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The shape of the force-velocity (F-V) relationship has important implications for different

aspects of muscle physiology, such as muscle efficiency and fatigue, the understanding

of the pathophysiology of several myopathies or the mechanisms of muscle contraction

per se, and may be of relevance for other fields, such as the development of robotics

and prosthetic applications featuring natural muscle-like properties. However, different

opinions regarding the shape of the F-V relationship and the underlying mechanisms

exist in the literature. In this review, we summarize relevant evidence on the shape

of the F-V relationship obtained over the last century. Studies performed at multiple

scales ranging from the sarcomere to the organism level have described the concentric

F-V relationship as linear, hyperbolic or double-hyperbolic. While the F-V relationship

has most frequently been described as a rectangular hyperbola, a large number of

studies have found deviations from the hyperbolic function at both ends of the F-V

relation. Indeed, current evidence suggests that the F-V relation in skeletal muscles

follows a double-hyperbolic pattern, with a breakpoint located at very high forces/low

velocities, which may be a direct consequence of the kinetic properties of myofilament

cross-bridge formation. Deviations at low forces/high velocities, by contrast, may be

related to a recently discovered, calcium-independent regulatory mechanism of muscle

contraction, which may also explain the low metabolic cost of very fast muscle

shortening contractions. Controversial results have also been reported regarding the

eccentric F-V relationship, with studies in prepared muscle specimens suggesting

that maximum eccentric force is substantially greater than isometric force, whereas

in vivo studies in humans show only a modest increase, no change, or even a

decrease in force in lengthening contractions. This review discusses possible reasons

reported in the literature for these discrepant findings, including the testing procedures

(familiarization, pre-load condition, and temperature) and a potential neural inhibition at

higher lengthening velocities. Finally, some unresolved questions and recommendations

for F-V testing in humans are reported at the end of this document.

Keywords: torque-velocity, maximal unloaded shortening velocity, muscle power, Hill’s equation, Edman’s
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INTRODUCTION

The slower a skeletal muscle shortens the greater the force it can
generate during contraction and vice versa. This force-velocity
(F-V) relationship is a fundamental principle of skeletal muscle
physiology that was derived based on Hill’s ground-breaking
studies in isolated frog muscles (Hill, 1938) and originally
used to develop theories of the mechanisms of skeletal muscle
contraction (Huxley, 1957). In recent years, several studies
have investigated the in vivo F-V relationship in an attempt to
describe muscle function in complex tasks in elite sports (e.g.,
performance in vertical jumping, sprinting, or rowing) (Dorel
et al., 2005; Cross et al., 2015; Jimenez-Reyes et al., 2016; Giroux
et al., 2017) or activities of daily living in older adults (e.g., gait
or chair rising ability) (Alcazar et al., 2018c). Moreover, there is
an increased interest in applying the in vivo F-V relationship as a
tool to guide training practice (Samozino et al., 2012; Morin and
Samozino, 2016). The F-V relation can be evaluated bymeasuring
the force produced by muscles at different active shortening or
lengthening velocities, or the velocity at which muscles shorten
or lengthen against different isotonic or auxotonic1 forces. Then,
a mathematical function is usually fitted to the collected F-V
points, from which several performance characteristics can be
obtained either directly or through extrapolation, such as the
maximal isometric force (P0), maximal unloaded shortening
velocity (Vmax), and maximal power output (Wmax).

One criterion that has received comparatively little attention
is the curvature of the F-V plot. While the F-V relationship
is widely recognized as an important characteristic of muscle
function, disagreement exists regarding its precise shape and the
underlying mechanisms accounting for it. The F-V relationship
has been suggested to be linear (Bobbert, 2012), hyperbolic
(Hill, 1938), and double-hyperbolic (Edman, 1988a). These
controversial opinions have important implications for F-V
testing and the perception of contraction and adaptations of
muscle function. The curvature of the F-V relationship is related
to the maximal power output of skeletal muscles (Gordon et al.,
1966), reflects the thermodynamic efficiency of contraction (Hill,
1964b; Woledge, 1968; Barclay, 2017) and may be used to
study the consequences of muscle fatigue (Jones, 2010). The
dependence of force generation from contraction velocity is so
universally accepted that models explaining the mechanisms of
skeletal muscle are specifically tested for their ability to predict
the shape of experimentally determined F-V curves (Huxley,
1957; Piazzesi et al., 2007). Moreover, a better understanding of
the F-V relationship and the underlying contraction mechanism
might help elucidate the pathogenesis of several hereditary
sarcomere myopathies and the effects of different drugs with
effects on muscle contraction (Ferrantini et al., 2009; Malik et al.,
2011; Mansson, 2014; Spudich, 2014), and ultimately benefit the
development of robotic and prosthetic applications that rely on
bio-inspired actuators that exhibit natural (muscle-like) features
in order to mimic the performance of biological systems (Paluska
andHerr, 2006; Schmitt et al., 2012; Xiong et al., 2014; Chen et al.,
2016; Hyun et al., 2017).

1An auxotonic contraction refers to a muscle contraction against a varying load.

In order to critically discuss the discrepant F-V relationships
presented in the literature and the physiological mechanisms
assumed to be responsible for their specific shapes, we reviewed
the most relevant studies conducted on the F-V relationship of
skeletal muscles during the last century. The following search
terms and operators were used in the PubMed and Web of
Science online databases: (“force” OR “torque”) AND (“velocity”
OR “speed”). Additional suitable studies were included by
screening the reference lists of the reviewed studies and other
relevant reviews. A wide range of studies from in vitro motility
assays to in vivo human studies are presented in mostly
chronological order.

FIRST STUDIES ON THE F-V
RELATIONSHIP

The earliest reference to the F-V relationship is perhaps thatmade
by Hill (1922): “the force exerted is greater the less the rate of
movement, and vice versa.” In that study, Hill presented a novel
instrument created to evaluate the in vivo mechanical work of
human muscles. A hand tachometer measured the revolution
speed of a fly-wheel pulled by means of a handle attached to
an inelastic string, and the kinetic energy of the fly-wheel was
obtained. The resistance could be modified by winding the string
around different sized pulleys of the fly-wheel. In the experiment,
the participants performed several concentric elbow flexions as
powerfully as possible against different resistances, which is an
important criterion when evaluating the F-V relationship due to
its implications for motor unit recruitment and maximal force
production (discussed later). The range of movement (ROM) was
controlled by adjusting the length of the string to each participant
and kept constant for all repetitions. From the mechanical work
and time data reported in that study (Hill, 1922), a mechanical
work-velocity relationship can be obtained, and since the ROM
was constant between repetitions, the F-V relationship can
also be elucidated. An image processing and analysis software
(ImageJ 1.51j8, NIH, United States) was used to extract the data
presented by Hill in Figure 4 of that study (Hill, 1922). Those
data showed that the F-V relationship obtained from average
force and velocity values could be described as a linear function
(R2 = 0.997) with a negative slope (Figure 1). These findings were
replicated by other studies of that time (Lupton, 1922; Hansen
and Lindhard, 1923; Hill et al., 1924), which led Hill to suppose
that the mechanical behavior of muscle was determined by the
viscosity of its contractile material (Hill, 1950). According to this
rationale, higher shortening velocities would require the muscle
to overcome higher resistances, thus lowering the force it could
produce. However, acknowledging that the observed linearity of
the F-V relation could also be determined by neural mechanisms,
Hill expanded his studies.

Gasser and Hill (1924) carried out a series of experiments
in isolated frog muscles in order to ascertain the relations
established in earlier studies (Hill, 1922; Lupton, 1922; Hansen
and Lindhard, 1923; Hill et al., 1924). In these experiments the
authors used a previously described apparatus (Doi, 1921) by
which muscles were attached to one end of a first class lever
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FIGURE 1 | Linear force-velocity relationship. Data were obtained from

Figure 4 in Hill (1922) using specialized software (ImageJ 1.51q8, NIH,

United States). This modified version represents the force-velocity relationship

of a standard subject during elbow flexions. From those data, force was

calculated as the ratio between mechanical work and the range of movement

(ROM) during the exercise (0.6 m), and velocity as the ROM divided by the

time registered for each repetition. A linear function was fitted to the data

(least squares method): F = –7.3 × V + 18.5; R2 = 0.997.

and then electrically stimulated to eliminate potential influences
of the central nervous system. The authors found that “as in
the experiments on man, the work (force) performed decreases
as the speed increases,” but “in the isolated muscle the relation
between work (force) and speed is not linear, and differs in
this respect from that in human arm muscles” (Gasser and Hill,
1924). However, work was calculated as the product of weight
and distance (rather than as the product of force and distance),
thus considering the potential energy but neglecting the kinetic
energy of the lever just before hitting one of the stops of the
apparatus. Consequently, division by distance would not result
in an F-V but rather a load-velocity relationship. Nevertheless,
additional experiments carried out with the tension exerted by
the muscle being measured by an isometric tension recorder
confirmed that at increasing velocities the capacity of muscles
to produce force declines in a curvilinear rather than in a linear
fashion (Gasser and Hill, 1924). A curvilinear relation was also
noted by Levin and Wyman (1927), whose pioneering work also
provided information on the tension produced by different sorts
of animal muscles at various stretching velocities (i.e., in eccentric
contractions), which led the authors to conclude that the resulting
curve was S-shaped, with eccentric force being greater than
concentric force. In the light of this new evidence showing a
curvilinear F-V relationship in isolated muscle specimens, the
viscosity theory was abandoned and replaced by a viscoelastic
theory to explain the mechanical behavior of skeletal muscle
(Hill, 1950).

Fenn and Marsh (1935) were the first to conduct a series
of experiments focusing on the F-V relationship of isolated
animal muscles, as opposed to all previous studies determining

the relationship between mechanical work and velocity. Their
experiments consisted of measurements of themaximum velocity
of shortening with a series of different loads. The measurements
were always made at the same muscle length, in a region where
velocity was found to bemaximal and nearly constant. Since there
was no change in velocity at that point, the force exerted by the
muscle must be equal to the load. With respect to the shape of the
F-V relationship, the authors concluded that “it is obvious that no
portion of this curve is linear but it is rather logarithmic in shape”
(Fenn and Marsh, 1935). Importantly, based on the observation
of the temperature-dependency of their results, Fenn and Marsh
suggested that some chemical reactions must have an effect on
the degree of force loss that occurs with increasing velocity, and
thus, that the muscle could not properly be considered a simple
mechanical (i.e., viscoelastic) system, as previously assumed.

THE HYPERBOLIC FORCE-VELOCITY
RELATIONSHIP

Hill (1938) published his seminal work “The heat of shortening
and the dynamic constants of muscle.” The author utilized a
more accurate and rapid technique for the evaluation of the
effect of load on the shortening velocity of muscle by means
of a device combining a thermopile, a galvanometer and an
oscilloscope. When a muscle was tetanized isometrically, a
continuous heat record was obtained that was considered as the
baseline signal. When the muscle was allowed to shorten, the heat
of contraction rose above the level observed during the isometric
contraction. The increase in temperature was considered to
be proportional to the degree of shortening, and thus velocity
was recorded continuously during isotonic contractions. Since
the apparatus used a system of mounted levers, the kinetic
energy was considered small enough to be neglected, and load
was assumed to be equivalent to the force produced by the
muscle. Therefore, the relation between load (force) and velocity
in isotonic concentric muscle actions was measured, which
showed a curvilinear pattern better represented by a rectangular
hyperbola (Figure 2). This hyperbola is given by the equation
(Hill, 1938):

(P + a)(V + b) = (P0 + a)b (1)

where P is load, V is velocity, P0 is the isometric force, a is a
constant indicating the shortening heat per unit of shortening
with the dimensions of load, and b is a constant expressing the
increase of energy rate per unit of decrease in load with the
dimensions of velocity. The ratio a/P0 indicates the curvature
of the F-V relationship, which Hill believed to represent a
fundamental constant of muscle in humans and other species
alike (Hill, 1940). Importantly, this experimental model was the
first to consider both the material properties of muscle as well
as possible chemical reactions (estimated by heat measurements)
influencing the process of muscle contraction. This equation was
also reported to fit satisfactorily with the previous experiments
conducted by Fenn and Marsh (1935).

During the following decades, more studies were conducted in
order to confirm the results reported by Hill (1938). Katz (1939)
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FIGURE 2 | Hyperbolic force-velocity relationship. Data were obtained from

Figure 12 in Hill (1938) using specialized software (ImageJ 1.51q8, NIH,

United States). This modified version represents the force-velocity relationship

of the isolated sartorius muscle of a frog. A hyperbolic function was fitted to

the data (least squares method): (F + 14.4) × (V + 1.0) = (70.6 + 14.4) × 1.0;

R2 = 0.998.

conducted a series of experiments in which the shortening and
lengthening velocity of muscle was evaluated at forces both
lower and higher than P0. The concentric portion of the F-V
relationship (positive velocities) was reported to be adequately
fitted by Hill’s hyperbolic equation. While Hill’s F-V relation was
generally accepted as a model of the concentric F-V relationship
of skeletal muscle, Katz complemented Hill’s theory by making
some remarkable observations. Katz demonstrated that changes
in temperature affected the curvature of the F-V relationship by
diminishing the value a/P0 with increasing temperature (Katz,
1939). He also found that a/P0 could vary between species,
thus refuting Hill’s notion of it being a species-independent
constant ofmuscle (Katz, 1939). Later studies confirmed that a/P0
varies with different muscle lengths, temperatures and excitation
levels, and also between different species and individuals of
the same species (Ralston et al., 1949; Wilkie, 1949; Abbott
and Wilkie, 1953; Bigland and Lippold, 1954). Moreover,
Katz noted that velocities at forces greater than the isometric
force were considerably smaller than those predicted by Hill’s
model, which could therefore not be applied to the eccentric
portion of the F-V relationship (Katz, 1939). Of note, heat
changes during lengthening contractions were found to be too
small to be accurately captured (Hill, 1960). In line with this
observation, decreased muscle excitation levels were observed
during active muscle lengthening (Bigland and Lippold, 1954),
demonstrating physiological differences between eccentric and
concentric muscle actions.

The first study that aimed to verify the applicability of Hill’s
equation to in vivo human muscle was that carried out by
Dern et al. (1947), who tested the F-V relationship of the elbow
flexor muscles by having subjects perform maximally explosive
contractions against varying resistance. The authors reported

that the F-V relationship was best represented by a curvilinear
function, but these results were affected by apparent effects of
fatigue. Had only the best attempts (i.e., the trials not affected
by fatigue) been included into the analysis, the F-V relation
would instead be nearly linear at torque values greater than 40%,
and display a curvilinear pattern below that level (Dern et al.,
1947) (Figure 3).

The next work to address the F-V relationship was a unique
study performed with amputee men with cineplastic2 tunnels
through various muscles of the upper extremity, making it
possible to evaluate the in vivo F-V relationship of isolated,
yet voluntarily contracting human muscles (Ralston et al.,
1949). The authors evaluated the peak velocity attained by the
pectoralis major muscle contracting against different loads, and
the resultant F-V relationship was reported to fit well with
Hill’s rectangular hyperbola. However, post hoc analyses of the
respective data performed by us showed that the F-V data by
Ralston et al. (1949) are best represented by a linear function at
forces higher than 40% of the isometric peak force (R2 = 0.996),
while they follow a curvilinear function below that level of force
(R2 = 0.986) (Figure 4). These analyses negate a purely hyperbolic
F-V relation.

By contrast, Wilkie (1949) reported a Hill-type load-velocity
relationship for the human elbow flexor muscles. In our review of
this study, we did not observe a clear linear pattern in the region
of the F-V relationship that comprised forces between∼40–100%
of P0 as the measured P0 was higher than that expected from a
linear fit. However, when the isometric force was not considered,
the linear fitting was excellent (R2 = 0.998) for the three loads
higher than ∼50% of the isometric force.

Jointly, it appears that studies reporting a linear F-V
relationship had only measured forces greater than 40% (Hill,
1922; Lupton, 1922; Hansen and Lindhard, 1923; Hill et al., 1924),
while others concluding that the F-V relation was hyperbolic
assessed forces both lower and higher than 40% of the isometric
force (Gasser and Hill, 1924; Levin and Wyman, 1927; Fenn and
Marsh, 1935; Hill, 1938; Katz, 1939; Dern et al., 1947; Ralston
et al., 1949; Wilkie, 1949). Consequently, the F-V relationship
could follow a pattern that is linear at intermediate to high forces
(∼40–100%) but deviates upwards at low forces (∼0–40%) to
become curvilinear. While the linearity of the F-V relationship
at high forces was not clearly evident in the studies conducted
by Hill (1938) and Wilkie (1949), an explanation might be
provided by a later study by Abbott and Wilkie (1953). In their
experiments, after completion of the dynamic contractions, the
authors noted not only a decrease in maximal isometric force
but also a shift of the optimal length to longer muscle lengths
(Abbott and Wilkie, 1953). A similar observation was reported
by Ritchie (1954), who recorded isometric force in isolated rat
muscle during every third or fourth isotonic contraction, and
found that isometric force decreased toward the end of the series
of tests performed with increasing loads. In order to accord with
Hill’s theory, the authors deliberately selected those isometric

2Cineplastic amputation is a surgical technique in which muscles and tendons
are arranged in a stump in such manner that it is possible to impart motion and
direction to an artificial limb.
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FIGURE 3 | Force (torque)-velocity (angular velocity) relationship. Data were

obtained from Figure 8 in Dern et al. (1947) using specialized software (ImageJ

1.51q8, NIH, United States). This modified version represents the

force-velocity relationship of a standard subject during elbow flexions. P0

denotes the maximal isometric torque. The attempts with no apparent effect

of fatigue were selected. A linear function was fitted to the data above 40% of

P0 (F = –7.6 × V + 100.3; R2 = 0.998) and a third order polynomial function

was fitted to the data below 40% of P0 (F = –0.05 × V3 + 2.00 × V2 –

27.67 × V + 158.10; R2 = 1.000) (least squares method in both).

FIGURE 4 | Force-velocity relationship. Data were obtained from Figure 1 in

Ralston et al. (1949) using specialized software (ImageJ 1.51q8, NIH,

United States). This modified version represents the force-velocity relationship

of the in vivo human pectoralis major muscle. A linear function was fitted to

the data above 40% of maximal isometric force (P0) (F = –0.29 × V + 20.43;

R2 = 0.996) and a second order polynomial function was fitted to the data

below 40% of P0 (F = 0.0008 × V2 – 0.2335 × V + 16.991; R2 = 0.983) (least

squares method in both).

force values that gave the best fit for a hyperbolic F-V relation
(Abbott and Wilkie, 1953; Ritchie, 1954), while a clear linear
pattern (R2 = 0.996, at forces > 40% of P0) may be observed
when other isometric values obtained during the experiments are

FIGURE 5 | Force-velocity relationship. Data were obtained from Figure 5 in

Abbott and Wilkie (1953) using specialized software (ImageJ 1.51q8, NIH,

United States). This modified version represents the force-velocity relationship

of the isolated sartorius muscle of a frog. When the baseline isometric force

was considered (closed square), a hyperbolic equation was fitted to the data

[(F + 18.5) × (V + 1.2) = (67.0 + 18.5) × 1.2; R2 = 0.999] (dashed line in the

high-force region) (least squares method). In contrast, when the isometric

force measured after the isotonic recordings was considered (open square), a

linear model was adequately fitted to the data above 40% of maximal

isometric force (P0) (F = –28.8 × V + 55.3; R2 = 0.996) (solid line in the

high-force region), while the hyperbolic function was adequately fitted to the

F-V data below 40% of P0 (R2 = 0.999) (solid line in the low-force region)

(least squares method in both).

chosen (Figure 5). These biased conclusions may have hindered
the correct analysis of the high-force/low-velocity region of the
F-V relationship. In some previous studies, the isometric force
was not evaluated (Gasser and Hill, 1924; Levin and Wyman,
1927; Fenn and Marsh, 1935) or it was only measured at the
beginning of the experiments (Hill, 1938; Katz, 1939). In addition,
in experiments performed in isolated muscles, the isometric force
was measured at the optimal length, while velocity values during
dynamic actions were registered after the muscle had shortened
a certain distance (Hill, 1938; Katz, 1939). Thus, isometric force
and dynamic F-V data were collected at slightly different muscle
lengths, leading to an overestimation of P0. Consequently, Ritchie
and Wilkie (1958) proposed that previous studies might have
missed deviations from the rectangular hyperbola because of
the considerable uncertainty of the appropriate value of the
isometric tension.

The success of Hill’s equation (Hill, 1938) over other
mathematical models similarly fitting reasonably well with
empirical F-V data (Fenn and Marsh, 1935; Polissar, 1952;
Abbott and Wilkie, 1953; Aubert, 1956) was due to its ability to
integrate mechanical and thermal parameters. Hill’s theory was
so well-accepted that many authors were keen to demonstrate the
congruence of their F-V data with the original hyperbolic F-V
relationship (Hill, 1938), perhaps in an attempt to demonstrate
the correctness of their results. However, some of Hill’s
assumptions were found to be incorrect. For example, a/P0 (i.e.,
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the curvature of the F-V relationship) was demonstrated not
to be a fundamental constant of muscle, rather it could vary
depending on the species, temperature (a/P0 decreases with
increasing temperature) (Katz, 1939), type of muscle (Close,
1964), excitation level (a/P0 decreases with increasing muscle
excitation) (Bigland and Lippold, 1954) and muscle length
(a/P0 decreases as muscle length approximates to the optimal
length) (Abbott and Wilkie, 1953), and also between participants
(Wilkie, 1949). The constant a of Hill’s equation was found to
represent the degree of muscle shortening, but not the heat of
shortening obtained from thermal measurements (Aubert, 1952,
1956; Abbott and Lowy, 1956; Hill, 1964a). In addition, despite
the generally satisfactory fitting of the hyperbolic F-V function
with experimental F-V data obtained below a certain level of
force, evidence from studies conducted either in isolated muscle
(Katz, 1939; Ralston et al., 1949; Abbott andWilkie, 1953; Ritchie,
1954; Ritchie and Wilkie, 1958; Sonnenblick, 1962) or using
in situmeasurements (Dern et al., 1947; Allen and Stainsby, 1973;
Komi, 1973; Thorstensson et al., 1976; Lannergren, 1978; Perrine
and Edgerton, 1978; Wickiewicz et al., 1984; Froese and Houston,
1985) increasingly challenged the rectangular hyperbolic shape
at high forces/low velocities. Even Hill himself pointed out that
the F-V data might deviate from a hyperbola in the high-force
region of the F-V relationship (Hill, 1970, pp 112–117). The
main limitation of studies performed at that time was that none
had specifically investigated the observed deviations from the
rectangular hyperbola. In addition, few studies had described the
eccentric portion of the F-V relationship (Levin and Wyman,
1927; Katz, 1939). Indeed, most studies did not evaluate the
F-V relationship in the high-force range (i.e., forces > 75–80%
of P0), and in some of them the maximal isometric force was
not even measured.

THE DOUBLE-HYPERBOLIC
FORCE-VELOCITY RELATIONSHIP

In the light of the previously mentioned limitations of Hill’s
theory, Edman et al. (1976) conducted a study in 1976 to
determine the shape of the F-V relationship and the possible
factors that may account for deviations from a rectangular
hyperbola reported in previous studies. The experiments were
performed in single isolated frogmuscle fibers and also in bundles
of frog muscle fibers, and a sufficient number of experimental
data points over the whole F-V relationship was obtained.
The authors found that the F-V relationship systematically
deviated from the rectangular hyperbola at forces above 78%
of the measured isometric force (i.e., P0). Importantly, the
deviation from the hyperbolic F-V relationship was found to be
independent from the mode of activation or the time interval
between tetani (1, 3, or 60 min) (Edman et al., 1976). Thus,
the deviation from the hyperbola was found not to be caused
by muscle fatigue. Interestingly, in spite of the evident and
systematic deviation in the high-force/low-velocity region, the
fitting of all F-V points by a rectangular hyperbola still showed
a very high correlation coefficient (r = 0.9987). However, when
the F-V data were truncated at 78% of P0 (i.e., the range of

data that did not deviate from the rectangular hyperbola), the
estimated isometric force (P∗

0) values were 32% higher than
the experimentally determined ones, and average a/P∗

0 was 0.18
compared to 0.28 before truncation (Edman et al., 1976). The
deviation of Hill’s hyperbola from empirical data at high forces
was also confirmed in other studies (Bahler et al., 1968; Edman
and Hwang, 1977; Edman, 1979; Edman et al., 1985). Further
studies by Edman performed in single isolated frog muscle fibers
and short segments along intact fibers (Edman, 1988a,b) finally
showed that the F-V relation exhibited two distinct curvatures
located on either side of a breakpoint near 78% of P0 and 11%
of Vmax. F-V data truncated at 78% of P0 were excellently fitted
by Hill’s hyperbolic function, but its derived isometric force (i.e.,
P∗
0) was substantially higher (+17%) than themeasured isometric

force (i.e., P0). The data at forces > 78% P0 could best be
fitted with an independent hyperbola, and both hyperbolas were
found to be closely related to each other (Figure 6A). Therefore,
the F-V relationship was found to be better characterized by a
double-hyperbolic F-V equation (Edman, 1988a):

V =
(P

∗

0 − P)b

P + a

(

1 −
1

1 + e−k1(P−k2P0)

)

(2)

where the first term expresses the F-V relationship at low and
intermediate forces (<0.78 P0) and P∗

0 is the isometric force
that is predicted from the rectangular hyperbola derived from
values below 0.78 P0; and the second term modifies the F-V
relationship at high forces (>0.78 P0) with k1 and k2 as constants,
determining the degree of curvature and the point of transition,
respectively. The first term basically corresponds to Hill’s original
equation, while the second term is a ‘correction term’ that
reduces V in the high-force region of the F-V relation (Edman,
1988a). Importantly, the fact that the double-hyperbolic F-V
relationship was observed in both the fiber as a whole and
a short segment of the same fiber suggests that this pattern
represented the contractile behavior at the sarcomere level. In
addition, the F-V relationship was also investigated at forces
that exceeded the isometric force (1.0–1.8 P0) (Edman, 1988a).
The F-V relation formed a smooth sigmoidal function with
inflection at P0, and was observed to be nearly flat between 0.9
and 1.2 P0 with velocity values differing by only 1.8% within
this force range (Figure 6B). By contrast, changes in velocity
were progressively greater at forces between 1.2 and 1.6 P0.
Unlike the hyperbolic F-V equation (Katz, 1939), Edman’s F-V
equation appeared to fit reasonably with the subsequent eccentric
portion of the F-V relation (Edman, 1988a), although no equation
was specifically created for this section of the F-V relationship.
The curvatures of the two connected hyperbolas were found
to decrease (but not disappear) at longer sarcomere lengths
and with increases in temperature (Edman, 1988a), and they
were consistently observed at the same relative values of P0
(80%) and Vmax (10%) after depressing the isometric force to
80% of the control value by dantrolene (a substance known to
reduce the release of calcium from the sarcoplasmic reticulum)
(Edman, 1993).

The double-hyperbolic shape of the F-V relationship
was confirmed in intact frog single muscle fibers
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FIGURE 6 | (A) Double-hyperbolic force-velocity relationship. Data were obtained from Figure 2 in Edman (1988a) using specialized software (ImageJ 1.51q8, NIH,

United States). This modified version represents the force-velocity relationship of a single muscle fiber from the anterior tibialis muscle of a frog. Note the deviation of

the experimental data from those predicted by the rectangular hyperbola in the high-force region (>0.78 maximal isometric force or P0) despite the excellent fit ((F +

0.06) × (V + 0.59) = (0.21 + 0.06) × 0.59; R2 = 0.994) (dashed line) (least squares method). In contrast, all measurement data are well-represented by a

double-hyperbolic F-V equation (V = (0.21−F)×0.59
F+0.06 − (1 −

1
1+e−154.65×(F−0.82×0.17) ); R2 = 0.999) (solid line) (least squares method). (B) Sigmoidal transition of the

force-velocity relationship from concentric (CON) to eccentric (ECC) dynamic muscle actions (open circles). Data were obtained from Figure 7 in Edman (1988a)

using specialized software (ImageJ 1.51q8, NIH, United States). This modified version represents the eccentric and concentric force-velocity relationship of a single

muscle fiber from the anterior tibialis muscle of a frog. A double-hyperbolic function was fitted to the concentric data (see above) and a hyperbolic function was fitted

to the eccentric data (V =
0.028×(1.000−F)

2×1.000−F+(−0.384)
; R2 = 0.990) (least squares method). Note the drastic differences in force around the isometric force (open square)

(0.90–1.20 P0) with only minimal changes in contraction velocity (1.8% of maximal unloaded shortening velocity).

(Iwamoto et al., 1990), skinned frog single muscle fibers
(Lou and Sun, 1993), intact frog muscle spindles (Edman et al.,
2002), intact mammalian single muscle fibers (Edman, 2005;
Colombini et al., 2009) and fiber bundles (Roots et al., 2007),
isolated mammalian skeletal muscles (Mansson et al., 1989),
proximal and distal parts of mammalian skeletal muscles in situ
(Rijkelijkhuizen et al., 2003), and even in smooth muscles
(Wang et al., 1994). The first study evaluating whether the
double-hyperbolic F-V relation might also be found in whole
mammalian skeletal muscle in situ was that conducted by
Devrome and MacIntosh (2007). A rat’s medial gastrocnemius
muscle was surgically isolated while keeping the innervation,
blood supply, temperature, and muscle origin intact. The
sciatic nerve was electrically stimulated to elicit maximal muscle
contractions against different loads ranging from nearly unloaded
to maximal isometric force. The F-V relationship was found to
display a double-hyperbolic shape, with a breakpoint located at
88% of P0 and 7.3% of Vmax (Devrome and MacIntosh, 2007).
After a fatiguing protocol, both the P0 and Vmax values were
significantly decreased, though the double-hyperbolic nature of
the F-V relation was maintained. With fatigue the breakpoint
was located at the same relative value of P0, but increased to
8.3% of Vmax (Devrome and MacIntosh, 2007). These findings
have recently been confirmed by the same authors, with the
breakpoint of the double-hyperbolic F-V relationship located at
90% of P0, but this time it was decreased to 80% of P0 after a
fatiguing protocol (Devrome and MacIntosh, 2018).

Importantly, the evidence demonstrating the double-
hyperbolic shape of the F-V relationship lends support to the
vast number of studies presented in this review that show a linear
F-V relationship at forces greater than 40% of P0. When force
values in the high-force/low-velocity region are substantially
lower than those predicted by a rectangular hyperbola, the F-V

relation may give the false impression of being linear between 40
and 100% of P0.

DEVIATIONS FROM HILL’S
RECTANGULAR HYPERBOLA AT VERY
LOW FORCES

The previous sections focused on the deviations from the
rectangular hyperbola observed in the high-force/low-velocity
region of the F-V relation. Nonetheless, deviations from the
rectangular hyperbola have also been found at very high
contraction velocities (Edman, 1979; Claflin and Faulkner, 1985).
Maximum shortening velocity or the velocity of unloaded
shortening (i.e., at zero load) is usually extrapolated from the
F-V data (i.e., Vmax) assuming a hyperbolic relation (Hill, 1938).
However, a more direct method to determine it is the ‘slack test,’
by which the maximum shortening velocity against zero load
(i.e., V0) can be measured in isolated muscles or muscle fibers
(Edman, 1979), but also during in vivomeasurements conducted
in humans (Sasaki and Ishii, 2005; Sasaki and Ishii, 2010). V0 is
an important measure in that it reflects the kinetic properties of
actomyosin interactions (Schiaffino and Reggiani, 1996; Bottinelli
and Reggiani, 2000). However, V0 has been found to be greater
than Vmax in whole muscles (Edman, 1979; Claflin and Faulkner,
1985) due to the fact that V0 is a measure of the maximal
unloaded shortening velocity of the fastest muscle fibers, whereas
Vmax is a function of the F-V relationship of all muscle fibers,
provided that it is estimated from F-V data obtained at moderate
loads. Thus, Vmax and V0 are similar when measurement data
are obtained at sufficiently low forces (Edman, 1979), while
substantial differences may be found whenVmax is obtained from
F-V points relatively far from V0 (Claflin and Faulkner, 1985).
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Furthermore, high fiber type heterogeneity may augment the
differences between Vmax and V0 values because the presence
of slower fibers would influence Vmax estimations while not
having any effect on V0 values (Josephson and Edman, 1988).
This phenomenon may be explained by the differences in
contraction velocity of slow- and fast-twitch fibers: since slower
fibers cannot keep up with the contraction rate of their fast-
twitch neighbors, they would not be able to contribute to the
total muscle’s force production at high contraction velocities.
Alternatively, one could speculate that the presence of slower
muscle fibers might reduce the contraction velocity of the whole
muscle since fibers are mechanically connected through the
muscle’s extracellular matrix, thus facilitating a more uniform
shortening of the entire muscle (Claflin and Faulkner, 1989).
For this reason, the maximal unloaded shortening velocity of
the whole muscle might be slightly lower (∼15%) than the
maximal unloaded shortening velocity of its fastest motor units
(Claflin and Faulkner, 1989), although slow fibers can shorten
above their V0 values through the assisting forces provided by
fast fibers simultaneously contracting in their vicinity (Edman,
2014). In any case, from the underestimation of the true maximal
shortening velocity it follows that the F-V relationship is not
strictly hyperbolic in the low-force region either (<0.05 P0)
(Close and Luff, 1974; Julian et al., 1986; Josephson and Edman,
1988), which was also acknowledged by Hill (1970, pp 29–31).

STUDIES ON THE IN VIVO F-V
RELATIONSHIP IN HUMANS

It is important to note that, in contrast to in vitro studies
of isolated single muscle fibers or whole muscles, several
factors other than cross-bridge kinetics influence the observed
F-V relationship under in vivo conditions. These factors
include neural activation, the mechanical properties of in-
series elastic components, lateral force transmission between
neighboring muscle fibers, muscle architecture, lever arms of
joints, coordination of agonist and antagonist muscles and
other possible factors that might be outside of our current
understanding on muscle contraction and function. For example,
it has been demonstrated that muscle moment arm length
influences the torque-velocity relationship (Nagano and Komura,
2003). A longer moment arm requires muscle shortening velocity
to be greater at any given joint angular velocity, thus forcing
the muscle to act in a lower region of its F-V relationship.
This detrimental effect on muscle force is compensated by the
longer moment arm during slow joint angular velocities, and
consequently greater joint moments were observed at slow joint
angular velocities compared with having a shorter moment arm.
In contrast, the decreasedmuscle force could not be compensated
by the longer moment arm during fast joint angular velocities,
resulting in lower joint moments (Nagano and Komura, 2003).
These considerations notwithstanding, the evaluation of the
in vivo F-V relationship is still of great relevance for muscle
and exercise physiology, as the F-V curve reflects human
performance (Dorel et al., 2005; Cross et al., 2015; Jimenez-
Reyes et al., 2016; Giroux et al., 2017; Alcazar et al., 2018c) and

may be used to guide training practice (Samozino et al., 2012;
Morin and Samozino, 2016).

Deviations from the rectangular hyperbola are not unusual
in the in vivo F-V relationship in humans during either single-
(Komi, 1973; Thorstensson et al., 1976; Perrine and Edgerton,
1978; Wickiewicz et al., 1984; Froese and Houston, 1985; Dudley
et al., 1990; Finni et al., 2003; Chino et al., 2008; Fontana Hde
et al., 2014) or multi-joint muscle actions (Sargeant et al., 1981;
Vandewalle et al., 1987; Beelen and Sargeant, 1991; Bosco et al.,
1995; Rahmani et al., 2001, 2018; Hintzy et al., 2003; Macaluso
and De Vito, 2003; Pearson et al., 2004; Yamauchi et al., 2007,
2009, 2010; Rejc et al., 2010; Bobbert, 2012; Samozino et al.,
2012, 2014a,b; Cuk et al., 2014, 2016; Zbinden-Foncea et al.,
2014; Jaric, 2015; Bobbert et al., 2016; Garcia-Ramos et al., 2016,
2018; Giroux et al., 2016; Alcazar et al., 2017, 2018c; Avrillon
et al., 2017; Banyard et al., 2017; Fernandes et al., 2017; Padulo
et al., 2017; Riviere et al., 2017; Zivkovic et al., 2017a,b; Navarro-
Cruz et al., 2019). In both cases, the reason for the deviations
was speculated to be a central inhibitory mechanism (Perrine
and Edgerton, 1978; Wickiewicz et al., 1984; Yamauchi et al.,
2007). This hypothesis was tested by several studies evaluating
the in vivo human F-V relationship during isokinetic knee
extensions elicited by maximal voluntary muscle actions versus
neuromuscular electrical stimulation or superimposed electrical
stimulation. No alterations in voluntary activation were observed
during isometric or concentric knee extensions (Dudley et al.,
1990; Westing et al., 1990, 1991; Pain and Forrester, 2009). These
observations conflict with the hypothesis of neural inhibition
being the factor explaining the deviation of force values from the
hyperbolic F-V relationship at low concentric velocities. In other
studies, the F-V relationship of plantar flexor and knee extensor
muscles were adequately fitted by Hill’s hyperbolic equation
(Hauraix et al., 2013, 2015, 2017). Nevertheless, joint angular
velocities corresponding with the high-force/low-velocity region
of the F-V relationship (below ∼30◦

·s−1) were not evaluated,
and thus the existence of a double-hyperbolic F-V relationship
was not assessed.

Interestingly, two studies focused specifically on the high-
force/low-velocity region of the F-V relationship in the human
knee extensor muscles (Harris and Dudley, 1994; Seger and
Thorstensson, 2000). The F-V data presented by Harris and
Dudley (1994), from both voluntary and electrically stimulated
muscle actions, might correspond well with a double-hyperbolic
F-V relationship. An upward-concave curvature in the high-
force/low-velocity region of the F-V relationship was more
evident at more extended compared to more flexed knee joint
positions (i.e., at shorter muscle lengths) (Harris and Dudley,
1994), a feature previously also observed by Edman in isolated
single muscle fibers (Edman, 1988a). In the study of Seger
and Thorstensson (2000), the authors registered concentric
and eccentric torque values at very low angular velocities
(0, 10, 20, and 30◦

−·s−1). Their findings from both voluntary
and electrically evoked muscle actions agreed with Edman’s
observation of a sigmoidal transition zone between the concentric
and eccentric part of the F-V relationship (Edman, 1988a). In
this case, considering that Vmax values during knee extension
have been reported to be as high as 750◦

·s−1 in humans
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(Hauraix et al., 2017), angular velocity values varied by only 2.6%
of Vmax over a relatively wide range of torque values (Seger
and Thorstensson, 2000), which is similar to the 1.8% reported
by Edman in isolated single muscle fibers (Edman, 1988a).
Evidence of a double-hyperbolic F-V relationship during single-
joint muscle actions can also be inferred from other studies
(Dudley et al., 1990; Yeadon et al., 2006; Forrester et al., 2011).

By contrast, the in vivo human F-V relationship during
multi-joint muscle actions has been reported to follow a strictly
linear pattern (Bobbert, 2012). However, recent findings suggest
that the observed linearity may result from failure to obtain
experimental data in the extreme (high-force/low-velocity and
low-force/high-velocity) regions of the F-V curve. Indeed, Hahn
et al. (2014) demonstrated that when a low enough force or
high enough velocity is evaluated, the F-V relation becomes
hyperbolic in the range of moderate to low forces. With regard
to the high-force/low-velocity region, a recent study measured
the forces realized during multi-joint exercise performed over a
small section of the ROM covering the optimal angle (Alcazar
et al., 2018b). This setup enabled the recording of peak force
values as high as 89–96% of P0 at corresponding velocities
as low as 1–4% of Vmax. The hyperbolic F-V equation was
observed to overestimate isometric force values by 13%, with
measured F-V data deviating below the rectangular hyperbola
at forces above 90% of P0 and velocities below 5% of Vmax

(Alcazar et al., 2018b). Collectively, these findings suggest that
apparently linear F-V relationships observed during multi-joint
exercises may be a misconception resulting from the relatively
narrow range of concentric forces that is usually evaluated
(∼40–90% of P0). In this sense, while a linear fitting might
be an excellent representation of the F-V relationship at forces
above ∼40% of P0 due to the deviation of F-V values below
the rectangular hyperbola above 90% of P0, the F-V values
will deviate progressively from the linear model below ∼40%
of P0 as they approach Vmax. In contrast with the latter, a
recent study concluded that the F-V relationship during a multi-
joint exercise (bench press) was linear even when a set of
loads ranging from 12 to 83% of P0 was considered (Cuevas-
Aburto et al., 2018). The authors based their conclusion on
the observation of individual R2 values ranging from 0.76 to
1.00, while no comparison was conducted between linear and
hyperbolic models. By a careful analysis of the data from one
subject presented in Figure 1 of that study Cuevas-Aburto
et al. (2018) we observed that the fit of a hyperbolic model
was slightly superior to a linear model (R2 = 1.000 vs. 0.997;
standard error of the estimate = 0.012 vs. 0.045), although
they also might be considered to be similar. However, the
linear model underestimated P0 (−7%) and V0 (−5%) and
overestimated Wmax (+4%), optimal force (+6%) and optimal
velocity (+12%) compared with the hyperbolic model. These
discrepancies are likely to be much higher in those individuals
showing inferior R2 values from the linear model (i.e., R2 = 0.76–
0.95). Therefore, although linear models might be adequate
in some individuals because of their feasibility and similar
output results compared with hyperbolic models, the F-V
relationship is in fact curvilinear in the range of moderate-to-
low forces.

Another factor that may influence the shape of F-V relation
during in vivo measurements is the joint angle at which F-V
data are obtained. Firstly, joint angles should not be inferred
from dynamometer crank angles during isokinetic testing due
to potential differences between both measures (up to 20◦)
(Pain et al., 2013). Secondly, it is important to note that due
to the influence of the in series elastic component of the
muscle-tendon complex (Reeves and Narici, 2003) it is not
possible to infer identical muscle length from equivalent joint
angles when measurements are recorded at different contraction
velocities. Tendons are visco-elastic structures that exhibit
both rate-dependent (viscous) and rate-independent (elastic)
properties. Several ultrasound studies (Hauraix et al., 2013, 2015,
2017; Fontana Hde et al., 2014) noted that tendons undergo
lengthening during the early muscle force development until
muscle force reaches its peak. When muscle force decays tendons
shorten releasing the elastic energy previously stored (Finni
et al., 2003; Earp et al., 2017). This mechanism of tendon recoil
enables muscle fascicles to shorten at lower velocities at given
muscle-tendon unit velocities, which enhances force production.
Muscle-tendon interaction also implies that muscle length at
a given joint angle is shorter under higher forces (i.e., slower
velocities) because of the greater tendon lengthening. Other
structures within muscles exhibiting spring-like properties may
amplify this effect (e.g., actomyosin cross-bridges, actin and
myosin filaments, titin, and the connective tissue scaffolding of
the extracellular matrix) (Roberts, 2016). Fortunately, ultrasound
studies have shown that peak torques during concentric knee
extensions and plantar flexions at different angular velocities
occurred when vastus lateralis and medial gastrocnemius fascicle
lengths, respectively, were close to their optimal fascicle lengths
(Ichinose et al., 2000; Fontana Hde et al., 2014). Thus, collecting
F-V data at the point of peak torque may allow for the effects
of velocity to be studied in isolation. In any case, the F-V
relationship obtained from peak values or angle-specific values
has been reported to display essentially the same shape (with
minor differences in curvature), and differ only in magnitude
(Wyatt and Edwards, 1981; Yates and Kamon, 1983; Westing
et al., 1988; Westing and Seger, 1989; Hortobagyi and Katch,
1990; Webber and Kriellaars, 1997).

With the advent of modern imaging techniques, increased
efforts have been made to study the F-V relationship in vivo
through the combined use of ultrasound and dynamometry
(Ichinose et al., 2000; Finni et al., 2003; Fontana Hde et al., 2014;
Hauraix et al., 2015, 2017). However, the estimation of fascicle
force from external joint torque relies on several important
assumptions. First, moment arms and the relative contribution
of the target muscle to external force must be assumed to
be constant across subjects, although recent research points
to substantial inter-individual differences in these parameters
(Massey et al., 2015; Trezise et al., 2016). Even within subjects,
the relative contribution of individual agonist muscles or muscle
fascicles to external force production at different contraction
velocities might not be the same, because their F-V properties
may differ due to distinct characteristics of muscle architecture
and ATPase activity (Barany, 1967; Spector et al., 1980). The
activity of antagonist muscles lowering joint torque is usually
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not considered. Moreover, muscle architecture and fascicle
behavior along the muscle are presumed to be uniform, in
spite of reports demonstrating great intramuscular heterogeneity
(Trezise et al., 2016; Moo et al., 2017). These differences can
even be magnified by the arrangement of muscles around the
joints (Lieber and Friden, 2000). In addition, it should be noted
that force produced by a fascicle cannot be directly inferred
from the degree of its shortening: if the muscle fibers under
investigation were shortening at their maximal unloaded velocity
they would not transmit forces to their myotendinous junctions.
Indeed, studies in prepared frog muscles suggest that single
fibers might even be shortening at velocities much greater than
their unloaded contraction velocities, due to assisting force
provided by the fastest fibers (Edman, 2014). In the light of
these methodological challenges, the validity of muscle fascicle
F-V relationships as estimated from ultrasound measurements
must be doubted. The inability of ultrasound measurements
to capture out-of-plane movements of muscle fascicles or the
lack of a fixed frame of reference should also be considered
(Karamanidis et al., 2005).

On the other hand, the effect of different muscle lengths on
the double-hyperbolic F-V relationship has not been thoroughly
studied yet, although Hahn et al. (2014) found that the curvature
of the F-V relationship varied across different knee joint angles.
This may be due to the history dependence of muscle contraction
(Rassier andHerzog, 2004), by which force depression is observed
after active muscle shortening (Edman et al., 1993; Herzog
and Leonard, 1997; De Ruiter et al., 1998). This effect is
more pronounced when greater mechanical work is performed
(Herzog et al., 2000) and may lead to a higher curvature when
the F-V data are obtained at shorter muscle lengths after active
muscle shortening (Racz et al., 2002; Hahn et al., 2014).

THE ECCENTRIC F-V RELATIONSHIP

The eccentric portion of the F-V relationship has not been
studied as extensively as the concentric part. However, eccentric
muscle function is vital during various activities of daily living
such as absorbing energy when landing from a jump or
lowering an object or body mass, or for proper antagonist
muscle function. Early studies conducted in animal muscles
showed that the eccentric portion of the F-V relation follows
a convex upward curve with force values rising substantially
above isometric levels in the range of low negative contraction
velocities, while force values remain practically unchanged in the
range of moderate-to-high negative contraction velocities (Levin
and Wyman, 1927; Katz, 1939). Edman (1988a) described the
transition from concentric to eccentric forces as a sigmoidal
function with inflection at P0, and noted that force values
increased steeply at low negative velocities (up to 1.2 P0),
but smoothly at moderate-to-high negative velocities (up
to 1.6–1.8 P0) (Figure 6B). These findings were confirmed
by other studies (Lannergren, 1978; Stienen et al., 1992;
Curtin and Edman, 1994; Krylow and Sandercock, 1997;
Rijkelijkhuizen et al., 2003). A specific, albeit rarely used,
hyperbolic equation has been proposed to describe the eccentric

F-V relationship in the range of forces between 1.0 and 1.6 P0
(Mashima et al., 1972):

V =
b

′

(P0 − P)

2P0 − P + a′
(3)

where a′ and b′ are specific constants of the eccentric
F-V relationship with the dimensions of force and velocity,
respectively. Thus, the ratio a′/P0 indicates the curvature of
the eccentric F-V relationship. Other hyperbolic equations for
modeling the eccentric F-V relationship with an asymptote set
at 1.5 P0 have been reported (Cole et al., 1996).

To our knowledge, the first study evaluating the eccentric
portion of the F-V relationship in humans was that conducted
by Komi (1973) using an isokinetic dynamometer that measured
force during eccentric and concentric elbow flexions. The results
provided by Komi showed eccentric force values approximately
20–30% greater than the estimated maximal isometric force,
with force rising more steeply at lower compared with higher
negative velocities. This enhanced eccentric force response was
accompanied by similar EMG values being recorded in agonist
and antagonist muscles at the different concentric and eccentric
velocities (Komi, 1973). Similar results were reported by Rodgers
and Berger (1974) soon after the study by Komi. In women,
by contrast, maximal eccentric force was only 10% greater than
maximal isometric force (Griffin, 1987).

Studying both men (Westing et al., 1988) and women
(Westing and Seger, 1989) performing knee extensions, Westing
and colleagues found eccentric torque values to be consistently
greater by 4–18% than isometric ones, although neither
differences in peak nor angle-specific torque values reached
statistical significance. Apparently greater maximal eccentric
torque values compared with the isometric torque were
also reported during elbow flexion and extension (16–24%)
(Hortobagyi and Katch, 1990), forearm supination (8–25%)
(Thomson and Chapman, 1988), ankle dorsiflexion (27%)
(Reeves and Narici, 2003), knee extension (14–20%) (Holder-
Powell and Rutherford, 1999; Finni et al., 2003), and multi-joint
leg extension (26–30%) (Hahn et al., 2010); as compared to this
large body of evidence, only one study reported knee extension
moments to be 5% lower in maximal eccentric as compared
to maximal isometric contractions (Webber and Kriellaars,
1997). The observation that in studies performed in humans
maximal eccentric force values were consistently lower than those
reported in animal studies (∼1.3 vs. ∼1.6–1.8 P0) led several
researchers to propose a central inhibitory mechanism impairing
in vivo eccentric force production (Perrine and Edgerton, 1978;
Wickiewicz et al., 1984; Westing et al., 1988; Westing and Seger,
1989; Hortobagyi and Katch, 1990; Yamauchi et al., 2007).

To elucidate such mechanisms, various investigations have
studied the F-V relationship using electrical muscle stimulation
applied either in isolation or superimposed on voluntary
eccentric contractions. These studies confirmed that torques
produced during electrically induced/assisted contractions were
significantly greater than those achieved in maximal voluntary
contractions (Dudley et al., 1990; Westing et al., 1990; Seger
and Thorstensson, 2000; Pain et al., 2013). In addition, some
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studies found EMG values to be 10–30% lower during voluntary
eccentric compared with velocity-matched concentric muscle
actions (Westing et al., 1991), although this was not the case
in other studies (Reeves and Narici, 2003; Chino et al., 2008).
Lending further support to the neural inhibition hypothesis,
both the eccentric F-V relationship obtained from electrically
induced/assisted contractions and the EMG-corrected eccentric
F-V relationship obtained from voluntary contractions were
found to be more similar to that observed in animal studies
(Dudley et al., 1990; Pain and Forrester, 2009; Pain et al., 2013).
Discrepant torque augmentation through electrical stimulation
observed in elite athletes and sedentary subjects (Amiridis
et al., 1996) further suggests that neural inhibition of eccentric
contractions may depend on the training status. Confirmatively,
neuromuscular activation (Aagaard et al., 2000) and force
production in eccentric contractions (Spurway et al., 2000)
were improved after resistance training. Recently, Hahn (2018)
presented data on the effect of test familiarization on eccentric
muscle strength, which showed that torques were enhanced up
to 20% after four familiarization sessions, with some subjects
reaching eccentric torque values 40% greater than the isometric
torque. In addition to learning effects, the preceding state (i.e.,
at rest vs. submaximally/maximally activated) of muscle may
influence eccentric performance (Hahn, 2018). Indeed, when
muscle actions started from a resting state or a low preload, the
muscle first shortened presumably stretching the tendon, even
if joint rotation indicated the onset of the eccentric contraction
(Hahn, 2018). In such contractions, eccentric forces may very
well be similar or even lower than the maximal isometric force,
since they actually correspond to a concentric muscle action.
Therefore, a maximal activation state (≥95% of the isometric
force) preceding each eccentric contraction is recommended
for proper testing (Hahn, 2018). Another methodological
consideration to keep in mind is that, while registering angle-
specific force values during eccentric contractions may help to
acquire data at similar muscle length, this may differ from the
muscle length recorded at the same joint angle during isometric
and concentric contractions (Reeves and Narici, 2003).

Another explanation that may contribute to the lower forces
observed in in vivo as compared to in vitro studies is related to
temperature effects. Studies on the eccentric portion of the F-V
relationship in different isolated muscle preparations are usually
conducted at temperatures below 25◦C (Lannergren, 1978;
Edman, 1988a; Stienen et al., 1992; Curtin and Edman, 1994). In
this sense, De Ruiter and De Haan (2000, 2001) and Ruiter et al.
(2000) found maximum eccentric force values to be∼40% higher
than maximal isometric ones when the human adductor pollicis
muscles was tetanically activated at physiological temperatures,
while they were 62% higher than the isometric force when
muscle temperature was lowered to 22.3◦C. Thus, Cook and
McDonagh (1995) found eccentric force values 80% greater
than the isometric force in tetanically activated human first
dorsal interosseous muscles at 27.6◦C. In addition, eccentric
torque enhancement may also be related to the amplitude of
muscle stretch. A positive relationship between stretch amplitude
and eccentric torque enhancement has been demonstrated for
electrically evoked (Cook and McDonagh, 1995) and maximal

voluntary muscle actions (Hahn et al., 2014). Finally, maximal
eccentric forces appear to level off or decrease beyond a certain
level of lengthening velocity (Dudley et al., 1990; Holder-
Powell and Rutherford, 1999; Hahn et al., 2014), suggesting a
velocity-dependence of eccentric torque enhancement. In this
regard, reduced cortical and spinal excitability during eccentric
contractions (Duchateau and Enoka, 2016) may still be present
in novice subjects and/or above a certain threshold of muscle
lengthening velocity.

MOLECULAR INSIGHTS INTO THE F-V
RELATIONSHIP

The sliding filament theory is a physico-chemical theory
accounting for the mechanical, chemical, and structural features
of skeletal muscle that was formulated by Huxley (1957).
The theory was inspired by previous evidence showing the
microscopic structure of skeletal muscle and chemical reactions
observed in glycerinated muscle preparations (Szent-Gyorgyi,
2004), and the relationship observed between force, velocity,
and heat production (Hill, 1938). According to Huxley’s theory,
muscle contraction is due to cross-bridges being formed between
actin and myosin filaments following muscle excitation and
energy availability. This leads to the movement of actin relative
to myosin filaments, until the link is broken due to a chemical
reaction (Huxley, 1957). Huxley postulated that “the total tension
in the muscle will be the sum of the tension generated by
all the contraction sites within one half-sarcomere” (Huxley,
1957). According to the theory, the decrease in force observed
at increasing contraction velocity is caused by: (1) the increasing
likeliness of pairs of actin and myosin myofilaments passing
each other without cross-bridges being formed; and (2) the
increasing proportion of links formed between actin and myosin
that will not be disassociated in time, generating a force in
the opposite sense of muscle shortening. Then, the maximal
velocity of unloaded shortening is found at the point where
negative forces equal positive forces, and net force is zero
(Huxley, 1957). The agreement between the experimental F-V
data reported by Hill (1938) and the sliding filament theory
(Huxley, 1957) was decisive for the acceptance of the theory.
For that purpose, the rate constants f (rate constant for
the formation of cross-bridges) and g (rate constant for the
detachment of cross-bridges) were given specific values that
varied depending on the distance between the active site on
the actin filament and the equilibrium position of the sliding
element on the myosin filament (Huxley, 1957; Gordon et al.,
1966; Podolsky et al., 1969; Huxley and Simmons, 1971). Thus,
it is currently accepted that muscle contraction results from
the relative sliding of two sets of filaments arranged in parallel
in each sarcomere: the thick filament (in skeletal muscles
mainly composed of the motor protein myosin II) and the
thin filament (containing actin filaments). Upon activation,
myosin heads repeatedly attach to actin, stroke and then
detach again, determining muscle performance (i.e., force),
which decreases with increasing shortening velocities in a
hyperbolic manner.
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FIGURE 7 | Molecular mechanisms accounting for the double-hyperbolic shape of the F-V relationship. Data were obtained from Figure 4 in Piazzesi et al. (2007)

using specialized software (ImageJ 1.51q8, NIH, United States). In this modified version: (A) Cross-bridge kinetics (detachment – solid line – and attachment –

dashed line – rate constants) are presented as a function of velocity. (B) The number of attached motors (solid line) varies with velocity, following a nearly hyperbolic

shape, while the average force per attached motor (discontinuous line) decreases below a certain velocity threshold. These events explain the deviation from the

rectangular hyperbola in the high-force/low-velocity region of the force-velocity relationship (shaded area).

However, as shown previously, deviations from the
rectangular hyperbola in different portions of the F-V relation
have been found. These deviations may be due to the violation
of one or more of three central assumptions regarding the
kinetics of cross-bridge formation (Seow, 2013): (1) the
detachment rate is linearly proportional to the shortening
velocity; (2) the attachment rate is independent of shortening
velocity; and (3) force per cross-bridge declines linearly with
shortening velocity. In fact, recent evidence has shown that these
assumptions may be incorrect in the high-force/low-velocity
portion of the F-V relationship. Piazzesi et al. (2007) conducted
a series of experiments with X-ray interference and mechanical
measurements of intact single muscle cells to evaluate the
molecular basis of the F-V relationship in skeletal muscle.
They found that the detachment rate decreased linearly with
decreasing shortening velocity, but never dropped to zero
(Figure 7A) (Piazzesi et al., 2007), which contrasts with the
original model in which the detachment rate was zero at P0
(Huxley, 1957). In addition, the attachment rate of myosin
motors increased with shortening velocity until ∼0.5 P0, below
which it stabilized and remained constant at faster shortening
velocities (Figure 7A) (Piazzesi et al., 2007), whereas the original
model assumed that the attachment rate was constant across
various shortening velocities from zero load to P0 (Huxley, 1957).
Finally, the force exerted per cross-bridge (expected to decrease
with shortening velocity) was found to be nearly constant at
intermediate and low velocities (Figure 7B) (Piazzesi et al.,
2007). These observations gave support to the double-hyperbolic
F-V relationship.

To test whether the double-hyperbolic F-V relation observed
in skeletal muscles and single muscle fibers (Edman, 1988a;
Devrome and MacIntosh, 2007) was also evident at the single
sarcomere level, an in vitro motility assay system was developed
to investigate the steady-state F-V relation derived from the
interaction between actin and myosin molecules (Chaen et al.,
1989; Oiwa et al., 1990; Ishii et al., 1997). F-V data resembled
a hyperbola at forces lower than 0.8 P0, but fell below the
hyperbola at forces greater than 0.8 P0 (Ishii et al., 1997). The

F-V relationship was found to be analogous in shape to the
double-hyperbolic F-V relationship observed in single muscle
fibers (Edman, 1988a). Because of the small number (∼4–10) of
myosin molecules involved in the bead movement, the authors
suggested that the double-hyperbolic F-V relation might be
intrinsic to the kinetic properties of the individual cross-bridges
(Ishii et al., 1997). Conflicting with this hypothesis, other studies
have provided evidence to show that the shape of the F-V relation
is rather influenced by the change in the number of attached
cross-bridges and the force created by each of them. Edman
(1993) conducted a series of experiments in which fiber force
and stiffness were recorded while fibers shortened at various
velocities during tetanic contraction. Since stiffness indicates the
proportion of active cross-bridges within the fiber (Ford et al.,
1981), the resultant plot of stiffness against force allowed for
conclusions about the nature of sarcomeric force production: the
proportion of attached cross-bridges increased with increasing
force but beyond a certain breakpoint (corresponding to 0.8 P0)
the effect of greater cross-bridge attachment was attenuated by a
decreasing force per cross-bridge formed, which would explain
the double-hyperbolic F-V relation observed in skeletal muscles
(Edman, 1993). These findings were later confirmed in both
rested and moderately fatigued intact single fibers (Curtin and
Edman, 1994). Piazzesi et al. (2007) found a 40% increase in
the number of cross-bridges formed between 0.8 and 1.0 P0,
accompanied by a 12% decrease in the force produced by each
myosin stroke (Figure 7B) (Piazzesi et al., 2007). Thismodulation
may explain the bend of the F-V relationship at high forces and
its appearance as a double-hyperbolic curve. In line with this,
Mansson (2010) presented a four-state cross-bridge model that
considered both the velocity-dependent attachment rate and the
variation of the proportion of cross-bridges attached to the actin
filaments at different force-generating states. The proportion of
cross-bridges in a low force-generating state decreased, while
that of cross-bridges in a high force-generating state increased
between 0.85 and 1.0 P0 (Mansson, 2010), which led to a net
increase in the number of cross-bridges concomitant with a
decrease in the average force exerted per cross-bridge.
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On the other hand, enhanced force production during
eccentric contractions may be due to an increased number of
cross-bridges attached to actin, increased force per cross-bridge,
or a combination of these (Rassier, 2017). Several studies have
reported an increased number of myosin heads attached to
actin during eccentric compared with isometric contractions
(Linari et al., 2000; Brunello et al., 2007). This would be
facilitated by the attachment of the second motor domain of the
myosin, which remains inactive under isometric and concentric
conditions, but is activated with stretch. It is interesting to
note that, despite the increased number of attached cross-
bridges, ATP consumption is actually lower during eccentric
contractions compared with isometric contractions (Linari et al.,
2003). This is because myosin heads detach from actin by a
strain-dependent process that does not require ATP splitting
(Piazzesi et al., 1992), and thus ATP use during active muscle
lengthening is attributed to the activity of the Ca2+ pump
(Linari et al., 2003). In support of the theory on multiple force-
generating states of cross-bridges, myosin heads that are only
weakly bound to actin (pre-power stroke state) under isometric
conditions have been reported to switch to a strong binding
state with stretch (Getz et al., 1998; Linari et al., 2004; Rassier,
2008), leading to an increased force per cross-bridge during
lengthening contractions. Notably, having a larger fraction of
myosin heads in a weak binding state under isometric conditions
has been related to a greater force production during active
muscle lengthening, which depended on the myosin heavy chain
isoform (Linari et al., 2004). Regardless the cross-bridge-related
mechanism, force enhancement in lengthening contractions has
been described to occur in two phases (Getz et al., 1998; De
Ruiter and De Haan, 2000, 2001; Pinniger et al., 2006): firstly,
there is a steep and substantial increase in force until a critical
amount of stretch is reached (phase I), beyond which cross-
bridges detach mechanically from actin (phase II) and either a
smooth and modest increase in force or no change can be noted.
Consequently, detached cross-bridges must reattach rapidly
to actin to keep producing force. Fortunately, reattachment
during muscle lengthening occurs at a higher rate compared
with reattachment under isometric or concentric conditions
(Lombardi and Piazzesi, 1990). Force exerted at the transient
point between phases I and II increases rapidly with increasing
velocity (detachment rate-dependent) until it levels off beyond a
lengthening velocity of ∼1.6–2.0 P0. By contrast, force exerted
during the second phase as a consequence of cross-bridge
reattachment decreases as a function of lengthening velocity
(attachment rate-dependent).

The mechanism explaining the deviation of the F-V curve
from the rectangular hyperbola in the low-force/high velocity
region is less clear since no experimental data concerning the rate
constants at very high velocities (i.e., <0.05 P0) exist. According
to Huxley’s theory, maximal unloaded shortening velocity is
attained when the resulting force from the attached cross-bridges
pulling in the right sense and those negatively strained – pulling
in the opposite sense – is zero (Huxley, 1957). Thus, the higher
the ability of the myosin heads to rapidly detach from actin, the
higher the maximal unloaded shortening velocity. This ability
is controlled by the hydrolysis of ATP (with the release of Pi

and ADP) and the new binding of ATP, which is predominantly
influenced by the activity of myosin ATPase (Barany, 1967;
Schiaffino and Reggiani, 1996) and favored by the negative
strain of the myosin lever arm (i.e., myosin mechanosensing)
(Caremani et al., 2015). However, contrary to the expectation
of high metabolic costs that would result from this mechanism,
the rate of ATP splitting is low during rapid or unloaded
muscle shortening (Kushmerick et al., 1969; Rall et al., 1976;
Homsher et al., 1981). It has recently become clear that the
thick filaments have a second mechanosensing mechanism that is
distinct from that of the individual myosin heads, and that is also
independent from the thin filament-based calcium-dependent
regulatory mechanism of muscle contraction (Irving, 2017).
Thick filaments remain in a structural and functional OFF state at
rest, with the two heads of the myosin locked in a conformation
in which they can neither bind to actin nor hydrolyze ATP
even in the presence of high intracellular calcium concentration
(Irving, 2017). Thick filaments are progressively switched ON
(i.e., myosin heads become available to cross-bridge formation)
with increasing mechanical stress (Linari et al., 2015; Fusi et al.,
2016). This thick filament-based muscle contraction mechanism
would be especially important to control the metabolic cost of
muscle contraction. Thus, the number of myosin heads attached
duringV0 has been found to be as low as∼1–6% of those attached
during P0 (i.e., ∼1–4 motors), thereby reducing the metabolic
cost of muscle contraction, which is achieved by switching
OFF the majority of myosin heads despite high intracellular
calcium concentration (Fusi et al., 2017). The exact mechanism
of this thick filament mechanosensing is poorly understood,
since scant data of the molecular structure of the thick filament
exist. Other proteins such as titin and myosin binding protein-C
have been suggested as potential regulators of mechanosensitivity
(Irving, 2017).

The mechanosensing of the thick filament is likely to be
associated with the deviation of F-V data from the rectangular
hyperbola at forces below 0.05 P0 and the differences between
Vmax and V0 values (Edman, 1979; Claflin and Faulkner, 1985).
To better understand this relationship, it is important to be aware
of motor unit recruitment patterns during voluntary muscle
actions. During ramp contractions, motor units are recruited
in dependency of force demands based on the size of the
motoneuron soma (Henneman’s or size principle) (Henneman,
1957; Henneman et al., 1965). Thus, motor units are orderly
recruited (i.e., from small to large motor units) at a certain
and reproducible force threshold while motor unit firing rates
progressively increase as the muscle produces more force
(Desmedt andGodaux, 1977, 1978). However, in situations where
rapid force development is required (i.e., ballistic condition),
the recruitment pattern may vary (Hodson-Tole and Wakeling,
2009). Ballistic muscle actions are characterized by initially
high firing frequencies (Oishi et al., 1988) decreasing during
contraction (Desmedt and Godaux, 1977), and a substantial
decrease of recruitment thresholds of larger motor units
compared with ramp contractions (Desmedt and Godaux, 1977,
1978; Yoneda et al., 1986; Harwood and Rice, 2012). This event
allows an earlier recruitment of most motor units even before
force production can be detected, with some reversals in the order
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of recruitment between smaller and larger motor units (Desmedt
and Godaux, 1977; Yoneda et al., 1986). The early activity of
large motor units does not necessarily conflict with Henneman’s
principle. Since larger motor units possess faster conduction
velocities, they may produce force earlier than smaller motor
units even if recruited at a slightly later time (Desmedt and
Godaux, 1979). The compression of the range of motor unit
recruitment thresholds and the early activation of faster motor
units would be an advantage during very fast ballistic muscle
actions that are so brief for the motor unit recruitment pattern
to be amenable to modification through proprioceptive feedback.
In this context, the thick filament-based calcium-independent
regulatory mechanism of muscle contraction (Irving, 2017) has
a great relevance to control the recruitment of active single
muscle fibers, and at the same time to reduce the metabolic cost
of muscle contraction at low forces/high velocities. Under low
loads or unloaded conditions (i.e., in fast to very fast muscle
actions), the mechanical load would be early sustained by the
faster muscle fibers, whose thick filaments would be switched
ON to make their myosin heads available for actin binding and
force production. By contrast, the slower muscle fibers would
not perceive any mechanical stress, and thus their thick filaments
would remain in an OFF state. Therefore, this mechanism would
allow the fastest muscle fibers to contract under very low loads or
unloaded conditions with no or little resistive forces coming from
the slower muscle fibers. This hypothesis would explain both
the discrepancies found in the literature between Vmax and V0

values (Edman, 1979; Claflin and Faulkner, 1985), and the ability
of single muscle fibers to shorten above their maximal unloaded
shortening velocity without being damaged (Edman, 2014).

One further factor that might influence the shape of the
F-V relationship is the history-dependent behavior of muscle
contraction (Rassier and Herzog, 2004): isometric force at a
given muscle length is lower when the contraction is preceded
by muscle shortening (force depression after active muscle
shortening) (Abbott and Aubert, 1952); while isometric force at
a given muscle length is higher when the contraction is preceded
by muscle lengthening (residual force enhancement after active
muscle lengthening) (Edman et al., 1982). These aspects are
rarely considered in cross-bridge models of muscle contraction.
To explain the force depression, several hypotheses have been
proposed that are related to the non-uniformity of sarcomere
length, the accumulation of metabolites or the stress-induced
inhibition of cross-bridge attachment, with the latter hypothesis
being most supported by scientific evidence (Rassier and Herzog,
2004). The diminution of attached cross-bridges (Sugi and
Tsuchiya, 1988; Lee and Herzog, 2003) is expected to be caused
by the stress that they impose on the portion of myofilaments
that is initially not yet inside the overlap zone, but that will
reach that zone with the advancement of muscle shortening
(Marechal and Plaghki, 1979). In addition, the PEVK region of
titin might attach to actin filaments, thus inhibiting cross-bridge
formation and leading to force depression (Rode et al., 2009).
Hence, higher forces (i.e., higher stresses) and greater amounts
of shortening (leading to a greater proportion of inhibited cross-
bridges entering the overlap zone) are associated with higher
force depression after active shortening (Herzog et al., 2000). On

the other hand, sarcomere length non-uniformity and instability,
an increase in the proportion of attached cross-bridges, or an
engagement of a passive element have been proposed as possible
contributors to residual force enhancement after active muscle
lengthening (Rassier and Herzog, 2004). Indeed, the combination
of an active component that involves the previously reported
increase in the proportion of attached cross-bridges, together
with a passive component likely related with a Ca2+-induced
increase in the stiffness of the protein titin (Hessel et al., 2017),
is suggested as the main mechanism involved in residual force
enhancement (Rassier and Herzog, 2004; Hessel et al., 2017).

FINAL CONSIDERATIONS

Due to the breadth of the topic, we were forced to omit several
studies on the F-V relationship that we considered less relevant
for the overall topic of this review. We apologize to all authors
whose works we were not able to include. Further reviews
focusing on other aspects of the F-V relationship or muscle
contraction during shortening and lengthening can be found in
the literature, among others: (Gulch, 1994; Gordon et al., 2000;
Jones, 2010; Schiaffino and Reggiani, 2011; Mansson et al., 2015;
Hessel et al., 2017; Hahn, 2018).

Knowledge about the shape of the F-V relationship in
skeletal muscles has evolved substantially over the last 100 years.
However, the present review reveals that significant discrepancies
regarding the shape of the eccentric and concentric F-V
relationship still exist in the current literature. The deviations
of F-V values from the original hyperbolic F-V relationship at
both low and very high positive (concentric) velocities may be
due to the fact that the F-V relationship is actually double-
hyperbolic (Edman, 1988a) and to differences in the proportion
and characteristics of single muscle fibers contributing to force
production at different shortening velocities (Josephson and
Edman, 1988), respectively. Although good fits of concentric
F-V data may be achieved by single-hyperbolic models, in the
high-force/low-velocity region experimental data may be better
represented by double-hyperbolic models (Edman, 1988a). This
bi-phasic relationship has been confirmed in various muscle
preparations (Mansson et al., 1989; Ishii et al., 1997; Edman,
2005; Devrome and MacIntosh, 2007), and has recently also been
derived using in vivo data obtained in humans (Alcazar et al.,
2018b). The double-hyperbolic F-V relationship is presumably
caused by velocity-specific cross-bridge kinetics (Piazzesi et al.,
2007), rather than by a central inhibitory mechanism impairing
concentric muscle function, as previously proposed in the
literature. A double-hyperbolic F-V relationship is functionally
plausible, since it is expected to improve the mechanical stability
of the myofilament system at high forces (Edman et al., 1997)
by minimizing the redistribution of sarcomere lengths between
weaker and stronger segments along the muscle fibers (Edman
et al., 1985, 1988; Ahn et al., 2003; Moo et al., 2016, 2017).
With regard to the F-V data in the low-force/high-velocity
region, the motor unit recruitment during ballistic conditions
(Desmedt and Godaux, 1977, 1978) and the thick filament-based
muscle contraction mechanism (Irving, 2017) would explain
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discrepancies found in the literature betweenVmax andV0 values
(Edman, 1979; Claflin and Faulkner, 1985) and the low metabolic
cost of very fast muscle contractions (Homsher et al., 1981).

The increase in force at negative (eccentric) velocities does not
follow the change expected on the basis of a continuation of the
concentric F-V relationship, but fits an independent hyperbolic
function that levels off at ∼1.6–2.0 P0 in muscle preparations
(Mashima et al., 1972). This makes the muscle an efficient
braking system when stretched. For the eccentric part of the F-V
relationship, several human studies have shown a reduction, no
change or an increase in eccentric force values compared with
maximal isometric force. The evidence has demonstrated that
these discrepancies may be caused by a lack of familiarization
(Hahn, 2018), insufficient muscle conditioning (Amiridis et al.,
1996), and differences in testing temperatures (De Ruiter and
De Haan, 2000). In any case, maximum eccentric force values
should generally be found to be greater than isometric force (up
to 1.4 P0), provided that the assessment has been properly carried
out (Hahn, 2018). Neural factors may account for decreases
in eccentric force production at high lengthening velocities
(Duchateau and Enoka, 2016).

Based on the present literature overview, the following
methodological recommendations should be considered
to improve standardization of the assessment of F-V
data in humans:

(1) Subject familiarization seems to be an important step before
acquiring F-V data from voluntary contractions. Although
further research is necessary, a minimum of two sessions
for the concentric (Alcazar et al., 2018a) and four sessions
for the eccentric (Hahn, 2018) F-V relationship may be
required to minimize inaccuracies.

(2) Some discrepancies among studies in relation to the shape
of the F-V relationship were due to the restrictive range
of loads/velocities being evaluated. To date, the range of
forces/velocities allowing for accurate representation of the
F-V relationship or estimation of P0 and V0 values is
unclear. Until studies addressing this issue are conducted,

we encourage researchers to assess the F-V relation in the
highest possible ranges of forces and velocities.

(3) Recording joint angle-specific F-V data may lead to
measures being obtained at different muscle length, thus
introducing bias, especially during concentric contractions
(Reeves and Narici, 2003). The implementation of
ultrasonography for controlling muscle length or the
collection of F-V data at the point of peak force may
help minimize possible interactions between the F-V and
the force-muscle length relationships (Ichinose et al.,
2000; Fontana Hde et al., 2014). The registration of mean
F-V data from each performed dynamic muscle action
may also provide relevant information on the subjects’
neuromuscular performance over the whole ROM.

(4) A maximal activation state (≥95% of the isometric force)
preceding each eccentric contraction is recommended
(Hahn, 2018), to ensure that force/torque values are actually
recorded during muscle lengthening.
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