On the Sharpness of Certain Local Estimates for \dot{H}^{1} Projections into Finite Element Spaces: Influence of a Reentrant Corner*

By Lars B. Wahlbin

Abstract

In a plane polygonal domain with a reentrant corner, consider a homogeneous Dirichlet problem for Poisson's equation $-\Delta u=f$ with f smooth and the corresponding Galerkin finite element solutions in a family of piecewise polynomial spaces based on quasi-uniform (uniformly regular) triangulations with the diameter of each element comparable to $h, 0<h \leqslant 1$. Assuming that u has a singularity of the type $\left|x-v_{M}\right|^{\beta}$ at the vertex v_{M} of maximal angle π / β, we show: (i) For any subdomain A and any s, the error measured in $H^{-s}(A)$ is not better than $O\left(h^{2 \beta}\right)$. (ii) On annular strips of points of distance of order d from v_{M}, the pointwise error is not better than $O\left(h^{2 \beta} d^{-\beta}\right)$.

1. Context and Results. Let Ω be a polygonal bounded simply connected domain in the plane and consider the Dirichlet problem

$$
\begin{array}{cl}
-\Delta u=f & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega, \tag{1.1}
\end{array}
$$

where $f \in \sum^{\infty}(\bar{\Omega})$. Let $\alpha_{1} \leqslant \alpha_{2} \leqslant \cdots \leqslant \alpha_{M-1}<\alpha_{M}$ denote the interior angles at the corners. Assume that there is only one vertex, v_{M}, of maximal angle and that the angle is reentrant, $\alpha_{M}>\pi$. For simplicity in notation set

$$
\alpha:=\alpha_{M}, \quad \bar{\alpha}:=\alpha_{M-1}, \quad \beta:=\pi / \alpha, \quad \bar{\beta}:=\pi / \bar{\alpha} .
$$

Then $\beta<1$ and $\beta<\bar{\beta}$.
As is well known, cf. Grisvard [4], Kellogg [5] or Kondrat'ev [6], the solution of (1.1) can be expressed in terms of polar coordinates r, θ centered at v_{M} and with the positive θ-axis along one leg as

$$
\begin{gather*}
u=a t_{\beta}+w ; \quad t_{\beta}(r, \theta)=\omega_{0}(r, \theta) r^{\beta} \sin (\beta \theta), \tag{1.2}\\
w=o\left(r^{\beta}\right) \quad \text { as } r \rightarrow 0,
\end{gather*}
$$

where a is a constant and $\omega_{0} \in \mathcal{C}^{\infty}(\bar{\Omega})$ with $\omega_{0} \equiv 1$ for $r \leqslant r_{0}, \omega_{0} \equiv 0$ for $r \geqslant 2 r_{0}$. We assume that $2 r_{0}$ is less than the length of the shortest leg emanating from v_{M} so that $t_{\beta}=0$ on $\partial \Omega$.

Let $S_{h}, 0<h \leqslant 1$, be finite element subspaces of $\dot{H}^{1}(\Omega)$ such that, for $v \in H^{\gamma} \cap$ \dot{H}^{1} with $\gamma>1$,

$$
\begin{equation*}
\min _{x \in S_{h}}\|v-x\|_{\dot{H}^{\prime}(\Omega)} \leqslant C h^{\gamma^{\prime}-1}\|v\|_{H^{\gamma}(\Omega)}, \quad \gamma^{\prime}=\min (\gamma, R), \tag{1.3}
\end{equation*}
$$

[^0]where C does not depend on h or v and where $R \geqslant 2$; cf. Ciarlet [2]. Here and below we use standard notation for the L_{2}-based Sobolev spaces H^{γ} and \dot{H}^{γ}; cf. Adams [1]. $H^{\gamma}(A)$ for $\gamma>0$ shall refer to the dual space of $\dot{H}^{\gamma}(A)$ with respect to the pivot space L_{2}. i.e.. for $w \in L_{2}(A)$.
$$
\|w\|_{\|}{ }^{\gamma}(A):=\sup _{\substack{r \in\left(c_{0}^{x}(A) \\ r \neq 0\right.}} \frac{\int_{A} v w^{\prime}}{\|v\|_{i^{r}(A)}}
$$

The \dot{H}^{\prime} projection of u into $S_{h}, P_{h} u$, is defined by

$$
\begin{equation*}
\left(u-P_{h} u, \chi\right)_{H^{\prime}(\Omega 2)}:=\int_{S 2} \nabla\left(u-P_{h} u\right) \cdot \nabla \chi=0 \quad \text { for all } \chi \in S_{h} . \tag{1.4}
\end{equation*}
$$

i.e., $P_{h} u$ is the Galerkin finite element solution of (1.1). (The effect of numerical integration is not considered in this note.)

On interior subdomains A of Ω away from the corners the solution u is smooth and hence, for commonly used finite element spaces, approximable to "high" order, typically $O\left(h^{R}\right)$ in $L_{x}(A)$. Numerical observations show that, for finite element spaces without special arrangements to treat corner singularities, the error in $u-P_{h} u$ on A is generally not of this "high" order. This is often referred to as a "pollution" effect from the corners.

For $A \subseteq \Omega$ and with the error measured in a negative norm $H^{`}(A)$, a standard duality argument using (1.3) gives immediately an upper bound $O\left(h^{2 \beta}\right.$ f) for the error, for any $\varepsilon>0$. ($\varepsilon=0$ can be taken in most cases.) If $a \neq 0$ in (1.2), it has long been felt that the error is not better than $O\left(h^{2 \beta}\right)$ for general finite element spaces; this is sometimes also referred to as "pollution". even when $A=\Omega$.

As for previous proofs that "pollution" (in the second sense) occurs, we cite the following two works.
(i) An example by Babuška and Bramble with Ω the L-shaped domain, $\beta=2 / 3$. and regular uniform meshes. Given $\varepsilon>0$. for each h there exists u_{h} such that

$$
\left\|u_{h}-P_{h} u_{h}\right\|_{1:(s))} \geqslant c_{t} h^{4 / 3 \cdot}\left\|u_{h}\right\|_{h^{\prime} \cdot} \cdot(s)
$$

where $c_{\varepsilon}>0$ is independent of h. This example was given in [10. Section 7, Example 4] but a full proof has never appeared.
(ii) A result of Dobrowolski [3. Theorem 7.1]. He considered a family of "unrefined" meshes in the sense that if $a \neq 0$ in (1.2). then there exists $c>0$ such that

$$
\begin{equation*}
\min _{x \in S_{h}}\|u-x\|_{\|^{\prime}(\Omega)} \geqslant c h^{\beta} \tag{1.5}
\end{equation*}
$$

and he showed that then

$$
\left\|u-P_{h} u\right\|_{L:(\Omega)} \geqslant c h^{2 \beta}
$$

For piecewise polynomial spaces on a family of triangulations of Ω, (1.5) would hold if each mesh contained merely one element τ_{h} at v_{M} with its largest inscribed disc of radius $\geqslant c h, c$ positive and independent of h. To see this, note that by a simple scaling argument we have already

$$
\min _{\substack{x \text { polynomial } \\ \text { of degree } \leqslant R-1}}\left\|r^{\beta} \sin (\beta \theta)-\chi\right\|_{\|^{\prime}\left(\tau_{h}\right)} \geqslant c h^{\beta} .
$$

Thus, (1.5) would follow for $u=a t_{\beta}$. Since, by [4], [5], [6], w:= $u-a t_{\beta} \in$ $H^{1+\sigma-\epsilon}(\Omega), \sigma=\min (2 \beta, \bar{\beta})>\beta$, we have from (1.3) that $\left\|w-P_{h} w\right\|_{H^{\prime}} \leqslant C h^{\sigma^{\prime}-\varepsilon}=$ $h^{\beta} o(1)$ for ε small enough, where $\sigma^{\prime}=\min (\sigma, R-1)>\beta$. Thus (1.5) would follow for a general u with $a \neq 0$.

In this context we mention the interesting structure results of Nitsche [8]. They seem less successful in explaining the present "pollution" from corners than in investigating the corresponding "pollution" from boundary singularities in one-dimensional singular Sturm-Liouville problems [9]; cf. also Schreiber [13, Section 6.2].
Our first result in this note generalizes the results of Babuška, Bramble and Dobrowolski mentioned above.

Theorem 1.1. Assume (1.3), (1.5) and that $a \neq 0$ in (1.2). Let $A \subseteq \Omega$ be any subdomain of Ω and s any nonnegative number. There exist positive constants c and h_{0} such that, for $h \leqslant h_{0}$,

$$
\left\|u-P_{h} u\right\|_{H}{ }^{\prime}(A) \geqslant c h^{2 \beta} .
$$

The proof will be furnished in Section 2.
We shall next describe the second result of this note. We shall have to be more precise about various properties of the finite element spaces. For simplicity, cf. Remark 1.1, consider edge-to-edge triangulations parametrized by $h, 0<h \leqslant 1$, of Ω into disjoint triangular elements $\tau_{i}^{h}, i=1, \ldots, I_{h}$, and let S_{h} consist of functions χ such that $\chi \in \sum^{0}(\bar{\Omega}), \chi=0$ on $\partial \Omega$ and $\left.\chi\right|_{\tau_{i}^{n}}$ is a polynomial of total degree $R-1 \geqslant 1$. Let the family of meshes be quasi-uniform (a.k.a. uniformly regular), i.e., let there exist positive constants c and C independent of i and h such that, with ρ_{i}^{h} denoting the radius of the largest inscribed disc of τ_{i}^{h},

$$
c h \leqslant \rho_{i}^{h} \leqslant \operatorname{diam}\left(\tau_{i}^{h}\right) \leqslant C h \quad \text { for all } i, h .
$$

For brevity, let us call such a family S_{h} a "quasi-uniform Lagrange" family.
In Schatz and Wahlbin [11] it was shown that, for x close to v_{M}, for any $\varepsilon>0$,

$$
\begin{equation*}
\left|\left(u-P_{h} u\right)(x)\right| \leqslant C_{\varepsilon} h^{2 \beta-\epsilon}\left|x-v_{M}\right|^{-\beta} \tag{1.6}
\end{equation*}
$$

This estimate was derived as a mix of two effects: local approximability of the solution and the "pollution" influence. In fact, "pollution" dominates in this estimate as can be seen via the following argument.

One knows from [4], [5], [6] that $\left|D^{\alpha} u(r, \theta)\right| \leqslant C r^{\beta-|\alpha|}$ as $r \rightarrow 0$. Thus, with

$$
\begin{equation*}
A_{d}=\left\{x: d \leqslant\left|x-v_{M}\right| \leqslant 2 d\right\} \cap \Omega, \tag{1.7}
\end{equation*}
$$

we have, for $d \geqslant h^{1-\delta}, \delta>0$, but d not too large (the remaining corners should be well away),

$$
\min _{x \in S_{h}}\|u-\chi\|_{L_{\infty}\left(A_{d}\right)} \leqslant C h^{R} d^{\beta-R}=C h^{2 \beta} d^{-\beta}\left(\frac{h}{d}\right)^{R-2 \beta}=h^{2 \beta} d^{-\beta} o(1) .
$$

The result analogous to (1.6) for the five-point difference scheme and various classical ways of imposing the boundary conditions was given in Laasonen [7].

Our second result establishes the sharpness of (1.6).

Theorem 1.2. Let S_{h} be a quasi-uniform Lagrange family. Assume that $a \neq 0$ in (1.2).

Then, for any $\delta>0$, there exist positive constants, c, d_{0} and h_{0} such that with A_{d} as in (1.7) and $h^{1-\delta} \leqslant d \leqslant d_{0}, h \leqslant h_{0}$.

$$
\left\|u-P_{h} u\right\|_{L_{x}\left(A_{u}\right)} \geqslant c h^{2 \beta} d^{-\beta}
$$

Again, the proof will be given in Section 2.
Remark 1.1. Theorem 1.2 can be established for more general finite element spaces than quasi-uniform Lagrange families. In fact, it holds under the general assumptions of [11, Section 2] if furthermore (1.5) is assumed. The proof is the same, but we do not wish to repeat the rather lengthy hypotheses of [11] in this note.
2. Proofs. Before giving the proofs of Theorems 1.1 and 1.2 we shall collect some more precise information about the problem (1.1) and the decomposition (1.2). The exact results can be found in [4], [5], [6]. For motivation one notes that away from vertices the solution u of (1.1) is smooth, whereas at a vertex v_{i} of angle α_{i} one has, in polar coordinates centered at that vertex and with $\beta_{i}=\pi / \alpha_{i}, \gamma_{i} \in \mathbf{Z}^{+} \cup\{0\}$,

$$
u(r, \theta)=a_{i} r^{\beta_{i}} \sin \left(\beta_{i} \theta\right)+b_{i} r^{2 \beta_{i}} \sin \left(2 \beta_{i} \theta\right)(\ln r)^{\gamma_{1}}+\text { smoother terms. }
$$

The exact results are as follows.
For any $\varepsilon>0$ there exists a constant C_{ε} such that

$$
\begin{equation*}
\|u\|_{H^{\beta+1}(\Omega)} \leqslant C_{E}\|f\|_{H^{\beta-1}(\Omega)} . \tag{2.1}
\end{equation*}
$$

Let Ω_{M} be a neighborhood of v_{M} avoiding all other vertices. Then for any $\varepsilon>0$, with w as in (1.2), we have in fact that

$$
\begin{align*}
& \left|D^{\alpha} w(r, \theta)\right| \leqslant C_{\alpha, \varepsilon} r^{2 \beta-|\alpha|-\varepsilon} \quad \text { as } r \rightarrow 0, \tag{2.2.i}\\
& w \in H^{1+2 \beta-\varepsilon}\left(\Omega_{M}\right), \tag{2.2.ii}\\
& u \in H^{1+\bar{\beta}-\varepsilon}\left(\Omega \backslash \Omega_{M}\right), \tag{2.2.iii}\\
& w \in H^{1+\sigma-\varepsilon}(\Omega), \quad \sigma=\min (2 \beta, \bar{\beta})>\beta \tag{2.2.iv}
\end{align*}
$$

Proof of Theorem 1.1. The heart of the matter is the short calculation (2.4), once a suitable u_{0} has been found. The rest of the proof is routine.

We first show that it suffices to treat a particular $u_{0}=a_{0} t_{\beta}+\cdots$ with $a_{0} \neq 0$. For this let

$$
\bar{w}:=a a_{0}^{-1} u_{0}-u
$$

Then, by (1.2) and (2.2.iv), $\bar{w} \in H^{1+\sigma-\varepsilon / 2}(\Omega)$, with $\sigma>\beta$. Using (2.1) and (1.3), we have by the standard duality argument, writing $\bar{E}:=\bar{w}-P_{h} \bar{w}$,

$$
\|\bar{E}\|_{H^{-\prime}(\Omega)} \leqslant C h^{\beta-\varepsilon / 2}\|\bar{E}\|_{H^{\prime}(\Omega)} \leqslant C h^{\beta+\sigma^{\prime}-\varepsilon},
$$

where $\sigma^{\prime}=\min (\sigma, R-1)>\beta$. Thus, for ε small enough,

$$
\|\bar{E}\|_{H^{-3}(\Omega)}=h^{2 \beta} o(1) \quad \text { as } h \rightarrow 0
$$

Our specific u_{0} is constructed as follows. Let $x_{0} \in \operatorname{Int} A$, and let $A_{0} \subset \subset A$ be an annulus centered at x_{0}. If $A_{0}=B_{1} \backslash B_{0}$, where $B_{0} \subset \subset B_{1} \subset \subset A$ are concentric
discs, let $\omega \in \sum^{\infty}(\bar{\Omega})$ with

$$
\omega= \begin{cases}1 & \text { outside } B_{1} \\ 0 & \text { inside } B_{0}\end{cases}
$$

Let further $G_{0}(x)$ be the Green's function for (1.1) with singularity at x_{0}, and set

$$
u_{0}:=\omega G_{0} .
$$

Then $u_{0} \in \bigcup^{\infty}(\operatorname{Int} \Omega), u_{0}=0$ on $\partial \Omega$, and

$$
\begin{equation*}
\operatorname{supp}\left(\Delta u_{0}\right) \subseteq A_{0} \subset \subset A \tag{2.3}
\end{equation*}
$$

Also, $a_{0} \neq 0$, as can be seen by classical means from the fact that G_{0} is harmonic and positive in a neighborhood of v_{M}. For completeness, we give the argument. Use a conformal map z^{β} to locally straighten the boundary. The transformed function \tilde{u}_{0} is then harmonic and vanishes on a piece of the real axis; hence it is smooth and harmonic in a neighborhood of the origin by Schwarz' reflection principle and Weyl's lemma (or, by Schauder estimates). Thus, in new polar coordinates ρ, ϕ,

$$
\tilde{u}_{0}=\sum_{1}^{\infty} A_{i} \rho^{i} \sin (i \phi)
$$

for ρ small enough; again, since \tilde{u}_{0} is harmonic and vanishes on a piece of the real axis. Since \tilde{u}_{0} is positive for ρ small, A_{1} is positive by the orthogonality of $\sin (i \phi)$ on $[0, \pi]$. Conclude by transforming back to original coordinates; A_{1} corresponds to a_{0}.

We now have by (1.5), (1.4), Green's formula (that its use is permitted is easily checked) and by (2.3), setting $E_{0}:=u_{0}-P_{h} u_{0}$,

$$
\begin{align*}
c h^{2 \beta} & \leqslant\left\|E_{0}\right\|_{H^{\prime}(\Omega)}^{2}=\left(E_{0}, u_{0}-P_{h} u_{0}\right)_{\dot{H}^{\prime}(\Omega)}=\left(E_{0}, u_{0}\right)_{\dot{H}^{\prime}(\Omega)}=-\int E_{0}\left(\Delta u_{0}\right) \tag{2.4}\\
& \leqslant\left\|E_{0}\right\|_{H^{-\delta}(A)}\left\|\Delta u_{0}\right\|_{\dot{H}^{\prime}(A)}
\end{align*}
$$

Thus,

$$
\left\|E_{0}\right\|_{H^{-3}(A)} \geqslant \frac{c}{\left\|\Delta u_{0}\right\|_{\dot{H}^{\prime}(A)}^{\circ}} h^{2 \beta}
$$

which proves Theorem 1.1.
Proof of Theorem 1.2. The heart of the matter is (2.6) below, corresponding to (2.4) in the proof of Theorem 1.1. The rest of the proof consists of nontrivial technicalities.

Note that (1.3), (1.5) and all results of [11] hold for a quasi-uniform Lagrange family.

We shall first consider specific u_{d}, depending on d. Let $\omega_{d} \in \mathcal{C}^{\infty}(\bar{\Omega})$ with

$$
\omega_{d}(x)= \begin{cases}1 & \text { for }\left|x-v_{M}\right| \leqslant d \\ 0 & \text { for }\left|x-v_{M}\right| \geqslant 2 d\end{cases}
$$

Thus, $\operatorname{supp}\left(\nabla \omega_{d}\right) \subseteq A_{d}$, and we may assume by a scaling argument that

$$
\begin{equation*}
\left\|\omega_{d}\right\|_{e^{k}} \leqslant C_{k} d^{-k}, \quad C_{k} \text { independent of } d . \tag{2.5}
\end{equation*}
$$

Set now

$$
u_{d}:=\omega_{d} r^{\beta} \sin (\beta \theta)
$$

Assume that $2 d$ is less than the length of the shortest leg emanating from v_{M} so that $u_{d}=0$ on $\partial \Omega$. Since $r^{\beta} \sin (\beta \theta)$ is harmonic, we find that $\operatorname{supp}\left(\Delta u_{d}\right) \subseteq A_{d}$.

Let $E_{d}:=u_{d}-P_{h} u_{d}$. We note that, with $c>0$ independent of d and h,

$$
\left\|E_{d}\right\|_{H^{\prime}(\Omega)} \geqslant c h^{\beta}
$$

This follows since, assuming that $\operatorname{supp} \omega_{d} \subseteq\left\{w: \omega_{0} \equiv 1\right\}$ with ω_{0} as in (1.2), we have $u_{d}=t_{\beta}+y_{d}$, where $y_{d}:=\left(\omega_{d}-1\right) t_{\beta}$. Here, by (1.5),

$$
\left\|t_{\beta}-P_{h} t_{\beta}\right\|_{H^{\prime}} \geqslant c h^{\beta} .
$$

By (1.3) and a simple calculation of $\left\|y_{d}\right\|_{H^{2}}$ (using (2.5)), we find that, for $d \geqslant h^{1-\delta}$,

$$
\left\|y_{d}-P_{h} y_{d}\right\|_{H^{1}} \leqslant C h\left\|y_{d}\right\|_{H^{2}} \leqslant C h d^{\beta-1}=C h^{\beta}\left(\frac{h}{d}\right)^{1-\beta}=h^{\beta} o(1)
$$

As in (2.4), we now have

$$
\begin{equation*}
c h^{2 \beta} \leqslant-\int E_{d} \Delta u_{d} \leqslant\left\|E_{d}\right\|_{L_{乛_{\alpha}}\left(A_{d}\right)}\|\Delta u\|_{L_{1}\left(A_{d}\right)} . \tag{2.6}
\end{equation*}
$$

Using (2.5), it is easily calculated that

$$
\left\|\Delta u_{d}\right\|_{L_{1}\left(\mathcal{A}_{J}\right)} \leqslant C d^{\beta} .
$$

Hence.

$$
\left\|E_{d}\right\|_{L_{x}\left(A_{d}\right)} \geqslant c h^{2 \beta} d^{-\beta} .
$$

It remains to verify the same result for any u with $a \neq 0$. This is now slightly more complicated than in the proof of Theorem 1.1 since the exact dependence on d needs to be accounted for and our model functions u_{d} depend on d. With

$$
\bar{w}_{d}:=a u_{d}-u, \quad \bar{E}_{d}:=\bar{w}_{d}-P_{h} \bar{w}_{d}
$$

we have to show that

$$
\begin{equation*}
\left\|\bar{E}_{d}\right\|_{L_{-\infty}\left(A_{d}\right)}=h^{2 \beta} d^{-\beta} o(1) \quad \text { as } h \rightarrow 0, \text { for } h^{1-\delta} \leqslant d \leqslant d_{0} . \tag{2.7}
\end{equation*}
$$

Let ω_{0} be the cutoff function in (1.2). We may assume that $\operatorname{supp} \omega_{d} \subseteq\left\{x: \omega_{0} \equiv 1\right\}$. Thus,

$$
\bar{w}_{d}=a \omega_{d} t_{\beta}-u, \quad u=a t_{\beta}+w,
$$

and so, with w as in (1.2) and (2.2),

$$
\begin{align*}
\bar{w}_{d} & =\omega_{0} \bar{w}_{d}+\left(1-\omega_{0}\right) \bar{w}_{d}=\omega_{0}\left(a \omega_{d} t_{\beta}-u\right)-\left(1-\omega_{0}\right) u \tag{2.8}\\
& =\omega_{0}\left(-w-a\left(1-\omega_{d}\right) t_{\beta}\right)-\left(1-\omega_{0}\right) u \\
& =-\omega_{0} w-a \omega_{0}\left(1-\omega_{d}\right) t_{\beta}-\left(1-\omega_{0}\right) u \equiv \bar{w}_{d}^{1}+\bar{w}_{d}^{2}+\bar{w}_{d}^{3} .
\end{align*}
$$

We next quote a result from [11, Theorem 3.2] on local maximum norm estimates. For any $\varepsilon>0$, there exists C_{ε} such that

$$
\begin{align*}
&\left\|\bar{E}_{d}\right\|_{L_{\infty}\left(A_{d}\right)} \leqslant C_{e} h^{-\varepsilon}\left\{\min _{x \in S_{h}}\left(\left\|\bar{w}_{d}-\chi\right\|_{L_{-x}\left(A_{d}^{\prime}\right)}+h\left\|\bar{w}_{d}-\chi\right\|_{W_{\infty}^{\prime}\left(A_{d}^{\prime}\right)}\right)\right. \tag{2.9}\\
&\left.+d^{-1}\left\|\bar{E}_{d}\right\|_{L_{2}\left(A_{d}^{\prime}\right)}\right\},
\end{align*}
$$

where $A_{d}^{\prime}=\left\{x: d / 2 \leqslant\left|x-v_{M}\right| \leqslant 4 d\right\} \cap \Omega$. (In the quasi-uniform context, cf. [12, Theorem 7.1] for a simpler proof.)

By well-known approximation results, cf. [2], using (2.8), (2.2.i) and a simple direct calculation on \bar{w}_{d}^{2}, we have, with $A_{d}^{\prime \prime}=\left(A_{d}^{\prime}+h\right) \cap \Omega$,

$$
\begin{align*}
& \min _{x \in S_{h}}\left(\left\|\bar{w}_{d}-\chi\right\|_{L_{\infty}\left(A_{d}^{\prime}\right)}+h\left\|\bar{w}_{d}-\chi\right\|_{w_{\infty}^{\prime}\left(A_{d}^{\prime}\right)}\right) \tag{2.10}\\
& \leqslant C h^{2}\left\|\bar{w}_{d}\right\|_{e^{2}\left(A_{d}^{\prime \prime}\right)}=C h^{2}\left\|\bar{w}_{d}^{1}+\bar{w}_{d}^{2}\right\|_{e^{2}\left(A_{d}^{\prime \prime}\right)} \\
& \leqslant C h^{2}\left\{d^{2 \beta-2-\varepsilon}+d^{\beta-2}\right\} \leqslant C h^{2} d^{\beta-2}
\end{align*}
$$

A slight variation of the usual duality argument, in order to account for the precise dependence on d, gives (see [11, Lemma 5.1] for details)

$$
\begin{equation*}
\frac{1}{d}\left\|\bar{E}_{d}\right\|_{L_{2}\left(A_{d}^{\prime}\right)} \leqslant C h^{\beta-\varepsilon} d^{-\beta}\left\|\bar{E}_{d}\right\|_{H^{\prime}(\Omega)} \tag{2.11}
\end{equation*}
$$

Next, by (1.3) and (2.2.ii),

$$
\begin{equation*}
\left\|\bar{w}_{d}^{1}-P_{h} \bar{w}_{d}^{1}\right\|_{H^{\prime}(\Omega)} \leqslant C h^{2 \beta-\varepsilon}\left\|\bar{w}_{d}^{1}\right\|_{H^{1+2 \beta-\cdot}(\Omega)} \leqslant C h^{2 \beta-\varepsilon} \tag{2.12}
\end{equation*}
$$

Further, by (1.3) and a simple calculation of $\left\|\bar{w}_{d}^{2}\right\|_{H^{2}}$,

$$
\begin{equation*}
\left\|\bar{w}_{d}^{2}-P_{h} \bar{w}_{d}^{2}\right\|_{H^{\prime}(\Omega)} \leqslant C h\left\|\bar{w}_{d}^{2}\right\|_{H^{2}(\Omega)} \leqslant C h d^{\beta-1} \tag{2.13}
\end{equation*}
$$

Also, by (1.3) and (2.2.iii), we have, with $\beta^{\prime}=\min (\bar{\beta}, R-1)>\beta$,

$$
\begin{equation*}
\left\|\bar{w}_{d}^{3}-P_{h} \bar{w}_{d}^{3}\right\|_{H^{\prime}(\Omega)} \leqslant C h^{\beta^{\prime}-\varepsilon}\left\|\bar{w}_{d}^{3}\right\|_{H^{1+\beta^{-\prime}}(\Omega)} \leqslant C h^{\beta^{\prime}-\varepsilon} . \tag{2.14}
\end{equation*}
$$

Inserting (2.12)-(2.14) into (2.11) gives

$$
\frac{1}{d}\left\|\bar{E}_{d}\right\|_{L_{2}\left(A_{d}^{\prime}\right)} \leqslant C\left\{h^{3 \beta-\varepsilon} d^{-\beta}+h^{1+\beta-\varepsilon} d^{-1}+h^{\beta^{\prime}+\beta-2 \varepsilon} d^{-\beta}\right\}
$$

Using this and (2.10) in (2.9),

$$
\begin{aligned}
\left\|\vec{E}_{d}\right\|_{L_{\infty}\left(A_{d}\right)} & \leqslant C h^{-\varepsilon}\left\{h^{2} d^{\beta-2}+h^{3 \beta-2 \varepsilon} d^{-\beta}+h^{1+\beta-\varepsilon} d^{-1}+h^{\beta^{\prime}+\beta-2 \varepsilon} d^{-\beta}\right\} \\
& =C h^{2 \beta} d^{-\beta}\left\{\left(\frac{h}{d}\right)^{2-2 \beta} h^{-\varepsilon}+h^{\beta-3 \varepsilon}+\left(\frac{h}{d}\right)^{1-\beta} h^{-2 \varepsilon}+h^{\beta^{\prime}-\beta-3 \varepsilon}\right\}
\end{aligned}
$$

Since $h / d \leqslant h^{\delta}$ and $\beta^{\prime}>\beta$, we obtain the desired result (2.7) for ε small enough.
This completes the proof of Theorem 1.2.
Acknowledgement. I thank Professor James H. Bramble for his penetrating and helpful comments concerning this paper.
Department of Mathematics
and Center for Applied Mathematics
Cornell University
Ithaca, New York 14853

1. R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
2. Ph. G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978.
3. M. Dobrowolski, Numerical Approximation of Elliptic Interface and Corner Problems, Rheinischen Friedrich-Wilhelms-Universität, Bonn, 1981.
4. P. Grisvard, Boundary Value Problems in Non-Smooth Domains, Department of Mathematics, University of Maryland, Lecture Notes 19, College Park, MD, 1980.
5. R. B. Kellogg, "Higher order singularities for interface problems," The Mathematical Foundations of the Finite Element Method (A. K. Aziz, Ed.), Academic Press, New York, 1972, pp. 589-602.
6. V. A. Kondrat'ev, "Boundary value problems for elliptic equations in domains with conical or angular points," Trans. Moscow Math. Soc., v. 16, 1967, pp. 227-313.
7. P. Laasonen, "On the discretization error of the Dirichlet problem in a plane region with corners," Ann. Acad. Sci. Fenn. Ser. A, I Math., v. 408, 1967, pp. 1-16.
8. J. A. Nitsche, "Zur lokalen Konvergenz von Projektionen auf finite Elemente," Approximation Theory, Lecture Notes in Math., Vol. 556, Springer, Bonn, 1976, pp. 329-346.
9. J. A. Nitsche, "Der Einfluss von Randsingularitäten beim Ritzschen Verfahren," Numer. Math., v. 25, 1976, pp. 263-278.
10. J. A. Nitsche \& A. H. Schatz, "Interior estimates for Ritz-Galerkin methods," Math. Comp., v. 28, 1974, pp. 937-958.
11. A. H. Schatz \& L. B. Wahlbin, "Maximum norm estimates for the finite element method on plane polygonal domains, Part 1," Math. Comp., v. 32, 1978, pp. 73-109.
12. A. H. Schatz \& L. B. Wahlbin, "On the finite element method for singularity perturbed reaction diffusion problems in two and one dimensions," Math. Comp., v. 40, 1983, pp. 47-89.
13. R. Schreiber, "Finite element methods of high order accuracy for singular two-point boundary value problems with non-smooth solutions," SIAM J. Numer. Anal., v. 17, 1980, pp. 547-566.

[^0]: Received November 29, 1082; revised May 5, 1983.
 1980 Mathematics Subject Classification. Primary 65N30, 65N15.
 *This work was supported by the National Science Foundation, MCS 78-27003.

