
1

On the sensitivity of linear resource sharing
problems to the arrival of new agents
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Abstract— We consider a multi-agent optimal resource
sharing problem that is represented by a linear program.
The amount of resource to be shared is fixed, and agents
belong to a population that is characterized probabilisti-
cally so as to allow heterogeneity among the agents. In
this paper, we provide a characterization of the probability
that the arrival of a new agent affects the resource share
of other agents, which means that accommodating the new
agent request at the detriment of the other agents allocation
provides some payoff. This probability represents a sensi-
tivity index for the optimal solution of a linear programming
resource sharing problem when a new agent shows up, and
it is of fundamental importance for a correct and profitable
operation of the multi-agent system. Our developments
build on the equivalence between the resource sharing
problem and certain dual reformulations which can be inter-
preted as scenario programs with the number of scenarios
corresponding to the number of agents in the primal prob-
lem. The recent “wait-and-judge” scenario approach is then
used to obtain the sought sensitivity index. Our theoretical
findings are demonstrated through a numerical example on
optimal cargo aircraft loading.

Index Terms— Linear programing, uncertain systems,
multi-agent systems, scenario approach, duality theory.

I. INTRODUCTION

Systems with multiple agents interacting with each other
while sharing common resources are encountered in several
applications ranging from power networks [33], [13], [12],
demand side management [23], [11], and social networks
[20], [15], [31], to consensus and flocking [30], [29], as
well as robotic and sensor networks [24], [32]. Determin-
ing the optimal resource share has attracted the interest of
the control systems community, with most of the research
activities focusing towards distributed optimization schemes
based on iterative algorithms for determining social welfare
maximizing strategies (see [1] and references therein, and [26],
[27], [28], [34], [3], [16], [22], [18] for recent contributions).
Complementary to the problem of distributed computation,
albeit equally important, there is the problem of quantifying
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the capacity of the system in terms of the number of agents
that are needed so as to obtain a solution that remains unaltered
upon the arrival of a new agent. With the exception of [23]
where such a consideration was made in the context of demand
side management, to the best of our knowledge, this issue
has not been rigorously investigated. In this paper we aim at
addressing this problem, thus offering theoretical support for
the developments in [23].

We consider multi-agent resource sharing problems that
can be represented by linear programs subject to budget
equality/inequality constraints, which express the usage of
given resources by agents, and local upper-limit constraints,
expressing the agents’ limits in contributing to the solution.
Each agent is characterized by a tuple of parameters encoding
the agent contribution to the cost and to the budget type
constraints, as well as the upper-limit to its decision vector.
Each agent is independently drawn from a fixed, but unknown
multivariate probability distribution modeling the underlying
unknown mechanism through which agents show up. A multi-
extraction from this distribution instantiates a finite population
of heterogeneous agents initially participating in the resource
sharing problem.

When a new agent corresponding to a new tuple of pa-
rameters is added to the pool of agents and the solution is
re-computed, it may either happen that the solution changes,
in which case the newly arrived agent must contribute to
determining it, or the resource sharing solution remains un-
changed and the new agent adds to the part of agents that
are unemployed. Therefore, the probability that the optimal
resource share remains unaltered upon the arrival of a new
agent serves as a sensitivity index for the optimal solution of
the initial pool of agents.

The goal of this paper is to provide a characterization of this
this sensitivity index, i.e., the probability that the arrival of a
new agent leaves the optimal resource share unaltered. The
main difficulty is that the underlying probability distribution
is unknown and to establish our results we build on the
equivalence between the resource sharing linear program under
consideration and a dual reformulation of the problem. The
resulting dual problem exhibits a structure that resembles that
of a scenario program, i.e., a program where each constraint
corresponds to a different realization of the parameter tuple
that models agents’ heterogeneity [4], [5], [8]. Since the
number of decision variables in this problem grows with
the number of scenarios, which makes the standard scenario
theory inapplicable, a further transformation is introduced to
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recast the dual problem as a scenario program with constraint
relaxation, [19], [10], and by relying on recent “wait-and-
judge” developments of the scenario approach, [9], [6], [19],
we obtain a tight quantification of the probability of constraint
violation for the dual optimal solution by means of confidence
intervals that instantiate a posteriori based on the number of
active agents in the initial solution. We then show using tools
from linear programming (duality and basic solution concepts)
that constraint violation in the dual problem is equivalent to
a change of solution in the primal resource sharing problem
upon the arrival of a new agent, thus eventually obtaining the
sought quantification of the sensitivity index.

Preliminary results towards this direction have been reported
in [17]. Here, we extend these developments considerably by
allowing also inequality (as opposed to only equality) budget
constraints and most importantly local upper-limit constraints
to be present in the resource sharing problem. The introduction
of such constraints broadens the class of problems that can be
captured by our framework, however, it also imposes certain
challenges as it results in the number of decision variables
in the dual programming formulations to increase with the
number of scenarios (which corresponds to agents in our
context). To address this, we deviate from the a priori analysis
of [17], and follow a more involved, but at the same time
more informative, a posteriori route. We also show that, in
the absence of upper-limit constraints, we obtain the results
of [17] as a special case, and in this case the conclusion of
our main theorem can be made a priori and identical to the
one of [17].

Our characterization can be profitably exploited in the
design and operation of a multi-agent system. Indeed, the
probability of that the arrival of new agent alters the optimal
resource share, can be used to evaluate whether polling new
agents in an attempt of improving the current solution is worth
pursuing. As a matter of fact, given that in real applications
polling new agents can be time consuming and demanding, the
aforementioned quantification of the sensitivity index allows
one to assess in probabilistic terms the effort that is needed
to find a rewarding agent and decide whether it is affordable
or not. Also, it provides a clear indication on the number of
agents which should be examined when opting for polling
new ones. The efficacy of our results is illustrated on a cargo
aircraft loading case study. In this context, shipping requests
of various goods are interpreted as “agents” that need to be
prioritized to obtain the more rewarding aircraft loading while
satisfying the aircraft volume and weight limitations.

The remainder of the paper is structured as follows. Section
II states the resource sharing program under study. In Section
III we introduce the proposed characterization of the sensitivity
of the solution to the arrival of a new agent and state our
main result, whose proof is postponed to Section V after
the derivation of instrumental results on linear programming
theory and duality theory in Section IV. Our developments are
demonstrated on a cargo aircraft loading problem in Section
VI, while Section VII concludes the paper and provides
directions for future work.

II. PROBLEM STATEMENT: MULTI-AGENT RESOURCE
SHARING PROBLEM AND SENSITIVITY TO THE ARRIVAL

OF A NEW AGENT

We consider a problem with m ∈ N+ agents sharing p
resources as follows. Each agent i, i = 1, . . . ,m, is associated
with a vector of decision variables xi ∈ Rni

, with possibly
ni 6= nj for i 6= j. For instance, xi can be the production level
of certain goods that need to be produced from some given
amounts of shared raw materials. Each decision is subject
to a non-negativity constraint xi ≥ 0 (inequality is meant
component-wise) and also to an upper-limit constraint xi ≤ di,
where inequality is again meant component-wise and di ∈ Rni

is a vector of upper limits imposed to the value that can be
taken by the components of xi. Moreover, each decision xi

comes with a cost that varies linearly with the value taken by
xi according to (ci)>xi, where ci ∈ Rni

. Implementing the
decisions requires utilizing some resources. Specifically, there
are p resources to be shared among agents, their total amount
is indicated by the vector b ∈ Rp+ and the consumption of
the resources corresponding to xi is given by Aixi, where
Ai ∈ Rp×ni

.
The total consumption of resources by all agents must

not exceed the total availability of resources indicated given
b, which corresponds to the overall budget-type constraint∑m
i=1A

ixi ≤ b (inequality is meant component-wise). We
also admit that some resources can be required to be entirely
consumed by the agents, in which case the corresponding
inequalities have to be turned into equalities. In order to have a
unified representation of both inequality and equality budget-
type constraints, we resort to the standard observation that
condition u ≤ w is equivalent to s+u = w with s ≥ 0. Thus,
assuming that there are n0, 0 ≤ n0 ≤ p, inequality budget-type
constraints, we introduce a vector of slack variables x0 ∈ Rn0

,
whose elements are positive and not upper limited, and write
the overall budget type constraint as A0x0 +

∑m
i=1A

ixi = b,
where

A0 =

[
In0×n0

0(p−n0)×n0

]
.

This way, the first n0 constraints correspond to inequality
budget-type constraints, while the remaining p − n0 to the
equality ones.

The resource allocation program Pm below instantiates the
agents’ decision variables so as to minimize the global cost
while satisfying the constraints.1

Pm : min
x0∈Rn0

,

{xi∈Rni
}mi=1

m∑
i=1

(ci)>xi (1)

subject to: xi ≥ 0, i = 0, 1, . . . ,m,

A0x0 +

m∑
i=1

Aixi = b,

xi ≤ di, i = 1, . . . ,m,

1Note that Setting ci = −ui, min
∑

(ci)>xi can be written as
max

∑
(ui)>xi and the problem can be interpreted as that we are maxi-

mizing a global utility.
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Letting ` =
∑m
i=0 n

i be the total number of decision variables
in Pm, we define x = [(x0)> (x1)> . . . (xm)>]> ∈ R` as
the vector stacking all the agents’ decision vectors on top of
each other. The optimal solution to Pm, assuming it exists, is
denoted by x?.

Remark 1: Note that Pm in (1) is not a linear program
in standard form, [2], due to the presence of upper-limit
constraints. It could be brought to standard form via the
introduction of additional slack variables, [2, Section 1.1].
However, we prefer to show the upper-limit constraints ex-
plicitly as this offers additional insights on our results. ?

In Pm each agent i, i = 1, . . . ,m, is fully characterized
by the tuple δi = (ni, ci, di, Ai). Here, we assume that
δi, i = 1, . . . ,m, is an i.i.d. (independent and identically
distributed) sample of a random quantity δ = (n, c, d, A)
taking value in a generic probability space (∆,D,P). It should
be noted that P corresponds to the joint probability distribution
of the elements of (n, c, d, A); in the particular case where
all agents have decision vectors of the same length, then the
marginal probability of n will be concentrated to that value.
Given the i.i.d. assumption, the distribution of the collection
{δi}mi=1 is given by the product probability measure Pm. Under
this setting, Pm becomes a random linear program, with the
number of agents corresponding to the number of realizations
of the uncertain tuple (n, c, d, A) that have instantiated Pm.

Suppose now that a new agent characterized by δ̄ =
(n̄, c̄, d̄, Ā) joins the resource sharing problem, and let x̄ ∈ Rn̄
denote its corresponding decision vector. The resulting linear
program for the (m+1)–agent problem is denoted as Pm+ and
is given by

Pm+ : min
x0∈Rn0

{xi∈Rni
}mi=1,x̄∈R

n̄

m∑
i=1

(ci)>xi + c̄>x̄ (2)

subject to: xi ≥ 0, i = 0, 1, . . . ,m, x̄ ≥ 0,

A0x0 +

m∑
i=1

Aixi + Āx̄ = b,

xi ≤ di, i = 1, . . . ,m, x̄ ≤ d̄.

Let x+ = [x> x̄>]> ∈ R`+n̄ be the vector containing all the
decision variables of Pm+ . The optimal solutions of Pm+ is
denoted by x�+. As is clear, two components corresponding
to the m previous agents decision vectors and to the new
agent decision vector, can be isolated from x�+, namely x�+ =
[(x�)> (x̄�)>]>, where in general x� need not coincide with
x?, i.e., the solution to Pm with only m agents in place. To
be precise, two situations may arise. We can either have that:
(a) x̄� = 0, in which case it must be that x�+ = [(x?)> 0>]
with no improvement in the cost, because, otherwise, with
x�+ = [(x�)> 0>] 6= [(x?)> 0>], x� would be a super-optimal
solution to Pm in (1), or (b) x̄� 6= 0 and x�+ 6= [(x?)> 0>],
in which case the optimal value of Pm+ improves over that of
Pm because in any case [(x?)> 0>] is feasible for Pm+ .

For a resource sharing problem with m agents, our objective
is to quantify how likely it is that the arrival of a new agent
improves the optimal solution achieved by the initial m agents
alone. More formally, given that the new agent is characterized

by a stochastic tuple δ̄ = (n̄, c̄, d̄, Ā), we are interested in
quantifying the probability (with respect to the variability of
δ̄) with which x�+ 6= (x?, 0), i.e.,

P{δ̄ = (n̄, c̄, d̄, Ā) ∈ ∆ : x�+ 6= (x?, 0)},

which serves as a sensitivity index as detailed in the intro-
duction. The main difficulty with the computation of P{δ̄ =
(n̄, c̄, d̄, Ā) ∈ ∆ : x�+ 6= (x?, 0)} lies in the fact that P
is not known (P models the unknown mechanism through
which agents show up). Thus, a direct computation of P{δ̄ :
x�+ 6= (x?, 0)} is impossible and and we must proceed along
a different route as detailed in the next section.

III. MAIN RESULT: SENSITIVITY INDEX ESTIMATION

To start with, note that the sensitivity index P{δ̄ : x�+ 6=
(x?, 0)} itself can be considered as a random variable defined
over the product probability space (∆m,Dm,Pm) because of
the dependence of x? and x�+ on the random sample {δi}mi=1

(this dependency is not shown explicitly to ease notation).
Theorem 1 below, which is our main contribution, shows that
there always exists a high correlation between P{δ̄ : x�+ 6=
(x?, 0)} and an observable quantity s?, which is the number
of agents actively participating to the solution to Pm in (1).
Hence, the sensitivity index can be tightly estimated from s?

with high confidence with respect to the seen {δi}mi=1.
Before formally stating the theorem, we need to clarify

some notation. In general, a superscript to a vector dictates
that it is associated with the corresponding agent (e.g. xi is the
i-th agent decision vector), while we use a subscript to denote
a particular element in the vector (xi is the i-th elements of
x). For each i = 1, . . . ,m, we denote by J i ⊂ {1, . . . , `} the
indices corresponding to the variables in x belonging to agent
i and for a given subset I ⊆ {1, . . . , `} of indices, vI denotes
the sub-vector of v corresponding to the indices in I . Thus,
xJ i = xi. Finally, vr:s is a shorthand for v{r,...,s}.

The derivation of Theorem 1 requires the following two
technical assumptions.

Assumption 1 (Feasibility and uniqueness): For any m ∈
N+, the linear program Pm in (1) is feasible and admits a
unique minimizer almost surely with respect to Pm. ?

Assumption 2 (Non-degeneracy): We assume that for any
m ∈ N+:

1) For all i = 1, . . . ,m, di > 0.
2) At any feasible point for Pm in (1), no more than `

constraints are active almost surely.
3) For any vector λ ∈ Rp,

P{δ = (n,c, d,A) ∈ ∆ : ∃j ∈ {1, . . . , n}
such that [c> + λ>A]j = 0} = 0, (3)

where [ · ]j denotes the j–th element of its argument. ?
Both Assumptions 1 and 2 are standard in linear programming,
[2], and are relatively mild. Assumption 1 guarantees that x?

and x�+ are almost surely well-defined. Given that the solution
is constrained to stay in a box (non-negativity and upper-limit
constraints), feasibility requires that the polyhedron defined
by the budget-type constraint is almost surely non void and
intersecting the box. This is achieved when P properly limits
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the variability of the half-spaces/hyper-planes defining the
polyhedron. Uniqueness instead requires that the cost level sets
are almost surely not aligned to some edge of the feasibility
set. For example, this is achieved if the probability of ci

conditional to Ai has density. Note that the uniqueness part of
the assumption could be relaxed, by assuming that in case of
multiple minimizers a specific one is singled out by means of
a linear tie-break rule. All the subsequent derivations can be
carried over with no conceptual twists, but they would become
cumbersome. For this reason, we prefer to stick to the present
formulation of Assumption 1. Assumption 2 imposes certain
non-degeneracy conditions. In particular, part 1 excludes the
case of degenerate agents with some components of xi being
forced to be equal to zero. Condition 2 implies that Pm in
(1) is non-degenerate in the sense of [2, Definition 2.10] and
it is verified if the probability that the hyper-plane defining
the budget-type constraint set passes over a given point is
zero. Condition 3 is needed in the proof of Theorem 1 below
when a result from [19] is invoked. This condition requires
that for any given λ ∈ Rp, the probability that λ belongs
to the boundary of the affine constraints c> + λ>A ≤ 0 is
zero. In other words, these affine constraints, parameterized by
the elements c and A of δ, do not accumulate over the same
point at their boundaries with the exception of zero probability
cases only. Both conditions 2 and 3 are typically verified if
δ = (n, c, d, A) is generically distributed with no concentrated
mass in the marginal distributions of c, d, and A.

Fix now any β ∈ (0, 1) and for k = 0, 1, . . . ,m−1, consider
the following polynomial equations in the variable t (see [19,
Theorem 4])(

m

k

)
tm−k − β

2m

m−1∑
i=k

(
i

k

)
ti−k

− β

6m

4m∑
i=m+1

(
i

k

)
ti−k = 0, (4)

and for k = m consider the polynomial equation

1− β

6m

4m∑
i=m+1

(
i

m

)
ti−m = 0. (5)

As shown in [19], for any k = 0, 1, . . . ,m − 1, (4) has
exactly two solutions denoted as t(k), t(k) ∈ [0,+∞), with
t(k) ≤ t(k), while (5) has only one solution denoted by
t(m) ∈ [0,+∞); we also define t(m) = 0. Define then the
functions ε(·), ε(·) : {0, 1, . . . ,m} → [0, 1] as

ε(k) = max{0, 1− t(k)}, (6)
ε(k) = max{0, 1− t(k)}, (7)

k = 0, 1, . . . ,m. We are now in a position to state the main
result of our paper.

Theorem 1: Consider Assumptions 1 and 2. Fix β ∈ (0, 1),
and consider ε(·) and ε(·) as defined in (6) and (7), respec-
tively. Denote then by s? the number of agents whose decision
vector has at least one non-zero element, i.e.,

s? =
∣∣∣ {i ∈ {1, . . . ,m} : ∃j ∈ J i such that x?j 6= 0

} ∣∣∣, (8)

where | · | denotes the cardinality of its argument. We then
have that

Pm
{
{δi}mi=1 ∈ ∆m : (9)

P{δ̄ ∈ ∆ : x�+ 6= (x?, 0)} ∈ [ε(s?), ε(s?)]
}
≥ 1− β.

Proof: The proof of Theorem 1 is deferred to Section V,
after that some preliminary results based on linear program-
ming and duality theory are derived in Section IV.

In words, Theorem 1 says that irrespective of P – i.e.,
irrespective of the agents distribution – the probability that the
optimal solution x? of Pm in (1) changes upon the arrival of a
new agent lies within the interval [ε(s?), ε(s?)] with confidence
at least 1−β. The quantity s? the interval depends on is itself
a random variable, since it depends on the random sample
{δi}mi=1, but, differently from P{δ̄ ∈ ∆ : x�+ 6= (x?, 0)},
it is an observable one since s? is a-posteriori known from
a direct inspection of x?. The essential message conveyed
by Theorem 1 is that the observable [ε(s?), ε(s?)] always
provides a correct quantification (with confidence 1 − β) of
the sought but unknown quantity P{δ̄ ∈ ∆ : x�+ 6= (x?, 0)}.
This quantification is often significant and tight, because, as
shown in [19] and [7], ε(k) and ε(k) rapidly get close each
other as m increases, while their value is barely affected by
β (provably, the dependence is logarithmic, see [7]), so that
very small values like β = 10−6 or β = 10−8 can be enforced
to obtain that P{δ̄ ∈ ∆ : x�+ 6= (x?, 0)} ∈ [ε(s?), ε(s?)]
with practical certainty. Figure 1 depicts ε(k) and ε(k) for
β = 10−4, 10−6, 10−8 and m = 250, 500, 100. As it appears,
the margin between ε(k) and ε(k) only moderately increases
as β decreases.

To compute ε(k) and ε(k) a bisection numerical algorithm
can be used, see [19, Appendix A]. For the case where one
is only interested in the upper-bound of P{δ ∈ ∆ : x�+ 6=
(x?, 0)}, the slightly tighter expression provided in [6, Theo-
rem 2] could be employed; note that this still depends on the
solution of a given polynomial equation. Alternatively, one
could use the upper-bound ε(·) provided in [9, Theorem 1],
which is loose as compared to the ε(·) given in Theorem 1,

but it admits the explicit expression ε(k) = 1 − m−k

√
β

m(m
k )

,

for all k = 1, . . . ,m− 1, and ε(m) = 1.
Remark 2: It is perhaps worth comparing Theorem 1 with

the result of [17]. In [17] a version of problem (1) where
no local upper-limit constraints and no inequality budget-type
constraint are present is considered and in that setup it is
proven that

Pm
{
{δi}mi=1 ∈ ∆m : (10)

P{δ̄ ∈ ∆ : x�+ 6= (x?, 0)} ≤ ε
}
≥ 1− β,

where ε is a threshold that can be computed from m and β
and that is provably slightly smaller than ε(p) (p is the number
of budget-type constraints). The existence of the lower bound
ε(s?) in (9) as well as the fact that there are problems where
s? takes values greater than p (see the numerical example in
Section VI) disproves that a result like (10) can apply in the
more general setup of the present paper. We will instead show
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Fig. 1. ε(k) and ε(k) for β = 10−4, 10−6, 10−8 and: a) m = 250; b) m = 500; c) m = 1000.

later, in Remark 4 after the proof of Theorem 1, how (10) can
be obtained in the more limited setup of [17] from the theory
of the present paper, so showing that the results of [17] are
indeed specific cases of those of the present contribution. ?

IV. PRELIMINARY RESULTS

A. Preliminary results based on linear programming

Consider the random program Pm in (1) and
let A = [A0A1 · · · Am] ∈ Rp×` and c =
[01×n0 (c1)> . . . (cm)>]> ∈ R`. Also, for the
sake of having a compact notation, formally define
d = [(d0)> (d1)> . . . (dm)>]> ∈ R`∗, where d0 is a
vector of n0 extended real variables all taking value +∞
(R∗ is the set of extended real numbers). We are interested
in the case where ` ≥ m > p, i.e., Pm has more decision
variables and agents than budget-type coupling constraints,
as it is typically the case in resource sharing problems.

We start by recalling some basic facts about the geometry
of linear programs. The constraints of Pm in (1) define a
feasibility domain Q = {x : Ax = b, x ≥ 0, xn0+1:` ≤
dn0+1:`} ⊆ R` which, under Assumption 1, is almost surely
a non-empty polytope. The solution x? to Pm, which almost
surely exists and is unique, must occur at a vertex of Q by
the definition of a polytope vertex, see e.g., [2, Definition
2.7]. Moreover, by [2, Theorem 2.3] any vertex of Q is a
so-called basic feasible solution, and vice-versa, according to
the following definition.

Definition 1: For any m ∈ N+, x̂ ∈ R` is said to be a basic
solution associated with Pm in (1) if Ax̂ = b and out of the
constraints of Pm that are active at x̂ there are ` of them that
are linearly independent. x̂ is a basic feasible solution of Pm
if in addition x̂ is feasible for Pm.

Basic solutions are at the core of linear programming; how-
ever, most results refer to linear programs in standard form,
where upper-limit constraints are not present. Next we provide
a characterization of basic feasible solutions in the present
setup, which will be used then to obtain a characterization of
x? that is essential for our proof of Theorem 1.

1) Characterization of basic solutions: Proposition 1 below
extends [2, Theorem 2.4] while accounting for the presence
of upper-limit constraints. Interestingly, the pursuit of such a
characterization was posed as an exercise in [2, Exercise 2.3],
but no solution is reported.

Proposition 1: If A is full row-rank, a vector x̂ ∈ R` is an
extended basic solution if and only if Ax̂ = b, and there exists
a set B = {j1, . . . , jp} ⊂ {1, . . . , `} of indices with |B| = p
(i.e., its cardinality equals the number of rows of A) such that:

1) the columns Aj , j ∈ B, of A, are linearly independent;
2) if j /∈ B, then either x̂j = 0 or x̂j = dj , where x̂j , dj

denote the j-th element of x̂ and d, respectively.

Proof: (⇐=) : Consider a vector x̂ satisfying Ax̂ = b,
and conditions (1) and (2) in the statement of the proposition.
Since Ax̂ = b is one of the conditions in the definition of
an extended basic solution, it remains to show that ` linearly
independent constraints of Pm in (1) are active at x̂. To this
end, let B = {j1, . . . , jp} ⊂ {1, . . . , `} with |B| = p, be the
set of indices such that the columns Aj , j ∈ B, are linearly
independent. For j /∈ B, x̂j = 0 or x̂j = dj , i.e., for the
indices not in B either the non-negativity constraint or the
upper-limit constraint is active. Consider now the following
system of ` linear equations in the ` elements of a vector x,
namely,

∑
j∈B

Ajxj = b−
∑
j /∈B

Aj x̂j and xj = x̂j , for j /∈ B. (11)

Since the columns Aj , j ∈ B, of A, are linearly independent
by condition (1), and the row-rank of A is p = |B|, the above
system of equations admits a unique solution, which must be
x̂ since x̂ surely satisfies (11). By [2, Theorem 2.2], this is
equivalent to the fact that the ` equations in (11) are linearly
independent, which in turn means that there exist ` constraints
active at x̂ that are linearly independent. This shows that x̂
is a basic solution associated with Pm, and concludes the
sufficiency part of the proof.

(=⇒) : Let x̂ be a basic solution associated with Pm in
(1). We then have that Ax̂ = b and that ` linearly independent
constraints of Pm are active at x̂. Let Bk = {j1, . . . , jk} ⊂
{1, . . . , `} be the set of indices such that x̂j 6= 0 and x̂j 6= dj ,
j ∈ Bk. Notice that k ≤ p; otherwise, if k > p, then p+ (`−
k) < ` constraints (the p budget-type equality constraints and
`−k among non-negativity and upper-limit constraints) would
be active at x̂, which violates the fact that x̂ is assumed to be
a basic solution.

Consider now the following system of ` linear equations in
the ` elements of a vector x, which is similar to (11) with Bk
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in place of B though:∑
j∈Bk

Ajxj = b−
∑
j /∈Bk

Aj x̂j and xj = x̂j , for j /∈ Bk. (12)

The fact that x̂ is a basic solution is equivalent to having `
equations among those in (12) that are linearly independent.
As a result, and since the `− k equations xj = x̂j are plainly
linearly independent, there should exist at least k equations
from

∑
j∈Bk

Ajxj = b −
∑
j /∈Bk

Aj x̂j that are also linearly
independent. This in turn implies that the columns Aj , j ∈ Bk,
of A, are linearly independent.

Since the row-rank of A is equal to p and p ≥ k, we can
always amend p− k additional independent columns of A to
Aj , j ∈ Bk. Define the resulting set of indices by B, and
notice that |B| = p; this shows condition (1) in the statement
of the proposition. Notice also that for all j /∈ Bk, x̂j = 0
or x̂j = dj . Since Bk ⊆ B, this is also the case for all j /∈
B. This shows condition (2) in the proposition statement and
concludes the necessity part of the proof.

The following lemma shows that A is almost surely full
row-rank in the present setup.

Lemma 1: Consider Assumption 1 and Assumption 2 (part
2). Then, matrix A is almost surely full row-rank.

Proof: Under Assumption 1, the optimal solution x?

corresponds almost surely to a basic feasible solution, that
is, there are ` active constraints at x? that are linearly in-
dependent. On the other hand, by Assumption 2, part 2, the
number of active constraints at x? is exactly `, and therefore
the active constraints must be all linearly independent. The
budget constraints Ax = b are clearly active at x?, hence, this
implies that the rows of A are linearly independent, i.e., A is
full row-rank.

In Proposition 1, it is not excluded that x̂j = 0 or x̂j = dj
for some j ∈ B. The following lemma shows that this is not
possible almost surely in the present seup.

Lemma 2: Under the non-degeneracy Assumption 2 (part
2), it holds almost surely that for any basic (feasible) solution
x̂j 6= 0 and x̂j 6= dj for all j ∈ B, where B are the indices
satisfying property (1) in Proposition 1.

Proof: In the opposite case, there would be at least one
index j̃ ∈ B such that x̂j̃ = 0 or x̂j̃ = dj̃ with non-zero
probability, which would imply that there are 1+p+(`−p) =
`+1 constraints active at x̂ (these are: either the non-negativity
or the upper-limit constraint corresponding to j̃ (depending
on if x̂j̃ = 0 or x̂j̃ = dj̃); the p budget-type constraints; and
`−p non-negativity and upper-limit constraints corresponding
to indices j /∈ B – see (2) in Proposition 1). This establishes
a contradiction, since under the non-degeneracy condition of
part 2 at most ` constraints are active at x̂ with probability
one.

By Proposition 1, Lemma 1, and Lemma 2, almost surely
with respect to Pm, any basic (feasible) solution x̂ of Pm in
(1) determines a partition of itself into three sub-vectors x̂B ,
x̂N , and x̂N . Vector x̂B is a stacked vector containing the
x̂j with j ∈ B, while x̂N , x̂N contain the elements with the
remaining indices, which are in turn partitioned in the sets N ,
N , respectively, such that x̂j = 0 for j ∈ N , and x̂j = dj , for
j ∈ N . The elements of x̂B are referred to as basic variables,

while the elements of x̂N and x̂N are collectively referred
to as non-basic variables. It should be noted that basic and
non-basic variables refer to variables and not agents: for the
same agent some variables could be basic while some other
ones non-basic. Also for the slack decision vector x̂0 some
variables may be basic while some other non-basic. However,
in this case, non-basic variables must correspond to indices in
N , since for j = 1, . . . , n0 it cannot be x̂j = dj (x0 is only
required to be no smaller than 0 and d0 has been artificially
defined as an extended vector with all elements equal to +∞).

2) Optimality conditions: Corresponding to the partition of
a basic (feasible) solution x̂ in basic and non-basic variables,
denote by AB = [Aj1 · · · Ajp ] the matrix obtained by the
columns of A corresponding to the indices in B, and by AN
and AN the matrices obtained by considering the columns
of A with indices corresponding to the ones of the elements
comprising x̂N , and x̂N , respectively. Similarly, let cB , cN ,
and cN be the associated partition of c.

We then have the following theorem, which constitutes an
extension of [2, Theorem 3.1] to the case where upper-limit
constraints are present.

Proposition 2: Consider Assumptions 1 and 2 (parts 1 and
2). For any m ∈ N+, and almost surely with respect to Pm, a
basic feasible solution x̂ is the optimal solution x? of Pm in
(1) if and only if

c>N − c>BA−1
B AN ≥ 0, (13)

c>
N
− c>BA−1

B AN ≤ 0, (14)

B,N,N being the partition into basic and non-basic variables
determined by x̂.

Proof: Under Assumptions 1 and 2, x? and Q, as well
as the partition B,N,N for any basic solution, are well
defined almost surely with respect to Pm, so all the subsequent
developments hold Pm-almost surely as well. For any given
basic feasible solution (vertex) x̂ of Q, consider a feasible
point x ∈ Q, and let z = x − x̂. Moreover, let xB , xN ,
and xN and zB , zN , and zN denote the partitions of x and
z into sub-vectors corresponding to the indices of basic and
non-basic variables of x̂.

Since x and x̂ are both feasible solutions, Ax̂ = b = Ax,
and as a result Az = A(x− x̂) = 0. This is in turn equivalent
to ABzB +ANzN +ANzN = 0, or in other words, recalling
that AB must be non-singular by Proposition 1,

zB = −A−1
B (ANzN +ANzN ). (15)

Consider now the cost function increment c>z when moving
from x̂ to x. We then have that

c>z = c>BzB + c>NzN + c>
N
zN

= (c>N − c>BA−1
B AN )(xN − x̂N )

+ (c>
N
− c>BA−1

B AN )(xN − x̂N ), (16)

where the second equality follows upon substituting (15), and
by the definition of z.

(⇐=) : Notice that (xN − x̂N ) ≥ 0 and (xN − x̂N ) ≤ 0
for any x ∈ Q, since all elements of x̂N are equal to
zero, while all elements of x̂N are equal to the upper-limit



7

constraint. Therefore, if (13) and (14) are satisfied, it follows
from (16) that c>z = c>(x− x̂) ≥ 0, i.e., the cost deteriorates
(c>x ≥ c>x̂) if we move from x̂ to x. Since this holds for any
x ∈ Q, this implies that x̂ is equal to x?, the unique (under
Assumption 1) optimal solution of Pm.

(=⇒) : Assume now that x̂ is the unique (under Assumption
1) optimal solution x? of Pm. This in turn implies that c>z =
c>(x − x̂) ≥ 0 for any x ∈ Q. For the sake of contradiction
assume that either (13) or (14) does not hold, i.e., either [c>N−
c>BA

−1
B AN ]j̃ < 0 or [c>

N
− c>BA

−1
B AN ]j̃ > 0 for some j̃ ∈ N

or j̃ ∈ N , respectively ([ · ]j̃ denotes the j̃-th element of the
argument).

Suppose that [c>N − c>BA
−1
B AN ]j̃ < 0.

Notice that from the feasibility of x̂ we have that ABx̂B +
AN x̂N +AN x̂N = b, which in turn, recalling that AB is non-
singular, gives x̂B = A−1

B b − A−1
B AN x̂N − A−1

B AN x̂N . We
next define a new vector x̃ with the associated partitioning
x̃N , x̃N , and x̃B (notice that B,N,N is still the indices
partitioning associated to x̂).

For all j ∈ N,N take x̃j = x̂j if j 6= j̃, while let x̃j̃ = µ,
where µ ∈ (0, dj̃) is an arbitrary parameter that can be always
selected in view of part 1 of Assumption 2 and also because we
defined d0 as an extended vector whose elements are all +∞.
In other words, x̃N is identical to x̂N , while x̃N is identical
to x̂N except for the j̃-th element, which is taken equal to µ.
Eventually, define

x̃B = A−1
B b−A−1

B AN x̃N −A−1
B AN x̃N . (17)

As is clear, (17) is equivalent to Ax̃ = ABx̃B + AN x̃N +
AN x̃N = b, i.e. x̃ satisfies the budget constraint. Moreover,
from the very definition of x̃N and x̃N , we have that (remem-
ber that x̂N = 0)

x̃B = A−1
B b−A−1

B AN x̂N −A−1
B AN x̂N

−A−1
B AN · [0 · · ·µ · · · 0]>

= x̂B −A−1
B AN · [0 · · ·µ · · · 0]>

By Lemma 2, x̂j ∈ (0, dj), for all j ∈ B. Therefore, since x̃B
is continuous in µ, for µ > 0 small enough we can ensure that
x̃j ∈ (0, dj) for all j ∈ B, while x̃j ∈ [0, dj ] for all j ∈ N,N
by the very definition of x̃ (and clearly x̃j ∈ [0,+∞) when
j ∈ {1, . . . , n0}) This means that, besides the budget-type
constraint, x̃ also satisfies the non-negativity and the upper-
limit constraints of Pm, that is, x̃ is feasible for Pm in (1).
Recalling (16), and from the definition of x̃, we have that

c>(x̃− x̂) = (c>N − c>BA−1
B AN )(x̃N − x̂N )

+ (c>
N
− c>BA−1

B AN )(x̃N − x̂N )

= [c>N − c>BA−1
B AN ]j̃µ.

Given that µ > 0, assuming [c>N − c>BA
−1
B AN ]j̃ < 0 would

give c>(x̃− x̂) < 0, which contradicts the optimality of x̂.
As for the case [c>

N
− c>BA

−1
B AN ]j̃ > 0, a contradiction can

be established following a symmetric argument by defining
x̃j̃ = dj̃ − µ in place of x̃j̃ = µ.

This concludes the necessity part of the proof.
It should be noted that the left-hand sides of (13) and

(14) are referred to as reduced cost vectors in the linear

programming literature [2]. Note also that in the absence of
the non-degeneracy conditions of Assumption 2, (13) and (14),
are only sufficient for a basic feasible solution to be optimal.

B. Preliminary results based on duality analysis
Consider the dual program associated with Pm in (1)

Dm : max
λ∈Rp,

{νi∈Rni
}mi=1

− λ>b−
m∑
i=1

(νi)>di (18)

subject to: λ>A0 ≥ 0

− (ci)> − λ>Ai ≤ (νi)>, ∀i = 1, . . . ,m,

νi ≥ 0, ∀i = 1, . . . ,m,

where λ and νi, i = 1, . . . ,m, denote the dual variables
associated with the budget-type constraint and the upper-limit
constraints, respectively. Note that the slack variables in x0

are subject to non-negativity constraints only and, therefore,
there are no dual variables ν0 associated to x0.

We also consider in the following an alternative dual pro-
gram corresponding to Pm, which is directly in the format
considered in [19], on which some of our probabilistic de-
velopments are based. This corresponds to dualizing only the
budget-type constraint, thus maintaining the optimization with
respect to xi subject to the non-negativity and the upper-limit
constraints in the definition of the constraints of the resulting
dual program:

D̃m : max
λ∈Rp,

{hi∈R}mi=1

− λ>b−
m∑
i=1

hi (19)

subject to: λ>A0 ≥ 0

max
0≤xi≤di

(−(ci)> − λ>Ai)xi ≤ hi,

∀i = 1, . . . ,m.

We show next that Dm and D̃m are strictly related each other.
Lemma 3: If (λ?, {νi,?}mi=1) is an optimal dual solution for

Dm in (18), then (λ?, {hi,?}mi=1) with hi,? = (νi,?)>di, i =
1, . . . ,m is an optimal dual solution for D̃m in (19).

Proof: Consider D̃m, and notice that the maximization
with respect to 0 ≤ xi ≤ di in the constraints can be
performed analytically, since the maximum is always attained
at an extreme point. In formulas, for each i = 1, . . . ,m, the
constraint max0≤xi≤di(−(ci)> − λ>Ai)xi ≤ hi in D̃m is
equivalent to

max{0,−(ci)> − λ>Ai}di ≤ hi, (20)

where the max in (20) is to be understood component-wise.
Introduce an additional decision vector νi such that (νi)> =
max{0,−(ci)>−λ>Ai}, for all i = 1, . . . ,m. Given that di >
0 for all i = 1, . . . ,m, problem D̃m becomes then equivalent
to

max
λ∈Rp,

{hi∈R,νi∈Rni
}mi=1

− λ>b−
m∑
i=1

hi (21)

subject to: λ>A0 ≥ 0
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− (ci)> − λ>Ai ≤ (νi)>, ∀i = 1, . . . ,m,

νi ≥ 0, ∀i = 1, . . . ,m,

(νi)>di ≤ hi, ∀i = 1, . . . ,m,

where the second and third set of constraints follow from the
definition of νi, i = 1, . . . ,m, while the first and the fourth
follow from (19) and (20).

Notice now that (21) admits an additional interpretation.
It could be thought of as the epigraphic reformulation of
Dm, replacing the second term in its objective function with
−
∑m
i=1 h

i, together with the additional epigraphic constraints
(νi)>di ≤ hi.

Overall, we have that D̃m ≡ (21) ≡ Dm. Equivalence is in
the sense that (λ?, {hi,?, νi,?}mi=1) being an optimal solution
pair for (21), is equivalent to (λ?, {νi,?}mi=1) being optimal for
Dm, and (λ?, {hi,?}mi=1) being optimal for D̃m. Notice that
at the optimal solution (hi,?, νi,?) the third set of constraints
in (21) will hold with equality. Hence, we have that hi,? =
(νi,?)>di, i = 1, . . . ,m, thus concluding the proof.

Consider now the primal program Pm in (1). Besides the
non-negativity constraints x ≥ 0, the budget-type constraint
and the upper-limit constraints can be compactly written as
Ax = b and x ∈ [0, d] provided that for the first n0

elements xj ≤ dj = +∞ is interpreted as xj < +∞.
Similarly, for the dual program Dm in (18), if we define
ν = [0>n0 (ν1)> . . . (νm)>]>, the constraints are cumulatively
given by ν ≥ 0 and −c> − λ>A ≤ ν> and ν ≥ 0 (remember
that also cj = 0 for j = 1, . . . , n0). Let (x?, (λ?, ν?)) denote
an optimal primal-dual solution pair for Pm and Dm, where
ν? = [0n0 (ν?,1)> . . . (ν?,m)>]>. Note that such a pair exists
almost surely due to the feasibility part of Assumption 1.
Given that Pm and Dm are linear, strong duality holds and we
have the following complementary slackness conditions, [14],
that are necessarily satisfied by (x?, (λ?, ν?)):

[x? − d]jν
?
j = 0, j = 1, . . . , n, (22)

[−c> − (λ?)>A− (ν?)>]jx
?
j = 0, j = 1, . . . , n, (23)

where we recall that [ · ]j denotes the j-th element of its
argument.

Note that for j = 1, . . . , n0, (22) is valid as long as the
convention ∞· 0 = 0 is adopted (recall that d0 is an extended
vector with elements all equal to +∞, while ν?,0 = 0 by
definition). All the other conditions are instead the standard
complementary slackness conditions for Pm and Dm. In (23),
the role of dual vector is played by x?; this is so because the
dual of Dm is the primal Pm itself thanks to linearity and
decision variables being continuous.

Let B, N , N be the partitioning associated to the decom-
position of x? into basic and non-basic variables x?B , x?N , and
x?
N

, which is unique under the uniqueness part of Assumption
1 and the non-degeneracy condition of Assumption 2 (part 2)
– see Proposition 1. With the same subscripts we denote the
decomposition according to B, N , N of other vectors/matrices
like A, c and the optimal dual variables ν?. We then have the
following proposition.

Proposition 3: Consider Assumptions 1 and 2 (parts 1 and
2). Then, almost surely with respect to Pm, λ? is uniquely

determined by

λ? = −(c>BA
−1
B )>. (24)

Proof: Under Assumption 1, x? as well as its decompo-
sition into baisc and non-basic variables are well-defined and
unique almost surely with respect to Pm. Thus all subsequent
developments will hold Pm-almost surely as well. Recall that
due to Lemma 2, x?j 6= 0 and x?j 6= dj for all j ∈ B. As a
result, we have that

0 < x?j < dj , for all j ∈ B;
x?j = 0, for all j ∈ N ;

x?j = dj , for all j ∈ N.
(25)

By the complementary slackness conditions (22) and (23) and
the first sub-case in (25), it follows that ν?B = 0. Moreover,
since x?B 6= 0 and ν?B = 0, it follows from (23) that

−c>B − (λ?)>AB = 0. (26)

Since, x? is a vertex, and hence an extended feasible solution
of Pm in (1), the columns of AB are linearly independent
– see Proposition 1 – and AB is invertible. Therefore, λ? is
uniquely determined by (26) resulting in (24). This concludes
the proof.

Under Assumption 1 and the non-degeneracy conditions of
Assumption 2 (parts 1 and 2), the converse of the complemen-
tary slackness conditions (22) and (23) are also valid. This is
summarized in the following lemma.

Lemma 4: Consider Assumptions 1 and 2 (parts 1 and 2),
and let x? and λ?, ν? be the unique primal-dual solution
pair associated with Pm in (1) and Dm in (18). For any
j = 1, . . . , `, the following equivalencies hold:

1) x?j ∈ (0, dj) ⇐⇒ [−c> − (λ?)>A]j = 0;
2) x?j = dj ⇐⇒ ν?j > 0.

Proof: Part 1: The fact that x?j ∈ (0, dj) implies [−c>−
(λ?)>A]j = 0 follows from the derivation of (26). To show
the converse, since x?j ∈ (0, dj) is equivalent to j ∈ B where
B, N , N is the indices partitioning associated to x?, we will
consider for the sake of contradiction that there exists j̃ ∈
N and [−c> − (λ?)>A]j̃ = 0. The case where j̃ ∈ N also
leads to a contradiction using symmetric arguments. The fact
that j̃ ∈ N allows us to consider the vector x̃ constructed in
the proof of Proposition 2: given an extended basic feasible
solution x̂, x̃ constitutes a replica of x̂ with the j̃-th element
perturbed by µ ∈ (0, dj̃). Recall that for µ small enough, x̃
is feasible for Pm in (1), as shown in Proposition 2 (where
parts 1 and 2 of Assumption 2 are used). Take now x̂ = x?,
and consider the cost increment c>x̂− c>x̃ as we move from
x? to x̃. Since by construction x? and x̃ differ only in the j̃-th
element, we obtain that

c>(x̃− x?) = [−c> − (λ?)>A]j̃µ = 0, (27)

where the last equality follows since we assumed [−c> −
(λ?)>A]j̃ = 0. The last statement implies that x̃ is an optimal
solution for Pm, but, since x̃ 6= x?, this contradicts the
uniqueness of the optimal solution to Pm (Assumption 1).

Part 2: If ν?j > 0, then the complementary slackness
condition in (22) implies that x?j = dj . Conversely, if x?j = dj
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assume for the sake of contradiction that ν?j = 0. By (23) we
would then have that [−c>−(λ?)>A]j = 0, which by point (1)
in the present lemma is equivalent to x?j ∈ (0, dj). However,
this establishes a contradiction with the fact that x?j = dj , thus
showing that ν?j > 0.

V. PROOF OF THEOREM 1

We are now in a position to prove Theorem 1. To this end,
first notice the following equivalences:

{i ∈ {1, . . . ,m} : ∃j ∈ J i such that x?j 6= 0}
(i)
= {i ∈ 1, . . . ,m : ∃j ∈ J i such that x?j = dj}
∪ {i ∈ 1, . . . ,m : ∃j ∈ J i such that x?j ∈ (0, dj)}

(ii)
= {i ∈ 1, . . . ,m : ∃j ∈ J i such that ν?j > 0}
∪ {i ∈ 1, . . . ,m : ∃j ∈ J i

such that [−(ci)> − (λ?)>Ai]j = 0}
(iii)
= {i ∈ 1, . . . ,m : hi,? > 0}
∪ {i ∈ 1, . . . ,m : λ? lies on the boundary of Ri}, (28)

where Ri is the polytopic constraint set defined as Ri = {λ :
max{0,−(ci)>−λ>Ai}di ≤ 0}. The equality in (i) is trivial,
while (ii) follows from Lemma 4. To show (iii) notice first
that the first sets of indices in (ii) and (iii) coincide, since
hi,? = (νi,?)>di, for all i = 1, . . . ,m, due to Lemma 3 and
di > 0 by Assumption 2. Excluding the i’s for which hi,? > 0,
which have already been accounted for, the remaining i’s are
such that max{0,−(ci)> − λ>Ai}di ≤ 0 (i.e., λ? ∈ Ri); see
D̃m in (19) and recall that the constraints in D̃m and those
in (20) are equivalent. If [−(ci)> − (λ?)>Ai]j = 0 for some
j ∈ J i as in the second set of indices in (ii), then λ? belongs
at least to one edge of Ri, i.e., it lies on the boundary. Notice
that while the set of indices in the union in (i) and (ii) may
overlap, this is not the case for (iii), where the two sets are
disjoint.

Recall that s?, as defined in (8), denotes the number of
agents whose optimal decision vector as returned by Pm in
(1) has at least one non-zero element. By (28), we have that
s? can also be alternatively defined as

s? =
∣∣∣{i ∈ 1, . . . ,m : hi,? > 0}

∣∣∣ (29)

+
∣∣∣{i ∈ 1, . . . ,m : λ? lies on the boundary of Ri}

∣∣∣.
The dual D̃m in (19) admits an additional interpretation.

Elements hi, i = 1, . . . ,m, could be thought of as constraint
relaxation variables for the constraints max{0,−(ci)> −
λ>Ai}di ≤ 0 (recall again that the constraints of D̃m and
those in (20) are equivalent). These relaxation variables are
penalized in the objective function of D̃m. It follows from
(29) that agents that have at least one non-zero element in
their decision vector are those for which the corresponding
constraint max{0,−(ci)> − λ>Ai}di ≤ 0 is either violated
by λ? – i.e., hi,? > 0 – or is such that λ? lies on its boundary.

Scenario optimization problems with constraint relaxation,
a class of programs within which D̃m fits, have been stud-
ied in [19, Section 5.2], where bounds on the probability

that the resulting optimal solution violates a newly extracted
constraint are provided. Specifically, adapting [19, Theorem
4 & Footnote 4] to the notation of D̃m in (19), we have the
following result. Fix β ∈ (0, 1), and consider ε(·) and ε(·)
as defined in (6) and (7), respectively. Let s? be as in (29).
Under Assumptions 1 and 2 (note that part 3 of Assumption
2 is required for this result), we have that

Pm
{
{δi}mi=1 ∈ ∆m : P

{
δ̄ = (n̄, c̄, d̄, Ā) ∈ ∆ :

max{0,−c̄> − (λ?)>Ā}d̄ > 0
}
∈ [ε(s?), ε(s?)]

}
≥ 1− β, (30)

i.e., with confidence at least 1 − β, the probability that λ?

(the optimal dual solution for the λ-variables of D̃m, which
depends on {δi}mi=1) violates the constraint max{0,−c̄> −
λ>Ā}d̄ > 0 when it comes to a new realization δ̄ =
(n̄, c̄, d̄, Ā), lies within [ε(s?), ε(s?)].

Fix now any {δi}mi=1 and consider Pm+ in (2), which has
an additional agent parameterized by δ̄ = (n̄, c̄, d̄, Ā). Take
(x?, 0), which is clearly feasible for Pm+ and notice that this
is a basic feasible solution for Pm+ , since it is a vertex of
the polytopic feasibility domain of Pm+ . Since variables in
(x?, 0) corresponding to the new agent are zero, the new
agent will not contribute to the basic components of (x?, 0),
and clearly not to the ones that are active at the upper-limit
constraints. Therefore, the decomposition of [c> c̄>]> and
[A Ā] corresponding to the basic and non-basic variables of
(x?, 0) will be

[c> c̄>]>B = cB , [A Ā]B = AB ,

[c> c̄>]>
N

= cN , [A Ā]N = AN ,

[c> c̄>]>N = [c>N c̄>]>, [A Ā]N = [AN Ā], (31)

where AB , AN , AN and cB , cN , cN constitute the partition of
A and c corresponding to basic and non-basic variables of x?,
the optimal solution to Pm in (1).

We have the following equivalences that hold almost surely.

P{δ̄ ∈∆ : max{0,−c̄> − (λ?)>Ā}d̄ ≤ 0}
= P{δ̄ ∈ ∆ : − c̄> − (λ?)>Ā ≤ 0}

Prop. 3
= P{δ̄ ∈ ∆ : c̄> − c>BA−1

B Ā ≥ 0}
Prop. 2

= P{δ̄ ∈ ∆ : x�+ = (x?, 0)}. (32)

The first equality applies because max{0,−c̄>−(λ?)>Ā} ≥ 0
while d̄ > 0. The second equality follows by direct substitution
of the (almost surely unique) expression for λ? in (24),
while the last one derives from Proposition 2 applied to
(x?, 0), which says that (x?, 0) is optimal if and only if
[c> c̄>]N − [c> c̄>]B [A Ā]−1

B [A Ā]N ≥ 0 and [c> c̄>]N −
[c> c̄>]B [A Ā]−1

B [A Ā]N ≤ 0. Given the expressions in (31)
and since AB , AN , AN and cB , cN , cN satisfy (13) and (14)
being the partitioning associated to the optimal solution x?

to Pm, the conditions for the optimality of (x?, 0) reduce to
c̄> − c>BA

−1
B Ā ≥ 0 ((x?, 0) implies that the new agent only

contributes to the non-basic variables that are active at the
non-negativity constraints).
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By (32), we then have almost surely that

P{δ̄ ∈ ∆ : x�+ 6= (x?, 0)}
= P{δ̄ ∈ ∆ : max{0,−c̄> − (λ?)>Ā}d̄ > 0}, (33)

i.e., the probability that the optimal solution to Dm in (18)
violates a new constraint associated to δ̄ is almost surely equal
to the probability that the arrival of the new agent δ̄ alters the
optimal solution with the initial m agents only. Using (33) in
(30), the inequality (9) of Theorem 1 follows. This concludes
the proof.

Remark 3: Theorem 1 can be extended so as to encom-
pass situations where local upper-limit constraints for some
variables and for some agents are not present. This case can
be accounted for without altering the setup of this paper by
letting di be a vector of extended real variable and setting to
+∞ the elements corresponding to variables for which there
is no upper limit. However, since x is anyway a vector of a
standard Euclidean space, constraints of the type xj ≤ +∞
must be interpreted as xj < +∞. Note also that any basic
feasible solution x̂ must take value in an Euclidean space too,
so that if dj = +∞ for some j, then it can either be j ∈ B
or j ∈ N , since j ∈ N would give x̂j = dj = +∞, which is
not possible. In this extended setup, the statement of Theorem
1 remains unchanged and also the proof can be carried over
without modifications provided that the convention ∞ · 0 = 0
is adopted. This way, whenever dj = +∞ for some j, ν?j is
forced to be 0, i.e. [−(c)> − (λ?)>A]j ≤ 0. This is coherent
with Lemma 3, since ν?j > 0 would imply x?j = dj = +∞,
which is not possible. ?

Remark 4: In [17], a version of problem (1) where no
local upper-limit constraints are present was considered. This
problem can be addressed by resorting to the extended setup
explained in Remark 3 above, that is, by letting all elements of
d be equal to +∞. In this specific situation, it is possible to
establish the a priori bound s? ≤ p (recall that p denotes
the number of budget-type constraints) irrespective of the
sample {δi}mi=1. As a matter of fact, dj = +∞ for all j
implies that ν?j = 0 for all j so that (28) yields s? = |{i ∈
1, . . . ,m : ∃j ∈ J i such that [−(ci)> − (λ?)>Ai]j = 0}| =
|{i ∈ 1, . . . ,m : ∃j ∈ J i such that x?j ∈ (0, dj)}| (| · |
denotes cardinality). It follows then from (25) and Proposition
1 that s? ≤ |B| = p. The result of [17, Theorem 1] (see
also (10)) can be then obtained by noticing that, under the
condition s? ≤ p, the characterization of P

{
δ̄ = (n̄, c̄, d̄, Ā) ∈

∆ : max{0,−c̄>− (λ?)>Ā}d̄ > 0
}

provided in [5, Theorem
2.4] can be used in place of (30). ?

VI. ILLUSTRATIVE EXAMPLE: APPLICATION TO OPTIMAL
CARGO AIRCRAFT LOADING

The main purpose of this example section is to illustrate
the results of the paper; therefore, we opted for a simple, yet
not simplistic, problem with an application appeal that favors
interpretability as much as possible.

We consider a cargo aircraft loading problem inspired by
[21], where a company wants to load a cargo airplane as much
as possible so as to obtain the maximum profit from carrying
goods among a batch of m requests. The decision variables xi

for this problem, which are all scalars, are the quantities in kg
of various items to be carried. To each xi there is associated
a coefficient pi that specifies how much the freight company
is paid for carrying a unitary quantity of the specified ware.
Typically, more urgent shipments may be paid more in order
to arrive on time. Each xi has a lower bound set to 0 (xi = 0
means that item i is not shipped) and an upper bound di set by
the estimated demand (by the customers of the transportation
company) in order to avoid shipping excessive quantities of a
merch that would remain unsold. Finally, the employed cargo
aircraft has maximum weight and volume capacities, say W
and V , which set limits on the amounts and types of goods
that can be shipped. Altogether, this leads to the following
linear problem:

max
{xi∈R}mi=1

m∑
i=1

pixi (34)

subject to:
m∑
i=1

xi ≤W,

m∑
i=1

1

ρi
xi ≤ V,

0 ≤ xi ≤ di,

where ρi is the density of the i-th good and pi, ρi, di are
assumed to be independently observed from a probability
distribution that represents the entire variety of goods that can
be shipped. Problem (34) can be indeed rewritten as Pm in
(1) by introducing the additional slack variable x0 ∈ R2 and
by setting A0 = I , Ai = [1 1

ρi ]>, i = 1, . . . ,m, ci = −pi,
i = 1, . . . ,m, and b = [W V ]>.

After an air freight company has received an initial batch
of requests from customers and has planned the optimal
arrangement of these initial items on an aircraft, it may be
that the obtained solution is not completely satisfactory. The
company may want to decide then whether it is convenient
to wait for some late items from other customers and to re-
plan the aircraft loading, by discarding parts of the current
goods, and e.g. shipping them on another plane departing
later. Waiting for the new items to arrive and reloading the
aircraft takes additional time that can likely cause a delay and
requires extra work that may result in additional cost, but at
the same time it may be worth waiting for late items that are
more profitable than the existing ones (e.g., more urgent goods
may arrive, leading to higher profit). The theory developed in
this paper allows one to evaluate the probability of improving
the solution with the arrival of a new item and therefore it
provides a tool to support the company’s decision whether to
open for new requests or stay with the original arrangement.
In particular, if this probability is assessed to be high, the
company will be eager to wait for new items. In the opposite
case, the company will opt instead for not waiting for further
requests.

The arrival of a new item corresponds to solving

max
{xi∈R}mi=1,x̄∈R

m∑
i=1

pixi + p̄x̄ (35)



11

subject to:
m∑
i=1

xi + x̄ ≤W,

m∑
i=1

1

ρi
xi +

1

ρ̄
x̄ ≤ V,

0 ≤ xi ≤ di, 0 ≤ x̄ ≤ d̄,

and Theorem 1 in the present context implies that
[ε(s?), ε(s?)], where ε and ε are computed as in (6)-(7) and s?

is the number of non zero components in the optimal solution
to (34), is a valid assessment of the probability that (35)
improves over (34) with confidence 1− β.

To test numerically the validity of Theorem 1, problem (34)
was repeatedly solved 100 times with different batches of m
items, and each time the optimal solution x?(t), t = 1, . . . , 100,
and s?(t), t = 1, . . . , 100, were computed. For each x?(t), M =

50 · m new items p̄, ρ̄, d̄ were then considered and problem
(35) was solved M times so as to empirically compute the
probability that the solution x�+,(t) to (35) improves over x?(t).
That is,

P̂{x�+,(t) 6= (x?(t), 0)} =
no. of cases s.t. x�+,(t) 6= (x?(t), 0)

M
.

The pairs (s?(t), P̂{x
�
+,(t) 6= (x?(t), 0)}) were then plotted in a

bi-dimensional graph along with the curves ε(k) and ε(k) so
as to allow for a visual inspection that P̂{x�+,(t) 6= (x?(t), 0)}
is indeed within [ε(s?(t)), ε(s

?
(t))] as predicted by Theorem 1.

The simulations were carried out by setting the problem
parameters as follows:
• pi and p̄ were independently extracted from a uniform

distribution over [pmin, pmax], where pmin = 20 and
pmax = 60;

• ρi and ρ̄ were independently extracted from a uniform
distribution over [ρmin, ρmax], where ρmin = 900 (ap-
proximately the density of polyurethane plastic) and
ρmax = 7000 (close to that of iron);

• di and d̄ were independently extracted from a uniform
distribution over [dmin, dmax]. Various choices for dmin

and dmax were considered as discussed in the sequel;
• W and V were set to the weight and volume capacity of

a Boeing 737 MAX 8 aircraft;2

• the number m of initial agents was set to 100 in a first
number of simulations and to 200 in a second batch;

• β was set to 10−7 so as to enforce a quite high confidence,
which amounts to practical certainty.

Figure 2a depicts the results obtained for m = 100 and various
values of dmin and dmax as reported in the figure legend. As
dmin and dmax change, different clouds of points are obtained
corresponding to various goods distribution. Yet, as expected,
in all cases P̂{x�+,(t) 6= (x?(t), 0)} is in between ε(s?) and ε(s?)
(given that β = 10−7, P̂{x�+,(t) 6= (x?(t), 0)} /∈ [ε(s?(t)), ε(s

?
(t))]

should happen on average once every 10 billions cases).
This confirms the validity on any decision taken by the air
freight company based on ε(s?) and ε(s?) (for example, one
sensible decision could be: wait for new requests if ε(s?) is

2http://www.boeing.com/resources/boeingdotcom/commercial/airports/
acaps/737MAX RevA.pdf

above 0.6, do not wait if ε(s?) is below 0.3). As it appears,
for high values of dmin and dmax, indicatively represented
by the mean 1

2 (dmax + dmin), P̂{x�+,(t) 6= (x?(t), 0)}, and
correspondingly s?(t), concentrates around small values, while
as 1

2 (dmax + dmin) is decreased, P̂{x�+,(t) 6= (x?(t), 0)} and
s?(t) tend to shift towards higher values. This behavior admits
the following justification: large values of 1

2 (dmax + dmin)
correspond to situations where it is likely that customers
want to ship large quantities of their merchandise and the
cargo company can fill the airplane with shipments from few
customers best paying for the service resulting in a small
s?(t); vice versa, when 1

2 (dmax + dmin) is low, the air cargo
company has to rely on a broader variety of goods to exploit
the full capacity of the aircraft, resulting in s?(t) close to m.
In particular, for the lowest values of dmin and dmax in the
simulation, it is likely that m = 100 customers either do not
or barely saturate the aircraft capacity, so that the probability
to change the solution becomes either 1 or extremely close to
it. This corresponds to the cloud of points in Figure 2a that is
concentrated towards the upper curve ε(k).

Similar comments apply for the results depicted in Figure
2b, where m = 200 and the same values for dmin and dmax

as before were considered. Increasing m makes ε(k) and ε(k)
getting closer each other, meaning that the assessment of
P̂{x�+,(t) 6= (x?(t), 0)} provided by Theorem 1 becomes tighter
and tighter as the number of agents increases. Coherently,
the clouds of points have smaller vertical dispersion in these
simulations.

Figure 3 depicts the simulation results for m = 200, where,
however, di and d̄ are now extracted from a Gaussian truncated
over positive values, with mean µ taking various values corre-
sponding to the centers of the intervals [dmin, dmax] considered
in the previous two simulation experiments and variance σ2 =
3096 (the variance has been chosen so that the 90% of the
probabilistic mass of the Gaussian is contained in the interval
[dmin, dmax]). Again, the assessment of P̂{x�+,(t) 6= (x?(t), 0)}
given by [ε(s?(t)), ε(s

?
(t))] turns out to be valid in all the

experiments, showing heuristically the distribution-free nature
of the result. All comments provided for the previous figures
apply in this case as well.

VII. CONCLUDING REMARKS

In this paper we considered a class of multi-agent optimal
resource sharing problem that can be encoded by linear
programs. The amount of resource to be shared is fixed,
while agents are subject to local constraints, with each of
them contributing to the objective function and the budget-
type shared resource constraint by a distinct (linear) term.
All agents’ contributions to cost and budget-type constraint,
as well as agents’ local constraints, depend on some random
parameters, modeling heterogeneity among agents.

In this context, we studied the probability that the arrival of
a new agent changes the optimal solution and, consequently,
the share of resources for the original agents. This can be inter-
preted as a sensitivity index, which is of paramount importance
for a correct management of the multi-agent system. Although
the probability that the arrival of a new agent changes the



12

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

(a) m = 100

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

(b) m = 200

Fig. 2. Cases with m ∈ {100, 200} agents, uniform distribution over [dmin, dmax]. Solid line shows the theoretical upper and lower bounds
ε(k),ε(k) on the probability that the optimal solution changes upon the arrival of a new agent. Each cloud corresponds to a different choice dmin

and dmax as indicated in the legend, and involvesm points. Each point within a cloud shows the empirical probability P̂{x�
+,(t)

6= (x?
(t)
, 0)}, for

t = 1, . . . ,m, corresponding to a different batch of m items.
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Fig. 3. Case m = 200, Gaussian distribution truncated over
positive values with mean µ and variance σ2. Solid line shows the
theoretical upper and lower bounds ε(k),ε(k) on the probability that
the optimal solution changes upon the arrival of a new agent. Each cloud
corresponds to a different choice of µ as indicated in the legend, while
σ2 = 3096 in all cases, and involves 200 points. Each point within
a cloud shows the empirical probability P̂{x�

+,(t)
6= (x?

(t)
, 0)}, for

t = 1, . . . , 200, corresponding to a different batch of m items.

solution cannot be directly computed, the main thrust of this
paper was to provide a confidence interval and show that this
probability can always be accurately estimated by counting
the number of agents that are actually contributing to the
solution of the original problem. This result was achieved by
introducing certain dual formulations of the resource sharing
linear program, which exhibit a scenario program structure.
Recent results from the theory of scenario optimization were
then used to a posteriori bound the probability of constraint
violation for the dual optimal solution, which eventually was
shown to be equivalent to the probability that the solution
changes upon the arrival of a new agent. The efficacy of our
results was demonstrated on a cargo aircraft loading problem.

Current work concentrates towards two directions: from
a theoretical point of view, we aim at extending the class
of resource sharing programs by allowing for more general

constraints, while from an application point of view, we aim
at employing our analysis to other applications that exhibit
this structure, involving robotic surveying problems as well as
economic dispatch problems (as e.g. in [25]), including their
demand side counterpart (e.g., see [23]).
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we analysed – theoretically and numerically
– three approximate dynamic programming algorithms to
find approximately optimal delivery slot prices in the rev-
enue management problem in attended home delivery. From
a control-theretical perspective, we identified limitations in
the affine value function approximation algorithm and the
non-linear stochastic dual dynamic programming algorithm.
Through our numerical analysis, we showed how gradient-
bounded dynamic programming can overcome these limi-
tations. In our case study, we compared the performance
of all three algorithms, i.e. profit-generation capabilities and
computational time, in a number of scenarios. Overall, our
numerical analysis shows that the gradient-bounded dynamic
programming algorithm exhibits superior performance, since
the affine value function approximation algorithm cannot
reach its profit-generation capabilities and since the non-linear
stochastic dual dynamic programming algorithm cannot reach
its computational speed and computational stability properties.

Possible directions for future work include investigating the
numerical performance of these algorithms for other network
revenue management problems and extending the promising
gradient-bounded dynamic programming approach to other
customer decision models than multinomial logit.
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