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On the Separation of Stress-Induced and
Texture-Induced Birefringence in

Acoustoelasticity

Chi-Sing Man, and Roberto Paroni

University of Kentucky, Lexington, KY 40506-0027

ABSTRACT. In this paper we develop a simple micromechanical model of a pre-
stressed polycrystalline aggregate, in which the texture-induced and stress-induced
anisotropies of the aggregate are precisely de�ned; here the word \texture" always
refers to the texture of the aggregate at the given prestressed con�guration, not
to that of a perhaps �ctitious natural state of the aggregate. We use this model
to derive, for a prestressed orthotropic aggregate of cubic crystallites, a birefrin-
gence formula which shows explicitly the e�ects of the orthotropic texture on the
acoustoelastic coe�cients. From this formula we observe that, generally speaking,
we cannot separate the total birefringence into two distinct parts, one re
ecting
purely the in
uence of stress on the birefringence, and the other encompassing all
the e�ects of texture. The same formula, on the other hand, provides for each mate-
rial speci�c quantitative criteria under which the \separation of stress-induced and
texture-induced birefringence" would become meaningful in an approximate sense.

1. INTRODUCTION

The two elastic shear (or quasishear) waves that propagate in the same direction
in a stressed solid generally have di�erent speeds. This di�erence is a�ected by the
stress present, and its measurement conversely delivers information about the stress.
In practice, the acoustoelastic birefringence (i.e., the di�erence of the two quasishear
wave speeds divided by their average) is measured. Since the work of Crecraft [1]
in the sixties, the method of acoustoelastic birefringence has been among the most
intensively studied for ultrasonic measurement of residual stress (cf. the reviews of
Pao et al. [2], Thompson et al. [3] and the references therein).

To illustrate how information on residual stress is extracted from the measure-
ment of acoustoelastic birefringence, let us consider a simple example. Let a Carte-
sian coordinate system be chosen. For the special case of a hyperelastic mate-

rial point with an isotropic natural state and subjected to an initial stress T
�

=

diag(T
�
11; T
�
22; T
�
33), one of the acoustoelastic birefringences is given by

V31 � V32
�VT

= K1T
�
11 +K2T

�
22 +K3T

�
33; (1)
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K1 = �K2 =
1

2�
(1 +

�3

�
); K3 = 0; (2)

where VIJ is the phase velocity of shear waves propagating in the I-direction with
polarization in the J -direction, �VT = (V31+V32)=2, Ki (i = 1; 2; 3) are acoustoelastic
coe�cients, � is the shear modulus and �3 a \third-order Lam�e constant" (as de�ned
by Toupin and Bernstein [4]) pertaining to the isotropic natural state (cf. Tokuoka
and Saito [5]; see also Tokuoka and Iwashimizu [6]). By writing

Ca =
1

2�
(1 +

�3

�
); (3)

we may recast Eq. (1) as

V31 � V32
�VT

= Ca(T
�
11 � T

�
22): (4)

Eq. (4) is not valid if the given material point is anisotropic in its natural state.
For instance, if the material point is weakly orthotropic in the natural state and has

its planes of symmetry parallel to the coordinate planes, if T
�

= diag(T
�
11; T
�
22; T
�
33),

and if we ignore the e�ect of the original anisotropy on the acoustoelastic coe�-
cients Ki, then Eq. (4) (cf. Tokuoka and Saito [5], Iwashimizu and Kubomura [7])
is replaced by

V31 � V32
�VT

= Bo + Ca(T
�
11 � T

�
22); (5)

where Bo is a parameter depending on the anisotropy in the natural state, and Ca is
again given by Eq. (3). While we are primarily interested in measurement of residual
stress, which usually do not arise from elastic deformations, we speak of hyperelastic
material point, natural state and elastic deformation when we present Eqs. (4) and
(5) above, for it was within such contexts that these equations were derived in the
quoted references. Indeed, until the early eighties, all studies in acoustoelasticity
were based on the same theoretical approach, namely the continuum theory of small
elastic motions (waves) superimposed on a large deformation of a hyperelastic body,
where the large deformation in question takes the body from an unstressed natural
state to the initial con�guration.

In Eq. (5), the left-hand side is called the total birefringence, Bo is called the
texture-induced birefringence, and the term led by Ca the stress-induced birefrin-
gence. When Eq. (5) was used in the interpretation of experimental data on a
variety of weakly anisotropic aluminum and steel sheets, it was found that Ca varied
only slightly among the samples of the same material (i.e., aluminum or steel) in
those experiments, but Bo could di�er considerably from sample to sample. In a
typical ultrasonic measurement, only the total birefringence is determined. In order
to use Eq. (5) for the evaluation of stress, the stress-induced birefringence must
be separated from the texture-induced birefringence. In practical applications (cf.
Thompson et al. [3], Hirao et al. [8]), where a speci�c material is considered, Ca is
often given a previously measured value for that material and is taken as a known
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constant, and Bo is estimated from some nominally unstressed calibration specimen
which is believed to have the same texture as the test sample.

The method of acoustoelastic birefringence and its underlying theory, as pre-
sented above, are open to several objections:

1. Eq. (5) is derived only for ultrasonic waves passing through a hyperelastic ma-
terial point which is elastically deformed from a natural state. As commented
by Pao [9], Eq. (5) \might be in large error for measuring residual stresses", be-
cause \residual stresses are developed in a body as a result of inhomogeneous
plastic deformation". Indeed, experimental investigations on several mate-
rials indicate that prior plastic deformations would a�ect the acoustoelastic
response of samples. If Bo is a constant determined by the inherent anisotropy
of the material at its natural state, Eq. (5) clearly cannot be valid after the
material point has undergone plastic deformations which have induced changes
in its anisotropy.

2. When we are given a sample and are asked to evaluate the residual stress
in it, we typically do not know the (possibly complicated) thermomechanical
history which leads to the given initial state of the sample. Nor do we care
about this history. We are really interested only in the residual stress currently
residing in the sample. In ultrasonic measurements, what we determine are
the instantaneous responses of the sample, which re
ect only the character of
its given initial state. Making reference to a \natural state" of the sample is,
philosophically speaking, unnatural in acoustoelasticity.

3. In Eq. (5), any in
uence of texture on the acoustoelastic coe�cients Ki is
ignored. As cautioned by Thompson et al. [3], \care must be taken when [this]
assumption is made since the in
uence of texture on acoustoelastic constants
is stronger than its in
uence on elastic moduli or velocities."

When the in
uence of texture on the acoustoelastic coe�cients cannot be ig-
nored, there is no justi�cation to call Bo the texture-induced birefringence and

Ca(T
�
11 � T

�
22) the stress-induced birefringence. Certainly we can still speak of the

in
uences of texture and stress on acoustoelastic birefringence, but the separation of
stress-induced and texture-induced birefringence will become theoretically impossi-
ble. Before we could devise methods to separate stress-induced and texture-induced
birefringence in practice, we must make sure that there indeed are well-de�ned
quantities which can be called \stress-induced birefringence" and \texture-induced
birefringence". We should quantitatively estimate the in
uence of texture on the
acoustoelastic coe�cients Ki before we can safely apply Eq. (5) in cases where it
is applicable and discuss how to e�ect the separation of stress-induced and texture-
induced birefringence in practice.

Until now we have been using the word \texture" in a loose physical sense to
mean the preferred orientations of crystallites constituting a polycrystalline aggre-
gate. In the purely macroscopic continuum mechanics (and thence in all the acous-
toelastic theories based upon it), there is no mathematical expression which directly
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describes the texture of a material point. Although we refer to Bo in Eq. (5) as the
texture-induced birefringence, only the intrinsic anisotropy of the natural state, i.e.,
its slight orthotropy, appears explicitly in the original derivation of the equation; the
in
uence of texture on acoustoelastic response is represented only indirectly through
this anisotropy. It is common belief that the presence of texture in a polycrystalline
aggregate gives rise to its anisotropic mechanical behavior. In continuummechanics,
however, it is the material anisotropy, not the texture, which has a precise descrip-
tion. In material science, on the other hand, a subject called quantitative texture
analysis (cf. Bunge [10]) began to take shape in the sixties. There the texture of
a polycrystalline aggregate is mathematically described by an orientation distribu-
tion function. The methods of quantitative texture analysis were introduced into
acoustoelasticity by Sayers [11, 12] and Johnson [13, 14] in the eighties.

Sayers [11] and Johnson [14] computed the second-order (SOEC) and third-order
elastic constants (TOEC), respectively, for an orthotropic aggregate of hyperelastic
cubic crystallites, which are unstressed in a given natural state of the aggregate.
Both their computations are based on the Voigt assumption, namely: if a macro-
scopic material point undergoes a deformation with gradient F , then all the crys-
tallites pertaining to this material point undergo homogeneous deformations with
the same gradient F . The e�ective elastic sti�nesses of the aggregate are then
obtained by averaging the corresponding sti�nesses of the crystallites with the ori-
entation distribution function as weight. This model was originally introduced for
an isotropic aggregate of hyperelastic cubic crystallites by Voigt [15], who computed
its two e�ective SOEC. Evaluations of the TOEC for the isotropic aggregate were
carried out in the sixties [16, 17] by using the same model, which Barsch [17] called
\the Voigt approximation of the �rst kind". Once the e�ective SOEC and TOEC
of the orthotropic aggregate have been evaluated by Sayers and Johnson, we can
in principle determine all its acoustoelastic properties under the Voigt model (cf.
Remark 5.3). For instance, the texture-induced birefringence in Eq. (5) is found to
be [11]

B0 =
16
p
5�2c

35�
W420; (6)

here c = c11 � c12 � 2c44, � = c44 + c=5, where cij are the single-crystal second-
order elastic sti�nesseses (the reference con�guration of the crystallites has been
chosen so that the symmetry axes coincide with the coordinate axes), and W420 is a
texture coe�cient which appears with otherWlmn as expansion coe�cients when the
orientation distribution function is expressed as an in�nite series of the generalized
spherical functions (cf. Roe [18]).

While the word \texture" has acquired a precise meaning in the work of Sayers
and of Johnson, their acoustoelastic theory follows essentially the old paradigm.
Their starting point is the polycrystalline aggregate in a natural state. The word
\texture" refers to the texture of the aggregate at this natural state. The stress in
the initial con�guration arises as a result of an elastic deformation of the aggregate
from the natural state. Thus most of the objections against the old theory remain
in force.

In this paper we shall develop a simple micromechanical model of a prestressed
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polycrystalline aggregate, in which the texture-induced and stress-induced anisotro-
pies of the aggregate are de�ned precisely by appropriate subgroups of the rotation
group SO(3). In our model the word \texture" always refers to the texture of the ag-
gregate at the given initial con�guration. Indeed, only the initial con�guration will
ever be used as the reference con�guration of the aggregate, which need not have
an unstressed natural state. Using this model, we shall derive, for a prestressed
orthotropic aggregate of cubic crystallites, a birefringence formula which shows ex-
plicitly the e�ects of the orthotropic texture on the acoustoelastic coe�cients. It
will be clear from this formula that, generally speaking, we cannot separate the total
birefringence into two distinct parts, one re
ecting purely the in
uence of stress on
the birefringence, and the other encompassing all the e�ects of texture. The same
formula, on the other hand, will provide quantitative criteria under which the ad
hoc approximation (5) would become acceptable (cf. Remark 5.4 below).

2. PRELIMINARIES

We shall develop a simple micromechanical model by which the acoustoelastic
coe�cients of a polycrystalline aggregate can be expressed in terms of its texture and
the (second-order and third-order) elastic constants of its constituent crystallites.
To this end, we begin by casting the constitutive equation of a single crystallite in
a suitable form (see Eq. (25) below).

Consider a single crystallite B�, which has an unstressed natural state �(B�).
We assume that B� obeys the kinematics and constitutive laws of continuum me-
chanics. Let �(B�) be the initial con�guration of B�, which can be obtained from
�(B�) by a homogeneous transplacement �. For convenience, we shall refer to the
transplacement � as the pre-deformation of B�, although the crystallite B� may
have been prepared at its initial con�guration and the transplacement � need not
have taken place physically. Let P = r�, I be the identity tensor, and

E
�
=

1

2
(P TP � I) (7)

be the Lagrangian prestrain. We assume that � is a transplacement with possibly

large rotation but small prestrain E
�
, and that �(B�) carries a homogeneous initial

(Cauchy) stress T
�
. Strictly speaking, we should have attached a subscript � to each

physical quantity pertaining to the crystallite B�. We have suppressed the subscript
for simplicity and will continue to do so in the remaining part of this section. Later
in this paper, we will restore the subscript � whenever confusion might arise.

We consider a homogeneous deformation � superimposed on �(B�). Let F =
r� and H = F � I be the deformation gradient and displacement gradient per-
taining to �, respectively. We assume that kHk be small. The crystallite B� is
strained by the incremental deformation �. Let

E =
1

2
(F TF � I); (8)

E
�

=
1

2
((FP )TFP � I) (9)
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be the resulting Lagrangian strains of B� with the con�gurations �(B�) and �(B�)
as reference, respectively. It follows immediately from Eqs. (7){(9) that

E� = E
�
+ P TEP : (10)

Let T be the Cauchy stress at the current con�guration �(�(B�)) that results
from the transplacement � � � (i.e., � followed by �). The corresponding second
Piola-Kirchho� stresses with �(B�) and �(B�) as reference are

� = (detF )F �1T F�T ; (11)

�� = (detFP )(FP )�1T (FP )�T ; (12)

respectively. In this paper we restrict our attention to incremental deformation �
and pre-deformation� which are both elastic. Hence we can express the constitutive
equations in question as

� = F�(E); (13)

�� = F�(E�); (14)

respectively, where F�(�) and F�(�) are the constitutive functions. By eliminating T
between Eqs. (11) and (12), we obtain the relation

F�(E) = (detP )�1P F�(E�)P
T : (15)

We assume that F�(�) (and thus also F�(�)) be of class C
2. The initial Cauchy stress

at the con�guration �(B�) is given by

T
�
= F�(0) = (detP )�1P F�(E

�
)P T : (16)

Let e = (H + HT )=2 be the in�nitesimal strain pertaining to the incremental
deformation �. From Eqs. (10), (13), (15) and the fact that E = e + o(kHk), we
appeal to Taylor's theorem to obtain the formula (cf. Haupt et al. [19], equation
(3.10))

� = T
�
+ (detP )�1P DF�(E

�
)[P TeP ]P T + o(kHk); (17)

where DF�(�) denotes the Frech�et derivative of F�(�). We are interested only in
situations where kHk is small and will henceforth discard all terms which are of
order o(kHk).

Let
P = R

�
U
�
= V

�
R
�

(18)

be the polar decomposition of P . From the identity U
�

2 = I + 2E
�
, we deduce that

U
�
= I +E

�
+ o(kE� k): (19)

By Taylor's theorem, we have

DF�(E
�
)[�] = DF�(0)[�] +D(DF�)(0)[E

�
; �] + o(kE� k): (20)
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Let C � = DF�(0), K
� = (C �)�1, and D

� = D(DF�)(0) be the sti�ness tensor, the
compliance tensor, and the \third-order" sti�ness tensor, respectively. As Cartesian
tensors, C � and K

� are fourth-order tensors, and D
� is of sixth-order.

Substituting Eqs. (18)1, (19) and (20) into Eq. (17) (with the o(kHk) term
discarded), we obtain the relation

� = T
�

+R
�
C
� [R
�
TeR

�
]R
�
T +R

�
D
� [E
�
;R
�
TeR

�
]R
�
T

� (trE
�
)R
�
C
�[R
�
TeR

�
]R
�
T +R

�
(E
�
C
� [R
�
TeR

�
] + C

� [R
�
TeR

�
]E
�
)R
�
T

+ R
�
C
� [E
�
R
�
TeR

�
+R

�
TeR

�
E
�
]R
�
T + o(kE� k): (21)

As mentioned above, we assume that kE� k be small and will henceforth drop the

o(kE� k) term in Eq. (21).
We are now ready to recast Eq. (21) into the constitutive equation we want.

Since �(B�) is an unstressed natural state, we have F�(0) = 0 and thence

F�(E
�
) = C

� [E
�
] + o(kE� k): (22)

From Eqs. (16), (18)1, (19) and (22), we observe that

T
�
= R

�
C
� [E
�
]R
�
T + o(kE� k): (23)

By dropping the o(kE� k) term, we obtain the expression

E
�
= K

� [R
�
TT
�
R
�
]: (24)

Substituting Eq. (24) into Eq. (21) and discarding the o(kE� k) term, we arrive at
the formula

� = �(e;T
�
;R
�
)

= T
�

+R
�
C
� [R
�
TeR

�
]R
�
T +R

�
D
� [K� [R

�
TT
�
R
�
];R
�
TeR

�
]R
�
T

� (trK� [R
�
TT
�
R
�
])R
�
C
� [R
�
TeR

�
]R
�
T

+ R
�
(K� [R

�
TT
�
R
�
] C � [R

�
TeR

�
] + C

� [R
�
TeR

�
]K�[R

�
TT
�
R
�
])R
�
T

+ R
�
C
� [K� [R

�
TT
�
R
�
]R
�
TeR

�
+R

�
TeR

�
K
� [R
�
TT
�
R
�
]]R
�
T ; (25)

which is the constitutive equation that we will use in developing our model. For a

�xed e and T
�

, the function �(e;T
�
; �) is clearly continuous on the rotation group

SO(3).
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3. A SIMPLE MICROMECHANICAL MODEL

Consider a polycrystalline aggregate which has a macroscopic material point X

given in an initial con�guration �(X) with prestress T
�
(X). Henceforth we shall

simply refer to X as the given aggregate point and shall only use �(X) as the
reference con�guration ofX. WhetherX has an unstressed natural state is irrelevant
to our discussion below.

We assume that X consists of numerous crystallites B�. At the initial con�gu-
ration �(X) of the aggregate point X, each crystallite B� pertaining to X is itself
given in some initial con�guration. By abuse of language, we simply denote the
initial con�guration of B� by �(B�). As we are considering a polycrystalline ag-
gregate, di�erent crystallites need not have the same initial con�guration, even if
they pertain to the same aggregate point X. In our micromechanical model of the
polycrystalline aggregate, we make two basic assumptions:

1. Every crystallite B� pertaining to the macroscopic material point X carries

the same homogeneous initial stress T
�
= T
�
(X) at the initial con�guration

�(B�).
2. When a transplacement with deformation gradient F (X) is superimposed on

the initial con�guration �(X), every crystallite B� pertaining to X undergoes
a homogeneous transplacement with deformation gradient F with respect to
the reference con�guration �(B�).

Remark 3.1. If T
�
(X) = 0, our model will reduce to that of Voigt for textured

aggregates. Should T
�
(X) arise as a result of an elastic deformation from an un-

stressed con�guration of the aggregate, Assumption 1 would be nothing but the
familiar assumption of Reuss as applied to the pre-deformation. Here we are really
interested in the general situation that the given con�guration of the polycrystalline
aggregate is prestressed, the aggregate need not have an unstressed con�guration,

and the initial stress T
� 6= 0 does not arise from an elastic pre-deformation of the

aggregate. 2

Let B be a perfect single crystal of the material in question. Let �(B) be a
�xed (unstressed) natural con�guration of B; �(B) completely occupies the three-
dimensional Euclidean space E3. For each crystallite B�, we assume that the initial
con�guration �(B�) may be identi�ed as the image of a homogeneous transplacement
�� : �(B)! E3, as restricted to some appropriate subset of �(B). For simplicity, we
denote ��1� (�(B�)) by �(B�). We take �(B�) as the reference natural con�guration
of B�. All the reference con�gurations �(B�) have the same orientation, namely,
that of �(B). While the crystallites are assumed to have unstressed con�gurations
�(B�), the polycrystalline aggregate itself need not have a natural con�guration.

Let P � = r��, and let

P � = R
�
�U
�
� = V

�
�R
�
� (26)
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be the polar decomposition of P �. The rotation tensor R
�
� de�nes the orientation of

the initial con�guration �(B�) with respect to that of �(B). Thus the orientations of
the crystallites at X are represented by appropriate elements of the rotation group
SO(3).

In what follows we shall appeal to some standard notions and theorems in mea-
sure theory, as applied to probability measures and the Haar measure de�ned on
the rotation group. All that we shall need can be found easily in texts on analysis
[20, 21].

We describe the texture at the con�guration �(X) of the aggregate point X (i.e.,
the totality of orientations of crystallites at X) by a probability (Borel) measure }
de�ned on the rotation group SO(3). We call } the orientation measure of the
aggregate point X. For a Borel subset A of SO(3), }(A) gives the probability that
we �nd a speci�c crystallite having an orientation represented by an element in A.
For brevity, henceforth we write G for the rotation group SO(3). Clearly, we have

}(G) = 1: (27)

The natural con�guration �(B) of the perfect single crystal B usually possesses
certain rotational symmetry de�ned by a point group Gcr � G. We call Gcr the group
of crystal symmetry. By the de�nition of the orientation measure }, it is clear that
} should be right invariant under the action of Gcr, i.e.,

}(AQ) = }(A) (28)

for each rotation Q in Gcr and for each Borel subset A of G.
The collection of rotations Q which satisfy

}(QA) = }(A) (29)

for each Borel subset A of G constitutes a subgroup Gtex of G. This subgroup Gtex

describes the symmetry of the texture atX; we call it the group of texture symmetry.
If the crystallites pertaining to X are randomly oriented, then } satis�es Eq. (29)
for any Q in G|i.e., it is left invariant under the action of the rotation group G. In
that case } will simply be the Haar measure }H , with }H(G) = 1.

Remark 3.2. In the literature [10, 18] on texture analysis, the texture of a macro-
scopic material point in a polycrystalline aggregate is usually described by the ori-
entation distribution function (ODF) w. Strictly speaking, w is well de�ned only if
the orientation measure } is absolutely continuous with respect to the Haar measure
}H. With this proviso, we can de�ne w in terms of } and }H by

w =
1

8�2

d}

d}H
; (30)

where d}=d}H denotes the Radon-Nikodym derivative of } with respect to }H .
Using } instead of w will not only lead to a slightly more general theory but will
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also facilitate our theoretical analysis. On the other hand, we shall follow common
practice and use w in speci�c computations. 2

Remark 3.3. The groups Gcr and Gtex can be de�ned in terms of the orientation
distribution function w (cf. Bunge [22]). Here we have simply recast the usual
de�nitions in terms of }. The group Gtex is often called the group of sample symmetry
in the literature [22] on texture analysis because there the crystallites are taken as

unstressed. In our present context, however, the presence of the initial stress T
�

will
also in
uence the mechanical anisotropy of the aggregate point in question. Hence
we call Gtex the group of texture symmetry to distinguish it from the group that
describes the mechanical isotropy or anisotropy of the aggregate point. 2

By Assumptions 1 and 2, all the crystallites at X have the same in�nitesimal

strain e and the same prestress T
�
for small elastic motions superimposed on �(X).

Let
L(e;T� ;R� ) = �(e;T

�
;R
�
)� T

�
; (31)

where �(e;T
�
;R
�
) is given in Eq. (25), be the incremental elasticity tensor (cf. Man

and Carlson [23]) of a typical crystallite B� at X. Since �(e;T
�
; �) is continuous on

the rotation group G, the function L(e;T� ; �) is Lebesgue integrable with respect to
any probability (Borel) measure } on G.

We postulate that the incremental elasticity tensor of the polycrystalline ag-
gregate at the macroscopic material point X is, in e�ect, given by the average of

L(e;T�;R� ) over the orientation measure } (see also Remark 4.1 below), i.e.,

L(T� )[e] =
Z
G

L(e;T� ;R� )d}(R� ): (32)

Under Assumptions 1 and 2, the preceding postulate is equivalent to the assumption
that the Cauchy stress T (X) at the aggregate point X in the current con�guration
is equal to the average over } of the Cauchy stresses carried by the crystallites
pertaining to X. Indeed, because the Cauchy stress carried by B� is given by

T � = (detF )�1F�(e;T
�
;R
�
)F T ; (33)

and because by assumption F , e and T
�
do not vary over the crystallites in question,

we have

T (X) = (detF )�1F (T
�
+ L(T� )[e])F T

=

Z
G

(detF )�1F (T
�
+ L(e;T� ;R� ))F Td}(R

�
) (34)

=

Z
G

T �(e(X);T
�
(X);R

�
)d}(R

�
)

if and only if Eq. (32) holds.

10



A glance at Eqs. (25), (31) and (32) reveals that L(T� )[e], as de�ned by Eq. (32),
may be written as the sum of two terms:

L(T� )[e] = C [e] + D (T
�
)[e]; (35)

where

C [e] =

Z
G

R
�
C
� [R
�
TeR
�
]R
�
T d}(R

�
) (36)

is independent of T
�

and D (T
�
)[e], as de�ned by D (T

�
)[e ] = L(T� )[e]� C [e], is linear

in T
�
.

4. MATERIAL SYMMETRY. TEXTURE- AND STRESS-INDUCED

ANISOTROPIES

Let L1(G; }) be the set of real-valued functions de�ned on the rotation group
G which are Lebesgue integrable with respect to the orientation measure }. The
following lemma will be instrumental in our derivation of the symmetry properties

of the incremental elasticity tensor L(T� )[e].
Lemma 4.1. For each f 2 L1(G; }) and each Q 2 Gtex,Z

G

f(QTR)d}(R) =

Z
G

f(R)d}(R): (37)

Proof: For f = �A, where A � G is a Borel set and �A is the characteristic function
of A, the given formula follows from the left invariance of } under the action of
Gtex. Hence this formula is valid for any simple function f and, by the monotone
convergence theorem, it remains valid for any nonnegative function f measurable
with respect to }. For f 2 L1(G; }), we write f = f+ � f�, where f+ = 1

2
(jf j+ f)

and f� = 1
2
(jf j � f) are nonnegative. 2

The following theorem gives the key symmetry property of L(T� )[e] as a function

of the pair (T
�
;e).

Theorem 4.2. For each Q in Gtex, we have

L(QT�QT )[QeQT ] = QL(T� )[e]QT : (38)

Proof: In Eqs. (25) and (31), L(e;T� ;R� ) is given as a sum of �ve terms. To
prove this theorem, it su�ces to show that the corresponding assertion is valid for
the average over } of each of these terms. This demonstration is easily done by
appealing to Lemma 4.1. For instance, we have for each Q 2 GtexZ

G

R
�
D
� [K� [R

�
T (QT

�
QT )R

�
];R
�
T (QeQT )R

�
]R
�
T d}(R

�
)

= Q

�Z
G

QTR
�
D
� [K� [(QTR

�
)TT
�
QTR

�
]; (QTR

�
)TeQTR

�
](QTR

�
)T d}(R

�
)

�
QT

= Q

�Z
G

R
�
D
�[K�[R

�
TT
�
R
�
];R
�
TeR

�
]R
�
T d}(R

�
)

�
QT :

11



The other four terms can be treated similarly. 2

Let Gstr be the subgroup of rotations Q such that

QT
�
(X)QT = T

�
(X): (39)

We call Gstr the group of stress symmetry and call

Gagg = Gtex \ Gstr (40)

the group of aggregate symmetry for our present model. The groups Gtex, Gstr and
Gagg all refer to the aggregate point X at its initial con�guration �(X). From
Theorem 4.2 and Eq. (39) we immediately obtain the following corollary.

Corollary 4.3. For each Q in Gagg, we have

L(T� )[QeQT ] = QL(T� )[e]QT : (41)

Remark 4.1. Let Lin and Sym be the set of second-order tensors and of second-
order symmetric tensors, respectively. In the (macroscopic) theory of linear elasticity
with initial stress, we may take the constitutive equation of a material pointX (with
respect to the initial con�guration �(X)) as (cf. Man and Carlson [23])

S(H) = T
�
+HT

�
+ L[H]; (42)

here S is the �rst Piola-Kirchho� stress; T
�
= S(0) is the initial (Cauchy) stress;H is

the displacement gradient; L : Lin! Sym is the incremental elasticity tensor, which
satis�es L[W ] = 0 for all skew-symmetric tensor W . Transplanting a de�nition
sometimes adopted in �nite elasticity (cf. Gurtin [24], Ch. 5; Hoger, [25, 26]; see
also Coleman and Noll [27]), Man and Lu [28] de�ne the material symmetry group
Gm of X at the con�guration �(X), in the context of the linearized theory, as the
subgroup of rotations Q which satisfy

S(QHQT ) = QS(H)QT (43)

for eachH 2 Lin; here S(�) is given by Eq. (42). It follows [26, 28] immediately from

Eqs. (42) and (43) that Q 2 Gm if and only ifQT
�
QT = T

�
and L[QeQT ] = QL[e]QT

for each e 2 Sym. In our present model, L[e] is represented by L(T� )[e]. Let us

identify L[e] with L(T� )[e] for each e 2 Sym. As every Q 2 Gagg satis�es Eqs. (39)
and (41), clearly we have Gagg � Gm. Whether the stronger condition Gagg = Gm in
fact prevails remains to be investigated. 2

The groups Gtex and Gstr de�ne the texture- and stress-induced anisotropies of
the aggregate point X, respectively.
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5. COMPUTATION OF THE ACOUSTOELASTIC COEFFICIENTS.

EXAMPLES

Given the orientation measure } of an aggregate point X, in principle we can

evaluate, through Eq. (32), the incremental elasticity tensor L(T� )[e] of X. Then
all the linearized elastic properties of X, including its acoustoelastic coe�cients, are
determined. In this paper we restrict our attention to the case that the aggregate
point X is orthotropic (as de�ned by the group Gagg).

We choose a Cartesian coordinate system in which the coordinate planes are the
planes of orthotropic symmetry of X. We denote the basis vectors of this coordinate

system by ik (k = 1; 2; 3). Since Gagg � Gstr, T
�

must be diagonal under the chosen

coordinate system, i.e., T
�

= diag (T
�
11; T
�
22; T
�
33). Let Lij(T

�
), Cij , and Dij(T

�
) be

the components of L(T� )[�], C [�], and D (T
�
)[�] (see Eq. (35)) in the \abbreviated

subscripts" notation (cf. Auld [29], Sections 1.F, 2.D, and 3.C). Then we have (cf.
Man and Lu [28])

�V 2
31 = T

�
33 + L55 = T

�
33 + C55 +D551T

�
11 +D552T

�
22 +D553T

�
33; (44)

�V 2
32 = T

�
33 + L44 = T

�
33 + C44 +D441T

�
11 +D442T

�
22 +D443T

�
33; (45)

where � is the mass density at the given initial con�guration �(X) of the aggregate
point X, VIJ is the phase velocity of shear waves propagating in the I-direction with
polarization in the J -direction, and

Dijk = (D (ik 
 ik)[�])ij for k = 1; 2; 3: (46)

It follows immediately from Eqs. (44) and (45) that

V31 � V32
�VT

= B0 +K1T
�
11 +K2T

�
22 +K3T

�
33; (47)

where

B0 =
1

2��V 2
T

(C55 � C44); �VT = (V31 + V32)=2; (48)

Ki =
1

2��V 2
T

(D55i �D44i); for i = 1; 2; 3: (49)

In most applications, replacing ��V 2
T in Eqs. (48) and (49) by �, the shear modulus

pertaining to an unstressed isotropic aggregate of the crystallites in question, would
introduce an error of at most a few percent in B0 and Ki (i = 1; 2; 3). With the
understanding that an approximation has been made, we shall henceforth replace
��V 2

T by � in all the birefringence formulae below.
In what follows we shall evaluate Ki for the case where the crystallites have cubic

symmetry. We choose a reference con�guration �(B) of the perfect single crystal
B (see Section 3) so that the coordinates axes are the axes of cubic symmetry
of B. Since B0 for the present instance has already been evaluated in the work
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of Sayers [11] (see Eq. (6) above), Eq. (47) will become an explicit formula for
the acoustoelastic birefringence when the coe�cients Ki are ascertained. In our
computations of Ki, we shall assume that the orientation measure } of the aggregate
point X is absolutely continuous with respect to the Haar measure }H so that the
orientation distribution function w is well de�ned (cf. Eq. (30)); we shall follow
common practice and use the orientation distribution function w instead of the
orientation measure }.

To begin with, we parametrize the rotation group G with the Euler angles
( ; �; �), the de�nition of which we follow the convention adopted by Roe [18].
A rotation R in G is then represented by a 3� 3 orthogonal matrix with its entries
given by the following equations (cf. Roe [18]):

R11 = cos cos � cos �� sin sin�;

R12 = sin cos � cos�+ cos sin�;

R13 = � sin � cos �;

R21 = � cos cos � sin �� sin cos �; (50)

R22 = � sin cos � sin�+ cos cos �;

R23 = sin � sin �; R31 = cos sin �;

R32 = sin sin �; R33 = cos �:

In terms of w and the Euler angles, an integral over G with respect to } is given by

Z
G

� � � d} =

Z 2�

0

Z �

0

Z 2�

0

� � � w( ; �; �) sin �d d�d�: (51)

In particular, Eq. (32) becomes

L(T� )[e] =

Z
G

L(e;T� ;R)d}(R)

=

Z 2�

0

Z �

0

Z 2�

0

L(e;T� ;R( ; �; �))w( ; �; �) sin�d d�d�; (52)

where we have written the dummy variable in Eq. (32) as R rather than R
�
.

Henceforth we assume that w is square-integrable on G with respect to the Haar
measure }H . We may then expand w as an in�nite series of the generalized spherical
functions:

w( ; �; �) =
1X
l=0

lX
m=�l

lX
n=�l

WlmnZlmn(cos �)e
�im e�in� ; (53)

where Zlmn are the augmented Jacobi polynomials. We call the expansion coe�cients
Wlmn the texture coe�cients. From the normalization condition }(G) = 1, we always
have [10, 18]

W000 =
1

4
p
2�2

(54)

for any orientation distribution function w.

14



To illustrate the evaluation of Ki, we consider �rst as examples the simpler
subcases of random and transversely-isotropic textures.

Example 5.1. The case with cubic crystallites, T
�
= diag(T

�
11; T
�
22; T
�
33), and random

texture. Here w is simply a constant function, namely w � 1=8�2. By using Maple
V to carry out the integrations and summations symbolically, we �nd from Eqs.
(25), (31), (44){(50), and (52) that�

V31 � V32

�VT

= Ciso(T
�
11 � T

�
22); (55)

Ciso =
1

70�

�
( c11 � c12)(8 s11 � 8 s12 + 3 s44)

+3 c44(4 s11 � 4 s12 + 5 s44) + 2( c111 � 3 c112 + 2 c123)( s11 � s12)

+9 c456 s44 + 6( c155 � c144)( s11 � s12 + s44)
�
; (56)

here the cij, cijk, and sij are the second-order sti�nesses, third-order sti�nesses, and
second-order compliances of the cubic crystallites, respectively, and we have made
the approximation ��V 2

T � �, where � = (c11� c12+3c44)=5. Thus we have obtained
a formula which expresses the acoustoelastic coe�cient Ciso of the polycrystalline
aggregate point X explicitly in terms of the elastic parameters of the crystallites.
A glance at Eqs. (4) and (55) reveals that the coe�cient Ciso in our present model
corresponds to the coe�cient Ca in the acoustoelastic theory of Tokuoka and Saito
[5].

Using the experimental data of Thomas [31] on the second-order and third-order
elastic constants of (99.95% to 99.99% pure) single-crystal aluminum at 25 �C, we
�nd from formula (56) that Ciso = �4:62 � 10�5 MPa�1 at 25 �C. If we replace the
values of the third-order sti�nesses of the crystallites by those reported by Sarma
and Reddy [32] (for single-crystal aluminum of 99.999% purity, at 25 �C; they did
not report the second-order elastic constants of their samples), we obtain Ciso =
�4:32� 10�5 MPa�1.

Fukuoka and Toda [33] conducted acoustoelastic measurements on (slightly aniso-
tropic) polycrystalline samples of 99.5% pure aluminum. From their experimental
data, they obtained an average value of Ca = �4:42� 10�5 MPa�1 through Eq. (4).
They did not report the temperature at which their experiments were performed,
although they mentioned that \the environmental temperature is kept within 0.1 �C
of 
uctuation". Kobori and Iwashimizu [34] obtained the experimental value of
Ca = �4:62� 10�5 MPa�1 for an aluminum alloy (with 97.5% aluminum) at 20 �C.

2

Example 5.2. The case with cubic crystallites, T
�

= diag(T
�
11; T
�
22; T
�
33), and trans-

versely-isotropic texture (with the 3-axis as the symmetry axis). Every entry Rij of
the rotation matrix (cf. Eq. (50)) can be expressed as a linear combination of the
generalized spherical functions with l = 1. It follows then from the orthogonality
and from the multiplication formula of the generalized spherical functions (cf. Bunge

�The formula for Ciso reported in reference [30] is erroneous. Eq. (56) is the correct formula.
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[10], section 13.1.3) that in our evaluation of Ki, we may truncate all terms with
l > 6 in the series expansion (53) of w. Moreover, from the cubic symmetry of the
crystallites and from the transverse isotropy of the texture, many Wlmn coe�cients
are null. It turns out that in our evaluation of Ki, we may in e�ect put (cf. Roe
[18, 35], Morris and Heckler [36], Johnson [14])

w =
1

8�2
+

p
2

128

�
27 + 60 cos 2� + 105 cos 4� + 45 cos 4�

� 60 cos 2� cos 4�+ 15 cos 4� cos 4�
�
W400

+
21
p
26

1024

� 50

21
+ 5 cos 2� + 6 cos 4� + 11 cos 6� � 10 cos 4�

� 5 cos 2� cos 4�+ 26 cos 4� cos 4�� 11 cos 6� cos 4�
�
W600: (57)

By using Maple V to complete the symbolic computations, we obtain from Eqs.
(25), (31), (44){(50), (52), and (57) that

V31 � V32
�VT

= K1T
�
11 +K2T

�
22; (58)

K1 = �K2 = Ciso + �1W400 + �4W600; (59)

where Ciso is given by Eq. (56), and

�1 = �4
p
2�2

385�

�
4( c11 � c12)(7 s11 � 7 s12 + 2 s44)

� c44(78 s11 � 78 s12 + 5 s44) + 7( c111 � 3 c112 + 2 c123)( s11 � s12)

�21 c456 s44 � ( c155 � c144)(39 s11 � 39 s12 � 16 s44)
�
; (60)

�4 =
8
p
26�2

1001�

�
2( c11 � c12 � 2 c44)(2 s11 � 2 s12 � s44)

+( c111 � 3 c112 + 2 c123)( s11 � s12)

+8 c456 s44 � 4( c155 � c144)( s11 � s12 + s44)
�
: (61)

In the preceding formulae for �1 and �4, we have put � = (c11 � c12 + 3c44)=5 in
place of ��V 2

T . 2

We now consider the case where X is generally orthotropic. The procedure
to evaluate Ki is essentially the same as in Example 5.2, although the orientation
distribution function w, which now involves the independent texture coe�cients
W400;W420;W440;W600;W620;W640 and W660, is much more complicated than Eq.
(57). Here we shall be content to outline the results of the computations and to
examine a concrete example. Again, by using Maple V, we obtain

V31 � V32
�VT

= B0 +K1T
�
11 +K2T

�
22 +K3T

�
33; (62)

K1 = Ciso + �1W400 + �2W420 + �3W440;
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+�4W600 + �5W620 + �6W640 (63)

K2 = �Ciso � �1W400 + �2W420 � �3W440

��4W600 + �5W620 � �6W640; (64)

K3 = 
2W420 + 
5W620; (65)

where B0, Ciso, �1, and �4 are given by Eqs. (6), (56), (60), and (61), respectively,
and the coe�cients �2; �3; �5; �6; 
2; 
5 are given by the following formulae:

�2 =
�8p5�2

385�

�
( c11 � c12)(2 s11 � 24 s12 � s44)

+ c44(18 s11 + 26 s12 � 9 s44)� c111(5 s11 + 17 s12)� 7 c112( s11 � s12)

+2 c123(6 s11 + 5 s12)� 7 c456 s44 + c144(13 s11 + 31 s12 + 2 s44)

+ c155(31 s11 + 57 s12 � 2 s44)
�
; (66)

�3 = �8
p
35�2

385�

�
(2 c11 � 2 c12 + 7 c44)(2 s11 � 2 s12 � s44)

+( c111 � 3 c112 + 2 c123)( s11 � s12)

�3 c456 s44 + ( c155 � c144)(7 s11 � 7 s12 � 4 s44)
�
; (67)

�5 =
�4p105

15
�4; (68)

�6 =
p
14 �4; (69)


2 =
�16p5�2

385�

�
�( c11 � c12)(13 s11 � 2 s12 � s44)

+ c44(4 s11 + 18 s12 + 9 s44) � c111(6 s11 + 5 s12) + 7 c112( s11 � s12)

� c123( s11 � 12 s12) + 7 c456 s44 + c144(9 s11 + 13 s12 � 2 s44)

+ c155(13 s11 + 31 s12 + 2 s44)
�
; (70)


5 =
8
p
105

15
�4; (71)

where � = (c11 � c12 + 3c44)=5. For later discussion, it will be convenient to recast
Eq. (62){(65) in the form

V31 � V32
�VT

= B0 + (Ciso + �1W400 + �3W440 + �4W600 + �6W640)(T
�
11 � T

�
22)

+ (�2W420 + �5W620)(T
�
11 + T

�
22) + (
2W420 + 
5W620)T

�
33: (72)

Note that whilew involves the texture coe�cientW660, the acoustoelastic coe�cients
in question are independent of W660.

Remark 5.1. Equation (72), of course, is consistent with the corresponding for-
mula in the more general, purely macroscopic theory (cf. King and Fortunko [37],

equation (5), for the case T
�
33 = 0). But Eq. (72) contains more information than

its more general counterpart. Once the second- and third-order elastic constants
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of the crystallites are ascertained, B0 and all the acoustoelastic coe�cients in Eq.
(72) become explicit linear functions of the texture coe�cients. Even when we know
nothing about the second- and third-order elastic constants of the crystallites, Eq.
(72) gives us more insight than the corresponding formula in the purely macro-
scopic theory. For instance, King and Fortunko ([37], Appendix) surmised that the

T
�
11 + T

�
22 term could be ignored for \weak anisotropy", but they suggested using

2�B0 to characterize the degree of anisotropy. From Eqs. (6) and (72), however, we

observe that even if B0 = 0, i.e., W420 = 0, the coe�cient of the T
�
11 + T

�
22 term,

which is now �5W620, could remain substantial. 2

Remark 5.2. Both the birefringence fomulae (59) and (72) for the cases of transver-

sely-isotropic and orthotropic texture contains a term Ciso(T
�
11�T

�
22) identical to the

birefringence for random texture, because the normalization condition }(G) = 1
dictates that the orientation distribution function w always contains the constant
term 1=8�2 equal to the ODF for the case of random texture. Clearly, for the same
reason, this Ciso term will arise in all cases of anisotropic texture. As a result, a
su�cient condition for Eq. (5) to be a good approximation as a formula for the
total birefringence is that the texture be su�ciently weak, i.e., that all the Wlmn

coe�cients in question be su�ciently small. 2

Remark 5.3. Equation (72) gives, for the �rst time, an explicit formula which
expresses the total birefringence of a prestressed orthotropic aggregate in terms of
its initial texture, initial stress, and the single-crystal SOEC and TOEC. As we
have mentioned in the introduction, in the Voigt model, once the SOEC and TOEC
of an orthotropic aggregate have been evaluated by Sayers and Johnson, all the
acoustoelastic properties of the aggregate can be determined in that model. To the
best of our knowledge, however, no analog of Eq. (72) has yet been published for
the Voigt model. 2

Let us now consider a concrete example. Using the data of Thomas [31] on the
second- and third-order elastic constants of single-crystal aluminum at 25 �C, we
obtain from our computations the following formula for the acoustoelastic birefrin-
gence:

V31 � V32
�VT

= �3:97W420 + (�0:046 � 0:49W400 + 0:05W440 + 0:95W600

+ 3:56W640)(T
�
11 � T

�
22)� (0:12W420 + 2:60W620)(T

�
11 + T

�
22)

+ (0:72W420 + 5:20W620)T
�
33; (73)

where the stresses are in units of GPa. If we use the third-order sti�nesses of
aluminum reported by Sarma and Reddy [32] (but keeping Thomas' values of the
second-order elastic constants), then the birefringence formula becomes

V31 � V32
�VT

= �3:97W420 + (�0:043 � 0:47W400 + 0:04W440 + 0:92W600
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+ 3:45W640)(T
�
11 � T

�
22)� (0:07W420 + 2:52W620)(T

�
11 + T

�
22)

+ (0:72W420 + 5:03W620)T
�
33: (74)

Remark 5.4. Whether the ad hoc formula (5) would furnish an acceptable approx-
imation to Eq. (72) for a polycrystalline aggregate depends on the texture of the
aggregate and on the values of Ciso; �1; �2; :::; 
5 for the material in question. Eq.
(73) or (74), for instance, shows that for aluminum the coe�cients W620 and W640

dominate the in
uence of texture on the acoustoelastic coe�cients in the birefrin-
gence formula. Indeed, for textures commonly encountered in rolled plates (say, with
jW400j � 0:005; jW420j � 0:005; jW440j � 0:01), we expect that Eq. (5) would be ap-
proximately valid when jW600j � 0:003, jW620j � 0:001, and jW640j � 0:001. Should

we have more information on the initial stress (e.g., the case that T
�
22 = T

�
33 = 0),

less stringent conditions would su�ce. This example illustrates the fact that when
we have evaluated the coe�cients Ciso, �1; �2; :::; 
5 for a speci�c material, the re-
sulting birefringence formula would then provide quantitative criteria to delineate
situations where the ad hoc formula (5) would become acceptable. 2

Johnson and Springer [38] reported the following texture coe�cients for a sample
of 7039-T64 aluminum plate: W400 = �0:0017, W420 = 0:0043, W440 = �0:0039,
W600 = �0:0037, W620 = �0:0055, W640 = 0:0012, and W660 = �0:00057, which
pertain to the coordinate system with the 1-, 2-, and 3-axis coinciding with the
normal, transverse, and rolling direction of the plate, respectively. Substituting
these values into Eq. (73) and (74), we obtain for this sample the birefringence
formula

V31 � V32

�VT

= �0:0171 � 0:031T
�
11 + 0:059T

�
22 � 0:026T

�
33; (75)

and
V31 � V32

�VT

= �0:0171 � 0:028T
�
11 + 0:055T

�
22 � 0:024T

�
33; (76)

respectively; here the stresses are in units of GPa.

6. DISCUSSIONS

Clearly Eq. (5), the formula often used in practical applications of birefringence
measurements, will become an acceptable approximation for Eq. (72) if and only if
the contributions of the �i (i = 1; 2; :::; 6) and 
j (j = 2; 5) terms in Eq. (72) are
negligible (cf. Remark 5.4 above). In general, however, this need not be the case.

Indeed a particularly acute situation could arise if T
�
11 = T

�
22 6= 0. There the Ciso term

drops out of formula (72), but the initial stress will contribute to the birefringence
if W420 6= 0 or W620 6= 0. Take, for instance, the aluminum sample studied by
Johnson and Springer [38] (cf. the last paragraph in Section 5 of the present paper).

For T
�
11 = T

�
22 = 100 MPa and T

�
33 = 0, Eq. (75) gives the total birefringence a
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value of �1:43%. By formula (5), we should have attributed �1:71% to \texture-
induced birefringence" and 0.28% to \stress-induced birefringence". Using the value
of Ca = �4:62 � 10�5 MPa�1, we shall then draw the totally erroneous conclusion

that T
�
11� T

�
22 = �61 MPa. If T

�
11 = T

�
22 = 100 MPa and T

�
33 = �100 MPa, then the

estimate by formula (5) will be further worsened to T
�
11 � T

�
22 = �117 MPa. Thus

application of formula (5) must be exercised with caution.
In this paper we have presented a simple micromechanical model of a prestressed

polycrystalline aggregate. We consider a macroscopic material point X of the ag-
gregate given in a prestressed and textured con�guration �(X). In our model, only
�(X) is used as the reference con�guration for the aggregate point X, which need

not have an unstressed natural con�guration. Both the prestress T
�
(X) and the

orientation measure }(X), which de�nes the texture, refer to the stress and texture
at the initial con�guration �(X). Material anisotropies of X induced by the initial

stress T
�
and the initial texture } are precisely de�ned. Moreover, explicit formu-

lae which describe the in
uence of the texture } on the acoustoelastic coe�cients
in birefringence formulae could be derived. Examples of such formulae are given
in Section 5. From these examples it is clear that, generally speaking, we cannot
separate the total birefringence into two parts, one re
ecting purely the in
uence of

the initial stress T
�
, and the other encompassing all the e�ects of the initial texture

}. On the other hand, such a separation (as embodied in Eq. (5)) would be approx-
imately valid if the texture is su�ciently weak. The criteria for the validity of Eq.
(5) depend on the material and on the situation at hand (see Remark 5.4). Under
the present model, these criteria can be derived from the analog of Eq. (73) for the
polycrytalline aggregate in question.

Of course, all the discussions above are based on the presumption that the for-
mulae derived under our simple model be corroborated by the actual behavior of
polycrystalline aggregates. It is unclear how the simplifying assumptions in the
present modelling would a�ect the validity of these formulae. Further theoretical
and experimental studies remain to be undertaken to con�rm or to contradict these
formulae, to delineate their limitations and to explore their possible applications.
Since we are interested in measurement of residual stresses in structural metals,
a particularly intriguing question arises which concerns polycrystalline aggregates
that have undergone plastic deformations. It has been suggested [30] that a formula
such as Eq. (73), where the Wlmn coe�cients pertain to the texture of the given
initial con�guration, might remain valid even if the aggregate in question has, in
the past, undergone plastic deformations. The e�ects of plastic deformations on the
acoustoelastic response of a polycrystalline aggregate would then be re
ected only
in the change of texture that they could have induced on the aggregate. Whether
this suggestion has any merit could be answered only in the laboratory.
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