¢ if and only if g, is an elementary cycle.

Proof. a) Suppose that g, is a minimal irreducible subrelation of ¢. Take any
a; € I(go). Denote by h; the least integer h; = 1 such that a; e aly, i.e. (a; a;) € 0§
Then there exist elements x,, ..., X, -1, X;, € [1(g,) such that

(ap, x3) (x2, x3) (x3, x4) .- (x40 @) = (@, a;),

and the elements a;, x,, X3, ..., X, are all different one from the other.

The relation
Qoo = {(ai’ xz)’ (Xz, xs)x cens (xhp ai)}

is clearly an elementary cyclic relation. By‘Lcmma 5,8 000 1s irreducible. The inclusion
Qoo < Qo With respect to the minimality of go, implies @90 = o-

b) Let be conversely ¢ = {(y1, 2), (¥2) ¥3)s ---» (V1> ¥1)}» Vi € Q, any elementary
cyclic relation of length . Let g, be a proper subset of go. Suppose, e.g., (v, y1) ¢
¢ 000- Then gh, = z so that g, cannot be irreducible. For gf, is a union of products
of length I with factors chosen from the set {(y, y2), ..., (¥,~1, ¥))}. Every such
product contains at least one factor twice and one verifies easily that this implies
that each summand of g, is equal to z. This proves Lemma 6.2.

Our next goal is to prove Theorem 6,8.
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Let ¢ be irreducible, I1(¢) = 2, and h; the least integer such that a, e a0 It
follows from the preceding proof that the set of all integers {hy, h,, .., h,,} is exactly
the set of lengths of all elementary cycles contained in g.

If 1 is the length of any cycle contained in ¢, then by Theorem 6, 7 d(e) l [ In
particular d(g) | do, where dy = g.c.d(h,, hy, ..., h,). We shall show that d(g) = d,.

Recall that (a;, a;) (i = 1,2, ..., n) is contained in ¢* for any integer A such that
di = k(). Take a fixed A such that I = id > max (k(¢), n + 1). Then there exist
elements x{7, x$P, ..., x{?, all € @ such that

(a“ x(li)) (x(lx), ‘C(')) (x(l) \(') » (xgi_)l, ai) —_ (ai’ ai) R

and each of the couples to the left is contained in g. Since I — 1 > n, there exist
necessarily two integers o, § 2 1 such that x{” = x{} ;. The relation

Q90 = {(al, x(l)) (x P x(')) (xz 1 ai)}

can be decomposed into two relations of lengths [ — # and B, ¢o0 = 01 Y @, Where

{(az, x(i)), e (x;i_)_l’ x(i))7 (xgi)rﬁ’ x”’ﬁﬂ) . (xfi_)j, ai)} ,

(()v(l) x(l)l) (xa+ﬂ l’x(’)ﬂ)}

If , or g, (or both) is not an elementary cycle we can decompose the appropriate one
(or both) further, a.s.o. We finally obtain

21

I!

Q2

I =Ad = ¢Phy + ¢Phy + ... + Ph,,

where ¢/ are non-negative integers. This implies that d, | Ad for any .integer 4 which
is larger than some A,. Hence d, [ d. This, together with d | dy, implies d = dy. We
have proved:

Theorem 6,8. If ¢ is irreducible and h; is the least integer such that a; e a;o",
then d(o) = g.c.d(hy, hs, ..., h,).

Remark. In Theorem 4,3 we have proved that for any binary relation ¢ with
card IT(g) = n, we have k(g) < (n — 1)> + 1. If g is irreducible and card G(¢) = d
it is proved in a forthcomming paper ([31]) [by means of the formulae (6,5)] that
k(¢) = (n — d)*/d + d. And this is the best possible result.

7. POWERS OF AN IRREDUCIBLE RELATION

We shall now study the behaviour of ¢° for various v > 1.
In all of this section we suppose again that II{g) = Q
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Note first: If ¢ is irreducible, then so is § and II(8) = II(g). [For by Theorem 6,1
dué*u...ud = wand by Lemma 5,5 IT(0) = I(¢"**) = 11(5).]
In general the converse statement need not hold. Let, e.g., ¢ be the binary relation
with
000
M(e)=[100].
001
Then

000
M(¢®) = M(8) =00 0].
001

Here ¢ is reducible with I1(¢) = {ay, a,, a3} while § is irreducible and II(8) = {a}
Hence 6 may be irreducible even if g is reducible.’

But if we suppose that 6 is irreducible and I1(8) = I1(g), then ¢ is also irreducible.
For, suppose that g is reducible IT(¢) = Qand ¢ < (4 x A)U (B x 4)u (B x B) =
= 1, where A4, B are non-empty, AnB =0, Au B = Q. Since 7 = 1%, we have
6 =0 <1 Since () = I(g), we have A NII(8) = AnIl(g) = A+0, Bn
N II(8) = B # 0, so that § is reducible.

Hence: If I1(g) = I1(5), then g is irreducible if and only if & is irreducible.
If ¢ is irreducible, then some power ¢"(v > 1) may be reducible.

We first prove:

Lemma 7,1. If ¢ is irreducible and d(g) > 1, then there exist d pairwise disjoint
non-empty subsets A, Ay, ..., Ay such that Q = A, u ... U A, and

=(A; x A)) U (4, x A3)u...u(4y x 4)).
Movre generally: For every u = 1
| = (A x A (4, % Ay U U (Ag X Agid) s
the subscripts taken (mod d). |

Proof. Denote A, = a,0, 4, = a,8%, ..., Ay = a,6. By Corollary to Theorem 6,3
we have @ = A4, U ... U 4, and the A4, are pairwise disjoint.

Let be (a;, a;) € 6, ie. a;ea;5. Now there is an integer s, 1 < s < d, such that
a;€a,8° = A, Hence a; C(alé‘)é = A, so that (a; a;)e 4, x As+1 [the sub-
scripts taken (mod d)]. This proves

(7.1 5 < (4, ><Az)u(AleS)u...u(AdgAl).
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For further purposes remark that (4; x A4;) (4, x A,)is zif j # I, and (4; X An)
ifj=1

Let now u be any integer =1 and consider the power v
(7.2) M [(A4; x 4y) U (4, x A3)u...u(dy x A

The right hand side of (7,2) is a union of products each of which contains u factors.
Such a factor is z unless the product is of the form

(Ai X Ai+1) (Ai+1 X Ai+2)"'(Ai+u—1 X Aisa)s
in which case it is equal to 4; x A4, ,,. Hence we have
(7.3) 82 <Ay x A5)U (A x AU ...u(dy x A3,
3 (A x AU (4, x A)u...u (A4, x A43),
3 < (4, x AU (A, x A)u...u (4, x A4 .

Now since §u ... U 8* = w, and all summands A4; x 4, in (7,1) and (7,3) are disjoint,
we have for every integer u, | < u < d,

(7.4) 8" = (Ay X Ayy,)U(As x Ay U .U (Ag X Agry) .

This proves Lemma 7,1 for 1 < u £ d. For u > d the same holds since the sets 4,,
where the subscripts are taken (mod d), periodically repeat.

Corollary. Let be Q = {ay, a,, ..., a,} and | any integer, | £ 1 < n. Then there
exists an irreducible relation ¢ such that d(a) =l

Proof. Write  in an arbitrary manner as a union of ! pairwise disjoint non-empty
subsets @ = 4, U ...U 4, and put 6 = (4; X A;)U (4, x A5)U...U (4, x 4)).
Then analogously as above

02 = (4, x A3)U...u(4; x 4,),
o = (4, x A))U...u(4; x 4).

This implies that ¢ U ¢ U ... U ¢! = o, hence ¢ is irreducible. Moreover g'+!

=0
and o' % o’ for i % j, so that d(s) = I, q.e.d.

Lemma 7,2. Suppose that g is irreducible. Denote uy = (d, u). Then there are y,
pairwise disjoint non-empty subsets Ty, Tz, -, Ty, such that Ti o T, U ... U T, =
= Q and

UL U= (T, x TV (T x T)u...u(T,, x T,).
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{ Proof. Denote dy, = d/uy and consider the relation
C=8U0dU. L UM =50 U .. U =y My L. U S,

By (7.4) we have

O-"U U(A XAl+juo)_U[A x UA¢+1uo]‘

j=1i=1
Denote

Ti= Aivue Y Aivaug Voo I Ajigguy = AV Ay g U o0 U A (g 1y -

Clearly T; = Ti4uy = Tit24 = ..., and we have

d o .
= U(A, X Tl) = Ul[(A,U Ai+uoU U Ai+(do—1)uu) X Y—Vl] = (T X T)
=1 i= i1
This proves our Lemma.

Lemma 72 implies in particular: 6* < (T, x Ty)u ... u (T, x T,). Denote
3 n (T, x T;) = 6;. We then have

(7,5) 5u=51U52U-.~U5u0.

Since II(6*) = H(g) = 2, we have 6, & z and II(8;) = T,. Since 6,0; = z for i # j,
(7,5) implies
P =6tudu...udl,

(7.6)

M =5ludu..ud .
Summing (7,5) and (7,6) we have
Mudtru .U :.H{éiu u...udsh.

Comparing with Lemma 7,2 we have 8; U 5? U...ud! =T, x T. This says that
every §; is irreducible.

Now g* = 8*implies ¢* = (T; x Ty) U ... U (T,, x T,). Denote ¢ N (T; x T) =
= p;. Since again II(g") = Q, we have g, # z,1(g;) = T;and

¢ =01V U0y,

Since again g,0; = z for i # j, we have [by raising the last equality to the (r + 1)-th
power]: :
511 — Qu(r+1) . Q U Qr2+1 Y] Qr+1

. ug "

Comparing with (7,5) we have ¢, = §; and ¢} = §,. Since II(g,) = H(rSi).and 3;
is irreducible; g, is irreducible. We have proved:
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Theorem 7,1. Let ¢ be irreducible. Denote (d, u) = u,. Then ¢" is completely
reducible into u, disjoint irreducible relations.

Suppose now that u = d. We then have ug = d, dy = 1, ¢ = 6% and
(7.7) ¥ =(4 x A)U(d; x 4,) 9.0 (4, x A).
Further
gi=0"n(A;x A) <8, =68 (4, x A4)=A4; x A, =¢"".

The irreducible relation ¢; has the special property that ¢!

is a square.

Definition. An irreducible relation g is called primitive if there is an integer w = 1
such that ¢" is a square [namely IT{g) x I1(¢)].

Thus ¢? = ¢, U g, U ... U g4, where each g; is a primitive relation.

If u < d, we have
(7.8) Y =0,V 0U .. UQ,, Ug={(du)<d.

We show that not all g, at the right side of (7,8) can be primitive. Suppose the contrary.
Then there is a w, such that for w = w, each ¢} in(7,8) is a square. Put for w a multiple
of d, say w = wod. Then (7,8) implies

wod wad

uwod __
=g UL U Quo

9

If moreover wy is such that uw,d = r, we have on the left hand side a union of d
disjoint squares while on the right hand side we have only u, squares. This constitutes
a contradiction. We have proved:

Theorem 7,2. Let ¢ be irreducible. Then the number d(o) is the least positive
integer usuch that ¢* is completely reducible into a union of disjoint primitive
relations. The number of these primitive relations is exactly d.

We return for a while to (7,7). It is immediately to seen that 8% is a symmetric
relation. Also 4 < &%, hence &¢ is reflexive. Finally ¢ = ¢" is transitive. We have
proved:

Theorem 7,3. To any irreducible relation ¢ there is an integer s > O such that ¢°
is an equivalence relation on II(g). The number s = r(g) is the least such integer.

Remark. This assertion is not necessarily true for any relation. E.g., if ¢ is the

relation with M(g) = (i ?), it is clear that no power of ¢ is an equivalence relation.
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8. MORE ABOUT PRIMITIVE RELATIONS

Let ¢ be any relation. It is quite natural to ask about the primitive subrelations
of ¢ (if such exist).

Lemma 8,1. If 0., 0, are two primitive subrelations of ¢ and ¢, N ¢, + z, then
Q; Y 0, is a primitive subrelation of o.

Proof. Denote IT{g,) L H(g,) = Q. First, since a primitive relation is irreducible,
@, Y 0, is irreducible and the transitive closure gy U ¢, is equal to Q, x Q,. (See
Lemma 5,6.)

Since ¢, ¢, are primitive, there exist two positive integers w,, w, such that g}" =
= M(g,) x (g,), ¢"** = I{g;) x I(0,). Denote w = max (w,, wy).

By supposition there is at least one couple (xo, ¥o) € 0y N @s. Let (a;, a;) be any
element € Q, x Q,. Suppose, e.g., a;ell(o,), a;el(e,). Write (a;, a;) = (a; xo) -
(%05 ¥o) (¥o» a;). Since x , 11(g,), we have (a;, Xo) € ¢} and since y, € I1(g,), we
have (yo, a;) € 0. Further (xo, yo) < @, so that (a;, a,) € 00,05 = otoy (since
eyt = oY)

If a,el(g,), a;€M(g,), we have (a; a;)eo%o}. If a; and a;el(g,), we have
(a;, a;) € @}. If a; and a; € II(g,), we have (a;, a;) € ¢5- ’ ‘

Hence:

Qy x Qq = @ U 03 L gler v eheY =
= 01"V 03" U eley v oiel = (01 v o)™
Therefore (0, U 0,)*" = Q, x Q,. This says that ¢, U ¢, is primitive.
It is clear what is meant by a maximal primitive subrelation of a given relation g.

Analogously as in Lemma 5,7 and Theorem 5,2 we can prove:

Lemma 8,2. The intersection of two different maximal primitive subrelations of ¢
is the zero relation z.

Lemma 8,3. The set of all maximal primitive subrelations contained in a given
relation ¢ is uniquely determined.

A characterization of the set of all maximal primitive subrelations of a given g is
possible on the base of the following

Lemma 8,4. An irreducible relation g contains a primitive subrelation if and
only if o is itself primitive.

Proof. If o is primitive and o = g, then Theorem 6,7 implies d(g) | d(s) and since
d(s) = 1, we have d(g) = 1, i.e. ¢ is primitive. (For then by Theorem 6,1 ¢"*' =
= 6 = II(g) x M(g).)
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This implies:

Theorem 8,1. To find all maximal primitive subrelations of a given relation g we
proceed as follows. We find all maximal irreducible subrelations of ¢ and delete
from them all which are not primitive. The remaining one’s (if such exist) give
exactly all maximal primitive subrelations of o.

The notion of a primitive relation is useful also for the following generalization
of Theorem 7,3.

Theorem 8,2. Let g be any relation, H(Q) = Q. Then some power of ¢ is an equi-
valence relation on Q if and only if ¢ is either primitive or completely reducible
into primitive relations.

Proof. If o' is an equivalence relation on €, every (a;, a;) is accessible, so that
A4 < guU ..U " Since ¢! is transitive, we have by Lemma 1,6 o' = ¢" and by Lemma
1,5 4 < ¢'. This implies 4g = ¢ = ¢! =6, ¢* < 8%, ..., 0° = & = ¢

Since 8¢ = ¢" is an equivalence relation, we necessarily have
(8,1) 8 =(A; x A)u...u(4; x 4),

wheres 2 1, U 4; = Q, A, n A; = 0 (for i + j). Therefore
i=1

ol = (A x A))u ... u (4, x 4.

Denoting ¢; = o* n (4; x A;), we have ¢’ = g, U g, U ... U g,. This implies ¢ =

=MD = " U ey UL U @l T!. Comparing with (8,1) we have ¢}"! = 4, x

x A;, so that g, is primitive. Hence ¢? is either primitive or a union of disjoint primi-
tive relations.

Conversely: If ¢ is completely reducible into primitive relations, then clearly
a sufficiently high power of g is an equivalence relation. This proves our Theorem.
9. SOME SPECIAL CASES

A relation is called symmetric if ¢ = §'. We first give sharp estimations for k(g)
and d(e) in the case of a symmetric relation.

Lemma 9,1. For any relation ¢ we always have ¢ < ¢g'¢.
Proof. If (a;, a;) € ¢, then (a;, a;) = (a;, a,) (a;a,) (a;» a;) < e@'e.
Corollary. For any symmetric relation ¢ we have ¢ < @°.
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The last Corollary implies
(.1 gcodco’a...
(9.2) Pcotcoba...
Hence for the transitive closure of ¢ we have

n n—1

d=0uUg*u..ug =0"tug".

The finiteness implies that the chains (9,1) and (9,2) have only a finite number of

different elements, so that there are integers /, and /, such that

=2 = gt o h+2

go' =0
o =0p

0 c@lc...co

-2 L+2 _

2 4
tcgte.co

Therefore the group G(Q) contains at most two different elements, so that either

Glo) = {2 ¢*"'} or G(o) = {¢}.
We have proved:

Theorem 9,1. For any symmetric relation g on Q we always have d(g) <2

If a symmetric relation is reducible, it is clearly completely reducible into a union
of irreducible summands. Hence we shall first deal with the case of an irreducible
relation and suppose I1(g) = Q.

In the next Lemma we treat simultaneously both cases d(g) = 1 and d(¢) = 2.
Lemma 9,2. If ¢ is symmetric and irreducible and n = 3, we have @ = ¢" 2y

Ut = g U gt

Proof. By Lemma 5,3 (assertion ¢) we have a;e a,gu ... U a;0"" ' forany j # i.
Hence all couples (a;, a;) with j # i are contained in ¢ U 0* U ... U ¢"" . Since o>
clearly contains the whole diagonal 4, we have w = g U ... U @" ! = g" 2 U "L
Since d(g) is at most 2, we also have w = ¢* U g**1. This proves our Lemma.

Theorem 9,2. Suppose that ¢ is symmetric and irreducible and card H(Q) =
=card @ = n = 3.

a) If d(o) = 1, then k(@) < 2n — 2.
b) If d(g) = 2, then k(g) < n — 2.

Proof. a) If d(g) = 1, then g is primitive, and g? is also primitive. The relation (9,2)
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implies (with a; € Q)
a;0> cap*c...ca™?cae™.

In this case o2 contains the whole diagonal and in each row at least one further
element € Q. For otherwise 0? would be reducible, contrary to the primitivity of o
This implies that a;0% contains at least 2 elements € Q, a;0* contains at least 3 different
elements € Q; a.s.o. Finally a,0°""? contains at least (n — 1) + 1 = n elements.
Hence a,0°""? = a;0*". This proves k; < 2n — 2 (for i = 1, ..., n). By Theorem 3,1
we have k(g) < 2n — 2.

b) If d(g) = 2, we have either a) 0" 2 = ¢, ¢"7' = ¢!, or B) 0"7% = o,
o't e gt

Now (by Theorem 6,4) ¢* n ¢**' = z and this implies ¢" 2 " g""! = z. In the
case o) we have (by Lemma 9,2) 0"~ % = ¢ so that k(¢) £ n — 2. In the case B) we
have 0" ! = g*and 0"~ 2 = ¢***. Hence ¢" = ¢*"%, ie. 9"~ 2 = ¢". Therefore k(o) <
< n — 2. This proves our assertion.

Remark 1. It is easy to see directly that for n = 2 and d(g) = 1 we have k(o) < 2.
If n = 2 and d(g) = 2, we have k(o) = 1.

Remark 2. The result of Theorem 9,2 is sharp in the sense that there are relations
with k(¢) = 2n — 2 and k(g) = n — 2 respectively. For the relation o with

101
M(g) ={00 1
110

4. For the relation g with

I

we have d(g) = 1 and k(g)

001
M(g) = {001
110

1.
Suppose now that ¢ is reducible and ¢ = ¢ U ¢, U ... U g, s = 2, where g, are
irreducible. Denote I1(g,) = A;, card A; = n;, so that n; + ... + n, = n.
If d(@) =1, n> 3, then d(p;) =1 for i =1,2,...,s. Hence k(g;) < 2n; — 2.
Therefore k(o) < max (2n; — 2). Sincemaxn; < n —s + L k(o) £2(n—s+1) —
i=1

fi

we have d(g) = 2 and k(o)

seensS

—2=2n—-25s£2n— 4.
If d(g) = 2 and n > 3, there is at least one g,, say g,, suchthat2 < n, < n — 1,
d(g,) = 2, so that k(g,) < n; — 2 < n — 3. Further

ax m (n—m)=(s-D+1l=n-n~-s+2,

i=2,.., s
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and
max ko) S 2(n—n —s+2)-222n-2-242)-2=2n-6,
i=2,..,s
k() £ max(n —3,2n —6) < 2n — 6 (forn > 3).

Ifn = 3and d(g) = 2, we have s = 2, o = g1 U 0,, card II(g,) = 2, card 1(g,) =
= L. Further k(g,) < 2, k(¢,) = 1, so that k(¢) £ 2. If n = 3 and d(g) = 1, we get
again k() < 2. If n = 2, we have k(g) < 1.

Sumarily:

Theorem 9,3. Suppose, that ¢ is symmetric and reducible with card Q = n. We
have:

a) If n > 3 and d(g) = |, then k(o) < 2n — 4.
b) If n > 3 and d(g) = 2, then k(o) < 2n — 6.
¢) If n = 3, then k(o) < 2.
d) If n = 2, then k(o) = 1.

A relation g is called reflexive if A < . The set of all reflexive relations on 2 forms
- a subsemigroup R, of B,,. R,, contains 2" ™" elements. ‘

Theorem 9,4. For any reflexive relation g on Q (with card Q = 2) we have d(g) = 1
and k(o) £ n — 1.

Proof. 4 = ¢ implies

(9,3) gcoPc...cocota ...

The transitive closure of ¢ is § = ¢". In particular ¢"*! < ¢", and therefore ¢" =
= ¢"*'. This proves d(¢) = 1 and k(¢) < n. To prove k(g) < n — 1 it is sufficient
to show that o" < " '.

Any element (a;, a;) € ¢" can be written in the form

(9:4) (ai’ aj) = (ail’ aiz) (aiz’ ais) (agl’ aizn) ce (al':’ aie«u) (ain’ ain+1) ’

where we denote i; = i and i,,, = j. Since 4 < ¢ < ¢""!, we may suppose i * j.
The integets iy, iy, ..., i, cannot be all different and there is at least one of them
which occurs more than once. If i; =i, (1 £1 <t < n), we cann omit in (9,4)
(aipai,,) - (@i, a;,), so that (a, a;) e, where s < n — 1, and hence (with
respect to (9,3)) (a;, a;) € @"~". Analogously, if i, = i, (2 < I < t < n + 1) we obtain
by the same argument (a;, a;) € ¢"~*. Therefore ¢" = ¢"~*. This proves our statement.

Corollary 1. A reflexive relation g is irreducible if and only if there is an integer
s S n— 1suchthat ¢* = o (i.e iffois primitige).
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Corollary 2. If g is reflexive, then o' si transitive if and only if it is an idempotent.

For if o' is transitive, we have o2 < g'. On the other side we always have o' < o?,
so that ¢' = p%".

Without going into details concerning the structure of R, it seems to be worth to
make the following comment.

If o and o are two primitive relations € B, with [1(¢) = I1(¢) = Q, their product g
need not be primitive (it may be even reducible). In R, the situation is simpler. We
have:

Theorem 9,5. The set of all primitive relations € R, is a two-sided ideal of R,

Proof. It is sufficient to prove: If ¢ € R,, is primitive and ¢ any relation € R,,, then
oo and og are primitive. Now 4 < ¢ implies ¢ = g0, and 4 < ¢ implies ¢ < go, so
that ¢ U o < go. If g is primitive, i.e. there is an integer m, 1 £ m < n — 1, such
that ¢" = w, we have (go)" = (¢ U 6)" 2 ¢" = w. Hence (go)" = w, and analo-
gously (o)™ = w. This proves our assertion.
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