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Abstract

Different types of human gene mutation may vary in size, from structural variants (SVs) to single

base-pair substitutions, but what they all have in common is that their nature, size and location are

often determined either by specific characteristics of the local DNA sequence environment or by

higher-order features of the genomic architecture. The human genome is now recognized to

contain ‘pervasive architectural flaws’ in that certain DNA sequences are inherently mutation-

prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification.

Here we explore how the nature, location and frequency of different types of mutation causing

inherited disease are shaped in large part, and often in remarkably predictable ways, by the local

DNA sequence environment. The mutability of a given gene or genomic region may also be

influenced indirectly by a variety of non-canonical (non-B) secondary structures whose formation

is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere

with subsequent DNA replication and repair, and may serve to increase mutation frequencies in

generalized fashion (i.e. both in the context of subtle mutations and SVs), they have the potential

to serve as a unifying concept in studies of mutational mechanisms underlying human inherited

disease.
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Introduction

“Where, when, and in which individual a particular mutation will appear is

unpredictable”.
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Theodosius Dobzhansky (1970) Genetics of the Evolutionary Process

“A mutation is in itself a microscopic event, a quantum event, to which the

principle of uncertainty consequently applies – an event which is hence by its very

nature essentially unpredictable”.

Jacques Monod (1971) Chance and Necessity: An Essay on the Natural Philosophy

of Modern Biology

Although mutation is still often casually described as a ‘random process’ [Gerrish, 2002;

Ayala, 2007; Kondrashov and Kondrashov, 2010], there is now abundant evidence that the

process of mutation is far from random. Indeed, over the last 20 years, it has become ever

clearer that human gene mutation is frequently a highly sequence-specific process,

irrespective of the type of lesion involved. Further, we have come to understand that certain

DNA sequences are inherently mutation-prone by virtue of their base composition, sequence

repetitivity, epigenetic modification, and/or characteristic secondary structures, and hence

have a tendency to mutate in very specific ways. This inherent mutability pertains not only

with respect to gross gene lesions but also to subtle mutations such as single base-pair (bp)

substitutions. Thus, whereas highly prominent genomic structural features may act at a

distance so as to induce gross genomic rearrangements, the nature, location and frequency of

micro-lesions are often influenced by their immediate DNA sequence context. The

recognition that certain DNA sequences are inherently hypermutable has been accompanied

by an emerging understanding of how DNA sequence influences (and indeed often

underpins) secondary structure formation, how certain local DNA structures can themselves

be mutagenic, and how the type and frequency of the resulting mutations can in turn help to

explain the nature and prevalence of specific human genetic diseases [Rogozin and Pavlov,

2003; Bacolla et al., 2008; Arnheim and Calabrese, 2009]. Studies of hypermutable

sequences have also provided important insights into the endogenous nature of many of the

known mechanisms of mutagenesis, for example CpG deamination or slipped mispairing at

the DNA replication fork, that are responsible for quite different types of recurring micro-

lesion.

Human mutational spectra are increasingly being ascertained on a genome-wide scale, as for

example in sequenced cancer genomes that can constitute an intricate patchwork of

clustered, or even overlapping, somatic lesions. Here, however, we have attempted to focus

on those mutations that have occurred in the germline and which underlie human inherited

disease. Many of these lesions have become explicable (albeit retrospectively) in terms of

their underlying mutational mechanisms by reference to local genome structure and sub-

structure. In this review, we explore how the nature, location and frequency of the many

different types of human gene mutation causing inherited disease are shaped in large part,

and often in remarkably predictable ways, by the local DNA sequence environment. The

central hypothesis we aim to discuss herein is that sites of mutation leading to inherited

disease often coincide with DNA sequences known to possess peculiar biochemical and/or

structural features, ranging from the spontaneous deamination of single bases to the

cooperative transition from the canonical right-handed double-helix to complex secondary

structures, including triplexes, slipped-out bases and cruciforms (collectively termed non-B

DNA) such that the root cause of the vulnerability of DNA to mutation often resides within

its own sequence.

The text below is organized operationally into sections, allowing us to address sequentially

the impact of DNA sequence architecture upon (i) single nucleotide substitutions, (ii)

microdeletions, microinsertions and indels, (iii) structural variants (SVs) including copy

number variations, (iv) microsatellite mutation and (v) mutations in or involving the

mitochondrial genome. We then discuss the extent to which non-canonical (non-B) DNA
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structure-forming sequences have the potential to contribute to a generalizable and hence

potentially unifying hypothesis in the field of mutagenesis, on the basis that non-B DNA

structures appear to have the capacity to increase the mutation frequency not only with

respect to SVs but also in the context of subtle mutations.

Single Nucleotide Substitutions

The CpG Dinucleotide Mutation Hotspot

“It is quite clear that the abnormal hemoglobins of man reveal a pattern of

nucleotide replacements which is distinctly non-random. It is also clear that the

major contributor.…is the G→A transition. Precisely the same conclusions are

obtained from the data on the evolution of cytochrome c. This occurs in spite of the

fact that in the case of hemoglobin we are probably looking almost exclusively at

deleterious mutations, whereas in the case of cytochrome c we are looking only at

mutations which have survived the rigors of selection”.

W. M. Fitch (1967) J. Mol. Biol. 26:499-507.

“Our observation of recurrent CG-TG mutations strongly supports the view that

these dinucleotides are mutation hotspots”.

H. Youssoufian et al. (1986) Nature 324:380-382.

5-methylcytosine (5mC) is the most frequent post-synthetic (epigenetic) DNA modification

in the human genome and is largely, but not exclusively, confined to the CpG dinucleotide.

The first hint that the CpG dinucleotide might constitute a hotspot for pathological mutations

in the human genome came 25 years ago with the finding that two different CGA>TGA

(Arg>Term) nonsense mutations in the factor VIII gene (F8; MIM# 306700) had recurred

quite independently in unrelated individuals causing hemophilia A [Youssoufian et al.,

1986]. The potential generality of this phenomenon soon became evident with the finding

that 12 of the 34 (35%) single base-pair substitutions then known to cause human inherited

disease were C>T and G>A (on the other strand) transitions within CpG dinucleotides

[Cooper and Youssoufian, 1988]. Further studies confirmed that the CpG dinucleotide was

also a mutation hotspot in a number of other human disease genes including PAH [MIM#

612349; Abadie et al., 1989], SERPINC1 [MIM# 107300; Perry and Carrell, 1989], F9

[MIM# 300746; Koeberl et al., 1990], LDLR [MIM# 606945; Rideout et al., 1990], RB1

[MIM# 180200; Mancini et al., 1997], HPRT1 [MIM# 308000; O‘Neill and Finette, 1998]

and DMD [MIM# 300377; Buzin et al., 2005]. As mutation data accumulated, CGA>TGA

transitions were encountered disproportionately frequently as a cause of human genetic

disease [Krawczak et al., 1998]. This was not simply due to the hypermutabilty of the CpG

dinucleotide but also because such nonsense mutations are inherently more likely than

missense mutations to come to clinical attention owing to their greater functional impact

[Mort et al., 2008].

From the outset, it was realised that the hypermutability of the CpG dinucleotide was related

to its role as the major site of cytosine methylation in the human genome. The reason

traditionally put forward to explain this association has been that while cytosine

spontaneously deaminates to uracil (which is efficiently recognized as a non-DNA base and

removed by uracil-DNA glycosylase), the spontaneous deamination of 5mC yields thymine

[Shen et al., 1994] thereby creating G•T mismatches whose removal by methyl-CpG binding

domain protein 4 (MBD4) and/or thymine DNA glycosylase followed by base excision

repair (BER) is inherently less efficient [Hendrich et al., 1999; Waters and Swann, 2000;

Walsh and Xu, 2006; Cortázar et al., 2007; Boland and Christman, 2008]. This

notwithstanding, it should be appreciated that CpG transitions do not originate exclusively

via the spontaneous deamination of 5mC but may also arise through the action of other
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mechanisms and processes e.g. nucleotide misincorporation during replication [Shen et al.,

1992; Zhang and Mathews, 1994; Pfeifer, 2006]. Irrespective of the precise nature of the

underlying mutational mechanism, Krawczak et al. [1998] estimated that, in the context of

inherited disease, the rate of CG>TG (and CG>CA on the other strand) transitions was five

times that of the base mutation rate. Subsequent estimates of 5mC hypermutability, derived

from various studies of polymorphism, pathological mutations or sequence divergence in an

evolutionary context, have ranged from four- to fifteen-fold [Nachman and Crowell, 2000;

Kondrashov 2003; Tomso and Bell, 2003; Jiang and Zhao, 2006a; Zhao and Zhang, 2006;

Zhang et al., 2007; Elango et al., 2008; Misawa and Kikuno, 2009; Li et al., 2009].

Ultimately, the question of whether or not a given CpG dinucleotide is hypermutable in the

context of inherited disease is determined by its methylation status in the germline. An

added level of complexity is however likely to be introduced into the equation by site-

specific differences in the efficiency of DNA methylation (by DNA methyltransferases) that

are conferred by the immediate flanking sequence [Wienholz et al., 2010]. It would also

appear that local DNA structure, specifically in the form of sequences capable of forming

DNA structures other than the canonical right-handed double-helix (collectively called non-

B DNA), can influence the efficiency of DNA methylation [Halder et al., 2010]. In passing,

another potential source of 5mC-associated mutations is the genome-wide induction of

single-strand breaks generated during the waves of demethylation and remethylation in the

zygote [Wossidlo et al., 2010]; such a mechanism may account for the large deletions

stimulated by knocked-in (CG•CG) tracts in the mouse [Wang et al., 2008].

Self evidently, since the CpG dinucleotide is a hotspot for mutation, the CpG mutation rate

is considerably higher than the non-CpG mutation rate. However, it would appear that the

non-CpG mutation rate is contingent to some extent upon the local CpG content [Walser et

al., 2008]. This correlation between the CpG and non-CpG mutation rates seems to be

independent of G+C content, recombination rate and chromosomal location but,

intriguingly, approximates to a sigmoidal curve [Walser and Furano, 2010]. This is

potentially explicable in terms of the effect of CpG content on the non-CpG mutation rate

being subject to a certain threshold (~0.53%), with ‘saturation’ being attained when the CpG

content rises above a particular level (~0.63%). In addition, the mutational spectrum

(transition/transversion ratio) of non-CpG sites was noted to change with CpG content

[Walser and Furano, 2010] supporting the authors’ contention that this ‘CpG effect’ could

be an intrinsic property of the DNA sequence.

A CpHpG Trinucleotide Mutation Hotspot Associated with Human Inherited Disease?

It has been known for some time that cytosine methylation also occurs in the context of

CpNpG sites (where N represents any nucleotide) in mammalian genomes [Woodcock et al.,

1987; Clark et al., 1995; Ramsahoye et al., 2000] and in vitro [Pradhan et al., 1999]. Since

the intrinsic symmetry of the CpNpG trinucleotide would support a semi-conservative model

of replication of the methylation pattern (as with the CpG dinucleotide), it comes as no

surprise that both maintenance and de novo methylation occurs at CpNpG sites in

mammalian cells [Clark et al., 1995]. In their landmark paper on the human methylome,

Lister et al. [2009] reported abundant DNA methylation in CpHpG trinucleotides (where H

= A, C or T); more specifically, some 17.3% of 5mC in embryonic stem cells was found to

occur within CpApG, CpCpG and CpTpG with a further 7.2% of 5mC occurring in CpHpH.

Although Lister et al. [2009] suggested that non-CpG methylation is almost entirely lost

upon differentiation (a conclusion based upon the analysis of fetal lung fibroblasts), others

have noted CpNpG methylation within human genes in a variety of different somatic tissues

[Lee et al., 2010; Laurent et al., 2010]. If we therefore assume not only that CpHpG

methylation occurs in the germline but also that 5mC deamination can occur within a

CpHpG context, then it follows that methylated CpHpG sites are very likely to constitute
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mutation hotspots causing human inherited disease. Initial indirect evidence that this might

indeed be the case came from the observation that disproportionately high numbers of C>T

and G>A transitions occur at CpNpG sites in studies of the human genes, NF1 [MIM#

613113; Rodenhiser et al., 1997] and BRCA1 [MIM# 113705; Cheung et al., 2007].

In the light of the above, Cooper et al. [2010] revisited the question of CpG dinucleotide

hypermutability and explored the potential contribution that CpHpG transitions might make

to human inherited disease. A total of 54,625 missense and nonsense mutations from 2,113

genes causing inherited disease were retrieved from the Human Gene Mutation Database

[http://www.hgmd.org; Stenson et al., 2009]. Some 18.2% of these pathological lesions were

found to be C>T and G>A transitions located within CpG dinucleotides (compatible with a

model of methylation-mediated deamination of 5mC), a ~10-fold higher proportion than

would have been expected by chance alone [Cooper et al., 2010]. The corresponding

proportion for the CpHpG trinucleotide was 9.9%, a ~2-fold higher proportion than would

have been expected by chance alone. Cooper et al. [2010] therefore estimated that ~5% of

missense/nonsense mutations causing human inherited disease could be attributable to

methylation-mediated deamination of 5mC within a CpHpG context. Irrespective of the

functional role(s) of cytosine methylation in the human genome, it would appear that

methylation of the CpHpG trinucleotide may leave a significant imprint on the spectrum of

point mutations causing human genetic disease.

Other Sequence Specificities that Underlie the Local Context Dependency

of Human Point Mutation

“A model for frameshift mutation can often be hypothesized from knowledge of the

DNA sequence and contexts of the mutants and the sequence-specific behaviour of

enzymes believed to be involved in mutation”.

L. S. Ripley (1990) Annu. Rev. Genet. 24:189-213.

In addition to the CpG and CpHpG effects discussed above, other types of nucleotide

substitution also display context dependence in that substitution rates are dependent upon

the identity of the neighbouring bases. For example, Krawczak et al. [1998] observed a

subtle and locally confined influence of the surrounding DNA sequence on relative rates of

single-base-pair substitutions causing human inherited disease. Most notably, T>(C,A),

A>(C,G), and G>(T,C) appear to be biased by the nucleotide at position −1, whereas

T>(C,G), C>(G,A), A>(T,G), and G>T are biased by the nucleotide at position +1.

However, the nearest-neighbour influence decreases markedly with distance from the site of

nucleotide substitution. A significant, albeit weak effect was also observed for position +2,

but only for five specific substitutions viz. T>C, C>T, A>G and G>(T,C). Interestingly, the

six substitutions significantly influenced by the −1 (5′) nucleotide can be matched with their

complementary substitutions being significantly influenced by the +1 (3′) neighbour, and

vice versa. When nearest-neighbour effects were analyzed in such a way as to allow for

neighbouring dinucleotides rather than mononucleotides, more substitutions were found to

exhibit a statistically significant (albeit weaker) rate dependency [Krawczak et al.. 1998].

Nevertheless, this effect was again found not to extend beyond positions −2 and +3. Hence,

in most cases, the influence of the surrounding DNA sequence would appear to extend no

further than ~2 bp from the site of nucleotide substitution. This notwithstanding, recent work

suggests that the presence in the vicinity of sequences capable of forming non-B DNA may

be capable of exerting an influence on nucleotide mutability [Bacolla et al., 2011].

One possible mechanism to account for an influence of the local DNA sequence

environment on the nature and location of single base-pair substitutions is misalignment

mutagenesis [Kunkel, 1990]. Transient misalignment of the primer template, caused by
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looping out of a single template base can give rise to nucleotide misincorporation during

DNA replication [Kunkel, 1990]. If not promptly repaired, such misaligned structures can be

bypassed and extended by low-fidelity DNA polymerases, ultimately giving rise to heritable

mutations [Sutton, 2010]. Employing primer-template models in vitro, Chi and Lam [2008;

2009] have shown that the relative stabilities of misaligned DNA structures, and hence the

likelihood of their templating mutations, are dependent upon the terminal base-pair at the

replicating site, the identity of the templating base and the nature of the upstream and

downstream nucleotides. If this were to play an important role in the generation of single-

base-pair substitutions in human genes, then a substantial proportion of single base-pair

substitutions should exhibit identity between the newly introduced base and one of the bases

immediately flanking the site of mutation. Consistent with this prediction, Krawczak et al.

[1998] previously showed that mutations causing human inherited disease display a degree

of mutational bias that favours substitutions in the direction of the flanking bases, at least for

certain codon positions. Mutation toward the 5′ flanking nucleotide was found to occur

significantly more often than expected at the second position of the codon but not at the first

or last position; mutation toward the 3′ flanking base was found to be favoured at the first

position of a codon but was disfavoured at the second position. These findings were held to

be suggestive of a mutational mechanism, involving positions 1 and 2 in the codon (both of

which are critical for the specification of the encoded amino acid residue), that is biased

toward the nucleotide at the other position. Inspection of the genetic code revealed that such

a bias invariably serves to avoid the de novo introduction of termination codons [Krawczak

et al., 1998]. Finally, although no specific preponderance of repeat-sequence motifs was

noted in the vicinity of the nucleotide substitutions, a moderate correlation between the

relative mutability and thermodynamic stability of DNA triplets emerged [Krawczak et al.,

1998]. This was suggestive either of inefficient DNA replication in regions of high stability

or the transient stabilization of misaligned intermediates. Not surprisingly, nearest neighbour

effects are not confined to mutations causing inherited disease. Indeed, they are also evident

in the spectrum of single nucleotide polymorphisms in the human genome [Zhao and

Boerwinkle, 2002; Zhang and Zhao, 2004; Jiang and Zhao, 2006b] as well as in the context

of evolutionary substitutions [Blake et al., 1992; Hess et al., 1994; Siepel and Haussler,

2004; Nevarez et al., 2010; Ma et al., 2010], findings that argue strongly for the ubiquity of

the underlying mutational mechanisms.

The molecular basis of the sequence dependency of human mutation is clearly complex

since the extensive inter- and intra-chromosomal variation in the mutation rate cannot be due

entirely to neighbouring nucleotide effects [Hodgkinson et al., 2009]. Instead, a given

mutational spectrum is likely to result from a combination of a number of different

processes such as (i) the sequence specificity of both exogenous mutagens and endogenous

mutational mechanisms, (ii) cellular attempts to repair the mutation in question followed by

replication of the repaired DNA and (iii) chromatin composition (i.e. bulk vs. epigenetically

modified nucleosomes [Tolstorykov et al., 2011]). Whilst imbalances in intracellular pools

of dNTPs have long been known to exert a general mutagenic effect [Mathews, 2006],

different exogenous mutagens can target specific sequence contexts [Pfeifer and Besaratinia,

2009]. Thus, both benzo[a]pyrene and UV light have been reported to display a target site

specificity for CpG dinucleotides [Denissenko et al., 1997; You and Pfeifer, 2001], although

both mutagens are rather more likely to be relevant to mutagenesis in the soma than in the

germline. However, since the context-dependent pattern of (germline) mutations occurring

during mammalian evolution correlates strongly with empirically determined patterns of

oxidative damage [Stoltzfus, 2008; Sedelnikova et al., 2010], we may infer that oxidative

damage probably plays a key role in germline mutation and that at least some of the context

dependency of mutations is bound up with this mechanism of mutagenesis [Hsu et al.,

2004]. This may be particularly relevant for sequences containing clustered guanine

residues, since during repair these readily oxidized bases may give rise to opposing (or
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nearly opposing) single-strand breaks, which may then yield mutagenic double-strand breaks

[Sedelnikova et al., 2010].

Different DNA polymerases and repair enzymes also exhibit their own characteristic

sequence specificities and error signatures [Donigan and Sweasy, 2009; Mazurek et al.,

2009; Korona et al., 2011; Lange et al., 2011]. In transcribed regions, transcription-coupled

repair gives rise to inter-strand asymmetries in the mutation rate [Green et al., 2003; Polak

and Arndt, 2008; Mugal et al., 2009] which are superimposed upon the intrinsic replication-

associated mutational asymmetries that are thought to result from a combination of (i) the

unequal rates of complementary base misincorporation by DNA polymerases and (ii) the

different efficiencies of action of DNA mismatch repair enzymes on the leading and lagging

DNA strands [Chen et al., 2011]. Different base mismatches, arising as a consequence of

base misincorporation during DNA replication, display context dependency with respect to

helix stability [SantaLucia and Hicks, 2004] and this strongly influences the local sequence

bias exhibited by the resulting mutations [Nakken et al., 2010]. Local DNA flexibility is also

known to be capable of modulating the efficiency of the enzymes involved in both base

excision repair and mismatch repair [Seibert et al., 2002; Seibert et al., 2003; Wang et al.,

2003; Isaacs and Spielmann, 2004] and this flexibility is itself sequence-dependent [Geggier

and Vologodskii, 2010; Peters and Maher, 2010]. Finally, DNA repair efficiency may be

influenced by nucleosome positioning [Ying et al., 2010] which is also DNA sequence-

dependent [Chung and Vingron, 2009; Cui and Zhurkin, 2010; Wu et al., 2010]. Thus, a

variety of different properties of a given DNA sequence and its structure are likely to impact

on the inherent mutability of that sequence and the efficiency with which mutations arising

are subsequently repaired.

Gene Conversion

Gene conversion occurs during homologous recombination and refers to the unidirectional

transfer of genetic material from a ‘donor’ sequence to a highly homologous ‘acceptor’

[reviewed in Chen et al., 2007]. It can affect paralogous sequences (nonallelic homologous

gene conversion) or different alleles at a given locus. Gene conversion appears to be most

efficient when the sequences involved share homology over a range between 295 bp and 1

kb, but efficiency tails off rapidly if the length of the homologous stretch is less than 200 bp

[Liskay et al., 1987]. The suggestion has also been made that gene conversion occurs

optimally when the homology of the paralogous sequences involved exceeds 92% [Wolf et

al., 2009].

A variety of DNA sequences, including direct repeats, inverted repeats, minisatellite repeats,

the χ recombination hotspot and alternating purine–pyrimidine tracts with Z-DNA-forming

potential have frequently been noted in association with gene conversion events in human

genes indicative of the sequence-directed nature of this mutational mechanism [see

Chuzhanova et al., 2009]. These somewhat anecdotal findings have recently been formalized

by a methodical statistically-based analysis of 27 well-characterized human gene conversion

mutations [Chuzhanova et al., 2009]. The lengths of the maximal converted tracts (MaxCTs)

associated with these pathogenic gene conversions tended to be fairly short, rarely exceeding

1 kb. In silico analysis of the DNA sequence tracts involved in the 27 non-overlapping

pathogenic gene conversion events in 19 different genes yielded several novel findings

[Chuzhanova et al., 2009]. First, gene conversion events tended to occur preferentially

within (C+G)- and CpG-rich regions. Second, sequences with the potential to form non-B

DNA structures were found to occur disproportionately within MaxCTs and/or short

flanking regions. Third, MaxCTs were enriched in several sequence motifs including a

truncated version of the χ element (a TGGTGG motif) and the classical meiotic

recombination hotspot, CCTCCCCT. Finally, there was a tendency for gene conversion to
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occur in genomic regions that had the potential to fold into stable hairpin conformations

[Chuzhanova et al., 2009].

Another important aspect of this topic that is relevant to our brief relates to the phenomenon

of biased gene conversion (BGC). Gene conversion is said to be biased if one of the two

DNA molecules involved in the gene conversion event is more likely than the other to be the

donor. In the case of allelic gene conversion, BGC leads to an excess of the ‘favoured’ allele

in the pool of gametes and therefore tends to increase the frequency of this allele in the

general population. Analysis of polymorphism and nucleotide substitution patterns in

primate genomes has provided firm evidence for the action of BGC favouring GC alleles

over AT alleles, i.e. the derived allele frequency of AT>GC mutations is higher than that of

GC>AT mutations [Duret and Galtier, 2009; Clément and Arndt, 2011]. Recently, it has

been shown that the spectrum of missense polymorphisms in human populations exhibits the

footprints of GC-favoured BGC [Necşulea et al., 2011]. This pattern cannot be explained in

terms of selection and is evident with all nonsynonymous mutations, including those

implicated in human genetic disease. Necşulea et al. [2011] have speculated that the genes

most likely to be influenced by this effect will be those that are AT-rich (i.e. those genes for

which the opportunities for AT>GC mutations are maximized) and which coincide with

recombination hotspots, “an additional argument for these hotspots being an Achilles’ heel

of the human genome”.

Microdeletions, Microinsertions and Indels

“Just as the constant increase of entropy is the basic law of the universe, so it is the

basic law of life to be ever more highly structured and to struggle against entropy”.

Václav Havel

The sequence context of microdeletions and microinsertions (<21 bp in length) causing

human genetic disease was studied by Ball et al. [2005] who analysed a total of 3,767

microdeletions (from 426 genes) and 1,960 microinsertions (from 307 genes). Deletions of 1

bp were the most common type of microdeletion analyzed (48% of the total) while 2,815

microdeletions (75% of the total) were between 1 and 3 bp in length. Of the 3,144

microdeletions located within coding regions, 2,758 (88%) were of a length that was not a

multiple of three and hence would be expected to alter the reading frame. Some 45% of

microdeletions led to the removal of a repeated sequence, an event termed “deduplication”

by Kondrashov and Rogozin [2004] in order to highlight the identity of the deleted sequence

and the sequence abutting the site of deletion; Kondrashov and Rogozin [2004] observed a

deduplication frequency of 66%. In the study of Ball et al. [2005], the proportion of

deduplications decreased with increasing length of the deletion. For deletions of 2–5 bp,

38% were found to be deduplications whereas for deletions of ≥6 bp it was only 3%. By

contrast, some 85% of microinsertions represented duplications of sequence bordering the

site of mutation, comparable to the 81% reported by Kondrashov and Rogozin [2004]; this

proportion was independent of the length of the insertion. Ball et al. [2005] reported that 1

bp constituted by far the most common length of microinsertion, with 66% of the total being

of this size. As with microdeletions, the distribution was somewhat skewed, with some

1,571 microinsertions (80%) being between 1 and 3 bp in length. Of the 1,660

microinsertions located within gene coding regions, 1,556 (94%) were of a length that was

not a multiple of three, and which would therefore be expected to alter the reading frame.

Comparable results have been reported from extensive surveys of microinsertion/

microdeletion polymorphisms in the human genome [Mills et al., 2006; Tan and Li, 2006].

Ball et al. [2005] found that many of the lesions of >1 bp were potentially explicable in

terms of slippage mutagenesis, and involved the addition or removal of one copy of a

Cooper et al. Page 8

Hum Mutat. Author manuscript; available in PMC 2012 October 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



mono-, di-, or tri-nucleotide repeat. Various sequence motifs were found to be over-

represented in the vicinity of both microinsertions and microdeletions, including the

heptanucleotide CCCCCTG that shares homology with the complement of the 8-bp human

minisatellite conserved sequence/χ-like element (GCWGGWGG) [Ball et al., 2005]. The

previously reported indel hotspot GTAAGT [Chuzhanova et al., 2003a] and its complement

ACTTAC were also found to be overrepresented in the vicinity of both microinsertions and

microdeletions, thereby providing a first example of a mutational hotspot that is common to

different types of gene lesion. Other motifs overrepresented in the vicinity of microdeletions

and microinsertions included DNA polymerase pause sites and topoisomerase cleavage sites

[Ball et al., 2005]. Analysis of DNA sequence complexity also demonstrated that a

combination of slipped mispairing mediated by direct repeats, and secondary structure

formation promoted by symmetric elements, can account for the majority of documented

microdeletions and microinsertions [Ball et al., 2005]. Thus, microinsertions and

microdeletions exhibit strong similarities in terms of the characteristics of their flanking

DNA sequences, implying that they are generated by very similar underlying mechanisms.

Once again, replication slippage is the key to understanding the genesis of microdeletions

and microinsertions. Replication slippage involves DNA polymerase pausing at a direct

repeat sequence, enzyme dissociation, reannealing of the polymerase to a second direct

repeat copy in the vicinity to generate a misaligned intermediate, followed by resumption of

DNA replication [Kunkel, 2004; Garcia-Diaz et al., 2006]. In vitro studies have shown that

the fidelity of DNA replication is strongly dependent upon both the local DNA sequence

environment and the type of DNA polymerase involved [Kunkel, 2004; Loeb and Monat,

2008]. Further, different DNA polymerases appear to be characterized by subtly different

types of misalignment mutagenesis during DNA replication/repair, giving rise to different

types of lesion [Eckert et al., 2002; Wolfle et al., 2003; Tippin et al., 2004; Zhang and

Dianov, 2005; Arana et al., 2007; Lyons and O’Brien, 2010]. The considerable explanatory

value of these studies for slippage-mediated mutagenesis in vivo is evidenced by the

concordance noted between in vitro and in vivo mutational spectra [Muniappan and Thilly,

2002]. Further, it has long been recognized that mononucleotide tracts are hotspots for

microinsertions and microdeletions causing human genetic disease [Kondrashov and

Rogozin, 2004; Truong et al., 2010; Ivanov et al., 2011] while Ball et al. [2005] noted that

oligonucleotides of 5–7 bp that were overrepresented in the vicinity of both microdeletions

and microinsertions frequently contain A, C, or G mononucleotide tracts of 4–7 bp.

In his study of inherited mutations in a total of 20 human genes, Kondrashov [2003]

reported a strong correlation between the rates of microdeletion and microinsertion. Such a

correlation was also evident for the much larger number of genes examined by Ball et al.

[2005]. The observation that the propensity of a given gene to undergo microdeletion is

related to its propensity to undergo microinsertion could be a consequence of the presence of

certain DNA sequences that are prone to both types of lesion [Truong et al., 2010].

Consistent with this view, Ball et al. [2005] reported strong similarities between

microinsertions and microdeletions in terms of the sequence characteristics and repetitivity

of the flanking DNA sequence, the overrepresentation of motifs known to play a role in

recombination, mutation, cleavage, and rearrangement, and the likely involvement of

various types of repetitive sequence element in the mutational mechanism. Similar

conclusions have been drawn from studies of microdeletions and microinsertions identified

in an evolutionary context [Zhang and Gerstein, 2003; Taylor et al., 2004; Messer and

Arndt, 2007; Tanay and Siggia, 2008; Kvikstad et al., 2009; Sjödin et al., 2010]. Taken

together, these results are consistent with the view that microdeletions and microinsertions

are generated by very similar sequence-directed molecular mechanisms. The observation,

noted above, that a GTAAGT hotspot of indel formation [Chuzhanova et al., 2003a] is

significantly overrepresented in the vicinity of both microdeletions and microinsertions [Ball
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et al., 2005; Ivanov et al., 2011] suggests that some sequence motifs may represent hotspots

for different types of mutation. Any such model, perhaps involving the repeat-mediated

formation and resolution of secondary structure intermediates, would be most satisfying in

that it could serve to mechanistically unify the various different types of

microrearrangement described in human genes.

Structural Variation Including Copy Number Variants

“The distribution of break points in human chromosomes….is non-random with

seemingly preferential breakages in negative band areas in terms of Giemsa

banding. The determination of ‘hot-spots’ for breakage in the human genome may

help us in….investigating the cause or causes which give rise to some of these

abnormalities”.

C.W. Yu, D.S. Borgaonkar & D.R. Bolling (1978) Hum. Hered.28:210-225.

Structural variation of the human genome is characterized by a variety of different types of

gross rearrangement including deletions, duplications, insertions (termed Copy Number

Variants, CNVs) as well as inversions and translocations. Four major mutational

mechanisms account for these structural variants (SVs): nonallelic homologous

recombination, non-homologous end joining, replication-based mechanisms and L1-

retrotransposition (Fig. 1) [Conrad et al., 2010; Kidd et al., 2010; Mills et al., 2011]. In what

follows, we shall describe some well-studied examples of structural variation in the human

genome, with an emphasis on disease-associated SVs as well as gross chromosomal

aberrations such as translocations and isochromosomes that illustrate the sequence-directed

nature of the above mentioned mutational mechanisms.

Nonallelic Homologous Recombination (NAHR)

Sequence analysis of the breakpoints of 1,054 SVs identified in the genomes of 17 healthy

human individuals of different geographical origins indicated that NAHR accounts for

22.5% of insertions and deletions, as well as 69.1% of the inversions identified [Kidd et al.,

2010; Fig. 2]. The majority of SVs identified in this study are likely to represent more or less

neutral polymorphisms but at least 1% are estimated to be disease-associated. Interestingly,

some of the SVs that segregate as polymorphisms within the normal population predispose

to further structural changes such as disease-associated deletions and duplications

[Antonacci et al., 2010; Ciccone et al., 2006; Giglio et al., 2002; Gimelli et al., 2003; Hobart

et al., 2010; Osborne et al., 2001; Visser et al., 2005]. Thus, for example, heterozygosity for

a ~970 kb inversion polymorphism of the MAPT locus [MIM# 157140] at 17q21.3

predisposes to the NAHR events that underlie the 17q21.31 microdeletion syndrome [MIM#

610443; Antonacci et al., 2009; Koolen et al., 2006; Koolen et al., 2008; Rao et al., 2010;

Shaw-Smith et al., 2006]. The most likely explanation for this phenomenon is that inversion

heterozygosity perturbs the pairing of homologous chromosomes during meiosis, which then

promotes interchromosomal NAHR between the inversion-flanking low copy repeats

(LCRs) thereby giving rise to the 17q21.3 microdeletion.

NAHR-mediated SVs are not randomly distributed across the human genome but rather are

frequently located within complex regions that are enriched with segmental duplications.

NAHR between segmental duplications not only causes submicroscopic CNVs giving rise to

microdeletion and microduplication syndromes [reviewed by Guo et al., 2008; Stankiewicz

and Lupski, 2010], but is also involved in the generation of cytogenetically visible

chromosomal aberrations including isodicentric chromosomes and translocations. Thus, the

isodicentric Xp11 chromosomes responsible for Turner syndrome do not simply occur at

random but instead are mediated by NAHR between large inverted repeats comprising

repetitive gene clusters and segmental duplications, which themselves correspond to regions
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of CNV [Scott et al., 2010; Koumbaris et al., 2011]. Recent findings also indicate that

NAHR represents a major mechanism underlying unbalanced recurrent translocations,

which are mediated either by interchromosomal LCRs or segmental duplications located on

non-homologous chromosomes [Ou et al., 2011]. Regions containing highly redundant gene

duplications such as those involving the olfactory receptor multigene family, located in the

subtelomeric regions of human chromosomes, appear to be particularly prone to mediate

interchromosomal NAHR causing recurrent translocations. These findings serve to

emphasize the point that segmental duplications or LCRs are ubiquitous ‘soft spots’ in the

human genome that have the potential to mediate SVs and other chromosomal

rearrangements such as translocations. Clearly, not all LCRs are prone to undergo recurrent

NAHR events; as deduced from LCRs that are known to be involved in recurrent pathogenic

large deletions and duplications, the sequence requirements for LCRs to be frequently

involved in mediating genomic instability include >95% sequence identity, >10 kb of LCR

length and a distance between the LCRs of 50 kb-10 Mb [Bailey et al., 2002]. Based upon

these criteria, a map of potential ‘rearrangement hotspots’ in the human genome has been

defined and some of these predicted hotspots have already been found to be prone to

recurrent disease-associated SVs [Mefford et al., 2007, 2008; Sharp et al., 2006, 2008;

Shaw-Smith et al., 2006; Ou et al., 2011]. It should be kept in mind that LCRs are

themselves non-randomly distributed at the chromosomal level [Bailey and Eichler, 2006;

Marques-Bonet and Eichler, 2009].

Pathogenic NAHR and normal meiotic AHR (allelic homologous recombination) appear to

have similar sequence requirements, as suggested by the spatial coincidence of AHR and

meiotic NAHR hotspots [Lindsay et al., 2006; De Raedt et al., 2006]. This view is supported

by the observation that the 13-bp sequence motif CCNCCNTNNCCNC, located within 40%

of AHR hotspots, is also present in the NAHR hotspots that mediate CNVs [Myers et al.,

2008]. PRDM9, a meiosis-specific protein which contains zinc finger arrays, binds to this

motif and targets the initiation of recombination to specific locations (hotspots) in the

genome [Baudat et al., 2010; Berg et al., 2010; Paranov et al., 2010]. Genetic variation at the

PRDM9 locus has been shown to exert a powerful effect on recombination hotspot activity

in sperm. Further, subtle changes within the zinc finger array serve to create hotspot-non-

activating or -enhancing variants, suggesting that PRDM9 is a major regulator of AHR

hotspot activity in the human genome [Berg et al., 2010]. Importantly, genetic variation at

the PRDM9 locus [MIM# 609760] also influences NAHR activity as is evident in the

context of the Charcot-Marie-Tooth type 1A-repeat (CMT1A-REP)-mediated duplications

and deletions at 17p11.2 [MIM# 118220]; in the sperm of healthy donors homozygous for

the A allele of PRDM9, de novo rearrangements between the CMT1A-REPs were observed

>20-fold more frequently than in individuals homozygous for non-A alleles [Berg et al.,

2010]. Taken together, these findings indicate that the locations of meiotic NAHR hotspots

are not only determined by highly homologous target sequences but also by specific DNA

sequence motifs and the proteins (such as PRDM9) which bind to them so as to perform

their functions as trans-regulators of meiotic recombination.

Disease-associated NAHR also occurs in mitotic cells [reviewed by Moynahan and Jasin,

2010]. Although both meiotic NAHR and mitotic NAHR may be mediated by the same pairs

of LCRs [Carvalho and Lupski, 2008; Messiaen et al., 2011], they are very likely to differ in

terms of the underlying determinants for DSB formation, since SPO11 and other

recombination initiating factors are expressed exclusively in meiotic cells [Shannon et al.,

1999; Hayashi et al., 2005]. This is consistent with the observation that mitotic NAHR

events causing large deletions of the NF1 gene region do not cluster in highly localized

hotspots that are limited to a few hundred base-pairs, in contrast to the majority of NF1

deletions which are caused by meiotic NAHR [De Raedt et al., 2006; Roehl et al., 2010].

The observed properties of type-1 NF1 deletions are largely consistent with the finding that
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certain NAHR hotspots predominate during meiosis and are found only rarely (or not at all)

during mitosis [Messiaen et al., 2011; Turner et al., 2008]. Breakpoint regions of structural

variants generated by meiotic NAHR events have been previously found to be (i) biased

toward GC-rich regions and (ii) to manifest higher DNA helix stability and lower DNA

flexibility as compared with rearrangements caused by NHEJ [Lam et al., 2010; Lopez-

Correa et al., 2001; Visser et al., 2005]. Interestingly, both the DNA stability and GC

content have been found to be significantly higher in the PRS1 and PRS2 meiotic NAHR

hotspots causing type-1 NF1 deletions than in the breakpoint regions of the mitotic type-2

NF1 deletions [Roehl et al., 2010]. However, in passing, we should point out that mitotic

NAHR-mediated deletions also appear to be sequence-directed since short repeats capable of

forming non-B DNA structures have been found to be over-represented within the

breakpoint regions of mitotic type-2 NF1 deletions [Roehl et al., 2010].

Non-Homologous End Joining (NHEJ)

The defining characteristic of NHEJ (Fig. 1) is the ligation of DSB ends without the

requirement for extensive homology, in stark contrast to the mechanism of homologous

recombination. The presence of terminal microhomologies (typically 1-3 bp) facilitates

canonical NHEJ (C-NHEJ) but this appears not to be an absolute requirement for it to occur.

C-NHEJ of ends from simultaneous DSBs accounts for a diverse range of genomic

rearrangements [Chen et al., 2010; Kidd et al., 2010].

Increasing evidence has emerged to support the view that when the core C-NHEJ factors

(i.e. Ku and/or DNA ligase IV-XRCC4) are absent, DSB ends can still be repaired by NHEJ.

This latter pathway, originally termed microhomology-mediated end joining (MMEJ) is now

commonly known as alternative NHEJ (A-NHEJ) [Boboila et al., 2010; Fattah et al., 2010;

Helmink et al., 2011; Lee-Theilen et al., 2011; Simsek and Jasin, 2010; Yan et al., 2007;

Zhang and Jasin, 2011]. The process of A-NHEJ is presumed to involve a 5′ to 3′ end

resection of DNA DSB(s), thereby exposing microhomologies between the resulting two 3′
single-strand DNA tails; subsequent annealing at the region of microhomology followed by

3′-flap removal and gap filling then gives rise to deletions or translocations [Lee-Theilen et

al., 2011; Zhang and Jasin, 2011]. As compared with C-NHEJ, A-NHEJ is inherently more

prone to generate large genomic rearrangements, particularly translocations [Boboila et al.,

2010; Fan et al., 2010; Helmink et al., 2011; Simsek and Jasin, 2010; Yan et al., 2007].

Approximately 30-50% of all structural variants in the human genome have originated

through microhomology–mediated NHEJ events [Conrad et al., 2010; Kidd et al., 2010].

Although some NHEJ events will have resulted from the repair of DSBs that originated

quasi-randomly, there are also many well documented cases in which the location of the

NHEJ-initiating DSBs appears to be highly dependent upon the local DNA sequence

environment. The role of the local DNA sequence context in generating NHEJ-mediated

germline mutations is exemplified by the constitutional t(11;22), the most common type of

recurrent non-Robertsonian translocation in humans. The breakpoint sequences of both

chromosomes are characterized by several hundred base-pairs of inverted AT-rich repeats;

similar sequences have also been identified at the breakpoints of other non-recurrent

translocations [Kehrer-Sawatzki et al., 1997; Kurahashi et al., 2010; Rhodes et al., 1997].

Evidently, NHEJ of two ends from different DSBs requires such ends to be physically

located in the immediate vicinity. In mammalian cells, high-precision tracking of tagged

broken chromosome ends indicates that these ends can only partially separate and,

consequently, DSBs preferentially undergo translocations with those chromosomes with

whom they share nuclear space [Soutoglou et al., 2007; Wijchers and de Laat, 2011]. This

provides strong support for the ‘contact-first’ hypothesis, which proposes that interactions

between different DSBs can only take place if they are colocalized at the time of DNA

damage [Nikiforova et al., 2000]. Consistent with this hypothesis, close spatial proximity

Cooper et al. Page 12

Hum Mutat. Author manuscript; available in PMC 2012 October 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



has been observed between several frequent translocation partners [reviewed by Meaburn et

al., 2007; Wijchers and de Laat, 2011].

A meta-analysis of germ-line and somatic DNA breakpoint junction sequences derived from

a total of 219 different rearrangements (most of which are likely to be NHEJ events)

underlying human inherited disease and cancer allowed the first methodical examination of

the local DNA sequence environment of translocation and deletion breakpoints across a

wide variety of different gene loci [Abeysinghe et al., 2003; Chuzhanova et al., 2003b]. A

number of recombination-predisposing motifs and non-B DNA-forming sequences were

found to be overrepresented at these breakpoints as compared with randomly selected

control sequences, indicative of the sequence-directed nature of many NHEJ mediated

rearrangements.

It has been observed that at least one of the breakpoints of NHEJ-mediated rearrangements

is often located within repetitive elements (such as LTRs, LINE or Alu elements) and

sequence motifs capable of causing DSBs have been frequently identified in the vicinity of

the breakpoints of these NHEJ-mediated rearrangemetns [Inoue et al., 2002; Kehrer-

Sawatzki et al., 2005, 2008; Nobile et al., 2002; Oshima et al., 2009; Shaw and Lupski,

2005; Stankiewicz et al., 2003; Toffolatti et al., 2002; Vissers et al., 2009; Yatsenko et al.,

2009]. Importantly, the breakpoints of many non-recurrent CNVs mediated by NHEJ map to

LCRs [Carvalho et al., 2009; Stankiewicz et al., 2003; Kehrer-Sawatzki et al., 2005, 2008;

Shaw and Lupski, 2005; Zhang et al., 2010] suggesting that LCRs can promote genomic

instability by inducing certain chromatin secondary structures thereby alleviating NHEJ-

mediated rearrangement.

Replication-based Mechanisms

Replication slippage or template switching during replication account for both small and

large deletions and duplications with terminal microhomologies (Fig. 1). Recently, relevant

replication-based models including serial replication slippage (SRS) [Chen et al., 2005a;

Chen et al., 2005b; Chen et al., 2005c], fork stalling and template switching (FoSTes) [Lee

et al., 2007] and microhomology-mediated break-induced replication (MMBIR) [Hastings et

al., 2009], which were collectively termed microhomology-mediated replication-dependent

recombination (MMRDR) by Chen et al. [2010], have been used to explain the generation of

a diverse range of complex genomic rearrangements [Bauters et al., 2008; Carvalho et al.,

2009; Chauvin et al., 2009; Collie et al., 2010; Koumbaris et al., 2011; Sheen et al., 2007;

Vissers et al., 2009; Zhang et al., 2009, 2010].

For example, DNA replication stalling-induced chromosome breakage has turned out to be

an important mechanism causing deletions at chromosomal ends. Different types of

telomeric deletions have been described (Fig. 3) [Kulikowski et al., 2010]: type A terminal

deletions are formed by chromosomal ends that are stabilized by the capture of a telomere

from another source, whereas type B deletions are actually interstitial deletions towards the

chromosomal ends. By contrast, type C deletions describe the process by which

chromosomal ends are stabilized by telomere healing, namely the telomerase-dependent de

novo addition of telomeres at non-telomeric sites. Terminal deletions associated with

inverted duplications [Zuffardi et al., 2009] can be classified as either type A or type C.

Recently, Hannes et al. [2010] succeeded in cloning the breakpoints of nine chromosome 4p

terminal deletions. All nine cases were shown to be type C terminal deletions.

Bioinformatics analysis of the breakpoint-flanking regions involved in these nine cases,

together with 12 previously fully characterized type C terminal deletions, led to the

realization that there is an enrichment in secondary structure-forming sequences and

replication stalling site motifs in these regions as compared with a randomly selected

sequence dataset [Hannes et al., 2010].

Cooper et al. Page 13

Hum Mutat. Author manuscript; available in PMC 2012 October 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Certain sequence features, such as microsatellites and transposon-rich regions, can serve to

induce replication stalling, thereby acting as potential sources of genome instability [e.g.

Cha and Kleckner, 2002; Pelletier et al., 2003]. On this basis, Koszul and colleagues [2004]

proposed a two-step mechanism to account for the generation of large segmental

duplications: “First, a replication fork pauses and collapses generating a chromosome

breakage. Second, the double-strand break can be processed into a new replication fork

either intra- or inter-molecularly by a break-induced replication-like mechanism that does

not necessarily need a long sequence homology”. It was this ‘microhomology-dependent

BIR’ model (Fig. 1) that was subsequently deployed to explain disease-causing copy number

mutations. In MMBIR, replication ends with the engagement of a misaligned template

instead of reannealing to its original template; the synthesis of the second strand then

follows the synthesis of the first [reviewed in Chen et al., 2010]. In practice, mutations due

to SRS/FoSTes are often indistinguishable from those due to MMBIR. Indeed, the two terms

have sometimes been used interchangeably [e.g. Choi et al., 2011; Zhang et al., 2009].

All the replication-based models recently proposed to account for the formation of structural

variants and/or mutations in the human genome stress the importance of genomic

architectural elements such as palindromic DNA, stem-loop structures, repeats etc, features

which may facilitate the initial stalling of the replication fork [Gu et al., 2008; Chen et al.,

2010].

Process and effect of retrotransposition in relation to local sequence context and mutation
L1 Retrotransposition

L1 elements comprise ~17% of the human reference genome sequence [Lander et al., 2001].

Retrotranspositionally competent L1 elements are typically ~6.0 kb in length and comprise a

5′-untranslated region (UTR), two non-overlapping open reading frames (ORF1 and ORF2),

a short 3′-UTR, and a poly(A) tail. Whereas ORF1 encodes an RNA-binding protein, ORF2

encodes a protein with endonuclease (L1 EN) and reverse transcriptase (L1 RT) activities.

L1 retrotransposition is thought to occur by target site-primed reverse transcription; briefly,

it would appear that the L1 EN cleaves genomic DNA at a degenerate consensus target

sequence (3′-A/TTTT-5′ and variants thereof), thereby freeing up a 3′-OH group that then

serves as a primer for the reverse transcription of L1 RNA by L1 RT. The nascent L1 cDNA

then recombines with genomic DNA, generating in the process the characteristic hallmarks

of L1 retrotransposition such as 5′ truncations, a 3′ poly(A) tail and target site duplications

(TSDs) of variable length [Cordaux and Batzer, 2009; Kazazian, 2004]. L1

retrotransposition requires a precise interplay between ORF1p, ORF2p, and L1 RNA

[Doucet et al., 2010].

Of the >500,000 L1 copies in the reference human genome, only 80–100 are believed to be

capable of active retrotransposition [Brouha et al., 2003]. Recent studies have however

revealed that (i) the actual number of highly active or “hot” L1s in the human population is

much higher than that identified in the reference human genome [Beck et al., 2010], and (ii)

L1 retrotransposition has played a more important role in generating structural variation in

the human genome than previously appreciated [Ewing and Kazazian, 2010; Huang et al.,

2010; Iskow et al., 2010; Xing et al., 2009]. The rate of L1 retrotransposition in humans has

been estimated by one study to be one insertion in every 108 births [Huang et al., 2010] and

between 1/95 and 1/270 births by another [Ewing and Kazazian, 2010]. The number of

dimorphic L1 elements in the human population with allele frequencies >0.05 is estimated to

be between 3,000 and 10,000 [Ewing and Kazazian, 2010], far exceeding the ~400 human

L1 retrotransposon insertion polymorphisms (RIPs) registered in dbRIP [Wang et al.,

2006a].
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L1 retrotransposition can affect the primary structure of the human genome in a variety of

ways other than by simple self-insertion. For example, L1 elements are also able to mobilize

non-autonomous sequences in trans, including repetitive Alu sequences, SVA (short

interspersed nucleotide elements-R, variable-number-of-tandem-repeats, and Alu) elements,

and processed pseudogenes [Cordaux and Batzer, 2009; Kazazian, 2004; Konkel and Batzer,

2010] (Fig. 1). In addition, L1 retrotransposition can give rise large genomic deletions

[Callinan et al., 2005; Han et al., 2005; Xing et al., 2009]. L1 elements can also undergo

retrotransposition in the germline [Ostertag et al., 2002], during early embryonic

development [Garcia-Perez et al., 2007; Garcia-Perez et al., 2010; Kano et al., 2009; van den

Hurk et al., 2007], in certain somatic cells [Coufal et al., 2009; Muotri et al., 2005] and in

the human lung cancer genome [Iskow et al., 2010].

L1 retrotransposition can also give rise to human inherited disease. Since the first report of

Kazazian et al. [1988], L1-mediated simple L1, Alu and SVA insertions have been

increasingly reported to cause inherited disease [see Chen et al., 2005d for publications prior

to 2005 and subsequently, Apoil et al., 2007; Bochukova et al., 2009; Bouchet et al., 2007;

Chen et al., 2008; Gallus et al., 2010; Musova et al., 2006]. Following our own retrospective

identification of pathogenic large genomic deletions caused by LI-mediated Alu insertions

[Chen et al., 2005d], pathogenic large genomic deletions caused by L1-mediated L1 [Miné

et al., 2007; Morisada et al., 2010], a number of Alu [Okubo et al., 2007; Schollen et al.,

2007] and SVA [Takasu et al., 2007] insertions have been reported in prospective screens

while the first cases of L1-driven pseudogene insertion causing human genetic disease have

also been reported [Awano et al., 2010; Tabata et al., 2008].

The non-random insertion of L1-mediated retrotranspositional elements into the human

genome can be considered at two distinct levels. First, consistent with the known target site

specificity for L1 EN, the study of pre-insertion sites of de novo L1 insertions in cultured

human cancer cells revealed an AT-rich bias in the 50 bp flanking the insertion sites [Gasior

et al., 2007]. The genome-wide profiling of human L1(Ta) retrotransposons has also

revealed a tendency for L1(Ta)s to accumulate within AT-rich regions [Huang et al., 2010].

L1(Ta) (transcribed L1, subset a) is the youngest L1 family that is currently capable of

active retrotransposition, and hence the L1 family that is largely responsible for generating

L1 insertion (presence/absence) polymorphisms in the human genome. In addition, the

currently reported pathogenic L1-mediated events have almost invariably integrated at L1

EN consensus target sites. Second, in the abovementioned study of pre-insertion sites of de

novo L1 insertion in cultured human cancer cells, a statistically significant cluster of such

insertions was localized in the vicinity of the c-myc gene (MYC; MIM# 190080). This

finding suggested that in addition to the local sequence determinants (i.e. L1 EN target

sites), other features of the flanking genomic region may also influence the insertion

preference of L1-mediated insertions [Gasior et al., 2007]. Apparent insertion clusters have

also been observed in the context of pathogenic L1-mediated events. Thus, three

independent Alu insertions have been found to be integrated into a 104 bp region of the

FGFR2 gene [MIM# 176943; Bochukova et al., 2009; Oldridge et al., 1999] while two

independent L1 insertions have been reported to have inserted into exon 44 of the dystrophin

gene (DMD; MIM# 300377) within an 89 bp region [Musova et al., 2006; Narita et al.,

1993].

The above notwithstanding, the most striking finding pertinent to the non-random nature of

L1 retrotranspositional insertion is that independent L1 retrotransposition elements can

integrate at precisely the same chromosomal sites [Chen et al., 2005d]. Thus, an L1 element

and an Alu sequence are known to have become inserted at exactly the same location in the

APC gene [MIM# 611731] in two unrelated individuals [Halling et al., 1999; Miki et al.,

1992]; whilst the L1 element was a somatic insertion, the Alu sequence was a germline
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insertion. In addition, two markedly different Alu Ya5a2 elements have become integrated at

precisely the same site in the F9 gene [MIM# 300746] causing severe hemophilia B [Vidaud

et al., 1993; Wulff et al., 2000]. Finally, an SVA element and an Alu sequence have inserted

at the same site within the coding region of the BTK gene [MIM# 300300; Conley et al.,

2005]. These observations are consistent with some genomic locations being exquisitely

prone to L1 retrotransposition [Chen et al., 2005d].

Alu-mediated Recombination (AMR)

A canonical Alu element is about 300 base-pairs long, comprising two related GC-rich

monomers separated by an A-rich linker region and ending with a poly(A) tail [Cordaux and

Batzer, 2009]. Owing to the high frequency (>1 million copies) of complete or partial Alu

elements in the human reference genome (~10.6% of the genome sequence) [Lander et al.,

2001], they serve as a huge reservoir of sequences for homology-based recombination.

AMR between nonallelic sequences is also a frequent cause of human genetic disease as

evidenced by the many recently described examples [e.g. Abo-Dalo et al., 2010; Champion

et al., 2010; Cozar et al., 2011; Gentsch et al., 2010; Goldmann et al., 2010; Franke et al.,

2009; Resta et al., 2010; Shlien et al., 2010; Tuohy et al., 2010; Yang et al., 2010; Zhang et

al., 2010].

The importance of Alu elements in the context of mediating genomic deletions is unlikely

owing simply to their sheer abundance in the human genome. In other words, Alu elements

themselves must possess inherent recombination-predisposing properties [Rudiger et al.,

1995]. A survey of a small subset (n = 36) of Alu-mediated rearrangements in several human

genes identified a 26 bp core sequence that is often located at or close to the sites of

recombination [Rudiger et al., 1995]. Importantly, this core sequence contains the

pentanucleotide motif CCAGC, which represents a truncated version of the χ recombination

hotspot (consensus sequence: 5′-GCTGGTGG-3′ or its complement, 5′-CCACCAGC)

[Kenter and Birshtein, 1981; Smith, 1983]. This is likely to have had important implications

with respect to many of the subsequently found AMR-mediated pathogenic deletions. In the

absence of any meta-analysis or systematic review, we shall mention only two studies, to

which some of us contributed. The first study reported a gross HFE [MIM# 613609]

deletion consistent with AMR; the 17 bp crossover region contained two sequence motifs,

CCACCA and CCAGC, both truncated versions of the χ recombination hotspot [Le Gac et

al., 2008]. It should be noted that CCACCA has also been noted to be a mutational ‘super-

hotspot’ common to microdeletions, microinsertions, and indels [Ball et al., 2005]. The

second study reported, among others, a 2,769 bp SERPINC1 [MIM# 107300] deletion

mediated by Alu elements. The 13 bp crossover region (i.e. GCCACCACGCCCG) was also

found to contain the CCACCA mutational ‘super-hotspot’ [Picard et al., 2010]. In passing, it

should also be appreciated that Alu elements are particularly prone to form non-B DNA

structures (e.g. slipped structures) owing to their containing two related GC-rich monomers

(Fig. 4).

Microsatellite Mutation

“The distribution of interspersed repeats close to and even within genes has brought

the mechanism of their mutation into the arena of human molecular genetics. These

sequences have a unique form of mutation: variation in copy number. The rate of

the mutation is related to the copy number, and therefore, the mutability of the

product of a change in copy number is different from that of its predecessor. For

this reason, we have termed this mechanism dynamic mutation.”

R.I. Richards & G.R. Sutherland (1992) Cell 70:709-712.
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Microsatellites, defined as the repetition of short (1-6 bp) DNA tandem motifs, display

somewhat higher (yet individually distinct) mutation rates than the average nucleotide

substitution rate genome-wide. Microsatellites comprise ~3% of the human genome [Lander

et al., 2001] and the proportion of mononucleotide and dinucleotide repeat tracts that display

length polymorphism in the human population (involving the generation of multiple alleles)

has been found to increase almost exponentially above a length threshold of ~10 nt [Kelkar

et al., 2010]. In similar vein, analyses of length polymorphisms of trinucleotide sequences in

several human transcriptomes, assessed from the coding portions of RefSeq genes annotated

in the human reference genome, have revealed the existence of multiple length difference

alleles above ~25 bp, as opposed to essentially only two alleles for shorter (<~16 bp) tracts

[Molla et al., 2009]. With an estimated average mutation rate of 10−5, microsatellites

accumulate mutations at a rate three orders of magnitude higher than the average rate of

nucleotide substitutions genome-wide (2 × 10−8) [Molla et al., 2009].

In addition to length changes, single base changes within microsatellites also occur at higher

frequencies than the genome-wide average, not only within the microsatellite repeats but

also in the bases adjacent to the repeats [Siddle et al., 2011]. From the analysis of 1000

Genomes Project pilot data, variability genome-wide has been noted to be at its maximum

(accounting for 42.5% and 28%, respectively) at the dinucleotides (TG•CA) and (TA•TA)

[McIver et al., 2011], which are the most abundant microsatellites, and for which mutation

rates of up to 10−2 per locus per gamete per generation have been reported [Eckert and Hile,

2009]. Parent/child transmission studies have revealed that several of the most mutable loci

also contain compound sequences comprising two or more different types of microsatellite

repeat [Brinkmann et al., 1998; Dupuy et al., 2004; Eckert and Hile, 2009]. Thus, in addition

to tract length, microsatellite sequence composition also exerts a powerful influence on the

mutation rate. Systematic analyses, performed in human colorectal cancer cells defective in

post-replicative mismatch repair (MMR), have provided evidence for heteroduplex DNA at

(A•T)10, (G•C)10, (CA•TG)13 and (CA•TG)23 target microsatellites, with one strand

containing the initial number of repeats and the complementary strand containing either +1

or −1 repeats. Hence, the lack of correction by MMR of bulges and unpaired/mispaired

loops resulting from the misalignment of repetitive DNA during DNA synthesis appears to

be the most plausible mechanism for the observed increase in mutation rates at microsatellite

loci (Fig. 5A). Indeed, strand slippage of repetitive DNA motifs represents a significant

cause of mutation genome-wide, as mentioned previously. Mutation rates are consequential

to combined kinetic reactions involving strand slippage and their subsequent repair, both of

which display complex dependence upon DNA sequence. For example, in MLH1-deficient

(MMR) HCT116 cells, (A•T)10 repeats display 5- to 15-fold higher susceptibility to

replication errors than (G•C)10 repeats [Campregher et al., 2010], whereas the longer

(A•T)17 tract is 7- to 15-fold less prone to replication errors than (G•C)17 on the same

genetic background [Boyer et al., 2002]. Conversely, in isogenic cells complemented for

MMR function, (G•C)16 repeats (which exhibit a ~20- to 60-fold higher error rate during

replication than (G•C)10 tracts in the absence of MLH1), are repaired ~10 times more

efficiently than (A•T)10 repeats [Campregher et al., 2010]. However, repair efficiency varies

by more than two orders of magnitude between different genetic backgrounds [Boyer et al.,

2002]. In addition to sequence composition, the repair of slipped-out bases is dependent

upon their size and densities along the DNA chain, decreasing sharply as a function of both

loop size (1 – 30 bases) and local concentration [Panigrahi et al., 2010]. Finally, slippage-

dependent mutation rates at microsatellites are highly sensitive to their flanking sequence.

For example, (A•T)7 and (A•T)10 repeat tracts exhibit an ~3-fold higher mutation rate when

inserted within exon 10 of the ACVR2A gene [MIM# 102581] than within exon 3 of the

TGFBR2 gene [MIM# 190182] in MMR-deficient cells, whereas the converse is seen for

(A•T)13 tracts [Chung et al., 2008]. In addition, −2 bp deletions resulting from multiple

slippage events were only seen in the TGFBR2 exonic context. The DNA sequence features
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responsible for these complex patterns are largely unknown; however, both base stacking

interactions [Bacolla et al., 2008; Yang, 2008] and energy coupling reactions between bases

distally located within loops and/or the flanking duplex region [Völker et al., 2010] are

likely to be involved.

Some 30 human inherited diseases associated with neuromuscular and developmental

disorders have now been linked to the expansion of a microsatellite repeat within the

corresponding disease-associated gene [Brouwer et al., 2009; Lopez Castel et al., 2010;

Wells and Ashizawa, 2006]. Expansions generally originate from ‘at-risk’ (premutation)

alleles, from which the addition of up to thousands of repeat units, usually trinucleotides,

takes place within parent-child transmissions. The number of repeats in normal alleles is

highly variable between loci, but is generally limited to fewer than 40-45 repeats. Small

expansions into the premutation range (~29-35 repeats within coding regions and ~55-200

repeats in non-coding regions) and/or loss of interruptions within the repeat tract act to

destabilize the sequences, which then become increasingly prone to further expansion

[Brouwer et al., 2009; McMurray, 2010; Orr and Zoghbi, 2007], triggering an escalating

positive feed-back loop that creates pathogenic mutation alleles within a few generations

[Wells and Ashizawa, 2006]. As the lengths of the microsatellites increase, the severity of

the disease symptoms generally worsen and/or the age of onset decreases, a phenomenon

termed ‘genetic anticipation’.

The dramatic intergenerational instability observed in microsatellite expansion diseases

(MEDs) differs markedly from the population-based microsatellite instability described

above. Indeed, several molecular mechanisms in addition to slippage are believed to occur.

The microsatellite sequences involved in MEDs include the trinucleotide repeats

(GAA•TTC) in intron 1 of the frataxin gene [FXN; MIM# 606829] in Friedreich ataxia;

(CTG•CAG) in the 3′UTR of the DMPK gene [MIM# 605377] in myotonic dystrophy type 1

and the ataxin 8 opposite strand gene [ATXN8OS; MIM# 603680] in spinocerebellar ataxia

type 8 (SCA8), in the 5′UTR of the serine/threonine-protein phosphatase 2A 55 kDa

regulatory subunit B beta isoform gene [PPP2R2B; MIM# 604325] in SCA12 and within the

coding regions of 9 polyglutamine expansion diseases; (CGG•CCG) in the 5′UTR of the

fragile X mental retardation 1 gene [FMR1; MIM# 309550] in fragile X syndrome and

fragile X-associated ataxia and tremor, the 5′UTR of the AF4/FMR2 family member 2 gene

[AFF2; MIM# 300806] in FRAXE-associated mental retardation and the coding regions of 9

polyalanine expansion diseases; the tetranucleotide (CCTG•CAGG) in intron 1 of the

CCHC-type zinc finger, nucleic acid binding protein gene [CNBP; MIM# 116955] in

myotonic dystrophy type 2 and the pentanucleotide (ATTCT•AGAAT) in intron 9 of the

ataxin 10 gene [ATXN10; MIM# 611150] in SCA10 [Lopez Castel et al., 2010; McMurray,

2010; Messaed and Rouleau, 2009]. A tenth polyalanine expansion disorder associated with

the Zic family member 3 gene [ZIC3; MIM# 300265] and leading to X-linked heterotaxy

with VACTERL association has recently been described [Wessels et al., 2010]. Most of

these microsatellite sequences have been shown to be capable of adopting specific

secondary structures (non-B DNA), including hairpin-loops, three-(triplex) and four-

stranded (quadruplex) structures and left-handed Z-DNA [Lopez Castel et al., 2010; Mirkin,

2007; Renciuk et al., 2011; Wells and Ashizawa, 2006]. Below, we review some of the most

compelling evidence in support of a role for DNA secondary structures in either

microsatellite expansion and/or the process of pathogenesis.

Mechanisms Underlying Repeat Expansion

In fragile X syndrome, premutations expand to full mutation only upon maternal

transmission, whereas full mutations invariably contract to premutations upon paternal

transmission [Brouwer et al., 2009; Jin and Warren, 2000]. Expansion is believed to occur

early in oogenesis, a stage when primary oocytes remain quiescent (i.e. do not divide) for
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years. Work both in the mouse and in vitro supports the view that following DNA damage

(including oxidation-related DNA damage) within the (CGG•CCG) sequence, repair of the

damaged bases (a process which involves both base excision and mismatch repair) entails

the formation of stable hairpins on one DNA strand, which then direct DNA synthesis to the

complementary strand in order to incorporate the looped-out structures into de novo DNA

[Entezam et al., 2010; Lopez Castel et al., 2010; McMurray, 2010], resulting in expansion

(Fig. 5B). In contrast to this replication-independent mechanism of repeat expansion, in the

majority of the other MEDs in which large expansions also occur, similarly stable hairpins

are thought to form, mainly on the lagging strand during DNA replication, thereby blocking

DNA synthesis; further resolution of stalled replication forks and reinitiation of synthesis

could then lead to expansion [Mirkin, 2007] (Fig. 5C). For the smaller expansions seen in

polyglutamine diseases, slippage during DNA replication involving small hairpin-loops, as

in the case of microsatellite length polymorphism (see above) remains the most likely

mechanism [Lopez Castel et al., 2010; Mirkin, 2007; Wells and Ashizawa, 2006] (Fig. 5A).

In polyalanine expansion diseases, in which the coding trinucleotide tracts are short and

often interrupted, pedigree analyses support the occurrence of both fork stalling and

template switching, triggered by secondary structure formation (Fig. 5D), as well as unequal

crossing-over between two normal alleles [Arai et al., 2010; Cocquempot et al., 2009;

Messaed and Rouleau, 2009; Warren, 1997] (Fig. 5E).

Pathogenesis Resulting From Repeat Expansion

At the time the molecular basis of Friedreich ataxia [MIM# 229300] was first reported

[Campuzano et al., 1996], a substantial number of studies had already been performed on the

biophysical properties of the (GAA•TTC) sequence. Indeed, the asymmetric

purine•pyrimidine composition was known to enable the formation of three-stranded

structures [Wells et al., 1988]. In triplex DNA, the purine-rich strand of duplex DNA binds a

third strand through specific Hoogsteen hydrogen bonds, including A:A and G:G (purine-

rich third strand) and A:T and G:C+ (pyrimidine-rich third strand) pairs. Thus, mirror

symmetry within purine•pyrimidine sequences is required to yield stable triplex structures

[Frank-Kamenetskii and Mirkin, 1995]. As expected, long (GAA•TTC) tracts cloned in

plasmids were found to interact with each other and form stable intermolecular DNA

structures that were interpreted as triplexes (sticky DNA) [Sakamoto et al., 1999]. However,

their exceptionally high thermal stability, and the number of negative superhelical turns

remaining in plasmids after DNA structure formation, suggest that other conformations,

such as duplex-duplex interactions, are also feasible for long (GAA•TTC) repeats [Son et

al., 2006]. In Friedreich ataxia, the FXN locus is silenced [Al-Mahdawi et al., 2008]. Within

the FXN gene, local chromatin is characterized by hypoacetylation of histones H3 and H4

and methylation of histone H3 at Lys9 (H3K9), which are hallmarks of transcriptionally

inactive heterochromatin [Punga and Buhler, 2010]. However, heterochromatin does not

spread to the 5′ and 3′ sections of the gene and only transcriptional elongation (rather than

initiation) appears to be impaired in patient-derived lymphoblastoid cell lines. Removal of

H3K9 methylation marks is however ineffective in re-establishing transcriptional elongation

[Punga and Buhler, 2010], strongly supporting a model in which the expanded (GAA•TTC)

repeat itself or, more likely its folding into a secondary structure, imposes a direct block

upon the transcriptional apparatus [Punga and Buhler, 2010].

Expansion of the (CGG•CCG) repeat in the FMR1 gene also leads to gene silencing in

fragile X syndrome. A decrease in histone H3 and H4 acetylation is evident in pathological

full mutation alleles, accompanied by de novo methylation of the repeat tract and the

upstream CpG island in the promoter region [Jin and Warren, 2000]. Studies in intact

ovaries of fetuses and chorionic villus samples harbouring full-mutations [reviewed in Jin

and Warren, 2000] suggest that methylation is a dynamic process that takes place over an
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extended time period. However, the mechanisms by which expanded (CGG•CCG) repeats

induce methylation remain unclear. (CGG•CCG) repeats have been shown to fold into

hairpin-loops [Amrane and Mergny, 2006; Darlow and Leach, 1998], quadruplexes [Khateb

et al., 2004; Usdin and Woodford, 1995], left-handed Z-DNA [Renciuk et al., 2011], to

possess inherently high flexibility (bending) [Bacolla et al., 1997] and are predicted to

sustain stable ‘bubbles’ despite their high CG content [Alexandrov et al., 2011]. In vitro, the

ability of DNA methyltransferase 1 (DNMT1) to methylate (CGG•CCG) repeats increases

with increasing negative supercoiling [Bacolla et al., 2001]. Hence, it is possible that the

formation of alternative DNA structures and/or open (denatured) states favored by torsional

stress at long repeat tracts, might nucleate unscheduled de novo methylation in the FMR1

gene, leading to gene silencing.

Microsatellite Polymorphisms and Susceptibility to Disease

In additions to the MEDs described above, length polymorphism at specific microsatellites

within genes or their promoters has been associated with phenotypic trait variation and/or

susceptibility to disease [Bacolla et al., 2008; Gemayel et al., 2010]. For example, a highly

polymorphic (GT•CA)n repeat within the proximal SLC11A1 gene [MIM# 600266]

promoter regulates variation in allele expression [Bayele et al., 2007] by directly modulating

the recruitment of HIF-1α to the repeat sequence through its ability to interconvert from the

canonical right-handed B- to left-handed Z-DNA. In addition, surrogate stimuli of the innate

immune response (such as E. coli and S. typhimurium LPS, mannose- and phosphoinositide-

capped lipidoarabinomannans from M. bovis and M. smegmatis, respectively), stimulate

HIF-1α-dependent transactivation. Given the prominent role of HIF-1α in integrating innate

immune responses to infection and inflammation, this SLC11A1 repeat polymorphism is

believed to contribute to the heritable variation in susceptibility to infection and/or

inflammation that is observed within and between populations [Bayele et al., 2007].

A recent study on the relationships between matrix metalloproteinase genetic

polymorphisms and vulnerable plaques in a cerebrovascular disease patients cohort revealed

a significant association between prognosis and the length of a polymorphic (CA•TG)13-26

microsatellite upstream of the MMP9 [MIM# 120361] transcriptional start site [Fiotti et al.,

2011]. Specifically, carriers of ≥22 repeats displayed ~50% larger plaques and had a

significantly higher risk of persistent angina and ischemic stroke than non-carriers.

Consistent with this association, long (CA•TG)-containing alleles manifest increased MMP9

gene expression relative to shorter ones [Shimajiri et al., 1999].

Other examples on the involvement of polymorphic microsatellites in disease susceptibility

include a (CA•TG) dinucleotide repeat in the EGFR [MIM # 131550] 5′UTR and

gastrointestinal cancers [Baranovskaya et al., 2009], an (AAAT•ATTT) tetranucleotide

repeat in intron 27b of the NF1 gene and mental retardation [Védrine et al., 2011], an

(AAAG•CTTT) repeat in the estrogen receptor-related γ (ESRRG; MIM# 602969) 5′UTR

and breast cancer [Galindo et al., 2011], a (GGGCGG•CCGCCC) hexanucleotide repeat in

the arachidonate 5-lipoxygenase gene (ALOX5; MIM# 152390) and risk of carotid

atherosclerosis and myocardial infarction [Vikman et al., 2009], and a (CATT•AATG)

tetranucleotide repeat in the macrophage migration inhibitory factor gene (MIF; MIM#

153620) promoter and duodenal ulcer, rheumatoid arthritis and psoriasis [Shiroeda et al.,

2010].

Mutations in or Involving the Mitochondrial Genome

The mitochondrial genome differs from the nuclear genome in a variety of different

respects, most notably in terms of its high copy number (with the consequent potential for

heteroplasmy), matrilineal inheritance, a 10 to 17-fold higher mutation rate despite having
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its own DNA repair system [Liu and Demple, 2010], active exposure to reactive oxygen

species [Sedelnikova et al., 2010], a unique mode of DNA replication [Wanrooij and

Falkenberg, 2010] and the virtual lack of any recombination [Krishnan and Turnbull, 2010].

A wealth of knowledge has now accumulated with respect to the spectrum of germline

mitochondrial genome mutations that are responsible for heritable mitochondrial disease

[Taylor and Turnbull, 2005; Neiman and Taylor, 2009; Wallace, 2010]. Despite these basic

differences, the nature, location and frequency of the many different types of mutation in the

mitochondrial genome are also strongly influenced by the local DNA sequence environment.

Thus, as already reported for the nuclear genome, direct repeats have been frequently noted

at mitochondrial DNA (mtDNA) breakpoints in mtDNA deletion syndromes [Samuels et al.,

2004]. Indeed, mtDNA deletions may be separated into two types, type I (with a direct

repeat) and type II (with an imperfect or no direct repeat), with respect to the sequences

present at the two breakpoints. Sadikovic et al. [2010] have recently shown that, irrespective

of the presence or absence of a direct repeat, most mtDNA deletions are characterized by an

increase in sequence homology surrounding the breakpoints. This finding is consistent with

sequence homology being a key determinant of breakpoint location in mtDNA deletion

syndromes. In accord with an expectation that the longest direct repeats would be likely to

demarcate the most dramatic mtDNA deletion hotspots, the most common mtDNA deletion

(8470-13447), which is flanked by the longest (13 bp) direct repeat, has been noted in 37%

of mtDNA deletion syndrome patients [Sadikovic et al., 2010]. The presence of sequence

homologies at the deletion breakpoints is suggestive of a role for sequence homology not

only in the generation of the initial break but also in the subsequent repair of the mtDNA

damage. It has been suggested that direct repeats serve to promote breakpoint generation

when there is an error in mtDNA replication due either to the illegitimate alignment of direct

repeats [Holt et al., 2000] or to mtDNA damage [Krishnan et al., 2008]. Defects in mtDNA

replication, resulting from the inappropriate alignment of direct repeats or mis-annealing of

a single-stranded mtDNA molecule following the occurrence of a double strand break, both

require the presence of direct repeats (or at the very least some sequence homology).

The mitochondrial genome is however also involved in a very different type of mutation.

Numerous fragments of mitochondrial DNA are present throughout the human nuclear

genome, these fragments having migrated from the mitochondrial genome over evolutionary

time [Mishmar et al., 2004; Ricchetti et al., 2004]. An occasional consequence of these

migrations in extant genomes is the de novo disruption of nuclear genes resulting in a

heritable disease. Once again, the nature and location of these highly unusual lesions are

both strongly influenced by the local DNA sequence environment. Probably the best

characterized example of a pathogenic mitochondrial-nuclear DNA transfer is that described

by Turner et al. [2003] in a sporadic case of Pallister-Hall syndrome [MIM# 146510], a

condition usually inherited in an autosomal dominant fashion. The mutation involved a de

novo nucleic acid transfer from the mitochondrial to the nuclear genome, more specifically

the insertion of a 72-bp segment into exon 14 of the GLI3 gene [MIM# 165240] thereby

creating a premature stop codon. The insertion site in the GLI3 gene was flanked by inverted

repeat elements that could have facilitated hairpin-loop formation. Although no similarity of

the 72-bp mitochondrial (mt) DNA insert and the GLI3 gene was apparent, Turner et al.

[2003] noted significant sequence identity (~60%) of a 112-bp region (interrupted by a 31 bp

inverted repeat) 5′ to the GLI3 gene insertion site and an 81 bp region of the mitochondrial

genome immediately 5′ to the 72 bp insertion sequence. They therefore proposed that a

mtDNA fragment, initially >72 bp in length, had interfered with the resolution of a transient

GLI3 hairpin-loop structure, leading to the illegitimate insertion of a 72 bp mtDNA fragment

during DNA repair.

A further example of this type of insertion was recently described in an isolated case of

lissencephaly [MIM# 607432; Millar et al., 2010]: a de novo 130 bp mtDNA insertion into
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the 5′ untranslated region of the PAFAH1B1 gene [MIM# 601545], 7 bp upstream of the

translational initiation site. The inserted DNA sequence was found to exhibit perfect

homology to two non-contiguous regions of the mitochondrial genome [8,479 to 8,545 and

8,775 to 8,835, containing portions of two genes, MTATP8 (MIM# 516070) and ATP6

(MIM# 516060)]. Several other examples of mitochondrial-nuclear DNA transfer have been

reported as a cause of human inherited disease. However, in the context of the mutation

reported here, the mtDNA insertion polymorphism in intron 1 of the FOXO1A gene [MIM#

136533; Giampieri et al., 2004] is perhaps the most intriguing, since this 39 bp insertion was

derived from the mtDNA sequence between nucleotides 8,531 and 8,569 containing the

MTATP8 and MTATP6 genes. The mtDNA sequence inserted into the FOXO1A gene

therefore overlaps with the 130 bp PAFAH1B1 gene insert reported by Millar et al. [2010]

by 14 bases (8,532 to 8,545), raising the possibility of the preferential insertion (into the

nuclear genome) of certain mtDNA fragments.

Non-B DNA: A Unifying Hypothesis?

In the preceding sections, numerous examples of mutations have been provided in which the

formation of non-B DNA conformations (including cruciforms, looped-out bases,

quadruplex, triplex and Z-DNA structures) [Figs. 4 and 5] has been postulated to account for

intermediate (and transient) forms of DNA that generally serve to promote genetic

instability while giving rise specifically to frameshift mutations, repeat expansions and other

gross rearrangements. However, with the notable exception of heteroduplex formation by

microsatellite repeats in MMR-deficient human cells, direct evidence for such structures

having formed and being responsible for the reported mutations has been lacking, with most

conclusions being drawn from experiments performed either in vitro or using episomal

systems in bacteria and yeast [Mirkin, 2007]. Here, we review some of the work that has

directly addressed the extent to which non-B DNA structures can induce human genomic

rearrangements.

As already mentioned, the t(11;22)(q23;q11) is a recurrent balanced translocation and is the

most frequent of non-Robertsonian translocations, i.e. those that do not involve the large

heterochromatic regions of acrocentric chromosomes [Kurahashi et al., 2006]. Although

carriers of t(11;22) are generally healthy or only mildly affected, their offspring may come

to clinical attention as a consequence of severe mental retardation and morphologic

anomalies, associated with the inheritance of the supernumerary der(22) chromosome

(Emanuel syndrome, MIM# 609209) [Kurahashi et al., 2006]. Positional cloning permitted

the identification of junction fragments in ~40 cases studied, which revealed the clustering

of t(11;22) breakpoints at the centre of two large A+T-rich regions (~450 and ~590 bp,

respectively), one on each chromosome, and each capable of forming a near-perfect

cruciform due to the arrangement of the A+T-rich bases as an inverted repeat [Kurahashi

and Emanuel, 2001]. These sequences were termed ‘palindromic AT-rich regions’, or

PATRR11 and PATRR22. Most of the chromosomal breaks occurred within the predicted

single-stranded loops that separated the two arms of each cruciform, one on chromosome 11

and the other on chromosome 22. Interestingly, despite the A+T-richness, no significant

homology was apparent between PATRR11 and PATRR22, suggesting that t(11;22) events

resulted from double-stranded break repair by a non-homologous end-joining mechanism.

Further support for this model has come from the analysis of two independent cases of

neurofibromatosis type 1 (NF1) caused by a rare t(17;22)(q11;q11) translocation that

disrupted the NF1 gene on chromosome 17. Molecular cloning identified PATRR22 as the

region responsible for the rearrangements on chromosome 22, whereas an additional ~200

bp PATRR (PATRR17) within intron 31 of the NF1 gene was revealed to be the partner

breakage site on chromosome 17 [Kehrer-Sawatzki et al., 1997; Kurahashi et al., 2006].

Thus, a mechanism similar to t(11;22) was apparent in both cases. More recently, analyses
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of at least 12 individuals with both balanced and unbalanced t(8;22)(q24.13;q11.2)

translocations also showed the consistent involvement of PATRR22, as well as a predicted

129-145 bp long undisrupted cruciform structure at PATRR8 involving a sequence that is

~97% A+T [Sheridan et al., 2010]. Hence, in all these instances, a PATRR predicted to fold

into a stable cruciform and hosting chromosomal breaks at the single-stranded centre loop, is

believed to have been directly involved in the translocation process. Based on the PATRR-

dependent cruciform model, Sheridan et al. made the prediction that if both t(11;22) and

t(8;22) were recurrent events involving the common PATRR22 region, then t(8:11) might

also occur at some frequency, even although carriers of such a rearrangement had not been

reported in the literature [Sheridan et al., 2010]. The use of specific PCR primers on sperm

samples from healthy males confirmed the occurrence of just such an event, which took

place with an estimated frequency of <2.6 × 10−6. Additional sperm analyses aimed at

detecting the frequencies of t(11;22) and t(8;22) in healthy males also provided strong

support for the PATRR-dependent cruciform model for translocation. The t(11;22) was

found to occur at a frequency of ~10−5, whereas the frequency of t(8;22) ranged from ~10−6

to 10−5. Importantly, these frequencies were found to vary by more than two orders of

magnitude and correlated in a predictable manner with PATRR sequence length

polymorphisms (i.e. the existence of multiple alleles of variable length in the general

population). Specifically, homozygous males carrying long PATRRs with the inverted

symmetry required to extrude cruciform structures from regular duplex DNA were

associated with high translocation frequencies, whereas carriers of shorter alleles in which

such inverted symmetry was either reduced or lost, manifested fewer, if any, translocation

events [Kato et al., 2006; Sheridan et al., 2010]. These results therefore provide compelling

support for the hypothesis that cruciform structures generated by PATRR sequences are

responsible for recurrent non-Robertsonian translocations, by providing a substrate for the

generation of structure-directed double-strand breaks.

In addition to these composite cases that share common recombination hotspots, a number

of other studies have reported the occurrence of non-B DNA-forming sequences at

breakpoints of rearrangements associated with inherited disease. For example, a common

1.1 Mb deletion on chromosome 14q32 has been identified in two unrelated patients

diagnosed with uniparental disomy. An expanded (TGG)n repeat was identified on either

side of the deletion, suggesting that either non-allelic homologous recombination between

the two repeat tracts and/or the formation of non-B structures (such as quadruplexes)

adjacent to the repeats, could have induced strand breakage thereby triggering the deletion

[Bena et al., 2010]. Additional examples include the presence of triplex-, quadruplex- and

hairpin-forming sequences at sites of subtelomeric rearrangements associated with mental

retardation [Rooms et al., 2007] and other abnormalities (ear shape, scoliosis) [Bonaglia et

al., 2009], short cruciform structures flanking a large (~30 kb) heterozygous deletion that

removed the entire SPINK1 gene [MIM# 167790], associated with idiopathic pancreatitis

[Masson et al., 2007] and similar structures formed by inverted Alu repeats flanking

deletions in the OTC gene [MIM# 300461] leading to ornithine transcarbamylase deficiency

[Quental et al., 2009]. Comprehensive meta-analyses that have aimed to determine whether

non-B DNA-forming motifs are enriched at rearrangement breakpoints have also supported

the involvement of DNA secondary structural features in promoting genetic instability

[Bacolla et al., 2004; Wells, 2007; Bengesser et al., 2010; Quemener et al., 2010; Roehl et

al., 2010].

The abovementioned studies, together with those cited in previous sections, raise the

question as to how non-B DNA structures form on chromatin and how they induce genetic

instability. A large number of studies, performed in vitro and on model organisms, now

support the conclusion that non-B DNA conformations may arise through various

mechanisms, including the folding of single-stranded DNA regions during replication
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[Mirkin, 2007], transcription [Belotserkovskii et al., 2007; Lin et al., 2010; Tornaletti, 2009]

and repair [Wang and Vasquez, 2009], as well as through the generation of unrestrained

negative supercoiling [Napierala et al., 2005] either via such processes as transcription and

replication or upon nucleosome release. In the specific case of MEDs, a number of studies in

bacteria, yeast, mammalian cell culture and mouse models support the conclusion that the

extent of instability is intimately associated with replication fork dynamics, being generally

greater when microsatellite repeats are close to, or part of, a replication origin and/or when

more stable hairpins may form on the lagging, rather than on the leading, strands [Wells and

Ashizawa, 2006; Potaman et al., 2003; Liu et al. 2010; Nichol Edamura et al., 2005; Yang et

al., 2003; Tomé et al., 2011]. As already mentioned (Fig. 5), collapsed replication forks may

lead to aberrant repair, including recombination, at non-B DNA conformations leading to

instability. Hence, initiation of replication, recombination and mutagenesis probably

constitute the three corners of a triangle associated with a number of human pathological

conditions. On the other hand, while we believe that these processes are adequate to explain

the transient formation of short non-B DNA regions, they appear insufficient to account for

the formation of much larger structures, such as the cruciforms extruded from PATRR

elements. Hence, it is possible that other as yet unidentified mechanisms of secondary

structure formation also operate.

Regarding the mechanisms underlying non-B DNA induced genetic instability, studies in

bacteria, yeast and mouse are consistent with the recognition and cleavage of non-B DNA

structures by DNA repair enzyme pathways [Lopez Castel et al., 2010; Wang et al., 2008;

Wang et al., 2006b; Wang and Vasquez, 2004; Wang and Vasquez, 2009] and the local

induction of oxidative damage [Bacolla et al., 2011], followed by DSB repair via non-

homologous end-joining. Nevertheless, a number of questions still remain to be addressed.

For example, although the t(11;22), t(8;22) and t(8;11) translocations were detected in sperm

samples, as mentioned above, they were not observed in somatic cells, despite the

occurrence of such recombination events in episomal DNA systems in cell culture [Inagaki

et al., 2009]. Thus, it appears that during the course of meiosis, ‘natural’ chromatin might

offer a more favourable environment for the generation of non-B DNA conformations and

the ensuing genomic instability than mitotic cells.

Finally, the survey presented here raises the question as to the overall impact that non-

canonical DNA conformations might have in the context of the causation of human genetic

disease. Since the number of pathological conditions specifically listed above is necessarily

quite limited, it would at first sight appear as if the overall impact of non-B DNA structures

in human inherited disease could be rather modest. However, the specific examples

described above were for the most part confined to either repeat expansions or the close

proximity observed between the location of chromosomal strand breaks and the presence of

potential non-canonical DNA structures. A recent study using human osteosarcoma cell

lines has shown that non-canonical DNA conformations are capable of increasing the overall

spectrum of mutations (from single base substitutions to gross rearrangements) in a reporter

gene in cis by exposing those distant DNA sequences to oxidative damage [Bacolla et al.,

2011]. Further, in this study, the spectrum of single base substitutions was shown to be

indistinguishable from that induced by other conditions known to lead to an hyperoxidative

state (such as Werner deficiency and lung tumorigenesis), an observation which lends

support to a model whereby DNA bases become oxidized, followed by the transfer of their

oxidized state (‘hole migration’) to target neighbouring bases. If these observations are

eventually found to be relevant in the context of ‘natural’ chromatin during meiosis, then the

impact of non-canonical DNA conformations on human inherited disease, both with respect

to gross rearrangements and single base substitutions, would be even greater than the current

review already appears to suggest.
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Concluding Remarks

“The human genome [is] riddled with structural and operational deficiencies

ranging from the subtle to the egregious. These genetic defects register not only as

deleterious mutational departures from some hypothetical genomic ideal but as

universal architectural flaws in the standard genomes themselves”.

John C. Avise (2010) Proc. Natl. Acad. Sci.USA 107:8969-8976.

In the above discussion, we have seen that the most plausible explanations for many types of

inherited mutation almost invariably invoke either the immediate DNA sequence

environment or higher order (but nevertheless still comparatively local) features of genome

structure and sub-structure. Different types of mutation may vary dramatically in size (from

gross genomic rearrangements down to subtle gene lesions at the single base-pair level) but

what they have in common is that their nature, location and extent are often determined by

specific characteristics of the local DNA sequence environment. Thus, both the non-

randomness and sequence directedness of human gene mutation are reflections of the

influence of a number of different genomic features including base composition, epigenetic

modification and sequence repetitivity. In addition, the presence of certain DNA sequence

motifs may serve to induce mutations by initiating or modulating specific biological

processes (e.g. recombination or DNA repair) associated with that motif. Together, such

sequence features exert a profound influence over the likelihood of occurrence of specific

types of mutation at specific sites or in particular genomic locations.

It has also come to be realised that the mutability of a given gene/genomic region can be

mediated indirectly through a variety of non-standard secondary structures whose formation

is facilitated by the underlying DNA sequence. These unusual secondary structures may be

slipped mispairing intermediates or any one of a number of different non-B DNA structures

that can interfere with subsequent DNA replication and repair. It is also becoming apparent

that once formed, non-B DNA structures can serve to increase the mutation frequency in

generalized fashion, inducing large deletions and other gross genomic rearrangements as

well as subtle mutations such as single base-pair substitutions. For reasons that we do not

yet fully understand, the single nucleotide substitution rate often covaries with the frequency

of insertions, deletions and other rearrangements in the human genome [Longman-Jacobsen

et al., 2003; Yang et al., 2004; Marques-Bonet et al., 2007; Tian et al., 2008]. One

explanation could be that the single nucleotide substitution rate becomes elevated as a direct

consequence of the low fidelity of the error-prone DNA polymerases used to repair regions

that have been subject to structural alteration [De and Babu, 2010], an hypothesis not

inconsistent with the concept of transient hypermutability [Chen et al., 2009].

Since the human genome is a product of molecular evolution rather than some form of

‘intelligent design’, it is scarcely surprising to find that it contains “pervasive architectural

flaws” rendering it “the antithesis of thoughtful organic engineering” [Avise, 2010;

Chapman, 2010]. Indeed, over evolutionary time, and as an integral part of its development,

the extant human genome has acquired a variety of rearrangements including inversions,

insertions and duplications [Cooper, 1999] that, by virtue of their structure and/or

organization, now constitute mutation hotspots. This should not of course be held to imply

that a relatively immutable primeval genome once existed which then proceeded to decay to

an imperfect state over evolutionary time; genomes always were and always will be

mutable, and it could not be otherwise since mutability constitutes the major driving force

behind the evolution of all life forms. In yet another manifestation of the much vaunted

‘Goldilocks principle’, if somehow the genomes of our ancestors had been immutable, we

would not now be around to register it. There is however a price that extant organisms,

including humans, must pay for the inherent mutability of their genomes: genetic disease.
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There are numerous examples of benign (or relatively benign) genetic changes or

rearrangements that occurred during the evolutionary history of our species, and which gave

rise to particular types of genomic organization or even specific DNA sequences that are

now inherently hypermutable and hence responsible for the recurrence of pathological

mutations in extant humans [Laken et al., 1997; Huang et al., 2004; Mirkin, 2007; Bacolla et

al., 2008; Kim et al., 2008; Wolf et al., 2009; Witherspoon et al., 2009; Fu et al., 2010]. In

this review, we have come to appreciate, through perusal of some of the many published

studies of molecular defects identified in individuals afflicted by inherited disease, that the

structure of the human genome is inherently nemesistic in the sense that it contains buried

within it the seeds of its own destruction, or at the very least its own decay. Our task is to

come to understand the ground rules that characterize the different mechanisms of

mutagenesis in order to apply this knowledge in the context not only of the analysis and

diagnosis of genetic disease, but also eventually perhaps, in the cause of its therapeutic

correction.
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Figure 1.

Mutational mechanisms leading to gross genomic rearrangements (structural variants)

including copy number variations. Non-homologous end joining (NHEJ) comprises two sub-

pathways, classical or canonical NHEJ (C-NHEJ) and alternative NHEJ (A-NHEJ). In

practice, some clinically observed mutations represent the end result of an untraceable in

vivo mutational process and can often be explained by two or even three different

mechanisms. Hence, it is often not possible to distinguish a break-induced replication (BIR)

event from a non-allelic homologous recombination (NAHR) event, a microhomology-

mediated BIR (MMBIR) event from a serial replication slippage (SRS) or fork stalling and

template switch (FoSTeS) event, and a NHEJ event (where microhomology-mediated) from

a ‘microhomology-mediated replication-dependent recombination (MMRDR) event. By

contrast, mutations resulting from telomere healing or L1 retrotransposition can usually be

unequivocally attributed owing to the presence of signature sequences. DSB, double-strand

break; GC, gene conversion; RC, replication fork; RS, replication slippage; SRS, serial

replication slippage; SSA, single-strand annealing.
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Figure 2.

Contribution of mutational mechanisms to the formation of structural variants (SVs) <5kb

according to Kidd et al. [2010]. The contraction or expansion of variable number of tandem

repeats (VNTRs) accounts for ~3% of the detected SVs.
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Figure 3.

Schematic representation of the different types of cytogenetically defined terminal deletions

in terms of end stabilization. Whereas blocks indicate telomeres, filled circles indicate

centromeres. In type A, the captured telomere and associated sequence are highlighted in

blue. In type B, an internal portion of the chromosome (sequence highlighted in red in the

normal chromosome) is deleted. In type C, the de novo telomere is highlighted in purple. In

the box, two different mechanisms of end stabilization for terminal deletions associated with

inverted duplications (indicated by facing arrows) are illustrated; the use of colour is

consistent with the scheme used for types A and C.
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Figure 4.

Non-B DNA. Types and ribbon models of the most common non-B DNA conformations

formed by repetitive DNA motifs, followed by the general sequence requirements for each

structure and examples of DNA sequences (redrawn from Bacolla et al., 2004). Y,

pyrimidine (C or T); R, purine (A or G). It should however be noted that, for Z-DNA at

least, one strand must contain alternating G residues; x and y, any intervening sequence

separating the repeats by typically 0-5 nt [Cer et al., 2011].
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Figure 5.

Models for microsatellite repeat expansion. Panel A. Strand slippage during DNA

replication. A microsatellite repeat sequence (black and grey segments) and the associated

DNA polymerase complexes (protein complexes are not shown for reasons of clarity) may

transiently dissociate from the template strand and form an intra-strand hairpin stabilized by

Watson-Crick and non-Watson-Crick (such as T:T) pairs with backward slippage between

the repeats. The hairpin may be incorporated into genomic DNA during the next round of

DNA synthesis (not shown), yielding an expansion. Panel B. Replication-independent

expansion in quiescent oocytes. A base lesion (black bulge) is cleaved by base excision

repair (see McMurray, 2010 for details) and the ensuing 3′-OH terminus is extended by

DNA polymerase beta, displacing the DNA strand ahead of it. The displaced single-strand

forms large hairpin structures, which are resistant to FEN1 cleavage and are stabilized by

mismatch repair proteins (MSH2/MSH3). Further DNA ligation leaves long hairpin

structures, which are subsequently incorporated into DNA (not shown) by cleavage and

synthesis on the complementary strand. Panel C. Fork stalling and restart. A hairpin

structure on the template for lagging strand DNA synthesis blocks replication. Replication
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restarts through fork-reversal (chicken-foot structure) which in the process yields a second

hairpin on the newly synthesized leading strand that will subsequently be incorporated into

chromosomal DNA, leading to expansion (see Mirkin, 2007 for details). Panel D. Fork

stalling and template switching. After fork stalling (see Panel C), strand switching occurs,

whereby the 3′-end of the growing leading strand copies microsatellite repeats from the

newly synthesized lagging strand, yielding an expansion. It should be noted that large and

small hairpins are not distinguished in the Figure. Panel E. Unequal crossing-over between

normal alleles. Alleles a and b contain polymorphic alanine-encoding repeats (white

squares, GCA; black squares, GCG; and grey squares, GCC) that can anneal in an out-of

phase manner during crossover, resulting in an expanded allele and a smaller allele (not

shown).
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