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On the SHASTA FCT Algorithm for the Equation

| + ¿(«o,» = o
By Tsutomu Ikeda and Tomoyasu Nakagawa

Abstract.   In recent years, Boris, Book and Hain have proposed a family of finite dif-

ference methods called FCT techniques for the Cauchy problem of the continuity equa-

tion.   The purpose of this paper is to study the stability and convergence about the

SHASTA FCT algorithm, which is one of the basic schemes among many FCT techniques,

though not in its original form but a slightly modified one for our technical reason.

(Our numerical experiments indicate less distinction between the algorithm dealt with

here and the original SHASTA FCT one in terms of reproduction ofsharp discontinu-

ities.)   The main results are Theorems 1 and 2 concerning the L   -stability and the

Ljoc-convergence, respectively.

1.  Introduction.  There have been proposed many finite difference schemes for

the initial-value problem of the conservation law:

en 3p      30) - + ~-g(p) = o.
bt      bx

([5], [7], [8], [11], [12], [13], [14], [18], [19], [20] among others.)

But high-order methods, Lax-Wendroff's scheme for example, are known to

yield in some cases numerical solutions which approximate nonphysically relevant so-

lutions, that is, those which violate the entropy condition.  The development of over-

shoot, undershoot, and excessive oscillation is another problem.  On the other hand,

the solutions of some "positive" schemes converge to the generalized solution satisfy-

ing the entropy condition, but they are necessarily of first-order accuracy.

In recent years, Boris, Book, and Hain ([1], [2], [3], and [4] ) have proposed

a family of finite difference methods called "the flux-corrected transport (FCT)" tech-

niques for the hyperbolic equation, which is one of the special cases of (l),

(2) — + — (v(p) • p) = 0       (lxl<°°, r>0)
bt      bx
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1158 TSUTOMU IKEDA AND TOMOYASU NAKAGAWA

with the initial condition of

(3) P(x, 0) = po(x)      (lxl<<~).

For simplicity, we shall denote problem (2) with (3) by (CP).

The FCT technique consists of a finite difference scheme and a nonlinear anti-

diffusion operation.  Given the numerical solution {p"}/=0 ±1      at time step t =

nr, one calculates the temporary solution {p"+1 }/=o,±i,... °y tne specified differ-

ence scheme, then applies the antidiffusion operation to it to obtain {p."+1 }=0 +.

at time step t = (n + l)r.    The essential part of the technique is characterized

by the latter which removes excessive diffusion contained in the temporary solution

by the former, thus reproduces relatively sharp wave shapes.  Thanks to this antidif-

fusion operation, solutions by the FCT technique have a distinguishing property which

cannot be expected by a sole use of finite difference schemes.

In their papers, they develop many FCT techniques and compare their methods

numerically with the two-step Lax-Wendroff scheme, the leap-frog scheme, and the

one-sided scheme in the case of square waves, and in addition they mention some ap-

plications to more complicated problems.   Further, with the aid of Fourier analysis,

they investigate the amplitude and phase errors and the Gibbs phenomenon in the

special case where p0(x) is a Fourier harmonic function and v(p) is a constant func-

tion.  For this argument, however, they omit nonlinear characteristics of the antidif-

fusion operation.

The purpose of this paper is to study the stability and convergence about the

SHASTA FCT algorithm, one of the basic schemes among many FCT techniques, for

the full nonlinear problem (CP).  (The term SHASTA stands for "SHarp And Smooth

Transport Algorithm".)   For technical purposes, we modify the original SHASTA

scheme slightly.  And we reconstruct the FCT part so that it may be monotone.   Nu-

merically, our version keeps the same property in the sharp reproduction of discon-

tinuities as that of the original one.  Our assumptions are that v(p) is a smooth func-

tion of the single real variable p and that p0(x) is a bounded function, and we shall

further assume that p0(x) is a measurable function having locally bounded variation

when we will deal with the convergence of solution.  The main results are Theorems 1

and 2, which describe the stability in the I°°-sense and the convergence of a subse-

quence to a generalized solution in the i,1^-sense, respectively.

2. SHASTA FCT Algorithm. We review here the SHASTA FCT algorithm,

which is slightly modified for our convenience.  Conceptually, the FCT technique con-

sists of three operations:   a transport and a diffusion followed by an antidiffusion.

But in the present case the transport and diffusion are performed as a single finite

difference operation SHASTA.   Let the half-space R x R+ = {(x, t): - °° <x < + °-,

t > 0} be covered by a grid defined by the straight lines

x = jh,       t = kr,

where h and r are fixed real numbers, k runs over the nonnegative integers and /
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ON THE SHASTA FCT ALGORITHM 1159

assumes all integral values.  We use the following notations:

j P* = Ph(Jh, *r).      Pj = ~PhQ'h' kTl

( ph(x, t) = pf    for jh<x<(j + \)h and kr < t < (k + 1)t.

° SHASTA.   Denote r/h by X.  We introduce two real-valued functions ¿T(£, 7?)

and F(£, 17) of two real variables such that

E(£, 77) = X(uí¿) + i<îî))/(1 + Xufo) - Xi>(|)),(4)

(5) •F«, -7) = -  [(1   + £(-, T?))H - (1  - £■({■, T?))2T7] .

The finite difference scheme SHASTA is defined in the form

(6)
-n + l

p'¡-F(pi,p'}+x) + F(pi_x,p'¡).

This formula has a geometrical interpretation as in Figure 1.

Trapezoids representing the shape

of fluid elements at t = nr.

(j-l)h (j+l)h

Trapezoids after "transport"

operation.  The P+1 and p,

are determined so that the

relation

(p. + p..,) (h + v(p  )T - v(p.)T)

- (Pj

Vi : pi+i

p" ,)h,

(j-l)h (j+l)h

P.  : P.

holds.

Trapezoids after "diffusion"

operation.

The  "n   is determined 30

that the shaded area in (c)

is equal to the one in (b).

Figure 1

Geometrical interpretation of the SHASTA operation
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1160 TSUTOMU IKEDA AND TOMOYASU NAKAGAWA

° FCT.    The right-hand side of (6) contains a diffusion term

(l/8)(p"_!  - 2p" + p"+1) which is velocity-independent.  The nonlinear antidiffusion

operation FCT to cancel this excessive diffusion is as follows:

(7) pri='Pj+x-f"+\xi2+fî-\)2-

Uere,f"++X\2, which is the antidiffusion flux of our definition, must satisfy the follow-

ing conditions:

(a)  There exists a positive-valued continuous function K(yx ,v2,v3, vA) such

.hut f"+1      -  krC7?l+l    7.n+1    77I+1    ~ñn+1\-An+1      in u/Wh  A" + 1      =o"+1  —
that J¡+ . /2 - A(p/_1  , p.     , p/+ j , p/+2 )   ù.j+. /2 in which A/+ . /2 - p/+.

p"+1.

(fe)    SUP(.1,,2>.3,.4)6ß4   [^p^.'s.^]   =Ä"0<l/8.

(c) \f?+\)2\<mri(\AÏ_\)2\,\A»:il2\).

(d) If A»_\)2 ■ Aj+\)2 < 0, then ff_\)2 = /£»   = 0.

(e) If pj + 1 < p^+j1 (respectively pf + 1 > p?*.1), then p? + 1 < p?+7 (respec-

tively P;+'> P;+v ).
Remarks.   1.  Boris and Book introduced the explicit antidiffusion ñux f"_^x\2

such that

#7/2 =s ■Max 0,Mm^-A^/2,HA^V/2l,sAV3/2)j

in which s denotes the sign of Aj+x/2. But this does not satisfy the condition (e).

2.  The restriction that K0 < 1/8 is very important numerically, but we need

only that K0 < 1 in the following sections:

Lemma 1.   We have

p" + 1 =P"+1    ifp" + 1> Max(p-"_+. ', p"+; ) or if

(8)
p^^Min^V'^VX

(9) lp;+ ' - p; + 1 K Min(l A^V/2 i, ia^V/2 i)>

art».

(10) Min(p7_V> p;+ ', p7+V) < p," + ' < Max(^_V, p?+ >, p»+7).

(77ze estimation (10) meawx rto rfte operation (7) generates no new maxima or mini-

ma.)

Proof.   Omitted.

Examples of the Antidiffusion Flux.

Example 1.

(ID      tfV/a = i • M»[o,MmQ, • A«_V/2 ,1 I A^//2 I, ̂  • A^/2)

where s denotes the sign of A^x/2.
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ON THE SHASTA FCT ALGORITHM 1161

Example 2.

(12) -7+V/2 =?/i1/2 •Mm(l,a^V/2.<31/2).

where f/^1« is the explicit antidiffusion flux introduced by Boris and Book, and

.+ , P      ÍfÍ-Í/12+Í'r+3/2=0,

"      i IAThV/2 + 2/;+V/2 !/(£+{, +/;+V/2 I    otherwise.

3.  Stability.  In what follows, we shall always assume that v(p) is a continuously

differentiable real-valued function of the single real variable p and that p0(x) is a

bounded function. We denote the infimum (respectively supremum) of p0(x) by s

(respectively S).  Let Vs s he the absolute maximum of dv(p)/dp in s < p < S.

Lemma 2.   Suppose that s < £ < 5 and s < 77 < S.  Then we have the estimates

(13) 0< -«,i?)<-,      "-< — «, ti)<0
o? 2 2      017

provided that

(14) X[FsS(S-s +4Max(lsl, IS I)) + 2lu((s + S)/2)I]< 1.

(/« i/ze case of v(p) = v = constant, this inequality is written as X < l/2i>.)

Proof.   For simplicity, we put p = Vs S(S - s)/2, q = Vs s Max(lsl, 151), and

r = \v((s + S)/2)\.  Then the condition (14) is equivalent to

(14') 2X[p + 2q +r] < 1.

We have

bE                            XÙQ) bE Xù(v)
= (l+E)-——-,      — = (i-E)

9? 1 +X»(t?)-Xi,(S)'      9t? 1 + Xu(t?) - Xu(£)

Therefore, the partial derivatives bF/b% and bF/br¡ are written in the form

bF     1 + E r 2Aù(ê) "I
O5)      - = ̂ ~  (!+£') + . ..¡'.^W+zx + Q-wl

bï, 8 1 + Xu(77) - Xv(Ç)

bF        \ -E [ 2Xb(r]) 1

9t? 8 1 4- Xu(t7) - Xv(%)

Put X=Vz- X«X£), r = ^ + Xi>(T7), .4 = Xifëfê, 5 = XiXÉto, C = Xù(î?)?, and £> =

Xi)(i7)77, respectively. By virtue of the fact that 1 + E = 2Y/(X + Y) and 1 - E =

2X/(X + Y), (15) and (16) are rewritten as
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1162 TSUTOMU IKEDA AND TOMOYASU NAKAGAWA

bF X
(18) — = --z [(X - 2D)X + (X - 2QY].

977       2(X + Y)3 LV ^      y '  '

Hence, the family of inequalities

0 < Vi - Xp - Xr < X < Vi + Xp + Xr,

0 < Vi - Xp - Xr < Y < Vz + Xp + Xr,

0 < 1 - 2Xp < X + Y,

UKX-7,    iBl^Xq,    ICKX-7,    \D\ <Xq,

implies that bF/b% > 0 and bF/br¡ < 0 under the condition of (14').   If we regard X,

Y, A, B, C, and D as independent variables, the right-hand side of (17) (respectively

(18)) is monotone nondecreasing in A and B (respectively C and D).  Therefore, we

have, under the restriction of (14'),

bF     1    Y(Y + 2Xq)      1/1 \ /1 \      1
— <-<-( - + Xp + Xr)(-+Xp +2Xq +Xr)<-,
9£     2      (X +Y)2        2 V 2 / \ 2 /      2

bF        1    X(X + 2X-7) 1/1 \/l \        1
— >- >--(- + Xp+XH(- + Xp + 2X-7 + Xr)>--,
bV        2     (X+Y)2 2\2 /\2 /        2

as Y(Y + 2Xq)/(X + r»2 (respectively X(X + 2Xq)/(X + F)2) is monotone decreas-

ing in X (respectively Y) and monotone nondecreasing in Y (respectively X).  This

completes the proof.    Q.E.D.

On account of the above lemma, the SHASTA is a positive finite difference

scheme if (14) is observed.  Moreover, the antidiffusion operation generates no new

maxima or minima, so we obtain the following theorem.

Theorem 1.  Under the condition of (14) the SHASTA FCT algorithm is L°°-

stable, and it holds that

(19) inf P0(*) < Pj < SUP Po(x)

for any j and nonnegative k.

4. Convergence of a Subsequence of {pn(x, t)}. The purpose of this section is

to show that there exists a subsequence of {ph(x, t)} tending to one of the general-

ized solutions to (CP) in the Z,|oc-sense under some assumptions. Hereafter, we shall

always assume that p0 is a measurable function having locally bounded variation. We

fix X to satisfy (14). Let us use the notation Vari^; v) to denote the total variation

in [-X, X] of v = v(x) which is defined in R having locally bounded variation.

Now, the following fact is well known.

Lemma 3 (Oleinik [15]).   Let {hn} be a sequence such that

hn>0   for n = 1, 2, . . . , lim hn = 0.
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ON THE SHASTA FCT ALGORITHM 1163

Suppose that the sequence of real-valued functions {p„n(x, t)}n=x 2     defined in

R x R+ satisfies the following conditions:

(i) Each of {ph (x, 0}„=i 2     *s a bounded measurable function, and the ab-

solute values of pn (x, t) are uniformly bounded in hn.

(ii) Each of {ph (x, t)}n=x 2 is of locally bounded variation as a function

of x, and for any fixed T>0 and X > 0 the total variations VariLY; ph ( ■, t)) are

uniformly bounded in hn and 0 < t < T.

(iii) For arbitrary fixed T > 0 and X > 0, there exists a constant C independent

of hn so that the estimation

¡*x \Phnix, t) - phn(x, t')\ dx<C-(\t-t'\+hn)

holds for anyO<t<TandO<t'<T.

Then,   there  exists a pair  of a  subsequence   [pn' (x,   t)}m = í 2      of

{ph (x, t)}n=x 2     and a bounded measurable function p(x, t), which satisfies the

following properties:

(iv)   \p(x, t)\ < sup^^.l/i^ix', t')\.

(v)  hmm^00 j*   \Ph'm(x, t) - p(x, t)\dx = 0  if 0 < t <T for any fixed T>

Oand X>0.

(vi) limM_>„_ f0T j*x Iphm(x, t) - p(x, t)\ dxdt = 0 for any fixed T>0and

X>0.

Proof.  Omitted.

In the present case we see, as a result of Theorem 1, that the sequence {ph(x, t)}

satisfies the condition (i) in Lemma 3.  Let us establish the conditions (ii) and (iii) to

{ph(x, t)}.

Lemma 4.   For fixed T > 0 and X > 0, we have the estimate

(20)
j-i
£    Ip*., - pf I < Vari(X + 2T/X; p0),

j=-J

where Jh < X and 0 < kr < T.

Proof.   From (d) and (e) it follows that

Z \pf+1-p^<\pk-j-~pk-j\+ Z \pf+l-pf\ + \pkj-Pkj\.
j=-J i=J

Hence, we obtain Sjf"!., \pf+x ~pf\< 2/=_7--,  lp*+I - P¡ I by (9).  We put wf =

pf+x - pf and wk = pLj - p!).  From (6) we obtain, by applying the mean value

theorem,

w * =

(21)

»--(fS-í^.^ + ̂ r.^í/a) • wk-\

— fáfc_1     o*-1)
di.VPj-l/2>Pj      >

■ <,' +
bF

br¡
(P^Î.^+aV)]-^!1.
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1164 TSUTOMU IKEDA AND TOMOYASU NAKAGAWA

where <pf+l/2 and iif+\,2 are two intermediate values between pf ' and pf+\- The

three coefficients of the wj1 are nonnegative due to Lemma 2. Therefore, it holds

that

£    \wf\<   £    Iwf-H
j=-J-l /=-7-2

which results in

z ip/*m-p/*i< z ipRtí-pT1!.
/=-/ /=-/-2

By continuing in this way k times, we obtain the desired estimate

£   lpf+. - pf\ <   + £ '   Ip«., - pf I < Vari(X + 27/X; p0).    Q.E.D.
j=-J j=-J-2k

Lemma 5.   Fix T>0 and X>0 arbitrary.   Then, ifO<h<kT<T and Jh

< X, we have

(22) £   |p*-pJlÄ<C-(Jt-Ofc,

wäere iÄe constant C is defined by C = (1 + 2/v0) • VariLY + 2T/X; p0).

Proof.   By making use of the triangle inequality we have

/•=-/ /=-/ /=-j

The first term of the right-hand side is estimated as

Z ip;+1-p7+1i< L i/;n++i1/2-^t/12|<2 z   \ff+\)2\
j=-j j=-j /=-/-1

<2*0 '£ \tfx-nt+i\<2K0 z ip;+1-p;i
j=-J-l j=-J-2

in the same way as in the proof of Lemma 4.  On the other hand, from (6) we obtain,

by applying the mean value theorem and Lemma 2,

and this results in

^+1-p?\<-\p7+1-pV+-\p?-pU^

Z rP»"-p»\< '£   \p]+x-p?\.
j=-J /=-/-!

Therefore, we have

Z ip;+1-p;iä<(i+2^0) ¿   ip7+1-p;iä
;=-J j=-J-2

< (1 + 2JC0) VariLY + 2T/X; p0)h
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ON THE SHASTA FCT ALGORITHM 1165

by Lemma 4 for n = I, I + 1, . . . , k - 1.  This completes the proof.    Q.E.D.

Lemma 4 (respectively Lemma 5) assures that {ph(x, t)} satisfies the condition

(ii) (respectively (iii)) in Lemma 3.  Hence, by virtue of Lemma 3, there exists a pair

of a subsequence {pn'(x, t)} and the limit function p*(x, t) satisfying the properties

(iv), (v), and (vi).   Moreover, it is concluded that this limit function is one of the

generalized solutions to (CP), that is, it holds that

// [p*rf + ¡.(p*)p*y dxdt + f   p0f».x = o
t>0

for all smooth functions f = f(x, t) having compact support. (See Lax-Wendroff s Theo-

rem [12].  This theorem is applicable to the present case since the SHASTA FCT al-

gorithm is in conservation form and consistent with (CP).) Thus, we obtain the main

theorem.

Theorem 2.  One can choose from {ph(x, t)} a subsequence {ph<(x, t)} which

converges to a generalized solution to (CP) in LXoc(R x R+). Hence, the SHASTA

FCT solution is convergent provided that the generalized solution to (CP) exists

uniquely.

Proof.   The first part has been verified already.  The second part is shown by

means of reduction to absurdity.    Q.E.D.

It is shown that the solution satisfying the entropy condition in Kruzkov's sense

exists uniquely.  (See Kruzkov [10].)  Since the physically relevant solution must

satisfy the entropy condition, it is important not only theoretically but also physically

and practically whether or not the limit function of the SHASTA FCT algorithm satis-

fies the entropy condition.  In some numerical experiments, the SHASTA FCT seems

to converge to the solution to (CP) satisfying the entropy condition, but we cannot

yet prove whether or not it is true. However, if the calculation would be done without

the FCT operation, the limit of the numerical solutions with the SHASTA only is the

physically relevant solution.  This is easily shown by a similar argument as in the case

of the SHASTA FCT on the ground that the SHASTA is a positive scheme.  (See [9].)

By observing this fact, we may introduce the following technical modification into the

FCT operation.

Let y(h) be a function of h satisfying the condition that

0 < y(h) < 1    and     lim   y(h) = 0,
h-* —

and let fP++xl/2 be

7;++11/2 = 7W+V/2-

Then, the modified antidiffusion is

(7'1 on + 1 = o"+x - 7" + l    +7" + l
v' ) Vj Pj J /+1/2    W/-1/2-

Then, we have

Theorem 3.  The solution with the SHASTA FCT algorithm with f"++x \2 in
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1166 TSUTOMU ikeda and tomoyasu nakagawa

place off"^x\2 is convergent and the limit function is the physically relevant solution

to (CP).  D

Remark.  The convergence rate of y(h) as h I 0 may be arbitrarily slow.

Proof of Theorem 3.  Let {ph(x, t)} be the sequence of finite difference solu-

tions with the SHASTA only.  By Lemma 6 which follows, it holds that, for any fixed

T > 0 and X > 0,

Z ip;+1-p/"+1ia</¿ ¡p;+1-p/+1|/z+ Z ip/+1^ri|/z
/=-/ i--J i=-J

J

<    Z      ¡P" - P/ Iä + 27(/tK0 Vari(-Y + 277a; p0)h
j=-j-i

if Jh <X and (n + 1 )r < T.  The above estimation implies that ph tends to pA as h

tends to 0, that is,

lim Lx ]Ph(x' 0 - Ph(x> 01 dx = 0   if t < r,
ftio

lim JJG lp»(*' ?) " P^x' r)l dxdt = 0
hlO

for arbitrary fixed 7 > 0 and X > 0.  And so, we obtain the proof.   Q.E.D.

Lemma 6 (B. Keyfitz [9] ). If the finite difference scheme

,,n+ 1   _   rr(,,n ,,n     \
Uj       - H(uhk, . . . ,uj+k)

is positive and in conservation form, then it holds that

J~\ J+k-l

y ïun+1 -wn+1\<   £   in? -wfi

j=-J j=-J-k

for any { uf } and any {w" }.

Proof.   Omitted.

5.  Numerical Examples.  We compare numerically the algorithm defined by (6),

(7), and (11), which will be denoted by SHASTA-FCT., with original SHASTA FCT

algorithm.  Test problems are the linear equation bp/bt + bp/bx = 0 and the Burgers

equation bp/bt + b(p2/2)/bx - 0.   Figures 2 to 5 show the profiles of the computed

solutions.  We remark that

(1) There is less distinction between the numerical solution by SHASTA-FCT. and

the solution by the original SHASTA FCT algorithm.

(2) The numerical solutions by both FCT algorithms are better than the ones by

Lax-Wendroffs scheme.

(3) If the condition of (14) is not satisfied, the SHASTA FCT algorithms yield

in some cases numerical solutions which are far off the exact solutions. (See Figure

5(b).)
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p 4 A=0.45

t   =   270

20 40 60 260 280 300 320

Figure 2

Profiles of numerical solutions for the linear problem:

9p    9p (2.0    for lx-20.51 < 10,
— + — = 0,      p0(x) = <
bt    bx "0.5    otherwise.

The fine lines are the exact solution and the thick lines consisting of piecewise

linear segments are the interpolated solution by SHASTA-FCT.. The dots are

the values computed by the original SHASTA FCT algorithm.

0.9

27 0

260 280

Figure 3

Profiles of numerical solutions by Lax-Wendroff s scheme for the same problem

as in Figure 2.   The fine lines are the exact solution and the thick lines are the

solution computed by Lax-Wendroff s scheme.

2

X=0.15

t = 9 t = 72

1

20

t = 135

24      96      100     104    176      180  x

Figure 4

Profiles of numerical solutions for the nonlinear problem:

f 2.0    for x < 10.5,
= 0,      p0(x) = {

0 I 0.5    for x > 10.5.

See Figure 2 for explanation of these curves.

9p      9 I' P

bt     bx
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( a)

40 1600 40 80 120

Figure 5

Profiles of numerical solutions for the nonlinear problem:

p2\ (0.5    for x< 20.5,
—    = 0,      p0(x) = {
2 / ° 12.0    for x> 20.5,

under the two different values of the mesh ratio X = r/h.   See Figure 2 for expla-

nation of these curves.  The condition of (14) is written as X < 1/6 in this case.

Figure 5(b) shows that the SHASTA FCT algorithm yields the solution far off the

exact one if (14) is violated.

9p     _9_

bt     bx
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