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For a fixed integer t, a size n Pt-set is a set {q1, . . . , qn} of distinct
positive integers such that qiqj + t is the square of an integer whenever
i 6= j. For example, {1, 2, 5} is a P−1-set, while {1, 3, 8, 120} is a size 4
P1-set. A Pt-set S is extendible if there exists a positive integer d 6∈ S such
that S ∪ {d} is still a Pt-set.

Problems related to Pt-sets date back to the time of Diophantus (see
Dickson [4, Vol. II, p. 513]). The most famous recent result is in the area of
extending Pt-sets and is due to Baker and Davenport [1], who used Diophan-
tine approximation to show that the P1-set {1, 3, 8, 120} is nonextendible.
Other methods for arriving at the same result were subsequently described
(Kanagasabapathy and Ponnudurai [6], Sansone [9], and Grinstead [5]). Sev-
eral more recent papers have made efforts to characterize the extendibility
of classes of Pt-sets (Brown [3], Mootha and Berzsenyi [7]).

In this paper we introduce a very simple method for assessing the ex-
tendibility of Pt-sets of the form {a, b, ak, bk}, where a, b, and k are integers.
The technique is illustrated by demonstrating the nonextendibility of the
first identified size 5 Pt-set (see Berzsenyi [2]):

Theorem. The P−299-set {14, 22, 30, 42, 90} is nonextendible.

P r o o f. First, note that if we set a = 14, b = 30, and k = 3, then this
set is of the form {a, b, ak, bk, 22}. Showing that this Pt-set is nonextendible
is equivalent to showing that the system of equations

(∗)





14d− 299 = w2,
30d− 299 = x2,
42d− 299 = y2,
90d− 299 = z2

has exactly one integer solution, d = 22, which corresponds to the fifth
member of the P−299-set. Eliminating d between (∗), we obtain the following
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Pellian equations:

(1)

{
y2 − 3w2 = 598,

z2 − 3x2 = 598.

This is a system of two Pellian equations, each having exactly four classes
of solutions (see Nagell [8, p. 205]) given by

K1 : yn +
√

3wn = zn +
√

3xn = (25 + 3
√

3)(2 +
√

3)n,

K1 : yn +
√

3wn = zn +
√

3xn = (25− 3
√

3)(2 +
√

3)n,

K2 : yn +
√

3wn = zn +
√

3xn = (29 + 9
√

3)(2 +
√

3)n,

K2 : yn +
√

3wn = zn +
√

3xn = (29− 9
√

3)(2 +
√

3)n,

where n is a whole number. These solutions correspond to the linear recur-
rent sequence wn = 4wn−1 − wn−2, n ≥ 2, where w0 and w1 depend on the
solution class (and similarly for xn). Using recurrence relations, we produce
explicit expressions for each of the four solution classes:

(2)





K1 : wn = xn =
(

9 + 25
√

3
6

)
(2 +

√
3)n +

(
9− 25

√
3

6

)
(2−

√
3)n,

K1 : wn = xn =
(

9− 25
√

3
−6

)
(2 +

√
3)n +

(
9 + 25

√
3

−6

)
(2−

√
3)n,

K2 : wn = xn =
(

27 + 29
√

3
6

)
(2 +

√
3)n +

(
27− 29

√
3

6

)
(2−

√
3)n,

K2 : wn = xn =
(

27− 29
√

3
−6

)
(2 +

√
3)n +

(
27 + 29

√
3

−6

)
(2−

√
3)n.

Table 1 is a list of the first 9 solutions wn = xn in each of the four classes.

Table 1. Some solutions wn and xn

n wn = xn ∈ K1 wn = xn ∈ K1 wn = xn ∈ K2 wn = xn ∈ K2

0 3 −3 9 −9
1 31 19 47 11
2 121 79 179 53
3 453 297 669 201
4 1691 1109 2499 751
5 6311 4139 9319 2803
6 23553 15447 34779 10461
7 87901 57649 129898 39041
8 328051 215149 484409 145703
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Because we have derived closed expressions for wn and xn, we can set
w = wj and x = xi, for some whole numbers i and j. From (∗), it becomes
clear that since x2/w2 = x2

i /w
2
j = (30d− 299)/(14d− 299),

xi
wj
≈
√

15
7

= 1.4638501 . . . for large d.

This provides us with an additional constraint which must be satisfied si-
multaneously with (1) for sufficiently large values of d. Hence, if there is
an integer d 6= 22 that solves (∗), and d is large, then we expect xi/wj to
be asymptotically equal to 1.4638501 . . . For computational purposes, it is
necessary to formalize what we mean by “sufficiently large” values of d. We
define

ε(d) ≡
∣∣∣∣
√

30d− 299
14d− 299

−
√

15
7

∣∣∣∣ =
∣∣∣∣
xi
wj
−
√

15
7

∣∣∣∣
and note that ε(d) → 0 as d → ∞. In particular, observe that for d ≥
8.34 × 108 (i.e., wj ≥ 1.08 × 105 and xi ≥ 1.58 × 105) we must have
ε(d) ≤ 10−8. Table 1 lists all values of xi ≤ 1.58 × 105, and simple trial
and error of these values indicates that the only solution in this range cor-
responds to d = 22. Hence, xi and wj must be so large that d ≥ 8.34 × 108

and ε(d) ≤ 10−8.
We now demonstrate that no selection of large xi and wj (i.e., xi ≥

1.58 × 105 and wj ≥ 1.08 × 105) meets this requirement. By selection, we
mean a choice of two classes from which to assign values to x and w, e.g.,
x = xi ∈ K1 and w = wj ∈ K2, or x = xi ∈ K2 and w = wj ∈ K2, etc.
Clearly, there are a total of 16 possible selections that we must consider,
and we treat each case separately:

C a s e 1: x = xi ∈ K1 and w = wj ∈ K1. From (∗), we see that x > w,
which implies that i > j. We must attempt to minimize ε(d), and the best
we can do is to choose i = j + 1, implying that x/w = wj+1/wj . From (2),
we find that ε(d) decreases monotonically for increasing d. But

lim
d→∞

ε(d) = lim
j→∞

∣∣∣∣
wj+1

wj
−
√

15
7

∣∣∣∣ = 2.2682006 . . .� 10−8.

Hence, selecting both x and w from K1 cannot satisfy (∗) for large values
of d.

C a s e 2: x = xi ∈ K1 and w = wj ∈ K1. Again, because x > w, we are
forced to choose i = j + 1 to minimize ε(d). ε(d) decreases monotonically
with increasing d, and we find from (2) that
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lim
d→∞

ε(d) = lim
j→∞

∣∣∣∣
xj+1

wj
−
√

15
7

∣∣∣∣ = 0.9837784 . . .� 10−8.

Conclude that this particular selection of x and w does not yield a large
solution to (∗).

The remaining fourteen cases are treated similarly, and the results are
summarized in Table 2. For each selection, the “best” index choice (which
minimizes ε(d)) and M = limd→∞ ε(d) are shown.

Table 2. Summary of 16 cases

x = xi ∈ K1 x = xi ∈ K1 x = xi ∈ K2 x = xi ∈ K2

w = wj ∈ K1 i = j + 1 i = j + 1 i = j i = j + 1
M = 2.2682007 M = 0.9837784 M = 0.0127771 M = 0.1937306

w = wj ∈ K1 i = j i = j + 1 i = j i = j + 1
M = 0.0609116 M = 2.2682007 M = 0.7876547 M = 1.0635658

w = wj ∈ K2 i = j + 1 i = j + 1 i = j + 1 i = j + 1
M = 1.0635658 M = 0.1937306 M = 2.2682007 M = 0.3413048

w = wj ∈ K2 i = j i = j i = j i = j + 1
M = 0.7876547 M = 0.0127771 M = 1.8607830 M = 2.2682007

Note that in all cases, limd→∞ ε(d) is much greater than 10−8, which means
that we have safely precluded the possibility of a “large” solution to (∗).

As we have already exhausted all possibilities in Table 1, we conclude
that the P−299-set {14, 22, 30, 42, 90} is nonextendible.

This same approach can be taken in quickly assessing the extendibility
of any Pt-set of the form {a, b, ak, bk}.
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