Laszlo B. Kish, Janusz Smulko, Peter Heszler and Claes-Goran Granqvist

On the sensitivity, selectivity, sensory information and optimal size of resistive chemical sensors

ABSTRACT. Information theoretical tools are applied to the study of sensitivity and selectivity enhancements of resistive fluctuation-enhanced sensors. General considerations are given for the upper limit of selectivity enhancement. The signal-to-noise ratio and information channel capacity of fluctuation-enhanced chemical sensors are compared to those of classical sensors providing a single output. The considerations treatment is generic, with a few concrete examples, and includes the estimation of scaling relations between the sensor size and speed of measurements, sampling rate, measurement time, signal power and noise power.

Nanotechnology Perceptions **3** (2007) 43–52

Nonsubscribers: purchase individual article