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Abstract. We continue to study the shape of the stable steady states of the so-called

shadow limit of activator-inhibitor systems in two-dimensional domains

ut = Du∆u + f(u, ξ) in Ω × R+ and τξt =
1

|Ω|

∫∫

Ω

g(u, ξ)dxdy in R+,

∂νu = 0 on ∂Ω × R+,

where f and g satisfy the following: gξ < 0, and there is a function k(ξ) ∈ C0 such that

fξ(u, ξ) = k(ξ)gu(u, ξ). This class of reaction-diffusion systems includes the FitzHugh-

Nagumo system and a special case of the Gierer-Meinhardt system. In the author’s pre-

vious paper “An instability criterion for activator-inhibitor systems in a two-dimensional

ball” (J. Diff. Eq. 229 (2006), 494–508), we obtain a necessary condition about the

profile of u on the boundary of the domain for a steady state (u, ξ) to be stable when

the domain is a two-dimensional ball. In this paper, we give a necessary condition about

the profile of u in the domain when the domain is a two-dimensional ball, annulus or

rectangle. Roughly speaking, we show that if (u, ξ) is stable for some τ > 0, then the

shape of u is like a boundary one-spike layer even if Du is not small.

1. Introduction. We study the shape of the stable steady states of the so-called

shadow system [N82] of activator-inhibitor systems in two-dimensional domains

ut = Du∆u + f(u, ξ) in Ω × R+ and τξt =
1

|Ω|

∫∫

Ω

g(u, ξ)dxdy in R+, (SSΩ)

∂νu = 0 on ∂Ω × R+,

where the domain Ω(⊂ R2) is a ball B(:= Br1
) := {(x, y); x2 + y2 < r2

1}, an annulus

A := Br1
\(Br0

∪ ∂Br0
) (0 < r0 < r1) or a rectangle R := {(x, y); 0 < x < l1, 0 <
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y < l2} (0 < l1, 0 < l2). Here Du, τ are positive constants, |Ω| denotes the area of Ω

and ∂ν denotes the outer normal derivative on ∂Ω. In theoretical biology, the unknowns

u = u(x, t) and ξ = ξ(t) stand for the concentrations of biochemicals called the activator

and inhibitor respectively. The system (SSΩ) describes various natural phenomena. Two

concrete examples of (SSΩ) are given at the end of this section.

Throughout the present paper, we assume that

f( · , · ), g( · , · ) are of class C2, gξ < 0 and

there is a function k(ξ) ∈ C0 such that fξ(u, ξ) = k(ξ)gu(u, ξ).
(N)

This class of reaction-diffusion systems includes the FitzHugh-Nagumo system (Exam-

ple 1.3 below) and a special case of the Gierer-Meinhardt system (Example 1.4 below).

When we consider the case that Ω = B or A, we also assume that

sup
(ρ1,ρ2)∈R2

fu(ρ1, ρ2) < Duκ4(Ω), (FΩ)

where κ4(Ω) is the fourth eigenvalue of the Neumann Laplacian

∆φ + κφ = 0 in Ω and ∂νφ = 0 on ∂Ω. (1.1)

Here κj(Ω) (j ≥ 1) denotes the eigenvalue of (1.1) counting multiplicities.

A brief statement of our main results is the following;

Theorem 1.1. Let (u, ξ) ∈ C2 × R be a non-constant steady state to (SSΩ). Suppose

that (N) holds.

( i ) Suppose that Ω = B and that (FB) holds. If (u, ξ) is stable for some τ > 0, then

there is a line L containing the origin such that u is symmetric with respect to L and

the global maximum and minimum of u are attained at ∂B ∩ L. Moreover, u is strictly

monotone in the direction of L.

( ii ) Suppose that Ω = R. If (u, ξ) is stable for some τ > 0, then the global maximum

and minimum of u are attained at a corner of R or a side of R. Moreover, there is a

direction such that u is strictly monotone in the direction.

(iii) Suppose that Ω = A and that (FA) holds. If (u, ξ) is stable for some τ > 0, then

there is a line L containing the origin such that u is symmetric with respect to L and

the global maximum and minimum of u are attained at A ∩ L.

See Theorems 3.3, 4.7 and 4.8 for the precise statements. Theorem 1.1 tells us that

only the pattern that the activator concentrates at a point or on a portion of the boundary

can be stable when Ω = B or R.

Remark 1.2. The assumptions (FB) and (FA) are used to prove the symmetry of the

solutions. See Lemma 4.1 and Remark 4.2 in Section 4.

In the case of a single reaction-diffusion equation with the Neumann boundary condi-

tion, all the stable steady states are constant when the domain is bounded and convex in

RN [CH78, Ma79]. In the case of a shadow reaction-diffusion system with the Neumann

boundary condition in a one-dimensional interval, all the stable steady states are constant

or monotone [N94, NPY01]. See [JM94, K05, KY03, L96, Y02a, Y02b, Y02c] for other

stability and instability results. However, the shape of the stable steady states of a large

class of reaction-diffusion systems in high-dimensional domains seems not to be known
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very much. In [Mi06], the author has given a necessary condition about the shape of the

stable steady states of (SSBr1
) on the boundary, when the domain is a two-dimensional

ball. Specifically, if (u, ξ) is stable for some τ > 0, then u is constant or

Z[Uθ( · )] = 2. (1.2)

Here Uθ(θ) := ∂θ(u(r1 cos θ, r1 sin θ)), and Z[Φ( · )] denotes the cardinal number of the

zero level set of a function Φ( · ) ∈ C0(R/2πZ). On the other hand, a special case of

the Gierer-Meinhardt system in a two-dimensional ball has a stable steady state called a

boundary one-spike layer which is a function whose global maximum is attained at exactly

one point on the boundary and which almost vanishes outside a neighborhood of the

maximum point (see [NTY01] for a two-dimensional ball and see [LNT88, NT91, NT93,

Mi05] for general domains). Moreover, this stable boundary one-spike layer satisfies (1.2)

[LT01, L01]. From the result of [Mi06] we cannot obtain the information of the shape of

u in the whole domain. However, the necessary condition (1.2) and the existence of the

stable boundary one-spike layer of the Gierer-Meinhardt system seem to suggest that the

shape of the stable steady states of (SSBr1
) is like a boundary one-spike layer. Theorem

1.1 tells us that this expectation is correct provided that Ω = B or R.

It is expected that a similar result holds when the domain is bounded and convex.

Specifically, in the case that Ω is a two-dimensional bounded convex domain, every stable

steady state of (SSΩ) attains the global maximum and minimum on the boundary of the

domain. However, this seems not to be proved. We discuss a technical point of this

conjecture in Section 5.

In [GM88], the shape of the global and local minimizers of the functional (5.1) subject

to the constraint (5.2) is considered. They obtain results similar to ours when the domain

is a two-dimensional ball or rectangle. We discuss this similarity in Section 5.

Let us explain the system (SSΩ) briefly. This system is a mathematical model describ-

ing the interaction of the two biochemicals which are called the activator and inhibitor.

The activator activates the production of the inhibitor (gu > 0), and the inhibitor in-

hibits the production of the activator (fξ < 0). The inhibitor decays if there is no reaction

(gξ < 0). Hence we call (SSΩ) the shadow limit of the activator-inhibitor system if f and

g satisfy

fξ < 0, gu > 0 and gξ < 0. (1.3)

The shadow limit describes the situation where the inhibitor diffuses quickly and always

becomes spatially homogeneous. The constant τ means the ratio of the reaction speeds

of the activator and inhibitor. If τ is small, then the inhibitor reacts quickly. In this case

the effect that the inhibitor inhibits the activator is strong, and the steady states tend

to be stabilized. Thus stable inhomogeneous steady states can exist. On the contrary, if

τ is large, then this effect is weak and the inhibitor ξ changes slowly. In this case (SSΩ)

behaves like a single reaction-diffusion equation, and we can easily expect and show that

if the domain is convex, all the stable steady states of (SSΩ) are constants. We give two

examples satisfying (1.3) and (N).
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Example 1.3. The shadow system of the FitzHugh-Nagumo model [F61, NAY62] is

the following:

ut = Du∆u + f0(u) − αξ and τξt =
1

|Ω|

∫∫

Ω

(βu − γξ) dxdy,

where α, β and γ are positive constants and f0(u) is the so-called cubic function. A

typical example of f0 is u(1 − u)(u − δ) (0 < δ < 1). (1.3) and (N) always hold. (FΩ)

holds if Du is large.

Example 1.4. The shadow system of the Gierer-Meinhardt model [GM72] is the

following:

ut = Du∆u − u +
up

ξq
and τξt =

1

|Ω|

∫∫

Ω

(

−ξ +
ur

ξs

)

dxdy, (GM)

where (p, q, r, s) satisfy p > 1, q > 0, r > 0, s ≥ 0 and 0 < (p − 1)/q < r/(s + 1). The

assumption on (p, q, r, s) comes from a biological reason. (1.3) always holds. If r = p+1,

then (N) holds. This system is a model describing head formation of a hydra which is a

small creature. Specifically, [GM72] shows experimentally that the head appears at the

point where the activator u attains the local maximum. It is known that this system

has steady states having various shapes (see [NT91, NT93, GW00, MM02] for example).

Theorem 1.1 says that if a steady state is stable, then the global maximum of u attains

the boundary when Ω = B or R. This result can be interpreted as follows: the head

appears at a point on the edge of the body.

We should mention the strategy of the proof of our main results. We do not use

the rearrangement technique or the singular perturbation. However, we use the Courant

nodal theorem and the zero level sets of ux, uy and ∂
(x0,y0)
θ u(:= −(y−y0)ux+(x−x0)uy),

where (u, ξ) is a steady state of (SSΩ). These functions do not necessarily satisfy the

Neumann boundary condition. However, we can see the relation between the profile of

u and the positivity of the second eigenvalue of the corresponding eigenvalue problem,

using a variational technique and these functions. This relation is a key to our analysis.

This paper consists of five sections. In Section 2, we prepare notation and recall known

results. In Section 3, we prove the case that Ω = R (Theorem 3.3). In Section 4, we

prove the case that Ω = B (Theorem 4.7) and that Ω = A (Theorem 4.8). In Section 5,

we discuss a technical difficulty which is Conjecture 5.1 when our result is extended to

convex domains. We also discuss the relation between our results and results of [GM88].

2. Preliminaries. First, we obtain a sufficient condition for a steady state of (SSΩ)

to be unstable, where the term unstable means that the corresponding eigenvalue problem

has an eigenvalue with positive real part. Specifically, we show that a steady state of

(SSΩ) is unstable for all τ > 0 provided that the second eigenvalue of the eigenvalue

problem (LPΩ) below is positive. This result reduces the instability problem of a steady

state of the shadow system (SSΩ) to the eigenvalue problem of a single equation (LPΩ).

Second, we recall known results about the zero level set, which is called a nodal line or

nodal curve, of the eigenfunction of the eigenvalue problem (LPΩ). The nodal line tells

us the relation between the shape of a steady state of non-linear elliptic equations and

the Morse index of the steady state which is the number of the positive eigenvalues of the
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corresponding eigenvalue problem. We also recall a strong unique continuation property

on the boundary of the domain of linear elliptic equations on two-dimensional domains.

Third, in order to state results about single elliptic equations, we prepare some more

notation.

Let S be a subset of R2. From now on, we denote int(S), S by

int(S) := S\∂S, S := S ∪ ∂S.

2.1. The instability of the steady state of (SSΩ). Let (u, ξ) be a steady state of (SSΩ).

In order to establish the instability of the steady state, we consider the eigenvalue problem

L0v + fξ(u, ξ)η = λv and 〈v, gu(u, ξ)〉+ 〈1, gξ(u, ξ)〉 η = λτη|Ω|, (EPΩ)

∂νv = 0 on ∂Ω,

where L0 := Du∆ + fu(u, ξ), and (v, η) ∈ C2 ×R. We want to prove the existence of the

eigenvalue of (EPΩ) with a positive real part. It is important to show that the second

eigenvalue of the eigenvalue problem

L0ψ = χψ in Ω and ∂νψ = 0 on ∂Ω (LPΩ)

is positive. From now on, let χn(Ω) (n ≥ 1) denote the n-th eigenvalue counting mul-

tiplicities. We also use χn if there is no confusion. Let ψn denote a corresponding

eigenfunction satisfying ‖ψn‖L2(Ω) = 1, and let spec(L0) := {χn(Ω)}∞n=1.

Proposition 2.1 (Lemma 3.1 (i) of [Mi06]). Let (u, ξ) be a steady state of (SSΩ).

Suppose that (N) holds. If χ2(Ω) > 0, then, for all τ > 0, (u, ξ) is unstable. Here χ2(Ω)

is the second eigenvalue of (LPΩ).

Proposition 2.1 was obtained by [Mi06, Y02c]. However, for the completeness of the

paper we prove Proposition 2.1.

Proof. We consider (EPΩ). From the second equation of (EPΩ), we have

η =
〈v, gu(u, ξ)〉

λτ |Ω| − 〈1, gξ(u, ξ)〉
. (2.1)

We consider the case that λ > 0. Thus λτ > 0. Owing to the assumption (N), λτ |Ω| −

〈1, gξ(u, ξ)〉 > 0. Thus the denominator of (2.1) does not vanish. Substituting (2.1) into

the first equation of (EPΩ), we obtain the eigenvalue problem of v,

(L0 + Aλ,τ )v = λv, (2.2)

where Aλ,τ is a rank-one operator (i.e., dim RanAλ,τ = 1) and

Aλ,τv =
〈v, gu(u, ξ)〉

λτ |Ω| − 〈1, gξ(u, ξ)〉
fξ(u, ξ).

Note that λ appears in Aλ,τ . Thus (2.2) is not a standard eigenvalue problem. We see

by the Sherman-Morrison formula that

(L0 + Aλ,τ − λ)−1 =

(

1 −
(L0 − λ)−1Aλ,τ

h(λ)

)

(L0 − λ)−1,

where

h(λ) = 1 +

〈

(L0 − λ)−1 [fξ(u, ξ)] , gu(u, ξ)
〉

λτ |Ω| − 〈1, gξ(u, ξ)〉
.
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Therefore under the condition that λ 	∈ spec(L0), L0 + Aλ,τ − λ is invertible if and only

if

h(λ) 	= 0.

On the other hand, from the eigenfunction expansion we see

(L0 − λ)−1 [φ] = −
∑

n≥1

〈φ, ψn〉

λ − χn

ψn. (2.3)

Substituting (2.3) into h(λ) = 0, we obtain the following equation:

λτ |Ω| − 〈1, gξ(u, ξ)〉 = h0(λ),

where

h0(λ) =
∑

n≥1

an

λ − χn

and an = 〈fξ(u, ξ), ψn〉 〈ψn, gu(u, ξ)〉 .

We divide this case into three more cases.

Case k(ξ) = 0 : In this case, a1 = 0. Thus (L + Aχ1,τ − χ1)[ψ1] = 0, which indicates

that χ1(> χ2 > 0) is an eigenvalue of (EPΩ). Thus (u, ξ) is unstable.

Case k(ξ) < 0 : In this case, a1 < 0. If a2 	= 0, then a2 < 0. Thus limλ↑χ1
h0(λ) =

+∞, limλ↓χ2
h0(λ) = −∞ and h(λ) ∈ C0((χ2, χ1)). Therefore, for any τ > 0, there is

λ̃ ∈ (χ2, χ1) such that λ̃τ |Ω| − 〈1, gξ〉 = h0(λ̃), which indicates that (u, ξ) is unstable.

If a2 = 0, then (L + Aχ2,τ − χ2)[ψ2] = 0. Thus χ2(> 0) is an eigenvalue of (EPΩ).

Thus (u, ξ) is unstable.

Case k(ξ) > 0 : Since a1 > 0, limλ↓χ1
h0(λ) = +∞, limλ↑+∞ h0(λ) = 0 and h(λ) ∈

C0((χ1, +∞)). Hence, for any τ > 0, there is λ̃(> χ2 > 0) such that λ̃τ |Ω| − 〈1, gξ〉 =

h0(λ̃). Thus (u, ξ) is unstable. �

2.2. The zero level set of the eigenfunction. Hereafter, we identify a complex number

ζ with a point in the two-dimensional domain Ω. Let z(ζ) (ζ ∈ C) be a real-valued

function satisfying the following:

there is a constant C > 0 such that |∆z| ≤ C(|∇z| + |z|). (2.4)

Using the Carleman-Hartman-Wintner theory, we can see the local behavior of the func-

tion z(ζ) satisfying (2.4).

Proposition 2.2 ([HW53, C33]). Let z(ζ) = o(|ζ|n+1) as |ζ| → 0 for some n ∈ N. If

z(ζ) satisfies (2.4), then either (i) or (ii) holds:

(i) z(ζ) ≡ 0 in Ω,

(ii) there exists an integer m(≥ n) such that

(A :=)
2

m + 1
lim
|ζ|→0
ζ �=0

zζ(ζ)

ζm
	= 0,

and z(ζ) has an asymptotic expansion of the form

z(ζ) = Re(Aζm+1) + o(|ζ|m+1) as ζ → 0,

where Re(Aζm+1) is the real part of the complex function Aζm+1.
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Remark 2.3. The real-valued function Re(Aζm) has a particularly simple represen-

tation in polar coordinates (ρ, ω):

Re(Aζm) = αρm cos(mω) + βρm sin(mω),

where α, β ∈ R. Obviously the zero level set of Re(Aζm) consists of m straight lines

which meet at an equal angle. See [HMN99] for details.

Let φ be an eigenfunction of (LPΩ). Then Du∆φ = (µ − fu(u, ξ))φ, and φ satisfies

(2.4). Proposition 2.2 can be applied to φ, and we obtain the following:

Proposition 2.4. The zero level set of φ, which is a solution of (LPΩ), consists of either

the whole domain or C1-curves and intersections among those curves.

Because of Proposition 2.4, we call the zero level set of φ, {(x, y); φ(x, y) = 0}, a

nodal curve. We call each connected component of {(x, y); φ(x, y) 	= 0} a nodal domain.

In Sections 3 and 4, we use the following corollary of Proposition 2.2.

Corollary 2.5. Let V (x, y) ∈ C0(Ω), and let φ(x, y) be a function satisfying Du∆φ +

V φ = 0 in Ω. If there exists (x0, y0) ∈ int(Ω) such that φ(x0, y0) = φx(x0, y0) =

φy(x0, y0) = 0 (or φ(x0, y0) = 0), then either (i) or (ii) holds:

(i) φ ≡ 0 in Ω,

(ii) the zero level {(x, y); φ(x, y) = 0} has at least four (or two respectively) branches

at (x0, y0). Moreover, there are at least two connected components of {(x, y); φ(x, y) 	=

0}, which are {(x, y); φ(x, y) > 0} and {(x, y); φ(x, y) < 0}, near the point (x0, y0).

The following proposition is a strong continuation property of linear elliptic equations

on the boundary of the domain.

Proposition 2.6 (Lemma 4.4 of [Mi06]). Let Ω(⊂ R
2) be a bounded domain, and let

Γ(⊂ ∂Ω) be a portion of the boundary of class C2. Let V ∈ C0(Ω). If there is a

neighborhood of Γ in Ω, U , and a function φ ∈ C2(U) ∩ C1(U) such that

Du∆φ + V φ = 0 in U and φ = ∂νφ = ∂τφ = 0 on Γ,

then φ ≡ 0 in U , where ∂τφ is the tangential derivative along Γ.

Proposition 2.7 (Lemma 4.3 of [Mi06]). Let Ω(⊂ R
2) be a bounded domain with

piecewise C2 boundary, and let V ∈ C0(Ω). Let φ be a non-trivial solution to

Du∆φ + V φ = 0 in Ω and ∂νφ = 0 on ∂Ω.

Suppose that there is (x0, y0) ∈ ∂Ω such that φ(x0, y0) = 0 and that ∂Ω is of class C2

near (x0, y0). Then there is a nodal curve of φ connecting to (x0, y0).

2.3. Notation. By L2(Ω), H1(Ω) we denote the usual Lebesgue space and Sobolev

space of order one on Ω respectively. By 〈 · , · 〉, ‖ · ‖L2(Ω) we denote the inner product

and norm of L2(Ω) respectively, i.e.,

〈F, G〉 :=

∫∫

Ω

F (x, y)G(x, y)dxdy and ‖F‖L2(Ω) :=
√

〈F, F 〉.
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Suppose that ξ is a fixed constant. Then the first equation of (SSΩ) becomes a single

elliptic equation of u. In Sections 3 and 4, we consider this single equation, and use a

different notation as follows:

Du∆w + N(w) = 0 in Ω and ∂νw = 0 on ∂Ω, (SEΩ)

where N( · ) is of class C2. Let w be a solution of (SEΩ). Then the corresponding

eigenvalue problem becomes as follows:

Du∆ψ + N ′(w)ψ = µψ in Ω and ∂νψ = 0 on ∂Ω. (EPSEΩ)

Hereafter, by µn(Ω) (n ≥ 1) we denote the n-th eigenvalue of (EPSEΩ) counting multi-

plicities. We call the number ♯{µn(Ω) > 0} the Morse index of w. When we consider the

problem (SEΩ), the assumption (FΩ) is read as follows:

sup
ρ∈R

N ′(ρ) < Duκ4(Ω), (F0Ω)

where κ4(Ω) is the fourth eigenvalue of (1.1).

3. Rectangle. In this section we consider the case that the domain is a rectangle,

i.e., Ω = R. Specifically, the purpose of this section is to prove Theorem 3.3 below.

First, we give a sufficient condition for the second eigenvalue of (EPSER) to be positive.

In the proof we use a variational characterization of the second eigenvalue of (EPSEΩ)

µ2(Ω) := sup
z∈(span〈ψ1〉

⊥∩H1(Ω))
HΩ[z]/‖z‖2

L2(Ω), (3.1)

where ψ1 is an eigenfunction corresponding to the first eigenvalue of (EPSEΩ),

span 〈ψ1〉
⊥

:=
{

z ∈ L2(Ω); 〈z, ψ1〉 = 0
}

and

HΩ [φ] :=

∫∫

Ω

(

−Du|∇φ|2 + N ′(w)φ2
)

dxdy

=

∫∫

Ω

φ (Du∆φ + N ′(w)φ) dxdy − Du

∫

∂Ω

φ(∂νφ)dσ. (3.2)

We define the set R1, R2 by

R1 := {(0, y), (l1, y); 0 ≤ y ≤ l2}, R2 := {(x, 0), (x, l2); 0 ≤ x ≤ l1}.

Lemma 3.1. Let w be a non-constant solution to (SER), and let µ2(R) be the second

eigenvalue of (EPSER). Then ( i ) and (ii) hold.

(i) If there exists a point (x0, y0) ∈ R\R1 such that wx(x0, y0) = 0, then either wx ≡ 0

in R or µ2(R) > 0.

(ii) If there exists a point (x0, y0) ∈ R\R2 such that wy(x0, y0) = 0, then either wy ≡ 0

in R or µ2(R) > 0.

Proof. The proofs of (i) and (ii) are the same, and we will prove (i) only. Let φ := wx.

We assume that φ 	≡ 0 in R. From the assumption of the lemma we see that φ(x0, y0) = 0

and that Du∆φ + N ′(w)φ = 0 in R. If (x0, y0) ∈ int(R), then we can use Corollary 2.5.
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If (x0, y0) ∈ R2, then we can use Proposition 2.7. Whichever case occurs, φ has at least

two nodal domains which are {φ > 0} and {φ < 0}. We define φ+, φ− by

φ+(x, y) :=

{

φ(x, y) in {(x, y); φ(x, y) > 0},

0 in {(x, y); φ(x, y) ≤ 0},
φ−(x, y) := φ+(x, y) − φ(x, y).

Let ψ1 be the first eigenfunction of (EPSER). We define φ∗ by φ∗ := φ+ + αφ− (α ∈ R),

where α is chosen so that 〈φ∗, ψ1〉 = 0. Note that φ∗ ∈ H1(R). Then we have

HR[φ∗] = −Du

∫

∂R

φ∗(∂νφ∗)dσ = 0,

where we use (3.2) and the fact that φ∗ = 0 on R1 and that ∂νφ∗ = 0 on R2. By a

variational characterization of the second eigenvalue (3.1) we have that

µ2(R) ≥ HR[φ∗]/‖φ∗‖2
L2(R) = 0.

We will show by contradiction that µ2(R) > 0. Suppose the contrary. We assume that

µ2(R) = 0. Then φ∗ should be an eigenfunction corresponding to µ2(R), and satisfy

the Neumann boundary condition. Hence φ∗ = ∂xφ∗ = 0 on L1. By a strong unique

continuation on the boundary (Proposition 2.6) we see that φ∗ ≡ 0 in a neighborhood

of a point on L1. Moreover it follows from the usual strong continuation at an interior

point that φ∗ ≡ 0 in R, which is a contradiction. �

Second, we study the shape of a solution of (SER) when the Morse index of the solution

is one.

Lemma 3.2. Let w be a non-constant solution to (SER), and let µ2(R) be the second

eigenvalue of (EPSER). If µ2(R) ≤ 0, then either ( i ) or (ii) holds.

( i ) There is a direction which is not parallel to the x-axis and y-axis such that w is

strictly monotone with respect to the direction. Moreover w attains its global maximum

(minimum) at exactly one point of the corner of R.

(ii) w depends only on x or y, and it is strictly monotone in x or y respectively.

Therefore w attains its global maximum (minimum) on one side of R.

Proof. First, we assume that wx ≡ 0 in R. Let φ := wy. Then φ depends only on

y. The eigenvalue problem (EPSER) becomes a one-dimensional problem and φ satisfies

Duφyy + N ′(w)φ = 0 in R. Suppose that φ changes the sign. Then by the Sturm-

Liouville theory we see that the second eigenvalue is positive. This is a contradiction,

because µ2(R) ≤ 0. Thus wy does not change the sign, and (ii) occurs.

Second, we assume that wx 	≡ 0 in R. Then we see by Lemma 3.1 (i) that wx does not

change the sign, because µ2 ≤ 0. Thus wx > 0 in R\∂R1 or wx < 0 in R\∂R1. By the

same argument as wx we see that there are three cases: wy ≡ 0 in R, wy > 0 in R\∂R2,

or wy < 0 in R\∂R2. (ii) occurs if wy ≡ 0 in R, and (i) occurs otherwise. �

Theorem 3.3 (Rectangle). Let Ω = R, and let (u, ξ) be a non-constant steady state to

(SSR). Suppose that (N) holds. If (u, ξ) is stable for some τ > 0, then either ( i ) or (ii)

holds.
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( i ) There is a direction which is not parallel to the x-axis and y-axis such that u is

strictly monotone with respect to the direction. Moreover u attains its global maximum

(minimum) at exactly one point of the corner of R.

(ii) u depends only on x or y, and it is strictly monotone in x or y respectively.

Therefore u attains its global maximum (minimum) on one side of R.

Proof. From the assumption of the theorem we see that (u, ξ) is stable for some τ > 0.

The contrapositive of Proposition 2.1 says that the second eigenvalue of (LPR), χ2(R),

is less than or equal to 0. The desirable result is obtained from Lemma 3.2. �

4. Ball and annulus. In this section we consider the case that the domain is a ball

or an annulus, i.e., Ω = B or A. Specifically, the purpose of this section is to prove

Theorems 4.7 and 4.8 below.

Hereafter, we say that (x0, y0) is a critical point of w if wx(x0, y0) = wy(x0, y0) =

0, and we say that (x0, y0) is a degenerate point of w if w(x0, y0) = wx(x0, y0) =

wy(x0, y0) = 0.

First, we will prove the symmetry of the solutions of (SEB). The condition (F0B) is

used to prove the symmetry.

Lemma 4.1. Let w be a solution to (SEB). Suppose that (F0B) holds. Then there is a

line containing the center of B such that w has the reflection symmetry with respect to

the line.

Proof. Let w be a solution of (SEB). Let R(θ) denote the counterclockwise rotation

by θ, and let S be the reflection with respect to the y-axis, i.e., (x, y) �→ (−x, y). We

define w(θ)(x, y), w̃(θ)(x, y) by

w(θ)(x, y) := (R(θ)w)(x, y), w̃(θ)(x, y) := (R(−θ)Sw)(x, y),

namely w(θ)(x, y) = w(x cos θ + y sin θ,−x sin θ + y cos θ) and

w̃(θ)(x, y) = w(−x cos θ + y sin θ, x sin θ + y cos θ).

We define φ(θ) by

φ(θ) := w(θ) − w̃(θ). (4.1)

Then φ(θ)(−x, y) = −φ(θ)(x, y), and φ(θ) satisfies

Du∆φ(θ) + V φ(θ) = 0 in B and ∂νφ(θ) = 0 on ∂B,

where

V (x, y) :=

{

N(w(θ)(x,y))−N(w̃(θ)(x,y))
w(θ)(x,y)−w̃(θ)(x,y)

in
{

(x, y); w(θ)(x, y) 	= w̃(θ)(x, y)
}

;

N ′(w(θ)(x, y)) in
{

(x, y); w(θ)(x, y) = w̃(θ)(x, y)
}

.

Here 0 is an eigenvalue and φ(θ) is an associated eigenfunction of the eigenvalue problem

Du∆φ + V φ = γφ in B and ∂νφ = 0 on ∂B, (4.2)

provided that φ(θ) 	≡ 0 in B. It is clear that φ(θ) = 0 on B ∩ {(x, y); x = 0} for all θ. In

particular, φ(θ)(0, 0) = φ
(θ)
y (0, 0) = 0. Since φ

(θ)
x (0, 0) = 2(wx(0, 0) cos θ − wy(0, 0) sin θ),

there exists θ0 ∈ [0, 2π) such that φ
(θ0)
x (0, 0) = 0. By Corollary 2.5 we see that either
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φ(θ0) ≡ 0 in B or φ(θ0) has at least four branches of {(x, y); φ(θ0)(x, y) = 0} at (0, 0).

We will show by contradiction that φ(θ0) ≡ 0 in B. Suppose the contrary. Since the zero

level set of φ(θ0) is symmetric with respect to the y-axis, there is at least one branch

on each side of B\{(x, y); x = 0} and the branch should divide each side into at least

two subdomains. Hence φ(θ0) has at least four nodal domains. By the Courant nodal

theorem we see that there is an integer n0(≥ 4) such that γn0
= 0, where {γn}

∞
n=1 is the

eigenvalue of (4.2) counting multiplicities. In particular, the fourth eigenvalue is greater

than or equal to 0. However, the fourth eigenvalue of the eigenvalue problem

Du∆φ + Duκ4(B)φ = µφ in B and ∂νφ = 0 on ∂B (4.3)

is 0. Because of the assumption (F0B), V < Duκ4(B). It follows from the comparison

principle of the eigenvalues of linear elliptic partial differential operators that the fourth

eigenvalue of (4.2) should be less than the fourth eigenvalue of (4.3), which is 0. We

obtain a contradiction. From the assumption of contradiction we see that there exists

θ0 ∈ [0, 2π) such that φ(θ0) ≡ 0 in B. We obtain the desirable result. �

Remark 4.2. Let w be a solution to (SEA), and let φ(θ) be a function defined by

(4.1). In the case that Ω = A, we can have a similar argument under the condition

(F0A). Specifically, there is θ0 ∈ [0, 2π) such that a degenerate point of φ(θ0) appears on

int(A) ∩ {(x, y); x = 0}. Thus φ(θ0) has at least four nodal domains, which implies that

w is symmetric with respect to a line containing the origin.

Lemma 4.3. Let w be a solution of (SEΩ), and let φ be a non-constant function such

that Du∆φ + N ′(w)φ = 0 in Ω. Suppose that there are two nodal domains of φ, Ω1 and

Ω2, and an interior point p ∈ int(Ω) such that the measures (lengths) of ∂Ω1 ∩ ∂Ω and

∂Ω2 ∩ ∂Ω are zero and that p 	∈ Ω1 ∪ Ω2. Then µ2(Ω) > 0, where µ2(Ω) is the second

eigenvalue of (EPSEΩ).

Proof. We define φ(1), φ(2), φ∗ by

φ(1)(x, y) :=

{

φ(x, y) in Ω1,

0 in Ω\Ω1,
φ(2)(x, y) :=

{

φ(x, y) in Ω2,

0 in Ω\Ω2,

φ∗ := φ(1) + αφ(2) (α ∈ R),

where α is chosen such that 〈φ∗, ψ1〉 = 0 and ψ1 is an eigenfunction of (EPSEΩ) corre-

sponding to the first eigenvalue. Using the assumption of Ω1 and Ω2, we have

µ2(Ω) ≥ HΩ [φ∗] /‖φ∗‖2
L2(Ω) = 0.

We show by contradiction that µ2(Ω) > 0. Suppose that µ2(Ω) = 0. Then φ∗ is an

eigenfunction of (EPSEΩ). However, there is an interior point p such that φ∗ vanishes

in a neighborhood of p. By the usual strong unique continuation at an interior point we

see that φ∗ ≡ 0 in Ω, which is a contradiction. Thus µ2(Ω) > 0. �

We define ∂
(x1,y1)
θ by

∂
(x1,y1)
θ := −(y − y1)∂x + (x − x1)∂y.
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We denote wθ by ∂
(0,0)
θ w. Since ∂

(x1,y1)
θ ∆ = ∆∂

(x1,y1)
θ , we easily see that

Du∆(∂
(x1,y1)
θ w) + N ′(w)(∂

(x1,y1)
θ w) = 0,

provided that w is a solution to (SEΩ).

Lemma 4.4. Let Ω(⊂ R2) be a bounded convex domain with boundary of class C2, and

let w ∈ C1(Ω) be a function such that ∂νw = 0 on ∂Ω. Suppose that (x0, y0) ∈ ∂Ω.

Then

(∂τw)(x0, y0) = 0 if and only if (∂
(x1,y1)
θ w)(x0, y0) = 0 for all (x1, y1) ∈ int(Ω).

In particular,

(∂
(x1,y1)
θ w)(x0, y0) = 0 for some (x1, y1) ∈ int(Ω) if and only if

(∂
(x1,y1)
θ w)(x0, y0) = 0 for all (x1, y1) ∈ int(Ω).

Proof. The tangent line of ∂Ω at (x0, y0) is not parallel to the vector (x1−x0, y1−y0),

because Ω is convex. Hence if (∂
(x1,y1)
θ w)(x0, y0) = (∂νw)(x0, y0) = 0, then wx(x0, y0) =

wy(x0, y0) = 0. Therefore (∂τw)(x0, y0) = 0. Conversely, if (∂τw)(x0, y0) = (∂νw)(x0, y0)

= 0, then wx(x0, y0) = wy(x0, y0) = 0. Thus (∂
(x1,y1)
θ w)(x0, y0) = −(y0 − y1)wx(x0, y0)

+ (x0 − x1)wy(x0, y0) = 0 for all (x1, y1) ∈ int(Ω). �

We study the shape of the solution of (SEB) when the Morse index of the solution is

one under the condition that the solution is symmetric.

The next lemma is the key technical lemma of the paper.

Lemma 4.5. Let w be a non-constant solution to (SEB), and let µ2(B) be the second

eigenvalue of (EPSEB). Suppose that w is symmetric with respect to the line L containing

the center of B. If there is a point (x0, y0) ∈ int(B) such that wx(x0, y0) = wy(x0, y0) = 0,

then µ2(B) > 0.

Proof. Let w be a non-constant solution of (SEB). After a rotation transformation,

wx = wy = 0 at the point corresponding to (x0, y0). Therefore, we can assume, without

loss generality, that w is symmetric with respect to the y-axis. Let φ := ∂
(0,0)
θ w. We

divide the proof in two cases.

Case 1(x0 	= 0): We consider the case that (x0, y0) ∈ int(B)\{(x, y); x = 0}. First,

we assume that φ 	≡ 0 in B. Since wx(x0, y0) = wy(x0, y0) = 0, φ(x0, y0) = 0. Proposi-

tion 2.4 says that there is a nodal curve on each side of B\{(x, y); x = 0} and that each

curve should divide each side of B\{(x, y); x = 0} into at least two subdomains. Thus φ

has at least four nodal domains. On the other hand, 0 is an eigenvalue of (EPSEB), and

φ is an associated eigenfunction. By the Courant nodal theorem we see that there is an

integer n0(≥ 4) such that µn0
(B) = 0, where {µn(B)}∞n=1 is the eigenvalues of (EPSEB).

Therefore µ2(B) > µn0
(B) = 0.

Second, we assume that φ ≡ 0 in B. Then an eigenfunction of (EPSEB) corresponding

to the first eigenvalue is radially symmetric, i.e., ∂
(0,0)
θ ψ1 ≡ 0 in B. Since w is radially

symmetric, 〈ψ1, wx〉 = 0. Moreover wx|∂B = 0, because wx(x, y) = (∂rw)(x, y)x/r,
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where r∂r := x∂x + y∂y and r :=
√

x2 + y2. On the other hand, we have that

HB[wx] = −Du

∫

∂B

wx(∂νwx)dσ = 0,

where we use (3.2) and the fact that wx|∂B = 0. By a variational characterization of the

second eigenvalue (3.1) we have that

µ2(B) ≥ HB[wx]/‖wx‖
2
L2(Ω) = 0.

We will show by contradiction that µ2(B) > 0. Suppose the contrary. We assume that

µ2(B) = 0. Then wx is an eigenfunction corresponding to 0, and satisfies the Neumann

boundary condition. Therefore wx = ∂νwx = 0 on ∂B. By a strong unique continuation

on the boundary (Proposition 2.6) we see that wx ≡ 0 in a neighborhood of a point on

∂B. Moreover, it follows from the strong unique continuation at an interior point that

wx ≡ 0 in B. Thus wx depends only on y. Since w is radially symmetric, w should be

constant, which is a contradiction.

Case 2(x0 = 0): We consider the case that (x0, y0) ∈ int(B) ∩ {(x, y); x = 0}. Let

φ̃ := ∂
(0,y0)
θ w. Then φ̃ satisfies Du∆φ̃ + N ′(w)φ̃ = 0 in B, and the zero level set of φ̃ is

symmetric with respect to the y-axis. On the other hand, we have that

φ̃(x, y) := −(y − y0)wx(x, y) + xwy(x, y),

φ̃x(x, y) = −(y − y0)wxx(x, y) + xwyy(x, y),

φ̃y(x, y) = −wx(x, y) − (y − y0)wxy(x, y) + xwyy(x, y).

Since wx(0, y0) = wy(0, y0) = 0, we have that

φ̃(0, y0) = φ̃x(0, y0) = φ̃y(0, y0) = 0.

By Corollary 2.5 we see that either φ̃ ≡ 0 in B or φ̃ has at least four branches of

{(x, y); φ̃(x, y) = 0} at (0, y0). If y0 = 0 and if φ̃ ≡ 0, then this case is already studied in

Case 1. If y0 	= 0 and if φ̃ ≡ 0, then we can easily show that w is constant. We omit the de-

tails. Therefore we consider the case that φ̃ 	≡ 0. Since the zero level set of φ̃ is symmetric

with respect to the y-axis, there is at least one branch on each side of B\{(x, y); x = 0}.

First, we consider the case that each branch connects to B ∩{(x, y); x = 0}. Then there

are two nodal domains B1, B2 such that ∂Bj ∩ (∂B\{(x, y); x = 0}) = ∅ for j = 1, 2,

and there is an interior point p ∈ int(B) such that p ∈ B1 ∪ B2. By Lemma 4.3 we see

that µ2(B) > 0.

Second, we consider the case that each branch does not connect to ∂B∩{(x, y); x = 0}.

Then each branch should connect to ∂B\{(x, y); x = 0}. Let p1, p2 ∈ ∂B\{(x, y); x

= 0} be such intersection points. Then by Lemma 4.4 we see that φ(p1) = φ(p2) = 0,

because φ̃(p1) = φ̃(p2) = 0. Moreover Proposition 2.7 says that there are nodal curves

connecting to p1 and p2. Since the zero level set of φ is symmetric with respect to the

y-axis, φ has at least four nodal domains. By the same argument as in the first part of

Case 1 we see that µ2(B) > 0. �

Lemma 4.6. Let w be a non-constant solution to (SEB), and let µ2(B) be the second

eigenvalue of (EPSEB). Suppose that w is symmetric with respect to the line L containing
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the center of B. Let ∂αw denote the derivative in the direction parallel to L. If there

exists a point (x0, y0) ∈ int(B) such that (∂αw)(x0, y0) = 0, then µ2(B) > 0.

Proof. Because of the assumption of the lemma, we can assume, without loss of gen-

erality, that w is symmetric with respect to the y-axis. Hence we see that wx = 0 on

B ∩ {(x, y); x = 0} and that

the zero level set of wy is symmetric with respect to the y−axis. (4.4)

First, we show that if wy = 0 at a point on int(B) ∩ {(x, y); x = 0}, then µ2(B) > 0.

Suppose that there is (0, y0) ∈ int(B) ∩ {(x, y); x = 0} such that wy(0, y0) = 0. Since

wx(0, y0) = wy(0, y0) = 0, we see by Lemma 4.5 that µ2(B) > 0. From now on we assume

that

wy > 0 on int(B) ∩ {(x, y); x = 0}. (4.5)

Second, we show that wy > 0 on ∂B\{(x, y); x = 0}. We see that wx = 0 at

∂B ∩ {(x, y); x = 0}. Thus ∂
(0,0)
θ w = 0 at ∂B ∩ {(x, y); x = 0}. Suppose that there

is a point p ∈ ∂B\{(x, y); x = 0} such that ∂
(0,0)
θ w = 0 at p. Then it follows from

Proposition 2.7 that there is a nodal curve connecting to p. Therefore ∂
(0,0)
θ w has at

least four nodal domains. By the Courant nodal theorem we see that there is an integer

n0(≥ 4) such that µn0
(B) = 0. Thus µ2(B) > µn0

(B) = 0. Therefore ∂
(0,0)
θ w(x, y) 	= 0

on ∂B\{(x, y); x = 0}. Suppose that there is a point (x1, y1) ∈ ∂B\{(x, y); x = 0}

such that wy(x1, y1) = 0. Since ∂νw = 0 on ∂B, r∂rw(= xwx + ywy) = 0 on ∂B,

wx(= −y/xwy) = 0 at (x1, y1). Hence wθ(x1, y1) = 0, which is a contradiction. Therefore

wy > 0 on ∂B\{(x, y); x = 0}. (4.6)

Third, we show by contradiction that wy > 0 in int(B)\{(x, y); x = 0}. Suppose the

contrary. We assume that there is a point (x0, y0) ∈ int(B)\{(x, y); x = 0} such that

wy(x0, y0) = 0. Using (4.4), (4.5), (4.6) and Proposition 2.4, we see that there are two

nodal domains, B1 and B2, and an interior point p ∈ int(B) such that p 	∈ B1 ∪ B2

and that (∂Bj ∩ ∂B)\{(x, y); x = 0} = ∅ for j = 1, 2. By Lemma 4.3 we see that

µ2(B) > 0. �

The next theorem is our main result in the case that the domain is a ball.

Theorem 4.7 (Ball). Let Ω = B, and let (u, ξ) be a non-constant steady state to (SSB).

Suppose that (N) and (FB) hold. If (u, ξ) is stable for some τ > 0, then B has a diameter

PQ such that

( i ) u is symmetric with respect to PQ,

( ii ) u is strictly monotone in the direction parallel to PQ, i.e., ∂αu > 0 on B\{P, Q},

where ∂αu denotes the derivative in the direction,

(iii) uθ > 0 on one side of B\PQ, uθ < 0 on the other side, where PQ denotes the

segment whose endpoints are P and Q,

(iv) u(Q) < u(x, y) < u(P ) for (x, y) ∈ B\{P, Q}.

Proof. Since (u, ξ) is stable for some τ > 0, we see by Propositions 2.1 that χ2 ≤ 0,

where χ2 is the second eigenvalue of (LPB). Thus we see by Lemma 4.1 that there is

a line L containing the center of B such that u is symmetric with respect to L. Let
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φ := ∂
(0,0)
θ u. By the same argument as in the second part of Case 1 in the proof of

Lemma 4.5 we see that φ 	≡ 0 in B. Since u is symmetric with respect to L, L is a

nodal line of φ. We show by contradiction that there is no other nodal curve. Suppose

that there is a point p ∈ B\L such that φ = 0 at p. We can see by Propositions 2.4

and 2.7 that there are at least four nodal domains of φ. By the Courant nodal theorem

we see that there is an integer n0(≥ 4) such that χn0
= 0. Thus χ2 > χn0

= 0, which

contradicts χ2 ≤ 0. Thus φ has exactly two nodal domains.

Let P , Q be intersection points of ∂B and L. Using Lemma 4.1 and 4.6, we easily see

that (i), (ii) and (iii) hold. Moreover, (iv) follows from Lemma 4.5. �

The next theorem is the main result of the case of an annulus.

Theorem 4.8 (Annulus). Let Ω = A(= Br1
\Br0

), and let (u, ξ) be a steady state to

(SSΩ). Suppose that (N) and (FA) holds. If (u, ξ) is stable for some τ > 0, then there is

a line, say L, containing the center of Br1
such that

( i ) u is symmetric with respect to the line L,

( ii ) uθ > 0 on one side of A\L, uθ < 0 on the other side,

(iii) u attains its global maximum (minimum) on A ∩ L.

Proof. (i) follows from Remark 4.2. By the same argument as in the proof of Theorem

4.7 we see that (ii) holds. Using (ii), we easily see that the global maximum and the

global minimum of u are attained on A ∩ L. Therefore (iii) holds. �

Remark 4.9. It is known that if supρ∈R
{N ′(ρ)/κ2(Ω)} < Du, then all the solutions of

(SEΩ) are constant (see [CHS78, GM88]). Therefore Theorems 4.7 and 4.8 have meaning

when

sup
(ρ1,ρ2)∈R2

{fu(ρ1, ρ2)/κ4(Ω)} < Du ≤ sup
(ρ1,ρ2)∈R2

{fu(ρ1, ρ2)/κ2(Ω)}.

5. Discussions.

5.1. An extension to convex domains. We consider the case of two-dimensional bound-

ed convex domain. As stated in the introduction, we can expect that the following holds:

if (u, ξ) is stable for some τ > 0, then the global maximum and minimum of u are attained

on the boundary of the domain. The following conjecture about the relation between the

shape of the solution and the positivity of the second eigenvalue seems to be important

in proving this:

Conjecture 5.1 ([Y06]). Let Ω be a two-dimensional bounded convex domain with

smooth boundary, and let w be a non-constant solution of (SEΩ). Let µ2(Ω) denote the

second eigenvalue of (EPSEΩ). If there is an interior point (x0, y0) ∈ int(Ω) such that

(x0, y0) is a critical point of w, i.e., wx(x0, y0) = wy(x0, y0) = 0, then µ2(Ω) > 0.

In the case that the domain is a two-dimensional ball (Lemma 4.5), we use the sym-

metry of the solutions in order to prove this conjecture.

This conjecture is a non-linear version of the “hot spots” conjecture of J. Rauch [R74]

which is the following: if the domain is convex, then an eigenfunction corresponding

to the second eigenvalue of the Neumann Laplacian attains its global maximum on the

boundary of the domain. There are counterexamples of the “hot spots” conjecture if

the domain is a two-dimensional domain with one hole [B05] or two holes [BW99]. See
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[BB99, JN00] for partial positive answers of the conjecture. The “hot spot” conjecture

follows from Conjecture 5.1.

We can consider a more general problem. Let Ω be a convex domain. It is well-known

that all the solutions of (SEΩ) are constant provided that µ1(Ω) ≤ 0 [CH78, Ma79]. If

Conjecture 5.1 is correct, then all the solutions of (SEΩ) do not have a critical point in

int(Ω) provided that µ2(Ω) ≤ 0. For each n ∈ {1, 2, · · · }, when µn(Ω) ≤ 0, what shape

are the solutions of (SEΩ)?

5.2. A relation between [GM88] and our theorems. In [GM88], Gurtin and Matano

study the shape of the global and local minimizers of

E[u] :=

∫

Ω

{σ|∇u(x)|2 + W (u(x))}dx (5.1)

subject to the constraint
∫

Ω

u(x)dx = m (5.2)

in various domains Ω. Here σ is a positive constant, m is a constant and W is the so-called

double-well potential. A typical example of W is given by W ′(u) = u(1− u)(u− a) (0 <

a < 1). When the domain Ω is a two-dimensional ball, they obtain the same conclusion

as Theorem 4.7 in the present paper under the assumption that a critical point u of (5.1)

subject to (5.2) is the global minimizer. (They also obtain results similar to Theorems 3.3

and 4.8 in the present paper when Ω is a rectangle or an annulus. See theorems in Sections

3 and 4 of [GM88].)

Roughly speaking, the constraint (5.2) has the effect of removing the first eigenvalue

in their problem [Ma05]. Hence, if a critical point of (5.1) subject to (5.2) is a local

minimizer, then the second eigenvalue is not positive. This is the same situation as ours.

This is a reason why theorems in Sections 3 and 4 of [GM88] are similar to Theorems 3.3,

4.7 and 4.8 of the present paper. However, from a technical point of view, the proofs

of our results and theirs are different. In [GM88], the rearrangement technique is used

when Ω is a two-dimensional ball. Therefore a critical point of (5.1) subject to (5.2) has

to be assumed to be the global minimizer. On the other hand, we do not use this type

of global assumption, which is difficult to check, and we use only a local property of the

stability.
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2001). Sūrikaisekikenkyūsho Kōkyūroku, 1249(2002), 133–142. MR1924188

[Y06] E .Yanagida, private communication, (2006).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/mathscinet-getitem?mr=1219814
http://www.ams.org/mathscinet-getitem?mr=1219814
http://www.ams.org/mathscinet-getitem?mr=1842911
http://www.ams.org/mathscinet-getitem?mr=1842911
http://www.ams.org/mathscinet-getitem?mr=0509045
http://www.ams.org/mathscinet-getitem?mr=0509045
http://www.ams.org/mathscinet-getitem?mr=1883746
http://www.ams.org/mathscinet-getitem?mr=1883746
http://www.ams.org/mathscinet-getitem?mr=1878648
http://www.ams.org/mathscinet-getitem?mr=1878648
http://www.ams.org/mathscinet-getitem?mr=1924188

	1. Introduction
	2. Preliminaries
	2.1. The instability of the steady state of (??)
	2.2. The zero level set of the eigenfunction
	2.3. Notation

	3. Rectangle
	4. Ball and annulus
	5. Discussions
	5.1. An extension to convex domains
	5.2. A relation between GM88 and our theorems

	Acknowledgement
	References

