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Abstract. It is shown that every adapted Brownian bridge on a geodesically com-
plete connected Riemannian manifold is a semimartingale including its terminal
time, without any further assumptions on the geometry. In particular, it follows
that every such process can be horizontally lifted to a smooth principal fiber bun-
dle with connection, including its terminal time. The proof is based on a localized
Hamilton-type gradient estimate.

1. Introduction

Given x, y ∈ Rm, T > 0, let ΩT (R
m) stand for the Wiener space of continuous

paths ω : [0, T ] → Rm. We denote with Px,T the usual Euclidean Wiener measure
(that is, the Brownian motion measure) and with Px,y,T the usual Euclidean pinned
Wiener measure (that is, the Brownian bridge measure) on ΩT (R

m) with its Borel-
sigma-algebra FT . Then with X the coordinate process on ΩT (R

m) and FT
∗ =

(FT
t )t∈[0,T ] the filtration of FT that is generated by X, the following important

fact is well-known to hold true:

(S) (Xt)t∈[0,T ] is a continuous semimartingale with respect to (Px,y,T ,FT
∗ ).

Let us point out here that, as for all 0 < t < T one has Px,y,T |FT
t

∼ Px,T |FT
t
,

the property (S) only becomes nontrivial at t = T . Furthermore, the importance
of (S) is already clear at a very fundamental level: Continuous disintegrations of
probabilistic formulae for covariant Schrödinger semigroups (Güneysu, 2011, 2012)
clearly require such a result. We refer the reader to Güneysu (2011) for such a
continuous disintegration in the Euclidean case.

In this paper we will be concerned with the validity of the semimartingale prop-
erty (S) on noncompact Riemannian manifolds. To this end, we start by recalling
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that given a connected Riemannian manifold M of dimension m, the correspond-
ing Riemannian data ΩT (M), Px,y,T , Px,T , X, FT , FT

∗ , as well as the question
whether one has (S) or not still makes sense: One just has to take the minimal posi-
tive heat kernel p(t, x1, x2) everywhere in the definition of the underlying measures,

replacing the Euclidean heat kernel t−m/2e−|x1−x2|2/(4t) (cf. Definition 2.1 below),
and to note that X is a continuous M -valued semimartingale, if and only if f(X)
is a real-valued one, for all smooth functions f : M → R. In fact (S), has been
established quite some time ago (1984) on compact M ’s by Bismut (1984b), who
used the resulting “covariant” continuous disintegration in his proof of the Atiyah-
Singer index theorem Bismut (1984a) (the reader may also wish to consult Driver,
1994 and Hsu, 2002). We refer the reader also to the recent paper Li (2016) by
X.-M. Li: There, the semimartingale property of more general hypoelliptic bridges
on compact manifolds is shown to hold.

Concerning (S) for noncompact M ′s, we point out that this property has been
stated in Aida (2000) under very restrictive geometric assumptions, such as a
bounded Ricci curvature plus a positive injectivity radius, and indeed there seems
to be a widely spread belief that (S) requires some global curvature bounds in order
to hold true. The reason for this might be that if one follows the typical proofs from
the compact case too closely, it is tempting to believe that one needs to establish
the integrability

Ex,y,T

[

∫ T

0

∣

∣d log p(T − t, ·, y)(Xt)
∣

∣dt

]

< ∞, (1.1)

which in the compact case is proved using a global gradient estimate of the form

|d log p(t, ·, x1)(x2)| ≤ CT

(

t−1/2 + t−1d(x1, x2)
)

for all x1, x2 ∈ M , 0 < t ≤ T ,
(1.2)

an inequality that certainly requires global curvature bounds. We point out here
that problems like (1.1) arise naturally in this context, as under (P·,y,T ,FT

∗ ) the
process X|[0,T ) is a diffusion which is generated by the time-dependent differential
operator

[A y
t f ](z) = (1/2)∆f(z)−

(

d log p(T − t, ·, y)(z), df
)

,

f ∈ C∞(M), 0 < t < T , z ∈ M ,
(1.3)

where ∆ denotes the Laplace-Beltrami operator, dF the differential of a function
F on M (a 1-form on M), and (·, ·) for the induced metric on T ∗M . In particular,
as p(t, x1, x2) becomes singular near t = 0, it is clear that some upper bound on
|d log p(t, ·, x1)(x2)| for small t has to be established in any case, where |·| = (·, ·)1/2.
It is also instructive to note that in the Euclidean case one has

[A y
t f ](z) = (1/2)∆f(z) + (1/2)(T − t)−1

m
∑

i=1

(yi − zi)∂if(z),

z = (z1, . . . , zm) ∈ Rm.

In this paper, we are going to prove that (S) holds true on every geodesically com-
plete connected Riemannian manifold, without any further curvature assumptions.
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In fact, this will be a consequence of our main result Theorem 2.8 below. Let us
point out that from a probabilistic point of view, the above result is very natural,
as the semimartingale property of a manifold-valued continuous adapted process
X ′ can be geometrically localized: Namely, it is easily seen that such a process is a
semimartingale, if and only if f(X ′) is a real-valued one, for all smooth compactly
supported functions f on the manifold. On the other hand, some serious technical
difficulties arise on the analytic side, as the heat kernel is a very global object. As
a striking example for this global behaviour Gong and Wang (2001) we would like
to point out a result by F.-Z. Gong and F.-Y. Wang, which states that a smooth
geodesically complete connected Riemannian manifold M ′ with Ricci curvature
bounded from below is compact, if and only if it holds that

∫

M ′

p′(t, x, y)−1dµ′(y) < ∞ for some t > 0, x ∈ M ′.

Confirming the global behaviour of the heat kernel, the analysis of our paper shows
that the derivation of the necessary localized estimates for the heat kernel and the
logarithm of its gradient is indeed a rather delicate business. In this context, using a
highly subtle local parabolic gradient bound from Arnaudon and Thalmaier (2010),
we are able to prove the following inequality: In Theorem 2.9 it is shown that for
every z0 ∈ M , R0 > 0 there exists a constant C > 0 which depends on the geometry
of M in a neighbourhood of B(z0, R0), such that for all

(t, x1, x2) ∈ (0, R2
0]×B(z0, R0)×B(z0, R0)

one has

|d log p(t, ·, x1)(x2)| ≤ C
(

t−1/2 + t−1d(x1, x2)
)

.

The latter localized bound turns out to be enough to establish a localized version
of (1.1) and ultimately (S).

Finally, we would like to add that in fact our main result Theorem 2.8 is more
general than (S) in the following sense: We define (cf. Definition 2.3 below) an
arbitrary adapted continuous stochastic process

Xx,y,T : [0, T ]×
(

Ω,F , (Ft)t∈[0,T ],P
)

−→ M

to be an adapted Brownian bridge from x to y at the time T , if the law of Xx,y,T

is equal to Px,y,T and if Xx,y,T has a certain time-inhomogeneous Markov prop-

erty. In case (Ft)t∈[0,T ] = (FXx,y,T

t )t∈[0,T ] is the filtration generated by Xx,y,T ,
then this Markov property is automatically satisfied (cf. Lemma 2.4 below). In
this context, our main result Theorem 2.8 states that in fact every adapted Brow-
nian bridge is a continuous semimartingale. In particular, this result entails that
(cf. Corollary 2.11 below) every adapted Brownian bridge on a geodesically com-
plete Riemannian manifold can be horizontally lifted to principal bundles that are
equipped with a connection.

2. Main results

In the sequel, we understand our function spaces to be real-valued. Let M ≡
(M, g) be a smooth connected Riemannianm-manifold, with ∆ its Laplace-Beltrami
operator. Let d(x, y) denote the geodesic distance, and B(x, r) corresponding open
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balls. We denote with p(t, x, y), t > 0, x, y ∈ M , the minimal nonnegative heat
kernel on M , that is, for each fixed y, the function p(·, ·, y) is the pointwise minimal
nonnegative smooth fundamental solution of the following heat equation in (0,∞)×
M ,

(∂/∂t− (1/2)∆)p(·, ·, y) = 0, p(t, ·, y) → δy as t → 0+,

where ∆ denotes the Laplace-Beltrami operator. It follows that (t, x, y) 7→ p(t, x, y)
is jointly smooth, and the connectedness of M implies in fact the positivity p(t, x, y)
> 0. With dµ the Riemannian volume measure we define

Ptf(z) :=

∫

p(t, z, w)f(w)dµ(w), f ∈
⋃

q∈[1,∞]

Lq(M), z ∈ M, t > 0.

Then (t, z) → Ptf(z) is smooth in (0,∞) × M for every such f . We will denote
with

d : C∞(M) −→ ΓC∞(M,T ∗M)

the usual differential. The smooth metric on T ∗M will be denoted with (·, ·), where
| · | = (·, ·)1/2 denotes the corresponding norm. With respect to the scalar product
on L2(M) that comes from µ, and the one on ΓL2(M,T ∗M) that comes from µ and
(·, ·), one has ∆ = d†d.

Given T > 0 we denote with ΩT (M) the Wiener space of continuous paths
ω : [0, T ] → M . We give the latter the topology of uniform convergence. Let FT

denote the Borel-sigma algebra on ΩT (M), and let FT
∗ := (FT

t )t∈[0,T ] denote the

filtration of FT which is generated by the underlying canonical coordinate process.
Note here that FT = FT

T . The following result is well-known (cf. Bär and Pfäffle,
2011 for a detailed proof):

Proposition and definition 2.1. 1. For every x0 ∈ M , the Wiener measure Px0,T

from x0 with terminal time T is defined to be the unique sub-probability measure
on (ΩT (M),FT ) which satisfies

Px0,T {ω ∈ ΩT (M) : ω(t1) ∈ A1, . . . , ω(tn) ∈ An}

=

∫

A1

· · ·
∫

An

p(δ0, x0, x1) · · · p(δn−1, xn−1, xn)dµ(x1) · · · dµ(xn)

for all n ∈ N≥1, all partitions 0 = t0 < t1 < · · · < tn−1 < tn = T and all Borel sets
A1, . . . , An ⊂ M , where δj := tj+1 − tj.
2. For every x0, y0 ∈ M , the pinned Wiener measure Px0,y0,T from x0 to y0 with
terminal time T is defined to be the unique probability measure on (ΩT (M),FT )
which satisfies

Px0,y0,T (A) =
1

p(T, x0, y0)

∫

A

p(T − t, ω(t), y0)dP
x0,T (ω)

for all 0 ≤ t < T , and all A ∈ F
T
t .

(2.1)

It has been shown by Hsu (1990) that the pinned Wiener measure satisfies a
natural large deviation principle under geodesic completeness.
The following well-known facts follow straightforwardly from the definitions and
will be used repeatedly in the sequel:

Remark 2.2. 1. For every x, y ∈ M one has

Px,T {ω ∈ ΩT (M) : ω(0) = x} = 1 = Px,y,T {ω ∈ ΩT (M) : ω(0) = x, ω(T ) = y},
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as it should be. Furthermore Px,T (ΩT (M)) ≤ 1, whereas Px,y,T (ΩT (M)) = 1, which
reflects the fact that “paths with explosion time” that are initially and terminally
pinned on M cannot explode.
2. One has the following time reversal symmetry of the pinned Wiener measure:
The pushforward of Px,y,T with respect to the FT /FT measurable map ΩT (M) →
ΩT (M) given by ω 7→ ω(T − ·) is precisely Py,x,T .
3. For all FT -measurable functions Ψ : ΩT (M) → [0,∞) one has Bär and Pfäffle
(2011) the disintegration formula

∫

ΩT

Ψ(ω)dPx,T (ω) =

∫

M

p(T, x, y)

∫

ΩT

Ψ(ω)dPx,y,T (ω)dµ(y).

4. Both measures Px,T and Px,y,T are concentrated on the set of α-Hölder contin-
uous paths [0, T ] → M , for every α ∈ (0, 1/2) (cf. Bär and Pfäffle, 2011).
5. We would also like to point out a technical issue, which is sometimes not taken

into account seriously in the literature: assume (Px,T ,FT ,FT
∗ ) denotes the min-

imal extension of (Px,T ,FT ,FT
∗ ) which satisfies the usual assumptions of right-

continuity and completeness. Then there cannot exist a probability measure Q on

FT such that

Q(A) =
1

p(T, x, y)

∫

A

p(T − t, ω(t), y)dPx,T (ω) for all 0 ≤ t < T , and all A ∈ FT
t .

Namely, the existence of such aQ would automatically imply the absolute continuity

of Q with respect to Px,T on FT (cf. Satz 5.40 in Hackenbroch and Thalmaier,
1994), which obviously cannot be true in view of

Q{ω ∈ ΩT (M) : ω(T ) = y} = 1.

If one needs some completeness of the underlying filtered probability space anyway
(for example to get continuous versions of stochastic integrals) in addition to a
relation of the form (2.1), one way out of this is to use the concept of “locally com-
plete probability spaces”, which to the best of our knowledge has been introduced
in section 5.6 of Hackenbroch and Thalmaier (1994). Another possible solution is
to complete the rough filtration with respect to the sum (Px,y,T + Px,T )/2 (Driver,
1994). Nevertheless, as will be shown later on, the completeness of the underlying
filtered probability space will play no role for the semimartingale property of the
Brownian bridge.

Now we can give:

Definition 2.3. Let (Ω,F ,P) be a probability space, and let

Xx,y,T : [0, T ]× Ω −→ M

be a continuous process1. Then Xx,y,T is called a Brownian bridge from x to y with

terminal time T on M , if (X̃x,y,T )∗P = Px,y,T , where

X̃x,y,T : Ω −→ ΩT (M), X̃x,y,T (ω) := Xx,y,T
· (ω)

1that is, Xx,y,T
·

(ω) is continuous for all ω ∈ Ω, and X
x,y,T
t is measurable for all t ∈ [0, T ],

so that such a process automatically becomes jointly measurable; in the sequel we will identify
indistinguishable processes.
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denotes the induced F/FT measurable map.
In this situation, if Xx,y,T is adapted to a filtration F∗ := (Ft)t∈[0,T ] of F , then

Xx,y,T is called an F∗-(adapted) Brownian bridge, if there holds the following time-
inhomogeneous Markov property: for all numbers 0 ≤ S < T , all bounded FS-
measurable Φ : Ω → R, and all bounded continuous (thus FT -measurable) Ψ :
ΩT (M) → R one has

E
[

Φ ·Ψ(Xx,y,T
min(S+·,T ))

]

= E

[

Φ ·
∫

Ψ
(

ω(min(·, T − S)
)

dPXx,y,T

S
,y,T−S(ω)

]

.

We have defined the Brownian bridge in terms of its law. Instead, we could
have defined the Brownian bridge as a diffusion having a time-dependent generator
(cf. formula (1.3)). The latter definition leads to the problem that one has to deal
right-away with the singularity of its generator at T , making even the continuity of
the Brownian bridge paths at T somewhat nonobvious. This is why we believe our
definition in terms of the law is a little more natural in the bridge case. The price of
our definition, on the other hand, is that it makes the proof of the semimartingale
property in Theorem 2.8 below more complicated, as we have to calculate the
generator by hand. Although the particular form of the generator is certainly well-
known to the experts, we have included a proof for the sake of completeness. This
is essentially the content of Step 1 in the proof of Theorem 2.8 below.

The particular form of the Markov property from Definition 2.3 is motivated by
the fact that every Brownian bridge satisfies this Markov property with respect to
its own filtration:

Lemma 2.4. Let (Ω,F ,P) be a probability space, and let

Xx,y,T : [0, T ]× Ω −→ M

be a Brownian bridge from x to y with terminal time T . Then, with FXx,y,T

∗ the
filtration generated by Xx,y,T , one has the following time-inhomogeneous Markov

property: For all numbers 0 ≤ S < T , all bounded FXx,y,T

S -measurable Φ : Ω → R,
and all bounded continuous (thus FT -measurable) Ψ : ΩT (M) → R one has

E
[

Φ ·Ψ(Xx,y,T
min(S+·,T ))

]

= E

[

Φ ·
∫

Ψ
(

ω
(

min(·, T − S)
)

)

dPXx,y,T

S
,y,T−S(ω)

]

,

in other words, Xx,y,T is an FXx,y,T

∗ -Brownian bridge.

Proof : As by the Doob-Dynkin lemma (cf. proof of Lemma V.15 in Güneysu, 2017)
one can write Φ = F (Xx,y,T ) for some bounded FT

S -measurable function F :
ΩT (M) → R, we can and we will assume that the underlying filtered probability
space is given by (ΩT (M),FT ,FT

∗ ,Px,y,T ) with its coordinate process X. After
this observation, we can follow the proof of the Euclidean case which is given in
the book Sznitman (1998), pp. 139/140: For all 0 < δ < T we have, with X the
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coordinate process on ΩT (M),

p(T, x, y)Ex,y,T

[

Φ ·
∫

Ψ
(

ω
(

min(·, T − S − δ)
)

)

dPXx,y,T

S
,y,T−S(ω)

]

= Ex,T

[

Φ · p(T − S,XS , y)

∫

Ψ
(

ω
(

min(·, T − S − δ)
)

)

dPXx,y,T

S
,y,T−S(ω)

]

= Ex,T

[

Φ ·
∫

Ψ
(

ω
(

min(·, T − S − δ)
)

)

p(δ, ω(T − δ − S), y)dPXx,y,T

S
,T−S(ω)

]

= Ex,T
[

Φ ·Ψ
(

Xmin(S+·,T−δ)

)

p(δ,XT−δ, y)
]

= p(T, x, y)Ex,y,T
[

Φ ·Ψ
(

Xmin(S+·,T−δ)

)]

,

where we have used the defining relation of the pinned Wiener measure for the
first two equalities, the usual Markov property of the Wiener measure (in the sense
of a sub-probability measure) for the third equality, and once again the defining
relation of the pinned Wiener measure for the last equality. Finally, taking δ → 0+
completes the proof using dominated convergence, noting that Ψ is continuous and
bounded. �

Remark 2.5. 1. As a consequence of Lemma 2.4 we get that the coordinate process

X : [0, T ]× Ω −→ M, Xt(ω) = ω(t) on (ΩT ,F
T ,FT

∗ ,Px,y,T )

is an FT
∗ -adapted Brownian bridge.

2. Another possible construction (Hsu, 2002) of an adapted Brownian bridge is
provided by adopting the construction of Brownian motion on M by projecting the
solution of the canonical stochastic differential equation on the orthonormal frame
bundle O(M) of M (which is given by the horizontal vector fields on O(M) and a
standard Euclidean Brownian motion). In the bridge case, one has to add a drift
term which contains a singularity near T , so that a priori one only gets a unique
solution which is defined on the time interval [0, T ) and it becomes a somewhat
technical issue to prove that this solution has a limit at T and indeed is a Brownian
bridge.
3. A third approach (Bismut, 1984b), which like the path space approach has the
advantage of avoiding the singularity at T , is as follows: one starts from a Brownian
motion Xx on M which is obtained on the m-dimensional standard Euclidean
Wiener space (Ω,F ,F∗,P) by projecting the solution of the canonical stochastic
differential equation on the orthonormal frame bundle O(M). Here one assumes
that (Ω,F ,F∗,P) satisfies the usual assumptions. Then one would like to define a
probability measure P x,y,T on FT such that for all t < T , A ∈ Ft, one has

P x,y,T (A) =
1

p(T, x, y)

∫

A

p(T − t,Xx
t , y)dP.

Then, X(x)|[0,T ] would indeed be an adapted Brownian bridge

on (Ω,FT ,F∗|[0,T ], P
x,y,T ).

However, again due to Satz 5.40 in Hackenbroch and Thalmaier (1994) such a
measure cannot exist, and again the way out of this is to start with the ’rough’
(that is, not yet completed) m-dimensional standard Euclidean Wiener space and
to carry out the above construction on its local completion.
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As we allow filtered probability spaces with a finite time horizon that need not
satisfy the usual assumptions, a somewhat nonstandard setting for semimartingales
on manifolds, we add:

Remark 2.6. In the sequel, given T > 0 and a filtered probability space
(Ω,F , (Ft)t∈[0,T ],P) we say that an increasing sequence Tn : Ω → [0, T ], n ∈ N, of
F∗-stopping times announces T , if

lim
n→∞

P(Tn = T ) = 1.

As usual, we will say that a process Y which is defined on [0, T ]×Ω has F∗-locally
a certain property P, if for some sequence Tn : Ω → [0, T ], n ∈ N of F∗-stopping
times which announces T , the process Ymin(·,Tn) has the property P. A process

Y : [0, T ]× Ω −→ R

is called a continuous semimartingale w.r.t. F∗ := (Ft)t∈[0,T ], if there exist con-
tinuous processes

Y (1) : [0, T ]× Ω −→ R, Y (2) : [0, T ]× Ω −→ R

such that

• Y (1) is adapted to F∗ with paths F∗-locally having a finite variation
• Y (2) is F∗-locally a martingale starting from 0
• Y = Y (1) + Y (2).

We recall further that, following Laurent Schwartz, a continuous F∗-adapted
manifold-valued process

X : [0, T ]× Ω −→ M

is called a continuous semimartingale w.r.t. F∗, if for all smooth f : M → R the
process

f(X) : [0, T ]× Ω −→ R

is a real-valued continuous F∗-semimartingale in the sense of the former definition.
With this definition, it follows that if

X : [0, T ]× Ω −→ M

is a continuous semimartingale w.r.t. (Ω,F , (Ft)t∈[0,T ],P), then it is also one w.r.t.
the minimal extension of the latter filtration which satisfies the usual assumptions
(of completeness and right-continuity). Furthermore, a process

X : [0, T ]× Ω −→ M

is a continuous F∗-semimartingale, if and only if it is F∗-locally a continuous F∗-
semimartingale.

The latter probabilistic localization leads to a simple geometric localization:

Lemma 2.7. Assume we are given T > 0, a filtered probability space
(Ω,F , (Ft)t∈[0,T ],P), and a continuous F∗ := (Ft)t∈[0,T ]-adapted continuous pro-
cess

X : [0, T ]× Ω −→ M

such that for all smooth compactly supported φ : M → R the process φ(X) is a
continuous F∗-semimartingale. Then X is a continuous F∗-semimartingale.
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Proof : Let f be an arbitrary smooth function on M , let (Un)n∈N be an open rela-
tively compact exhaustion of M . Then, as X is continuous and adapted, and Un is
open, the first exit time Tn : Ω → [0, T ],

Tn :=

{

inf{t ∈ [0, T ] : Xt ∈ M \ Un}, if {. . . } 6= ∅
T, else

,

of X from Un is a stopping time, for each n ∈ N, and (Tn)n∈N announces T . If φn is
a smooth compactly supported function M with φn ≡ 1 on Un, then by assumption
(φnf)(X) is a continuous semimartingale which coincides with f(Xmin(·,Tn)). �

In the sequel, for every fixed y ∈ M we define the strictly positive space-time
function

py : (0,∞)×M −→ (0,∞), py(t, x) := p(t, x, y).

Now we can formulate our main result:

Theorem 2.8. Let M be geodesically complete, let x, y ∈ M , T > 0, let
(Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space, and assume furthermore that

Xx,y,T is an F∗ := (Ft)t∈[0,T ]-Brownian bridge from x to y with terminal time T .
Then for all smooth compactly supported f : M → R one has

E

[

∫ T

0

∣

∣d log py(T − r,Xx,y,T
r )

∣

∣

∣

∣df(Xx,y,T
r )

∣

∣ dr

]

< ∞,

and the real-valued process

Xx,y,T,f : [0, T ]× Ω −→ R,

Xx,y,T,f
s := f(Xx,y,T

s )− f(Xx,y,T
0 )− (1/2)

∫ s

0

∆f(Xx,y,T
r )dr

−
∫ s

0

(

d log py(T − r,Xx,y,T
r ), df(Xx,y,T

r )
)

)

dr

is a continuous F∗-martingale. In particular, Xx,y,T is a continuous semimartin-
gale with respect to F∗.

The following localized C1-heat kernel bounds will play a central role in the proof
of Theorem 2.8:

Theorem 2.9. Let M be geodesically complete.
a) For every z0 ∈ M and every R > 0 there exist constants Cj > 0 (which depend
on the geometry of M in a neighbourhood of B(z0, R)) such that for all (t, x, y) ∈
(0, R]×B(z0, R)×B(z0, R) one has

C1t
−m/2e−C2

d(x,y)2

t ≤ p(t, x, y) ≤ C3t
−m/2e−C4

d(x,y)2

t .

b) For every z0 ∈ M and every R > 0 there exists a constant C > 0 (which
depends on the geometry of M in a neighbourhood of B(z0, R)) such that for all
(t, x, y) ∈ (0, R2]×B(z0, R)×B(z0, R) one has

|d log py(t, x)| ≤ C(t−1/2 + t−1d(x, y)),

where here and in the sequel d log py(t, x) := dx log p
y(t, x), that is, the exterior

differential of a function on space-time is always understood with respect to the
space variable.
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While the proof of Theorem 2.9 a) is consequence of localized versions of standard
comparison results in Riemannian geometry (cf. appendix A), the proof of Theorem
2.9 b) is based on the following localized version of Hamilton’s gradient estimate,
which is by Arnaudon and Thalmaier:

Theorem 2.10. Let D ⊂ M be an open relatively compact subset, let S > 0, and
let a continuous function

u : [0, S]×D −→ (0,∞)

be given, which is a smooth solution of

∂

∂s
u(s, z) =

1

2
∆u(s, z) in (s, z) ∈ [0, S]×D.

Then for all K ≥ 0 with Ric|D ≥ −K, all β > 0, w ∈ D, and all z ∈
B
(

w, d(w, ∂D)/2
)

one has the gradient bound

|d log u(z, S)|2 ≤ 2

(

1

S
+

π2(m+ βm+ 7)

d(w, ∂D)2
+

K

4β
+K

)(

4 + log
sup[0,S]×D u

u(z, S)

)2

.

Theorem 2.10 is an immediate consequence of Theorem 7.1 in Arnaudon and
Thalmaier (2010), where an entirely probabilistic proof has been given. We refer
the reader also to Thalmaier and Wang (1998) for analogous techniques.

Proof of Theorem 2.9: a) The localized heat kernel bounds that we have recorded in
the appendix (cf. appendix A), show the existence of constants Aj > 0, j = 1, . . . , 4,
that only depend on m and a lower bound of Ric in a neighbourhood of B(z0, R),
such that for all (t, x, y) ∈ (0, R2]×B(z0, R)×B(z0, R) one has

e−A1tµ(B(x,
√
t)−1/2µ(B(y,

√
t))−1/2e−A2

d(x,y)2

t

≤ p(t, x, y)

≤ eA3tµ(B(x,
√
t))−1/2µ(B(y,

√
t)−1/2e−A4

d(x,y)2

t .

As
√
t ≤ R < R+1 and B(x, 2

√
t) ⊂ B(z0, 4(R+1)), B(y, 2

√
t) ⊂ B(z0, 4(R+1)),

applying Bishop-Gromov’s volume estimates locally (cf. appendix A) we can pick
A5, A6 > 0 (that only depend onm and a lower bound of Ric on say B(z0, 4(R+1))),
such that

max{µ(B(x,
√
t)), µ(B(y,

√
t))} ≤ A5t

m/2eA6

√
t ≤ A5e

A6

√
Rtm/2,

which yields the estimate

p(t, x, y) ≥ A5e
−A1Re−A6

√
Rt−m/2e−A2

d(x,y)2

t .

On the other hand, using again
√
t ≤ R < R + 1, B(x, 2

√
t) ⊂ B(z0, 4(R + 1)),

B(y, 2
√
t) ⊂ B(z0, 4(R + 1)), and applying a local volume doubling inequality (cf.

appendix A), we can pick A7 > 0 (that only depends on m and a lower bound of
Ric on B(z0, 4(R+ 1))) such that

min{µ(B(x,
√
t)), µ(B(y,

√
t))}

≥ (R+ 1)−me−A7(R+1) inf
a∈B(z0,R)

µ(B(a,R+ 1))t−m/2

=: A8t
−m/2.
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Thus we have

p(t, x, y) ≤ eA3RA8t
−m/2e−A4

d(x,y)2

t ,

completing the proof.
b) We will use Theorem 2.10 as follows: Define S := t/2, u(s, z) := py(s + t/2, z)
and let D := B(z0, 2R). We can pick finitely many w1, . . . wl ∈ D such that

B(z0, R) ⊂ ⋃l
j=1 B

(

wj , d(wj , ∂D)/2
)

. Then with the above choices Theorem 2.10
immediately implies

|d log py(x, t)|2 ≤ 2

(

2

t
+

π2(m+ βm+ 7)

minj=1,...,l d(wj , ∂D)2
+

K

4β
+K

)

×
(

4 + log
sups∈[0,t/2],z∈D p(t/2 + s, z, y)

p(t, x, y)

)2

,

where K ≥ 0 is chosen such that −K is a lower bound on the Ricci curvature on
D = B(z0, 2R), and β > 0 can be chosen arbitrarily. Finally, by part a), we can
find constants cj > 0 such that

log
sups∈[0,t/2],z∈D p(t/2 + s, z, y)

p(x, y, t)
≤ c1 + c2d(x, y)

2/t,

showing the inequality

|d log py(t, x)| ≤ C
(

t−1/2 + t−1d(x, y) + t−1/2d(x, y) + 1
)

,

which proves the claim (noting that 1 ≤ R2/t and t−1/2 ≤ Rt−1. �

Proof of Theorem 2.8: Let R0 > 0, z0 ∈ M be arbitrary. We prove the claim for
x, y ∈ B(z0, R0). To this end, we fix an arbitrary smooth compactly supported
f : M → R.

The proof is divided into four parts:

Claim 1: With py := p(·, ·, y), for every 0 ≤ t < s < T , and A ∈ Ft one has

d

ds
E
[

1Af(X
x,y,T
s )

]

= E
[

1A

(

(1/2)∆f(Xx,y,T
s ) +

(

d log py(T − s,Xx,y,T
s ), df(Xx,y,T

s )
)

)]

.

Proof of Claim 1: In principle we follow the compact case Driver (1994) here,
up to the fact that we have to use the Markov property of the bridge (which
makes the calculation more complicated): Using the time-inhomogeneous Markov
property of Xx,y,T and the defining relation of the pinned Wiener measure (note
that s− t < T − t), we can calculate

E
[

1Af(X
x,y,T
s )

]

= E

[

1A

∫

f(ω(s− t))dPXx,y,T
t ,y,T−t(ω)

]

= E

[

1A
1

py(T − t,Xx,y,T
t )

∫

py(T − s, ω(s− t))f(ω(s− t))dPXx,y,T
t ,T−t(ω)

]

.

(2.2)

Let us define a smooth function

Ψ : [0, T )×M −→ R, Ψr(z) := py(T − r, z)f(z), (r, z) ∈ [0, T )×M.
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Then, using that the heat kernel solves the heat equation and that ∆ is formally
self-adjoint (note here that Ψs has a compact support in M), one can easily deduce

∂

∂s
Ps−tΨs(z) = Ps−t

[(

∂

∂s
+ (1/2)∆

)

Ψs

]

(z),

an expression, which using the product rule for the Laplace-Beltrami operator and
once more that the heat kernel solves the heat equation, is seen to be equal to

= Ps−t

[

py(T − s, ·)(1/2)∆f +
(

dpy(T − s, ·), df
)]

(z)

= Ps−t

[

py(T − s, ·)(1/2)∆f + py(T − s, ·)
(

d log py(T − s, ·), df
)]

(z).

Thus, using (2.2) and using the defining relation of the Wiener measure twice,

d

ds
E
[

1Af(X
x,y,T
s )

]

=
d

ds
E

[

1A
1

py(T − t,Xx,y,T
t )

Ps−tΨs(X
x,y,T
t )

]

(2.3)

= E

[

1A
1

py(T − t,Xx,y,T
t )

∂

∂s
Ps−tΨs(X

x,y,T
t )

]

= E

[

1A
1

py(T − t,Xx,y,T
t )

× Ps−t

[

py(T − s, ·)(1/2)∆f + py(T − s, ·)
(

d log py(T − s, ·), df
)]

(Xx,y,T
t )

]

= E

[

1A
1

py(T − t,Xx,y,T
t )

∫

py(T − s, ω(s− t))

×
(

(1/2)∆f(ω(s− t)) +
(

d log py(T − s, ω(s− t)), df(ω(s− t))
)

)

dPXx,y,T
t ,T−t(ω)

]

.

In view of the defining relation of the pinned Wiener measure, we see that the latter
expression is

= E

[

1A

∫

(

(1/2)∆f(ω(s− t)) +
(

d log py(T − s, ω(s− t)), df(ω(s− t))
)

)

(2.4)

×dPXx,y,T
t ,y,T−t(ω)

]

.

That we can indeed interchange d
ds and E in (2.3) is seen as follows: Fix arbitrary

t, T, ǫ > 0 with 0 < t < T − ǫ. Then P-a.s., for all s with t < s < T − ǫ the above
calculation inside E[· · · ] shows

∣

∣

∣

∣

∂

∂s
1Af(X

x,y,T
s )

∣

∣

∣

∣

≤ (1/2)

∫

|∆f(ω(s− t))|dPXx,y,T
t ,y,T−t(ω)

+

∫

∣

∣

(

d log py(T − s, ω(s− t)), df(ω(s− t))
)∣

∣ dPXx,y,T
t ,y,T−t(ω)

≤ (1/2) ‖∆f‖∞ + ‖df‖∞ sup
s∈[t,T−ǫ),z∈supp(f)

|d log py(T − s, z)| .
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Finally, using the time-inhomogeneous Markov property of Xx,y,T we get that
(2.4) implies

d

ds
E
[

1Af(X
x,y,T
s )

]

= E
[

1A

(

(1/2)∆f(Xx,y,T
s ) +

(

d log py(T − s,Xx,y,T
s ), df(Xx,y,T

s )
)

)]

,

which completes the proof of Claim 1.

Claim 2: One has

E

[

∫ T

0

∣

∣d log py(T − r,Xx,y,T
r )

∣

∣

∣

∣df(Xx,y,T
r )

∣

∣ dr

]

< ∞.

Proof of Claim 2: Using the time reversal symmetry of the pinned Wiener mea-
sure we have (with X the coordinate process on ΩT (M))

Ex,y,T

[

∫ T

0

|d log py(T − r,Xr)| |df(Xr)| dr
]

= Ex,y,T

[

∫ T/2

0

|d log py(T − r,Xr)| |df(Xr)| dr
]

+ Ey,x,T

[

∫ T/2

0

|d log py(r,Xr)| |df(Xr)| dr
]

.

For the first summand we have

Ex,y,T [|d log py(T − r,Xr)| |df(Xr)|] ≤ sup
z∈supp(f),u∈[T/2,T ]

|d log py(u, z)| |df(z)| ,

for every 0 < r ≤ T/2, as in this range we stay away from the heat kernel singularity.
In particular, the first summand is finite.
It remains to estimate the second summand. To this end, we pick R > max(R0, T

2)
large enough such that B(z0, R) ⊃ supp(f). Using again the defining relation of
the pinned Wiener measure, and of the Wiener measure, respectively, we have for
every 0 < r ≤ T/2,

p(T, y, x)Ey,x,T [|d log py(r,Xr)| |df(Xr)|]

=

∫

p(r, y, z)p(T − r, z, x) |d log py(r, z)| |df(z)| dµ(z)

≤
∫

B(z0,R)

p(r, y, z)p(T − r, z, x) |d log py(r, z)| |df(z)| dµ(z)

≤ ‖df‖∞
∫

B(z0,R)

p(r, y, z)p(T − r, z, x) |d log py(r, z)| dµ(z)

≤
{

sup
u∈[T/2,T ],a,b∈B(z0,R)

p(u, a, b)
}

‖df‖∞
∫

B(z0,R)

p(r, y, z) |d log py(r, z)| dµ(z)

=: A

∫

B(z0,R)

p(r, y, z) |d log py(r, z)| dµ(z).

Next, using Theorem 2.9, we pick a constant C > 0 such that for all u ∈ (0, T ],
x1, x2 ∈ B(z0, R) one has

|d log p(u, x1, x2)| ≤ Cu−1/2 + Cu−1d(x1, x2)
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and

p(u, x1, x2) ≤ Cu−m/2e−C
d(x1,x2)2

u ,

so that using
∫

M
p(α, v, w)dµ(w) ≤ 1 for all α > 0, v ∈ M ,

A−1p(T, y, x)Ey,x,T [|d log py(r,Xr)| |df(Xr)|]

≤ Cr−1/2

∫

B(z0,R)

p(r, y, z)dµ(z) + Cr−1

∫

B(z0,R)

p(r, y, z)d(y, z)dµ(z)

≤ Cr−1/2 + C2r−1−m/2

∫

B(z0,R)

e−C
d(z,y)2

r d(y, z)dµ(z).

The first summand is integrable in r from 0 to T/2. For the second summand we
proceed as follows: Pick R′ large with B(z0, R) ⊂ B(y,R′). Then using the co-area
formula

r−1−m/2

∫

B(z0,R)

e−C
d(z,y)2

r d(y, z)dµ(z) ≤ r−1−m/2

∫

B(y,R′)

e−C
d(z,y)2

r d(y, z)dµ(z)

= r−1−m/2

∫ R′

0

e−C u2

r · u · area({z ∈ M : d(z, y) = u})du

≤ cr−1−m/2

∫ R′

0

e−C u2

r uum−1du ≤ c′r−1−m/2+m/2+1/2 = c′r−1/2,

for some c, c′ > 0, where we also have used the Bishop-Gromov estimate for metric
spheres from appendix A, and where we have estimated the last integral with

∫ R′

0

e−C u2

r umdu ≤
∫ ∞

0

e−C u2

r umdu = Cm(C/r)−m/2−1/2.

Again, the result is an integrable function of r in [0, T/2]. This completes the
proof of Claim 2.

Claim 3: The real-valued process

Y := Xx,y,T,f : [0, T ]× Ω −→ R,

Ys := f(Xx,y,T
s )− f(Xx,y,T

0 )− (1/2)

∫ s

0

∆f(Xx,y,T
r )dr

−
∫ s

0

(

d log py(T − r,Xx,y,T
r ), df(Xx,y,T

r )
)

)

dr

is a continuous F∗-martingale.
Proof of Claim 3: It follows from applying

∫ s

t
· · · to the formula from Claim 1

that for all 0 ≤ t < s ≤ T , all A ∈ Ft, and all n ∈ N one has

E
[

1A(Yt − Ys−1/n)
]

= 0.

As f has a compact support, we can use Claim 2 and dominated convergence to
deduce

E [1A(Yt − Ys)] = 0,

which is equivalent to

E [Yt|Fs] = Ys P-a.s.

Claim 4: f(Xx,y,T ) is a continuous F∗ semimartingale.
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Proof of Claim 4: We have for all s ∈ [0, T ], P-a.s.

f(Xx,y,T
s ) =Ys + f(Xx,y,T

0 ) + (1/2)

∫ s

0

∆f(Xx,y,T
r )dr

+

∫ s

0

(

d log py(T − r,Xx,y,T
r ), df(Xx,y,T

r )
)

)

dr.

Thus by Claim 2 and Claim 3 this is a sum of a continuous local martingale and
a continuous adapted process with paths having a finite variation. This completes
the proof. �

Let nowG be a Lie-group with g its Lie-algebra. By standard results on manifold-
valued continuous semimartingales (Hackenbroch and Thalmaier, 1994), we have:

Corollary 2.11. Let (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability space which

satisfies the usual assumptions, and let Xx,y,T be an F∗ := (Ft)t∈T -Brownian
bridge Xx,y,T from x to y with terminal time T . Assume further that we are
given a smooth principal G-bundle π : P → M together with a connection 1-form
α ∈ Ω1

C∞(P, g). Then for every F0-measurable random variable u : Ω → P with
π(u) = x P-a.s., there exists a unique (up to indistinguishability) α-horizontal F∗-
lift U : [0, T ]×Ω → P of Xx,y,T with U0 = u P-a.s. In other words, U is the uniquely
determined continuous F∗-semimartingale U : [0, T ] × Ω → P which satisfies the
following properties:

• U0 = u P-a.s.
• π(Ut) = Xx,y,T

t P-a.s., for all t ∈ [0, T ]

•
∫ t

0
α(dUs) = 0 (Stratonovic line integral of α along U) P-a.s., for all t ∈

[0, T ].

Appendix A. Localized heat kernel and volume bounds

For the convenience of the reader we record here some facts on heat-kernels and
volumes on geodesically complete Riemannian manifolds. Let M be a geodesically
complete connected smooth Riemannian m-manifold, with p(t, x, y), µ(dx), and
B(x, r) as above. In addition, area(dx) denotes the (m−1)-dimensional Hausdorff-
measure on M . There hold the following facts:

(i) (Localized heat kernel bounds): For every r > 0, x′ ∈ M , there exist constants
Aj > 0 which only depend on m and a lower bound of Ric in B(x′, 2r), such that
for all (t, x, y) ∈ (0, r2)×B(x′, r)×B(x′, r) one has

e−A1tµ(B(x,
√
t))−1/2µ(B(y,

√
t))−1/2e−A2

d(x,y)2

t

≤ p(t, x, y)

≤ eA3tµ(B(x,
√
t))−1/2µ(B(y,

√
t))−1/2e−A4

d(x,y)2

t .

(ii) (Local Bishop-Gromov estimate) For every r > 0, x ∈ M , one has

µ(B(x, s)) ≤ |Sm|sme
√

(m−1)Ks for all 0 < s < 2r,

and

area({z ∈ M : d(z, x) = s}) ≤ |Sm|sm−1e
√

(m−1)Ks for all 0 < s < 2r,

where K ≥ 0 is any lower bound of Ric ≥ −K in B(x, 2r).
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(iii) (Local volume doubling property) For every r > 0, x ∈ M , one has

µ(B(x, s)) ≤ µ(B(x, s′))(s/s′)me
√

(m−1)Ks for all 0 < s′ < s < 2r,

where again K ≥ 0 is any number such that Ric ≥ −K in B(x, 2r).

The asserted heat kernel bound is the content of Theorem 6.1 in Saloff-Coste
(1992). All remaining results follow from estimating the Riemannian volume den-
sity in exponential polar coordinates away from the cut-locus of x, and it is well-
known that this density can be controlled by the Laplacian of the distance function.
Now the claims follow from observing that the Laplacian comparison theorem can
be localized (as has been observed in Remark 2.6 in Pigola et al., 2008; see also
inequality (1), (2) in Saloff-Coste, 1992).
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