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On the Sharpness of Certain Local Estimates for
o

H Projections into Finite Element Spaces:

Influence of a Reentrant Corner*

By Lars B. Wahlbin

Abstract. In a plane polygonal domain with a reentrant corner, consider a homogeneous

Dirichlet problem for Poisson's equation -Au =/ with / smooth and the corresponding

Galerkin finite element solutions in a family of piecewise polynomial spaces based on

quasi-uniform (uniformly regular) triangulations with the diameter of each element compara-

ble to h, 0 < h < 1. Assuming that u has a singularity of the type \x - vM\P at the vertex vM

of maximal angle tr/ß, we show: (i) For any subdomain A and any s, the error measured in

H~S(A) is not better than 0(h211). (ii)On annular strips of points of distance of order d from

vM, the pointwise error is not better than 0(h2tld ß).

1. Context and Results. Let fi be a polygonal bounded simply connected domain

in the plane and consider the Dirichlet problem

/, j) -A«-/    in«,
u = 0      on 3ß,

where/ g 6°°(Í2). Let a, «s a2 < • • • < aM_, < aM denote the interior angles at the

corners. Assume that there is only one vertex, vM, of maximal angle and that the

angle is reentrant, aM > m. For simplicity in notation set

a:= aM,   ä := aM_x,   ß:= m/a,    ß := ir/ä.

Then ß < 1 and ß < ß.

As is well known, cf. Grisvard [4], Kellogg [5] or Kondrat'ev [6], the solution of

(1.1) can be expressed in terms of polar coordinates r, 6 centered at vM and with the

positive 0-axis along one leg as

(1.2) u = atß + w;       tß(r,0) = íüo(r,0)r'sin(jB0),

w = o(rß)    as r -* 0,

where a is a constant and w0 e 6°°(ß) with w0 = 1 for r < r0, <o0 ■ 0 for r > 2r0.

We assume that 2r0 is less than the length of the shortest leg emanating from vM so

that tß = 0 on 3ß.

Let Sh, 0 < h < 1, be finite element subspaces of Hx(Sl) such that, for v e Hy n

Hx withy > 1,

(1.3) min ||t) - xllw'(O) < chy ~'Nlirrn).       y'- oàn(y,R),
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where C does not depend on h or v and where R ^ 2; cf. Ciarlet [2]. Here and below

we use standard notation for the L2-based Sobolev spaces Hy and fP; cf. Adams [1].

H y(A) for y > 0 shall refer to the dual space of ff'(A) with respect to the pivot

space L2, i.e.. for w e L2(/l),

Sa vw
IM|„tM):-     sup     —-.

recil.tl   Hüll//'</l>

r*0

The //' projection of u into S,,, />,,«, is defined by

(1.4) («-¿>,x)//',ö):=  fv{u-P„u)- Vx = 0    forallxeS;,.
■'s

i.e., />,,« is the Galerkin finite element solution of (1.1). (The effect of numerical

integration is not considered in this note.)

On interior subdomains A of ß away from the corners the solution u is smooth

and hence, for commonly used finite element spaces, approximable to "high" order,

typically 0(hR) in LX(A). Numerical observations show that, for finite element

spaces without special arrangements to treat corner singularities, the error in

u - Phu on A is generally not of this "high" order. This is often referred to as a

"pollution" effect from the corners.

For A ç ß and with the error measured in a negative norm H "(A), a standard

duality argument using (1.3) gives immediately an upper bound 0(hl,i ') for the

error, for any e > 0. (e = 0 can be taken in most cases.) If a * 0 in (1.2), it has long

been felt that the error is not better than 0(n2,i) for general finite element spaces;

this is sometimes also referred to as "pollution", even when A = ß.

As for previous proofs that "pollution" (in the second sense) occurs, we cite the

following two works.

(i) An example by Babuska and Bramble with ß the ¿-shaped domain, ß = 2/3,

and regular uniform meshes. Given e > 0, for each h there exists uh such that

ll«A-VJI/,«a,>^4/3"fll«All//" •,«>•

where cf > 0 is independent of h. This example was given in [10. Section 7, Example

4] but a full proof has never appeared.

(ii) A result of Dobrowolski [3, Theorem 7.1]. He considered a family of "unre-

fined" meshes in the sense that if a * 0 in ( 1.2). then there exists c > 0 such that

(1.5) min||M-xll„-,a, >chf,
xe.S'„

and he showed that then

II« -'»«HMO) > <*V-

For piecewise polynomial spaces on a family of triangulations of ß, (1.5) would

hold if each mesh contained merely one element rh at vM with its largest inscribed

disc of radius > ch, c positive and independent of h. To see this, note that by a

simple scaling argument we have already

min       \\rl,un(ß6)-x\\,ptrli)>chft.
X polynomial

of degrees R     I
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Thus, (1.5) would follow for u = atß. Since, by [4], [5], [6], w:= u-atß&

//' +""e(ß), o = min(2/3,/J) > ß, we have from (1.3) that \\w - Phw\\H, < CA°'-£ =

A^o(l) for e small enough, where a' = min(a,R - 1) > ß. Thus (1.5) would follow

for a general u with a * 0.

In this context we mention the interesting structure results of Nitsche [8]. They

seem less successful in explaining the present "pollution" from corners than in

investigating the corresponding "pollution" from boundary singularities in one-di-

mensional singular Sturm-Liouville problems [9]; cf. also Schreiber [ 13, Section 6.2].

Our first result in this note generalizes the results of Babuska, Bramble and

Dobrowolski mentioned above.

Theorem 1.1. Assume (1.3), (1.5) and that a * 0 in (1.2). Let A C ß be any

subdomain o/ß and s any nonnegative number. There exist positive constants c and hQ

such that, for h < h0,

II« - J\«IIW"M) > C»2"-

The proof will be furnished in Section 2.

We shall next describe the second result of this note. We shall have to be more

precise about various properties of the finite element spaces. For simplicity, cf.

Remark 1.1, consider edge-to-edge triangulations parametrized by A, 0 < A < 1, of ß

into disjoint triangular elements t,\ i = 1,..., Ih, and let Sh consist of functions x

such that x e ß°(ß)> X = 0 on 9^ ar*d xlT* 's a polynomial of total degree

R - 1 ^ 1. Let the family of meshes be quasi-uniform (a.k.a. uniformly regular), i.e.,

let there exist positive constants c and C independent of ; and A such that, with ph¡

denoting the radius of the largest inscribed disc of t/\

cA < p* < diam( t* ) < CA    for all i,h.

For brevity, let us call such a family Sh a "quasi-uniform Lagrange" family.

In Schatz and Wahlbin [11] it was shown that, for x close to vM, for any e > 0,

(1-6) K« - *»(*)! < Cth^-Xx - v„\-'.

This estimate was derived as a mix of two effects: local approximability of the

solution and the "pollution" influence. In fact, "pollution" dominates in this

estimate as can be seen via the following argument.

One knows from [4], [5], [6] that \Dau(r,6)\ < C/^  |a| as r -» 0. Thus, with

(1.7) Ad - <x: d < \x - vM| < 2d) n Q,

we have, for d > A1 ~Ä, 5 > 0, but d not too large (the remaining corners should be

well away),

min ||« - x\\L„(Àd) < CAV-« = CA^"^)"^ = A2^^0(l).
XeSh \ " '

The result analogous to (1.6) for the five-point difference scheme and various

classical ways of imposing the boundary conditions was given in Laasonen [7].

Our second result establishes the sharpness of (1.6).
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Theorem 1.2. Let Sh be a quasi-uniform Lagrange family. Assume that a * 0 in

(1.2).
Then, for any Ô > 0, there exist positive constants, c, d0 and A0 such that with Ad as

in(\.l)andhx~ s ^ d < d0,h < A0,

Uu-P.uW^^ch2^".

Again, the proof will be given in Section 2.

Remark 1.1. Theorem 1.2 can be established for more general finite element spaces

than quasi-uniform Lagrange families. In fact, it holds under the general assump-

tions of [11, Section 2] if furthermore (1.5) is assumed. The proof is the same, but we

do not wish to repeat the rather lengthy hypotheses of [11] in this note.

2. Proofs. Before giving the proofs of Theorems 1.1 and 1.2 we shall collect some

more precise information about the problem (1.1) and the decomposition (1.2). The

exact results can be found in [4], [5], [6]. For motivation one notes that away from

vertices the solution u of ( 1.1 ) is smooth, whereas at a vertex v¡ of angle a, one has, in

polar coordinates centered at that vertex and with /3, = w/a,, y, e Z+U{0},

u(r,6) = a,r^sin(/3,tf) 4- ¿>;/-2/?'sin(2/3,0)(lnr)y' + smoother terms.

The exact results are as follows.

For any e > 0 there exists a constant Ce such that

(2.1) ll«ll^-'(0)<Ce||/ll///»-(0)-

Let ßw be a neighborhood of vM avoiding all other vertices. Then for any e > 0,

with w as in (1.2), we have in fact that

(2.2.Í) \Daw(r,0)\*i Catr2ß-W~e   as r -* 0,

(2.2.Ü) W6//1+2'-(Ûw),

(2.2.ÍÜ) uer/l+i"-t(ß\QM),

(2.2.1V) weHl + a-'(Q),       a = min(2ß,ß) > ß.

Proof of Theorem 1.1. The heart of the matter is the short calculation (2.4), once a

suitable «0 has been found. The rest of the proof is routine.

We first show that it suffices to treat a particular u0 = a0tß + ■ ■ ■ with aQ * 0.

For this let

w := aaQXu0 - u.

Then, by (1.2) and (2.2.iv), w e Hx+0't/2(Ü), with a > ß. Using (2.1) and (1.3), we

have by the standard duality argument, writing E:= w - Phw,

ii£ii//-<Q, < cht-^um^ < ca^"'-',

where a' = min(a,R - 1) > ß. Thus, for e small enough,

l|£JU-'(a) = ^0(l)    asA-»0.

Our specific u0 is constructed as follows. Let x0 e IntA, and let A0 c c A be an

annulus centered at x0. If A0 = Bx \ B0, where B0 c c Bx c c A are concentric
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discs, let u e (2°°(ß)with

/ 1     outside Ä,,
CO =  {

\ 0     inside 50.

Let further C70(;c) be the Green's function for (1.1) with singularity at x0, and set

w0:= cot70.

Then u0 e ß°°(Intß), u0 = 0 on 3ß, and

(2.3) supp(A«0) c A0 c c A.

Also, a0 * 0, as can be seen by classical means from the fact that G0 is harmonic

and positive in a neighborhood of vM. For completeness, we give the argument. Use

a conformai map zß to locally straighten the boundary. The transformed function «0

is then harmonic and vanishes on a piece of the real axis; hence it is smooth and

harmonic in a neighborhood of the origin by Schwarz' reflection principle and

Weyl's lemma (or, by Schauder estimates). Thus, in new polar coordinates p, <f>,

00

«o = £^,P'sin(<<i>)
i

for p small enough; again, since «0 is harmonic and vanishes on a piece of the real

axis. Since h0 is positive for p small, A, is positive by the orthogonality of sin(/<f>) on

[0,tt]. Conclude by transforming back to original coordinates; Ax corresponds to a0.

We now have by (1.5), (1.4), Green's formula (that its use is permitted is easily

checked) and by (2.3), setting E0 '.= u0 - Phu0,

(2.4) ch2ß < ||£ollw'(a) = (£o."o ~ ^"o)//1^) = (£o.«o)«'(a) = ~ fEo(^uo)

< ll£'ollw-(^)llA«ollw'<x>-

Thus,

which proves Theorem 1.1.

Proof of Theorem 1.2. The heart of the matter is (2.6) below, corresponding to (2.4)

in the proof of Theorem 1.1. The rest of the proof consists of nontrivial technicali-

ties.

Note that (1.3), (1.5) and all results of [11] hold for a quasi-uniform Lagrange

family.

We shall first consider specific ud, depending on d. Let ud e 6°°(ß) with

(   ) = / l     for |x - u^| < d,

"AX>     \0    foT\x-vM\>2d.

Thus, supp( Vud) Q Ad, and we may assume by a scaling argument that

(2.5) \\ud\\ek ̂  Ckd~k,       Ck independent of d.

Set now

ud:= udrßsin(ßO).
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Assume that 2d is less than the length of the shortest leg emanating from vM so that

ud = 0 on 3ß. Since rßsin(ß6) is harmonic, we find that supp(A«¿) Q Ad.

Let Ed := ud - Phud. We note that, with c > 0 independent of d and A,

l|£J,,|<a> > chß.

This follows since, assuming that suppw^ ç {w. u0 = 1} with <o0 as in (1.2), we have

«</ = h + >^'where>"«/:= (w</_ ̂ vHere< by (15)'

\\tß-Pktß\\H>  >chß-

By (1.3) and a simple calculation of ||>'</||W2 (using (2.5)), we find that, for d > A1 ~s,

Ha - JUfll«' < Cfc||x,||w> < Chdß   x = Chß[^     = AMO-

As in (2.4), we now have

(2.6) cA2" < ~\EdLud < \\Ed\\LM^u\\LMäY

Using (2.5), it is easily calculated that

HAiiJI^, < Crf".

Hence,

It remains to verify the same result for any u with a =*= 0. This is now slightly more

complicated than in the proof of Theorem 1.1 since the exact dependence on d needs

to be accounted for and our model functions ud depend on d. With

™d:= aud - «.       Ëd := wd - Phwd

we have to show that

(2.7) \\Ëd\\LxiAj) = h2ßd~ßo(\)   ash ^ 0, for A1 " < </< ¿0.

Let co0 be the cutoff function in (1.2). We may assume that suppw¿ ç (x: co0 = 1).

Thus,

wd = audtß - u,       u = atß + w,

and so, with w as in ( 1.2) and (2.2),

(2.8) wd = u0wd + (1 - u0)wd = u0{au>dtß - u) - (1 - co0)u

= "oí-*1 - a0 - ud)'ß) "(• - uo)u

= -co0)v - aco0(l - ud)tß - (1 - u0)h = wd + w2d + vv].

We next quote a result from [11, Theorem 3.2] on local maximum norm estimates.

For any e > 0, there exists Cc such that

(2-9)        \\Ed\\Lm{Aä) < Cth~Í min (\\wd - x\\L^x + h\\wd - X|Ihím¿>)

+*rlll^llM^)} •
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where A'd = (x: d/2 < \x - vM\ < 4d) n ß. (In the quasi-uniform context, cf. [12,

Theorem 7.1 ] for a simpler proof.)

By well-known approximation results, cf. [2], using (2.8), (2.2.i) and a simple direct

calculation on »v;2, we have, with A"d = (A'd + A) n ß,

(2.10) min (lliv, - x\\L^d) + h\\ñd - xWwU*))

< Ch2\\*a\\e\A-¡x = Ch2\\wxd + x\t\\e\A-i)

< Ch2{d2ß~2-' + dß-2) < CA2^-2.

A slight variation of the usual duality argument, in order to account for the

precise dependence on d, gives (see [11, Lemma 5.1] for details)

(2.11) -d\\Ed\\L^d)^Chß^d-ß\\Ed\\H,{ü).

Next, by(1.3)and(2.2.ii),

(2.12) \\wld - Phwd\\Hxm < Ch^-'\\wld\\H^t-.(Q) < CA2*-.

Further, by (1.3) and a simple calculation of ||h^||W2,

(2.13) ||vv2 - Ph&d\\Hxm < CA||vv2||„2(S2) < Chdß~x.

Also, by (1.3) and (2.2.iii), we have, with ß' = min(ß,R - 1) > ß,

(2.14) ||w] - Phwd\\„,(ü) « Chß'-*\\nd\\Hl.ß--.(Q) < Chß''.

Inserting (2.12)-(2.14) into (2.11) gives

¿HffJm»< c{h»-'d-> + hx+ß-<d~x + hß'+ß~2<d-ß).

Using this and (2.10) in (2.9),

ll^lk(^) < ch~\h2dß'2 + hlß-2ed-ß + A'^-y-' + hß'+ß-2cd~ß)

= CA2^-^|i^)2 2\" + hß~" + ihX^h-*' + hß,-ß-A.

Since h/d < hs and ß' > ß, we obtain the desired result (2.7) for e small enough.

This completes the proof of Theorem 1.2.
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