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ON THE SEPARATING POWER
OF EOL SYSTEMS (*)

by A. EHRENFEUCHT (*) and G. ROZENBERG (2)

Communicated by J. BERSTEL

Abstract. — A word is called a pure square ifit is oftheform yy where y is a nonempty word;
it is called a square ifit contains a pure square — otherwise it is cfl/Zedsquare-free. A language K
séparâtes languages Kx and K2 ijKx £ K and K f! K2 = 0. ft is demonstrated that no EOL lan-
guage (and hence no context-free language) can separate the set of all pure squares over an
alphabet ts.from the set of all square-free words over A, where A has at least three letters. Thus
the set of all square words over A is not an EOL language (and so it is not a context-free lan-
guage). This seules an open problem posed by Autebert, Beauquier, Boasson and Nivat.

Résumé. — Un mot est appelé un carré pur s'il est de la forme yy avec y non vide ; il est appelé
un carré s'il contient un carré pur — sinon il est appelé sans carré. Un langage K sépare les lan-
gages Kt et K2 si K1 ç K et K H K2 = 0- On démontre qu aucun langage EOL fa fortiori aucun
langage algébrique) ne peut séparer l'ensemble de tous les carrés purs de F ensemble de tous les
mots sans carrés sur un alphabet A ayant au moins trois lettres. Par conséquent,, Vensemble de
tous les carrés sur A n'est pas EOL, donc il nest pas algébrique. Ceci résout un problème ouvert
posé par Audebert, Beauquier, Boasson et Nivat.

INTRODUCTION

Let Lbe a class of languages. A way to investigate the structure of lan-
guages in L is to aim at results of the form: " If KeL and K contains some
words, then K must contain some other words ". A classical resuit in this
direction is the pumping-lemma for context-free languages (see, e. g. [5]).
In the pumping lemma " some words " are distinguished by certain minimal
length. In gênerai one would like to have a resuit of the form: " If KeL and K
contains words satisfying property P then K must contain some other words
(e. g., not satisfying P) " where P is a combinatorial property of words. Such
a resuit can be formulated as follows. We say that K séparâtes languages Kt
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1 4 A. EHRENFEUCHT, G. ROZENBERG

and K2 if Kt ç K and KnK2 = 0. Then we set K± to be equal to the set
of words satisfying the property P (or to its subset) and we set K2 to be equal
to the set of words satisfying a property R (or to its subset) and we get the
following formulation of the desired resuit: " If KeL then K does not sepa-
rate Kt îromK2".

A very basic combinatorial property of a word is a structure of répétitions
of its subwords. Following [10] we say that a word is square-free if it does
not contain a subword of the form yy where y is a nonempty word; otherwise
we say that the word is a square. A word is a pure square if it is of the form yy
where y is a nonempty word. Then a language is called square-free (square,
pure square) if it consists of square-free (square, pure square) words only.
Square-free languages (and séquences) have a large number of interesting
mathematical applications and interprétations (see, e. g. [9]). Also recently
they form an active research topic within formai language theory (see, e. g. [2,4,
8,9].

Because of the pumping lemma it is clear that given an alphabet A with
at least 3 letters (there exist only six square-free words over an alphabet of
two letters !) no context-free language can be equal to (the infinité subset of)
the set of ail square-free words over A. However, pumping is a mechanism
generating répétitions of words and so it is quite natural to ask whether a
context-free grammar can generate the set of ail squares over A. (This question
was posed in [1]).

In this paper we answer this question in négative. As a matter of fact, we
prove a quite stronger resuit : no EOL language (see, e. g. [7 ]) can separate
the set of ail pure squares over A from the set of all square free words over A.
This settles the original problem because the class of EOL languages contains
(strictly) the class of context-free languages. We believe that our resuit contri-
butes to the understanding of the combinatorial structure of EOL (and hence
also context-free) languages.

We assume the reader to be familiar with basic theory of EOL languages,
e. g., in the scope of [7].

PRELIMINARIES

We will use mostly standard formai language-theoretic notation and ter-
minology. Perhaps only the following points require an additional comment.

For a word x9\x\ dénotes its length and alph(x) dénotes the set of all letters
occurring in x\ A dénotes the empty word.

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



ON THE SEPARATING POWER OF EOL SYSTEMS 15

For a language K, # K dénotes its cardinality and alphK= \J alph(x);
xeK

KX\K2 dénotes the set theoretic différence of languages K1 and K2.

For a finite set K, # K dénotes its cardinality.

Ahomomorphism/i:£* -> A* istermedpropagating if h(a) # A for ail aeZ.

In this paper we consider finite alphabets only.

We will follow [7 ] in our notation and terminology concerning L Systems.
In particular we dénote an EOL System by G=(S, h, S, A) where £ is the
alphabet of G, h its finite substitution, S its axiom and A the terminal alpha-
bet of G. We will also use al(G) to dénote Z and maxr(G) to dénote

max { | a | : <zeh{a) for some aeZ }.

The analysis of dérivations trees in an EOL System plays an important
rôle in this paper. We will use somewhat informally the notion of a contri-
bution of a node in a dérivation tree of T to the resuit of T. We also need the
following notions concerning dérivation trees.

DÉFINITION : Let G be an EOL System and let T be a dérivation tree of a
word w in G, where | w | > 2.

(1) The mainpath of T, denoted by main(T\ is the path defined by:

(i) the first node of main(T) is the root of T,
(H) if v is the ïth node of main{T\ i > 1, and it is not the leaf then the (i-f l)fst

node of main(T) is the leftmost among ail those descendants of v that have
the contributions to w not shorter than the length of the contribution to w
of any of the successors of u,

(Ui) the last node of main(T) is a leaf of T.

(2) The special node ofT, denoted by spec(T), is the first node (counted from
the root) of the main path with the property that the length of its contribution

to w is not longer than .

(3) The type of T9 denoted by type{T\ is the vector (A9 k,l,d) such that:

A is the label of spec(T\
the contribution of spec(T) to w starts on the k'ih letter of w and ends on

the Vth letter of w,
the distance of spec(T) to the last node of main(T) equals d. •

Example : In the picture of the following dérivation tree T in an EOL sys-
tem the main path is in bold face and the special node is double circled:

vol. 17, n° 1, 1983



16 A. EHRENFEUCHT, G. ROZENBERG

S

The type of T is (B, 3, 5, 3). •

LEMMA 1 : Let G be an EOL System and let T be a dérivation tree of a
word w in G. The length of the contribution of spec(T) to w is longer than

Proof: Assume to the contrary that this contribution is not longer than
| w |

. Then (because clearly spec(T) is different from the root of T)
2maxr{G) v J r \ i . )
spec(T) has an ancestor in T such that the length of his contribution to w is

| w |
not longer than . This, however, contradicts the définition of the special

node of T; thus the lemma holds. •

The following class of EOL Systems will be considered in this paper.

DÉFINITION : Let G be an EOL system, weL(G) and let D be a dérivation
of w in G. We say that D is a fast dérivation if its length is not bigger than \w\.
We say that G is a fast EOL system if for every word w in L(G) there exists a fast
dérivation of w in G. d

LEMMA 2: For every EOL language K there exists a fast EOL system G
such that L{G) = K.

Proof: It is well-known (see [6]) that for every EOL language K there
exists an EOL system H generating K such that for every word w in L(H)
there exists a dérivation of w in H such that the length of this dérivation is
bounded by C\w\ where C is a constant dependent on H only. Applying

R.A.I.R.O. Informatique théorique/Theoretical Computer Science



ON THE SEPARATING POWER OF EOL SYSTEMS 17

the C speed-up to H (see [7]) one obtains the EOL System G = speedcH which
is fast. G

The following notions concerning répétitions of subwords in a word will
be considered in the sequel.

DÉFINITION : (1) A word is called apure square if it is of the form yy where y
is a nonempty word. (2) A word is called a square if it contains a subword
that is a pure square; otherwise we say that the word is square-free. •

Given an alphabet A and a positive integer n we let PSQn{A) to dénote
the set of ail words of length n over A which are pure squares,

PSQ{A) to dénote the set of ail pure square words over A,
SQ(A) to dénote the set of ail square words over A,
SQFn(A) to dénote the set of ail square-free words over A of length n, and
SQF(A) to dénote the set of ail square-free words over A.
The following basic resuit is from [10].

LEMMA 3 : If A is an alphabet such that # A > 3 then there exists an infinité
square-free word over A. •

DÉFINITION : Let h be a homomorphism, h : E* -> A*. We say that h
is square-free if, for every weSQFÇL), h{w)eSQF(A). •

The following resuit from [3] concerning propagating square-free homo-
morphisms will be useful in our considérations.

LEMMA 4: For every positive integers k > 2, / > 3 there exist alphabets E,
A and a propagating square-free homomorphism h : X* -• A* where # E = /c
and #A = L •

RESULTS

The following notion is the basic notion of this paper.

DÉFINITION: Let K, K^ K2 be languages. We say that K séparâtes Kx

from K2 if Kx ç K and KnK2 = 0; this is denoted by writing K1-K-K2- D
We will demonstrate that no EOL language can separate PSQ{A) from

SQF(A) when # A > 2. We start by showing that if G is a fast EOL System
such that L(G) séparâtes PSQn(A) from SQFn(A), where n is even and # A > 7,
then the cardinality of the alphabet of G grows (fast !) with the growth of n.

LEMMA 5 : Let A be a finite alphabet with # A > 7 and let n be a positive
even integer. Let G be a fast EOL System such that

PSQn{A)-UG)-SQFn(A). Then #al(G)> =
n3

vol. 17, n° 1, 1983



18 A. EHRENFEUCHT, G. ROZENBERG

Proof: Let G = (£, h, S, À) be a fast EOL System such that.

PSQn(A)-L(G)-SQFn(A).

Let # E = m and maxr(G) = £. Let A: be a fixed subset of A consisting of 7 sym-
bols, say A1 = { a0, al9 bOrb1, c0, cu $} and let a be a fixed square-free word

over the alphabet @ = { a, b, c } where | a | — — 1 (the existence of such an a

is guaranteed by Lemma 3). Let À2 = Aj\{ $ } and let g be the homomorphism
from Af onto 0* defined by: g{ai) = a, g{b^ = b and g(ct) = c for ie{0,l-}.

Let Z(a ,g)={p$p$;peA| andg(p)=a}.
Obviously

n-2

Z ( o , g ) s P5QM (A) a n d # Z(oc, g ) = 2 2 . . . (1)

We define a description of Z(a,g) in G to be a set of ordered pairs (y, T),
where yeZ(a,g) and T is a dérivation tree corresponding to a fast dériva-
tion of y in G, such that for each y in Z(a, g) only one element of the form (y, T)
is in the set. Let D be an arbitrary but fixed description of Z(oc, g) in G.

CLAM 1 : Let (y, T) and (Ç, C/) be éléments of D such that y ^ Ç and
type(T) = type(U). Then the subword contributed by spec(T) in T equals
the subword contributed by spec(U) in C/.

Proof of Claim 1 : The situation is best illustrated as follows:

s

T:

spec(T)

the k'th let ter of Y

the £'th letter of y

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
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U:
epee(U)

the k'th letter of ç

the £'th letter of

where type{T) = type{U) = (A9 fc, U d).
Consequently u1x2u2eL(G).
Assume now, to the contrary, that the subword contributed by spec(T)

in T is not equal to the subword contributed by spec(U) in U, hence x1 ^ x2.
Then we observe the following.

(0 Ulx2u2$PSQn(A).

This follows from the définition of the special node and the simple obser-

vation that if in a word from PSQn(A) one replaces a subword no longer than -

by a different subword of the same length than the resulting word is no longer

(ü)
This is proved as follows.
Assume that uxx2u2 contains a square yy where y is a nonempty word.

If %ealph(y) then u1x2u2 — yy which contradicts (i) above. Hence the défi-
nition of Z(oL9g) implies that u1x2w2=

:(î$(3$ for some ^eg~1{a) where yy is
a subword of p. Consequently a is not square-free; a contradiction.

Thus, indeed, uxx2u2eSQFn(A) and (n) is proved.
However (ff) contradicts the fact that PSQn(A)-L(G)-SQFn{A) and conse-

quently it must be that xx =x2. Hence Claim 1 holds. •
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20 A. EHRENFEUCHT, G. ROZENBERG

We say that éléments (yl5 TJ, (y2, T2), of D are sïw«7flr if type (Tx) = type (T2).

CLAIM 2 : If W is a subset of Z(oc, g) such that ail words in W are similar,

then # 2

Proofof Claim 2 : Assume that the type"shared by" ail words in W is (A, k, /, d).
Hence if k<j<l and x, y e W then the f th occurrence in x is identical to the
ƒ th occurrence in y. In other words, x and y can differ only by 0, 1-indices
attached to occurrences of a, b, c outside of occurrences k through /. Thus
Lemma 1 implies that

#W<2 2 {2t } = 22{ t}.

Consequently Claim 2 holds. •

CLAIM 3: Let TD= { T: (y, T)eD for some yeZ(oc,g)}. Then

#{type(T):TeTD}<n-#al(G).

Proofof Claim 3 ; Let (A, K h d)e {type(T) : Te TD }. Since, for every y eZ(ot, g),
| y | = n (and so d < ri) and the number of possible pairs (k, l) that can be chosen

n\ n2

is bounded by I j < — , we have indeed that

Now we complete the proof of Lemma 5 as follows.
Clearly #Z(a,g) is not bigger than the product of # {type{T): TeTD}

by the maximal number of words from Z(oc, g) that can be similar. Thus Claim 2
and Claim 3 imply that :

- - î
and consequently (because # Z(a, g) = 22 )

22t

n3

Thus the lemma holds. •

R.A.I.R.O. Informatique théorique/Theoretical Computer Science
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THEOREM 1: Let # A > 2 . Then no EOL language séparâtes PSQ(A)
from SQF(A).

Proof: (i) The theorem holds when # A > 7.

This follows directly from Lemma 2 and Lemma 5.
(H) The theorem holds when 2 < # A < 7.

This is proved by contradiction as follows.

Assume that 2 < # A < 7 and that K is an EOL language such that
PSQ{A)-K-SQF{A). Let 0 be an alphabet such that # 0 = 7 and let ƒ be
a propagating square-free homomorphism from 0* into A* ; Lemma 4 gua-
rantees the existence of such a homomorphism. Clearly

PSQ(0)^f-\PSQ(A)) and SQF(®))çf'l(SQF{A)).

Since it is easily seen that the inverse homomorphic image of an EOL lan-
guage is an EOL language whenever the homomorphism involved is propa-
gating, we get that

PSQ(®)-f-\K)-SQF(&),

where ƒ ~\K) is an EOL language.

This, ho wever, contradicts (i), and consequently (ii) holds.
Thus the theorem holds. •

COROLLARY 1 : Let A be an alphabet such that # A > 2. Then no EOL lan-
guage can separate SQ(A) from SQF{A).

Proof: Directly from Theorem 1. •

COROLLARY 2 : Let A be an alphabet such that # A > 2. Then no context-
free language can separate SQ{A) from SQF{A\

Proof: Directly from Corollary 1 and from the fact that energy context-
free language is an EOL language {see, e. g. [7]), •

We conclude this paper by the following remark. Originally the problem
of separating SQ{A) from SQF(A) was posed for context-free languages. If
one considers this original problem then the proof of the theorem goes in the
same way except that now context-free grammars in Chomsky Normal Form
play the same rôle as fast EOL Systems played in our proof. In this case the
formulation of Lemma 5 (which may be of interest on its own) becomes:
" Let A be a finite alphabet with # A > 7 and let nbea positive even integer.
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22 A. EHRENFEUCHT, G. ROZENBERG

Let G be a context-free grammar in Chomsky Normal Form such that

2

PSQn(A)-L(G)-SQFn(A). Then #al(G)>—."
n2
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