
DOCUMENT RESUME

ED 334 084 SE 052 182

AUTHOR Steen, Lynn Arthur, Ed.

TITLE On the Shoulders of Giantst New Approaches to

Numeracy.

INSTITUTION National Academy of Scieices - National Research

Council, Washington, DC. Mathematical Sciences

Education Board.

SPONS AGENCY Andrew W. Mellon Foundation, New York, N.Y.; Carnegie

Corp. of Few York, N.Y.

REPORT NO ISBN-0-309,-04234-8

PUB DATE 90

NOTE 239p.

AVAILABLE FROM National Academy Press, 2101 Constitution Ave., N.W.,

Washington, DC 20418 ($17.95 U.S.; $21.75 export).

PUB TYPE Books (010) -- Guides - Classroom Use - Teaching

Guides (For Teacher) (052)

EDRS PRICE AF01 Plus Postage. PC Not Available from EDRS.

DESCRIPTORS Calculators; Computer Assisted Instructicn;

Curriculum Development; *Curriculum Enrichment;

*Educational Change; Educational Improvement;

*Educational Innovation; Elementary School

Mathematics; Elementary Secondary Education;

Geometric Concepts; Mathematical Concepts;

*Mathematical Enrichment; Mathematics Curriculum;

Mathematics Education; Mathematics Instruction;

Secondary School Mathematics

IDENTIFIERS Mathematical Thinking; *Numeracy; *Patterns

(Mathematics)

ABSTRACT
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and bv schools themselves are protaundly changiag the way mathematics

is practiced, the way eaLhematics is taught, and the way mathematics

is learned. Ir ttis volume, a vision of the richness of mathematics

is expressed and illustrated as f'..ve different possible strands of

school mathematics through the 97:pension on the theme of mathematics
as the language and science of patterns with emphases cn

interconnections amd onmmunalities. Included are: (1) an introduction

to the five sample strInds with examples of the continuity underlying
the fundamentals of mathematics, of the mathematical connections that
both unite and repeat, and of the mathematical perspective necessary
to view both the variety and the regularity of patterns, (2) the

Dimension strand, which focuses on the development of relationships

between the different dimensions with ampnasis on three-dimensional

topics; (3) the Quantity strand, etich provides insights into the

three basic tasks of measuring, orderimg, and coding with attendant

symbologies and procedures; (4) the Uncertainty strand, which

develops idees about the natural themes and strategies witLin the

twin concepts of data and chance; (5) the Shape strand, which uses

classification to discover similarities and differences among

objects, analysis to discern the components of form, and

representation to recogaze and comprehend shapes within different
contexts; and (6) the Change strand, which advocates imaginative and
sensitive responses to the constantly emerging new types of i.atterns,
including patterns of thinking about mature, as well as mathematics.
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ON THE SHOULDERS OF GIANTS
New Approaches to Numeracy

For many of us and our children, mathemat-
ics was (or is) a painful and difficult subject
seemingly with little application to daily life. But
experts agree that much of the problem lies in
outdated teaching methods and tiresome, pre-
dictable course work.

Mathematics can be exciting for students
and great fun for younger childrenif educators
and parents adopt a fresh perspective on mathe-
matical concepts and how they are presented u
our schools. Even the youngest child can experi-
ence exponential phenomena by folding a sheet
of paper repeatedly in half.

With the comment "If I have seen farther
than others, it is because I have stood on the
shoulders of giants," Isaac Newton credited his
foresight in developing calculus to the accumu-
lated work of his predecessors. On the
Shoulders of Giants inspires us to a :tmilar leap
of vision, providing a conceptuai pathway
toward a new view of mathematics for the young
in the coming century.

And now is the time to take such a giiant
step forward. We must understand mathemati-
cal concepts to appraise the flood of news and
information we receive each day, from the
weather report to the latest tax regulation.
Mathematics affects everything from the food we
eat, to the investments we make, to the size and
shape of thP cities we build. It provides the tools
for coping with the technology that increasingly
penetrates our lives.

On the Shoulders of Giants proposes that
we help our students delve deep to find the con-
cepts that underlie all mathematics and thereby
better understand their significance in the world.
Five essays, each exploring a different concept,
present tn,lthematics as the language and science
of patterns, offering countless, imaginative ways
in which mathematical 'deas can be developed
through formal school and college study:

Change encourages us to throw away the text-
books that move ploddingly from ar:thmetic to
algebra to calculusand explore change as it
affects real-wolici issues such as population
dynamics.

(Continued on back flav)
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Preface
n 01. PN,

Today's headlines are filled with reports of illiteracy, innumeracy, and
other signs of educational decay. Tomorrow's schools can be filled with
evidence of renaissance if we begin now to till the soil for effective
educationin mathematics, in science, and in all subjects. This vol-
ume offers five visions of mathematics suitable for tomorrow's schools
visions rooted in imagination, in mathematics, and in science. Ideas in
this volume can pnv ide fertile soil for new approaches to tomorrow's
numeracy.

Forces created by computers, applications, demographics, and schools
themselves are changing profoundly the way mathematics is practiced,
the way it is taught. and the way it is learned. Even as we work to make
incremental change in today's schools, we must think also about more
significant change that will be possible, indeed inevitable, in the future.
For this reason the Mathematical Sciences Education Board (MSEB)
decided that one of today's priorities is to stimulate imaginative thinking
about tomorrow's curriculum.

In this volume readers will find a vision of the richness of mathe-
matics expressal through five vignettes that illustrate different possible
strands of school mathematics. These papers expand on the theme of
mathematics as the language and science of patterns and are introduced
by a brief essay that highlights interconnections and common ideas. The
authors were asked to explore ideas with deep roots in the mathematical
sciences without concern for limitations of present schools or curricula.
They do, however, suggest thro.igh numerous imaginative examples how

f;



iv PREI-ACE

mathematical ideas can be developed from informal childhood explo-
ration through formal school and college study.

The papers in this volume are intended as a vehicle to stimulate cre-
ative approaches to mathematics curricula in the next century. The
volume itself is part of a national dialogue on mathematics education
stimulated by a series of recent publications:

Everybody Counts: A Report to the Nation on the Future of
Mathematics Education
Curriculum and Evaluation Standards .for School Mathematics
Science for All Amencans
Reshaping School Mathematics: A Philosophy and Framework
for Curriculum

Taken together these publications provide a consistent and urgent vision
that should help the United States restore excellence to mathematics
education.

Although five examples are presented in this volume, they are certainly
not the only five possibilities. Appropriate curricula for the twenty-
first century will necessarily involve a wide variety of strands, reflecting
both the broad spectrum of mathematical sciences and the individual
choices of local school districts. We offer these themes not as definitive
recommendations for curricula but as samples of what is possible, to
stimulate development of new and imaginative programs that reflect
the vitality and uses of mathematics.

Although each essay in this N olume is the work of one author, each
has benefited enormously from advice and critique provided by many
advisers. Overall, the volume was developed under the auspices of the
1989 MSEB Curriculum Committee chaired by Henry O. Pollak, re-
tired assistant vice president of Bell Communications Research. Other
members of this Advisory Committee included Wade Ellis. Jr. of West
Valley College; Andrew M. Gleason of Harvard University; Martin D.
Kruskal of Princeton University; Leslie Paoletti of Choate Rosemary
H111: Anthony Ralston of the State University of New York at Buffalo:
Isadore Singer of the Massachusetts Institute of Technology; and Zal-
man Usiskin of the University of Chicago. These individuals deserve
much of the credit for helping shape the volume at its inception and for
keeping it on track.

Seven "Sounding Boards" were established by the MSEB to review
drafts of the essays as me volume prrgressedone for the overview
paper. one for each main essay, and one to examine the links with sci-
enk.e. For "Pattern" the Sounding Board consisted of Isadore Singer and
Zal Usiskin; for "Dimension," David Masunaga of the lolani School
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in Honolulu and Jean Taylor of Rutgers University; for -Quantity."
Harvey Keynes of the University of Minnesota and Alan Tucker of the
State University of New York at Stony Brook; for .'Uncertainty." JAMS
Landwehr of AT&T Bell Laboratories and James Swift of Nanaimo
Senior Secondary School in British Columbia; for "Shape," Branko
Griinbaum of the University of Washington and Paula Fitzmaurice of
Victor J. Andrew High School in Tinley Park, Illinois; and for "Change."
Robert Devaney of Boston University and Leslie Pao letti. The Scientific
Sounding Board which reviewed the entire volume consisted of William
0. Baker, retired chairman of Bell Laboratories; Maurice Fox. professor
of biology at MIT; and Gerard Debreau, professor of economics at the
University of California at Berkeley.

Many improvements in this volume are due directly to the hard work
and good ideas of these distinguished Sounding Board reviewers. To be
fair to them, however, it is important to acknowledge that the authors
did not always heed the advice proffered by their reviewers; so while
we are genuinely grateful for their assistance, full responsibuity for the
points z,f view expressed in this volume rests with the authors.

Publicat;on of this volume completes the first phase in the work of the
MSEB to express to the nation a new vision of mathematics education.
of how a centuries-old curriculum can evolve to meet the challenges of
the next millennium. Right from the beginning of MSEB in 1985. for-
mer MSEB Chair Shirley Hill of thc University of Missouri at Kansas
City took up the difficult challenge of forcing mathematicians and math-
ematics educators to think together about possible new strands for the
mathematics curriculum. She challenged all of us on the MSEB to seek
out ideas that may be moro appropriate to our computer age than the
arithmetic-bound structures that we have inherited from previous gen-
erations for whom calculation was the primary purpose of mathematics.
This volume is the direct result of Shirley's persistence in emphasizing
the importance of rooting curricular reform in the emerging practice of
mathematics.

Coordination and production details have been ably managed by the
MSEB staff led first by Marcia Sward and now by Kenneth Hoffmali.
Special thanks are due Linda Rosen. who shepherded with unfailing
good humor all technical aspects of production from the initial plan-
ning meetings to final details of artwork, copy editing. and production
Thanks also are due Jana Godsey whose tenacity and patience were in-
valuable in collecting the many illustrations for the volume. Much of
the computer-generated artwork was provided by Thomas Banchoff and
David Moore, with special support from Davide Cervone. a graduate
student at Brown University. Finally, throughout the many drafts of the
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different essays, Mary Kay Peterson managed with efficiency all the TEX

typing and corrections necessary to enable the final text to be produced

by direct electronic means.

Lynn Arthur Steen. Editor
St. Olaf College
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LYNN ARTHUR STEEN

"lie just saw further than the rest of us.- The subject of this remark,
cyberneticist Norb( rt Wiener, is one of many exceptional scientists who
broke the bonds of tradition to create entirely new domains for math-
ematicians to explore. Seeing and revealing hidden patterns are what
mathematicians do best. Each major discovery opens new areas rich
with potential for further exploration. In the last century alone, the
number of mathematical disciplines has grown at an exponential rate;
examples include the ideas of Georg Cantor on transfinite sets, Sonja
Kovalevsky on differential equations, Alan Turing on computability.
Emmy Noether on abstract algebra, and, most recently. Benoit Mandel-
brot on fractals.

To the public these new domains of mathematics 7.re terra incognita
Mathematics, in the common lay view, is a static discipline based on
formulas taught in the school subjects of arithmetic, geometry, algebra,
and calculus. But outside public view, mathematics continues to grow
at a rapid rate, spreading into new fields and spawning new rpplications.
The guide to this growth is not calculation and formulas but an open-
ended search for pattern.

Mathematics has traditionally been described as the science of num-
ber and shape. The schooi emphasis on arithmetic and geometry is
deeply rooted in this centuries-old perspective. But as the territory ex-
plored by mathematicians has expandedinto group theory and statis-
tics, into optimization and control theorythe historic boundaries of
mathematics have all but disappeared. So have the boundaries of its

11



2 NEll APPR(1-1(11ES 10 NLMERA(').

applications: no longer just the language of physic', and engineering.
mathematics is now an essential tool for banking. manufacturing, social
science, and medicine. When viewed in this broader context, we see
that mathematics is not just about mimber and shape but about pattern
and order of all sorts. Number and shapearithmetic and geometry
are but two of many media in which mathematicians work. Active
mathematicians seek patterns wherever they arise.

Thanks to computer graphics. much of the mathematician's search for
patterns is now guided by what one can really see with the eye. whereas
nineteenth-century mathematical giants like Gauss and Poincare had
to depend more on seeing with their mind's eye. "I see" has always
had two distinct meanings: to perceive with the eye and to understand
with the mind. For centuries the mind has dominated the eye in the
hierarchy of mathematical practice; today the balance is being restored
as mathematicians find new ways to see patterns, both with the eye and
with the mind.

Change in the practice of mathematics forces re-examination of math-
ematics education. Not just computers, but also new applications and
new theories have expanded significantly the role of mathematics in $ci-
ence, business, and technology. Students who will live and work using
computers as a routine tool need to learn a different mathematics than
their forefathers. Standard school practice, rooted in traditions that are
several centuries old, simply cannot prepare students adequately for the
mathematical needs of the twenty-first century.

Shortcomings in the present record of mathematical education also
provide strong forces for change, Indeed, since new developments build
on fundamental principles, it is plausible, as many observers often sug-
gest, that one should focus first on it storing strength to time-honored
fundamentals before embarking on reforms based on changes in the
contemporary practice of mathematics. Public support fm strong ba-
sic curricula reinforces the wisdom of the pastthat traditional school
mathematics, if carefully taught and well learned, provides sound prepa-
ration both for the world of work and for advanced study in mathemat-
ically based fields.

The key issue for mathematics education is not whether to teach fun-
damentals but which fundamentals to teach and how to teach them.
Changes in the practice of mathematics do alter the balance of priori-
ties among the many topics that are important for numeracy. Changes
in society, in technology, in schoolsamong otherswill have great im-
pact on what will be possible in school mathematics in the next century.
All of these changes will affect the fundamentals of school mathematics.

To develop effective new mathematics curricula, one must attempt
to foresee the mathematical needs of tomorrow's students. It is the

1 2
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present and future practice of mathematicsat work, in science, in
researchthat should shape education in mathematics. To prepaie ef-
fective mathematics curricula for the future, we must look to patterns
in the mathematics of today to project, as best we cwt. just what is rdid
what is not truly fundamental.

FUNDAMENTAL MATHEMATICS

School tradition has it that arithmetic, measurement, algebra, and
a smattering of geometry represent the fundamentals of mathematics.
But there is much mere to the root system of mathematicsdeep ideas
that nourish the growing bra:iches of mathematics. One can think of
specific mathematical structures:

Numbers Shapes
Algorithms Functions
Ratios Data

or attributes:

Linear Random
Periodic Maximum
Symmetric Approximate
C ontinuous Smooth

or actions:

Represent Model
Control Experiment
Prove Classify
Discover isualize
Apply Compute

or abstractions:

Symbols Equivalence
Infinity Change
Optimization Similarity
Logic Recursion

or attitudes:

Wonder Beauty

Meaning Reality

or behaviors:

Motion Stability
Chaos Convergence
Resonance Bifurcation
Iteration Oscillation

1 3



4 NEW APPRMCIIES TO NUMERACY

or dichotomies:

Discrete vs. continuous
Finite vs. infinite
Algorithmic vs. existential
Stochastic vs. deterministic
Exact vs. approximate

These diverse perspectives illustrate the complexity of structures that
support mathematics. From each perspective one can identify vari-
ous strands that have within them the power to develop a si2nificant
mathematical idea from informal intuitions of early childhood all the
way through school and college and on into scientific or mathematical
research. A sound education in the mathematical sciences requires en-
counter with virtually all of these very different perspectives and ideas.

fraditional school mathematics picks very few strands (e.g.. arith-
metic, geometry, algebra) and arranges them horizontally to form the
curriculum: first arithmetic, then simple algebra. then geomet .7, then
more algebra, and finallyas if it were the epitome of mathematical
knowledgecalculus. This layer-cake approcch to mathematics educa-
tion effective/y prevents informal development of intuition along the
multiple roots of mathematics. Moreover, it reinforces the tendency
to design ,_.ach course primarily to meet the prerequisites of the next
course, making the study of mathematics largely an exercise in delayed
gratification. To help students see clearly into their own mathematical
futures, we need to construe.t curricula with greater vertical continuity.
to connect the roots of mathematics to the branches of mathematics in
the educational experience of children.

School mathematics is often viewed as a pipeline for human resources
that flows from childhood experiences to scientific carec-s. The layers
in the mathematics curriculum correspond to increasingly constricted
sections of pipe through which all students must pass if they are to
progress in their mathematical and scientific education. Any imped-
iment to learning, of which there are many, restricts the flow in the
entire pipeline. Like cholesterol in the blood, mathematics can clog the
educational arteries of the nation.

In contrast, if mathematics curricula featured multiple parallel strands,
each grounded in appropriate childhood experiences, the flow of human
resources would more resembie the movement of nutrients in the roots
of a mighty treeor the rushing flow of water from a vast watershed
than the increasingly constricted confines of a narrowing artery or pipe-
line. Different aspects of mathematical experience will attract children
of different interests and talents, each nurtured by challenging ideas
that stimulate imagination and promote exploration. The collective

1 4
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effect will be to develop among children diverse mathematical insight
in many different roots of mathematics.

FIVE SAMPLES

This volume offers five examples of the developmental power of deep
mathematical ideas: dimension, quantity, uncertainty, shape, and
change. Each chapter explores a rich variety of patterns that can be
introduced to children at various stages of school, especially at the
youngest ages when unfettered curiosity remains high. l-hose who de-
velop curricula will find in these essays many valuable new options for
school mathematics, Those who help determine education policy will
see in these essays examples of new standards for excellence. And ev-
eryone who is a parent will find in these essays numerous examples of
important and effective mathematics that could excite the imagination
of their children.

Each chapter is written by a distinguished scholar who explains in
everyday language how fundamental ideas with deep roots in the math-
ematical sciences e.)tild blossom in schools of the future. Although
not constrained by particular details of present cacricula, each ,:ssay
is faithful to the development of mathematical ideas from childhood to
adulthood. In clpressing these very different strands of mathematical
thought. the authors illustrate ideals of how mathematical ideas should
be developed in children.

In contrast to much present school mathematics, these strands are
alive with action: pouring water to compare volumes, playing with pen-
dulums tu explore dynamics, counting candy colors to grasp variation,
building kaleidoscopes to explore symmetry. Much mathematics can
be learned ir formally by such activities long before children reach the
point of understanding algebraic formulas. Early experiences with such
patterns as volume, similarity, size, and randomness prepare students
both for scientific investigations and for more formal a.;.3 logically pre-
cise mathematics. Then when a careful demonstration emerges in class
some years later, a student who has benefited from substantial early in-
formal mathematical experiences can say with honest pleasure "Now I
see why that's true."

CONNECTIONS

The essays in this volume are written by five different authors on five
distinct topics. Despite differences in topic, style, and approach, these
essays have in common the lineage of mathematics: ePch is connected
in myriad ways to the family of mathematical sciences. Thus it should

1 5



6 NEw APPROACHES 7.0 NUMERACY

come as no surprise that the essays themselves are replete with inter-
connections. both in deep structure and even in particular illustrations.
Some examples:

MEASUREMENT is an idea treated repeatedly in these essays. Experi-
ence with geometric quantities (length, area, volume), with arithmetic
quantities (size, order, labels), with random variation (spinners, coin
tosses, SAT scores), and with dynamic variables (discrete, continuous,
chaotic) all pose special challenges to answer a very child-like question:
"How big is it?" One secs from many examples that this question is
fundamental: it is at once simple yet subtle, elementary yet difficult.
Students who grow up recognizing the complexity of measurement may
be Iess likely to accept unquestioningly many of the common misuses
of numbers and statistics. Learning how to measure is the beginning of
numeracy.

SYMMETRY is another deep idea of mathematics that turns up over
and over again, both in these essays and in all parts of mathematics.
Sometimes it is the symmetry of the whole, such as the hypercube (a
four-dimensional cube), whose symmetries are so numerous that it is
hard to count them all. (But with proper guidance, young children us-
ing a simple pea-and-toothpick model can do it.) Other times it is the
symmetry of the parts, as in the growth of natural objects from repet-
itive patterns of molecules or cells. In still other cases it is symmetry
broken, as in the buckling of a cylindrical beam or the growth of a
fertilized egg to a (slightly) asymmetrical adult animal. Unlike mea-
surement, symmetry is seldom studied much in school at any level, yet
it is equally fundamental as a model for explaining features of such di-
verse phenomena as the basic forces of nature, the structure of crystals,
and the growth of organisms. Learning to recognize symmetry trains
the mathematical eye.

VISUALIZATION recurs in many examples in this volume and is one
of the most rapidly growing areas of mathematical and scientific re-
search. The first step in data analysis is the visual display of data to
search for hidden patterns. Graphs of various types provide visual dis-
play of relations and fanctions: they are widely used throughout science
and industry to portray the behavior of one variable (e.g., sales) that
is a function of another (e.g.. advertising). For centuries artists and
map makers have used geometric devices such as projection to repre-
sent three-dimensional scenes on a two-dimensional canvas or sheet of
paper. Now computer graphics automate these processes and let us
explore as well the projections of shapes in higher-dimensional space.
L-arning to visualize mathematical patterns enlists the gift of sight as
an invaluable ally in mathematical education.
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ALGORITHMS arc recipes for computation that occur in every corner
of mathematics. A common iterative procedure for projecting popula-
tion growth reveals how simple orderly events can lead to a variety of
behaviorsexplosion, decay, repetition, chaos. Exploration of combi-
natorial patterns in geometric forms enables students to project geomet-
ric structures in higher dimensions where they cannot build real mod-
els. Even common elementary school algorithms for arithmetic take on
a new dimension when viewed from the perspective of contemporary
mathematics: rather than stressing the mastery of specific algorithms
which are now carried out principally by calculators or computers
school mathematics can instead emphasize more fundamental attributes
of algorithms (e.g., speed, efficiency. sersitivity) that are essential for
intelligent use of mathematics in the computer age. Learning to think
tgorithmically builds contemporary mathematical literacy.

Many other connective themes recur in this volume, including link-
ages of mathematics with science, classification as a tool for understand-
ing, inference from axioms and data, andmost importantlythe role
of exploration in the process of learning mathematics. Connections give
mathematics power and help determine what is fundamental. Pedagog-
ically, connections permit insight developed in one strand to infuse into
others. Multiple strands linked by strong interconnections can develop
mathematical power in students with a wide variety of enthusiasms and
abilities.

GAINING PERSPECTIVE

Newton credited his extraordinary foresight in the development of
calculus to the accumulated work of his predecessors: "If I have seen
farther than others, it is because I have stood on the shoulders of giants."
Those who develop mathematics curricula for the twenty-first century
will need similar foresight.

Not since the time of Newton has mathematics changed as much as it
has in recent years. Motivated in large part by the introduction of com-
puters, the nature and practice of mathematics have been fundamentally
transformed by new concepts, tools. applications, and methods. Like
the telescope of Galileo's era that enabled the Newtonian revolution, to-
day's computer challenges traditional views and forces re-examination
of deeply held values. As it did three centuries ago in the transition
from Euclidean proofs to Newtonian analysis, mathematics once again
is undergoing a fundamental reorientation of procedural paradigms.

Examples of fundamental change abound in the research literature
of mathematics and in practical applications of mathematical methods.
Many are given in the essays in this volume:

1



8 NEW APPROACHES 10 NUMERACY

Uncertainty is not haphazard, since regularity eventually emerges.
Deterministic phenomena often exhibit random behavior.
Dimensionality is not just a property of space but also a means
of ordering knowledge.
Repetition can be the source of accuracy, symmetry, or chaos.
Visual representation yields insights that often remain hidden
from strictly analytic approaches.
Diverse patterns of change exhibit significant underlying regular-
ity.

By examining many different strands of mathematics, we gain per-
spective on common features and dominant ideas. Recurring concepts
(e.g., number, function, algorithm) call attention to what one must know
in order to understand mathematics; common actions (e.g., represent,
discover, prove) reveal skills that one must develop in order to do math-
ematics. Together. concepts and actions are the nouns and verbs of the
language of mathematics.

What humans do with the language of mathematics is to describe pat-
terns. Mathematics is an exploratory science that seeks to understand
every kind of patternpatterns that occur in nature, patterns invented
by the human mind, and even patterns created by other patterns. To
grow mathematically, children must be exposed to a rich variety of pat-
terns appropriate to their own lives through which they can see variety,
regularity, and interconnections.

The essays in this volume provide five extended case studies that ex-
emplify how this can be done. Other authors could just as easily have
described five or ten different examples. The books and articles listed
below are replete with additional examples of rich mathematical ideas
What matters in the stt.dy of mathematics is not so much which partic-
ular strands one explores, but the presence in these strands of significant
examples of sufficient variety and depth to reveal patterns. By encour-
aging students to explor: patterns that have proven their power and
significance, we offer them broad shoulders from which they will see
farther than we can.
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THOMAS F. BANCHOFF

INTRODUCTION

One hundred and fifty years ago, Friedrich Froebel (Figure 1). the
inventor of the term "kindergarten," devised a set of "gifts" to intro-
duce children to notions of geometry in several different dimensions.
His philosophy was clear: if children could be stimulated to observe
geometric objects from the earliest stage of their education, these ideas
would come back to them again and again during the course of their
schooling, deepening with each new level of sophistication. The rudi-
mentary appreciation of shapes and forms at the nursery school level
would become more refined as students developed new skills in arith-
metic and measurement and later in more formal algebra and geometry.

In order to capture the imaginations of his young students, Froebel
presented them with a sequence of wooden objects for their play in the
Children's Garden. Only later would the lessons of that directed set
of play experiences be turned into concepts and even later formalized
into mathematical expressions. The important thing was to introduce
students to forms that they could apprehend and to encourage them
to observe and recognize those forms in all of their experiences. In
this way they could foster the facility of visualization, so important in
applying mathematics to both scientific and artistic pursuits.

Froebel began with objects from the most concrete part of mathe-
matics: balls, cubes, and cylinders. He proceeded to a higher level of
abstraction by presenting the children with trays covered by patterns of

I I
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FIG1 RE I. Fnedrich Froebel. inventor of londerganc.,. used
geornetnc objects to stimulate children's imaginations.

tiles. Then he moved further into abstraction by introducing collect,ms
of sticks of varying lengths, to be placed in designs that would ultimately
be related to number patterns.

We can recognize some of Froebers legacy in materials that we find in
today's kindergarten classrooms. There we still have blocks for stacking
and tiles for creating patterns on tabletops. Too often, hos, ver, these
-toys- are left behind when children progress into the serious world
of elementary school. A great many rods are used for arithmetic exer-
cise-. but a student is lucky to see anything two-dimensional between
kindergarten and junior high school. At that time there might be a brief
mention of area of plane figures, often merely as an illustration of for-
mulas for measurement. Then the student must w..it until high school
before any further thought is given to the world of plane geometry.

Two generations ago the hardy souls who made it through the year of
formal geometry were permitted to re-enter the third dimension in a still
more formalized semester of solid geometry. Then curricula changed.

BEST COPY AVAILABLE



DIMENSION 13

Three-dimensional topics (along with all of analytic geometry) were sup-
posed to be incorpordted in..) a single geometry curriculum. All too
often the solid geometry components were treated merely as supple-
mentary topics for the interested student who had a bit of leisure time.
Needless to say. solid geometry quickly evaporated from the standard
course in geometry. In the present-day rush to prepare students for cal-
culus before they go off to college, we are systematically shortchanging
them by ignoring the most practical and useful of all geometrythe
geometry of our own dimension. We now have a special opportunity to
bring the appreciation of different dimensions back into focus.

The Dimensional Ladder

Although our world is three-dimensional, most of our media, as it
happens, are two-dimensional: blackboards, books, movies, television,
and computer screens. We all invest a great deal of effort learning how
to interpret such planar visual information, often in order to help us
deal with situations in three dimensions. To live in a three-dimensional
world, we do have to know how two-dimensional shapes interact: their
behavior provides a necessary prelude to understand fully our own di-
mension.

As it happens, we gain a good deal of insight by investigating the
geometry of an even lower dimensionthe linewhere numba and
geometry intermix in the most intimate and powerful way. The geom-
etry of the number line translates beautifully into plane geometry, both
in its classical form and in the analytic geometry of number pairs. The
momentum that we gain in moving from the first to the second dimen-
sion can carry us into our home dimension with renewed insight. The
dimensional analogy is a very powerful tool.

Here is an exciting theme that is worth recognizing and passing on
to our students: the momentum that brings us from one to two and up
into three dimensions does not stop there! The invitation is clear: there
are other dimensions waiting to be explored. Mathematics is the key to
the elevator that makes them accessible.

The fourth dimension, in particular, is one of our nearest neighbors.
Just as we learn a good deal about our own language and cul'ure by
studying the language and culture of other countries, so we can be-
gin to appreciate new things about our own "real" world by seeing
structures that carry forward to the fourth dimension. Although we
cannot explore higher dimensions physically, they are accessible to our
minds and, thanks to modern technology, more and more to our vision
as well.
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Research into language acquisition indicates that, although any infant
is capable of learning any language. a child will rather quickly settle into
the sound patterns of its own particular language, effectively blocking
development of other possibilities. If a child is not irtroduced early
to other languages, he or she will experience much more difficulty in
learmng a second tongue. Might the same be true wits respect to math-
ematical perceptions? If we wait until students have devek .1:1 a great

deal of arithmetic sophistication (and a great many misconceptions) be-
fore we encourage them to think about solid objects and the interaction
between different dimensions, we may be depriving them of the chance
to appreciate the full power and scope of geometry.

Giving Geometrical Gifts

Objects should always be nearby. Awareness of space and volume
should be a continuing part of mathematical experience in school at
all levels. Refinements such as measuring quantities and relating them
with formulas will come in good time. But they should come well after
the time when a child first becomes aware of different dimensions of
measurement. Too often, the first time a student is encouraged to think
about what volume means is the same day that he or she is given a
formula for the volume of a sphere or a conc. To encourage fluency
in the language of geometry, we need a good deal more "pre-geometry"
throughout the school experience, and that should include "pre-solid"
as well as "pre-plane" geometry.

Froebel and his colleagues created geometrical gifts from materials
available to them, primarily wood, paper, and clay. Today we have the
means to improve on the gifts in many wayswith plastic and Velcro.
with tape and magnets, not to mention with till, powerful computer
graphics. The educator's term "manipulatives"classroom materials
takes on new meaning when we can put in front of a young student a tool
to manipulate not only simple forms but also the very geometry of higher
dimensional space. If we care about educating our children toward the
perception of space, we should create truly stimulating manipulatives
geometrical gifts for our day.

MEASURING VOLUMES

Many students never learn about volumes because they do not make it
past plane geometry. Those who do often reach calculus uy a head-long
rush that leaves little or no time for the kind of geometrical thinking on
which calculus thrives. Calculus is not the time when students should
be doing their first serious thinking about geometry. Rather it should be
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FIGURE 2. Water in a cylinder ex-
actly fills three cones whose base and
height are identical to the base and
height of the cylinder.

the culmination of years of consideration of increasingly sophisticated
geometrical topics. When a student finally sees the full justification of
the formula for the volume of a cone or a sphere, it should be a peak
experience, fulfilling a promise implicit in all the experiences he or she
has had with cones and spheres all the way through school, beginning
in kindergarten.

Froebers young students spent a great deal of time pouring water
and sifting sand. Differently shaped containers held different amounts.
so a student would gradually learn common relationships without even
thinking of writing them down. For example, how many conical cup_
can be filled from the water in a cylindrical cup with the same height
and the same base? With a rack of such cups (Figure 2), any student
can perform the experiment. The cylinder fills three cups.

We can test this over and over again with different heights and dif-
ferent circular tops. Only later, after the student is familiar with the
language of fractions, need this relationship be stated in terms of one
volume being one-third of another. Still later, that relationship can be
expressed by a formula: the volume of the cone is one-third the area of
the base multiplied by the height.

By this time that relationship should already have been observed in
other shapes. Three square-based pyramids can be filled with the sand
from one square prism of the same base and height (Figure 3). Even
if the base is irregular, this relationship is true. We don't even have to
have the center of the cone over the center of the base, assuming that
the base even has a center! All this understanding can take place before
the student has even seen a fraction, let alone a number like it.

FIGURE 3. Water in a prism exactly fills three pyramids whose
base and height match those of the prism. This relation holds even
for prisms and cones with irregular bases and can be discovered
by young children _lust by pouring water or sand.

r-
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FIGURE 4. Pouring water can also
verify Archimedes' theorem: the vol-
ume of three spheres equals the vol-
ume of two cylinders whose radius and
height match those of the spheres.

NEU APPROAC ;1ES To NUMERACY
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A bit more subtle and even more impressive is the relationship that
was symbolized on the gravestone of Archimedes: if a ball fits precisely
inside a circular cylinder, then the volume of the ball is two-thirds the
volume of the cylinder. To illustrate this we can show that three spheres
can be filled with the water from two cylinders that encase the spheres
(Figure 4). Volumes of irregularly shaped objects can be found by seeing
how much water they displace when they are completely submerged.
This leads naturally to the notion of density, as a weight-to-volume
ratio.

The notion of area can be introduced by working with volumes. By
using a collection of shallow pans, all of the same height, children can
compare their volumes and relate them to the areas of their bases. The
height dimension is "washed out" if it is the same in all cases. In this
way it is easy for children to see that the area of a right triangle is half
the area of the associated rectangle and that the area of a scalene triangle
is half the area of three different associated parallelograms (Figure 5).

FIGURE 5. By pouring water into shallow pans, children can
readhy comeare the areas of different geometric figures.

FIGURE 6. Four right triangles in a
square frame reveal a proof of the
Pythagorean theorem: the square on
the hypotenuse Lquals the sum of the
squares on the legs of the right triangle.

1
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We can work as well with tiles of uniform thickness, as Froebel did in
his kindergarten gifts irk the last century. The relation between the area
of a parallelogram and the area of a rectanee can be appreciated at a
very early stage by students who actually manipulate physical objects. It
isn't necessary to wait until students have karned about square roots be-
fore they can see an illustration of the Pythagorean theorem (Figure 6).
Children who play with geometric puzzles that illustrate decompositions
will find it much easier later on to appreciate formal results.

Decomposition Models

One of the most beautiful results that can be illustrated by blocks
is the fact that a cube can be decomposed into three identical pieces
meeting along a diagonal of the cube (Figure 8), just as a square is
decomposed into two congruent triangles by a diagonal line (Figure 7).

FIGURE 7. The diagonal subdivision

of a square nit() two congruent triangles
serves as a prelude to a similar decom-
position in three dimensions.

Fr;URE 8. The diagonal decomwsi-
lion of a cube mto congruent pyramids
can be illustrated by blocks built from
corresponding templates.
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FIGURE 9. The diagonal decomposition of a rectangular solid
yields three pyramids of different shapes but the same volume.

Decomposition models illustrate deeper ideas than do comparisons of
volumes since they not only demonstrate relationships but also show
why these relationships hold. Students should eventually ccme to see
that all geometric relationships are based o:i reasons.

This particular decomposition property of the cube can be a bit mis-
lcading because it doesn't quite work for other rectangular solids. Al-
though a diagonal always decomposes a rectangle into two congruent
triangles, the diagonal decomposition of a rectangular solid will usually
not produce three congruent pyramids (Figure 9). The three pyramidal
parts will all have the same volume but not the same shape. This can
be seen by pouring sand into plastic pyramid containers, but greater
insight comes from a different modelplaying cards.

Think of a pyramid constructed of thick rectangular cards stacked
above the base. If we double the thickness of each card in the stack,
then the base sflys the same while both the height and the weight of
the stack (and th:refore its volume) also double. If we keep the width
and the thickness of each card the same and double the length, then the
volume also doubles. Doubling any single dimension causes the volume
to double: in general, multiplying a single dimension by any nymber
will multiply the entire volume by that same number.

This procedure enables us to obtain the volume of any pyramid formed
by a diagonal decomposition of a rectangular solidthat is, of any pyra-
mid with a rectangular base whose top vertex is directly over a corner of
the base. Further work with pyramid-shaped blocks will quickly show
that any pyramid with a rectangular base can I..: built up from pyra-
mids of this special type, all with the same height. Taken together,
these demonstrations show why, in general, the volume of a pyramid
with a rectangular base is one-third the volume of the right rectangular
prism with the same base and height.

Experiments with stacks of cards or thin rods can lead easily to a pow .
erful idea known to mathematicians as Cavalieri's principle for shear
transformations. First observe how the same set of rods that fills a paral.
lelogram will also fill a rectangle with the same base and heigNt. Hence
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FIGURE 10. The same set of rods that forms a rectangle can also
form a parallelogram of the same dimensions. Hence the areas of
the rectangle and the parallelogram must be the same.

19

their areas must be equal (Figure 10). The same principle works in
space as well as in the plane. The same pack of cards that fills a straight

box can fill a slanted box with the same base and height. Similarly,

an off-center pyramid can be approximated with the same collection of
square cards that approximate a centered one (Figure 1 1).

Students who explore models of pyramids with sets of blocks and
stacks of cards throughout their early school years are certainly more
likely to understand and appreciP:e the formal proofs presented for such
theorems in calculus classes: students who have never thought about
properties volumes until they arise in calculus will not get nearly as
much out oi .heir experience. We now spend a great deal of effort getting

FIGURE 1 I. The same set of cards that
forms an off-centered pyramid ca.. he rear-
ranged I ri form a centered pyramid of the same
base. height. and %olume.

2 9
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students ready for the algebraic techniques needed for advanced mathe-
matics. We should be just as concerned for their geometric preparation
as weil.

Pyramid Problems

Many children are fascinated by the great pyramids of Cheops. These
only surviving wonders of the ancient world were mathematical chal-
lenges to their creators, and they remain challenging today. School study
of the monuments of ancient Egypt can be a source of mathematics
problems of all sorts, from the most elementary considerations of shad-

.. ows to the most sophisticated achievement of early mensurationthe
volume formula for the frustrum of a truncated pyramid.

Children can decide how to make models of the pyramids. A pile of
dry sand or wet sand o.i a square base provides one example. Models
in clay provide another. Students can experiment with different sizes of
triangles to see what shapes of pyramids result.

Other monuments of different shapes provide similar exercises in
measurement and challenges for construction. What about the burial
mounds of American Indians or other cone-shar..d strurtures? What
about Mayan pyramids, with their step-like structure? What about
Babylonian ziggerats, or pagodas? Each structure provides distinctive
features that lead to interesting mathematical questions, which the stu-
dents themselves can formulate and explore.

A key mathematical notion that arises naturally in the study of mon-
uments is similarity, expressed both algebraically in ratio or proportion
and geometrically in shadows and scale diagrams. Consider the follow-
ing story:

My friend Ambrose sent a snapshot of his trip to Egypt. He
is standing next to an obelisk and I can see that his shadow is
about one-fourth as long as the shadow of the obelisk. That's a
pretty big column, over 24 feet high. I know that because my
friend is 6 feet tall. There is a pyramid in the picture too. I

can see that its shadow is falling just past the edge of the base.
What additional information would I need in order to figure out
how high the pyramid is? How can I measure the angle that the
slanting side of the pyramid makes with the ground?

Such questions can be discussed at an informal level long before the
students deal with triangles formally in geometry and trigonometry.

Thinking about the pyramids can show how problems in lifferent di-
mensions can illuminate each other. Using the principle of similarity,
students can easily calculate the volume of an incomplete pyramid (Fig-
ure 12). one of the most important problems in Egyptian mathematics.

3 U
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FIGURE 12. An incomplete (or truncated)
pyramid poses a challenge to find its volume.

FIGURE 13. By thinking of a trapezoid as an incomplete trian-
gle, we can find a way to calculate its area that can also be used in
three dimensions to find the volume of an incomplete pyramid.

Begin with the analogous problem in the plane: the trapezoid viewed
as an incomplete triangle (Figure 13). We know the quantiti2s a, b, and

and we want to find the area. Assuming that the trapezoid is not a
parallelogram, we can complete the figure to a triangle with height that
we call x. By observing that the large and small triangles are similar, we
see that x 1 a = (x + h)1 b. Hence bx = ax + ah, so x = hal(h a) and
x+h= W(h a). We then get the familiar formula for area of the
trapezoid in a new way, as the difference of the areas of two triangles:

(112)(x + h)b (112)xa

(112)hb21(b a) (112)ha2 1(b a)

= (1/2)h(h2 a2)1(1' a)

(1 12)/0 + a).

The same method enables one to calculate the volume of the incom-
plete pyramid (Figure 14). We are given the height h of part of the
pyramid and the side lengths a and b of the top and bottom squares. If
the height of the large pyramid is (x + h), then its total volume will be
(1/3)(x + h)1,2, while the volume of the small pyramid is (1/3)xa2.

31
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FIGURE 14. By completing the incomplete
pyramid, its volumt can be calculated as the
difkrence of the volumes of two similar pyra-
mids.

NEW APPROARES TO NI 3fER.1CY

By similar triangles. xla = (x + h)/h. So. as in the planar case,
x = hal(h a) and x + h = hIV(h a). Therefore the volume of
the incomplete pyramid is

(I/3)(x + h)172 (1 /3).va2

= (113)hh11(1)- a) (1.13)hal/(b a)

= (1/3)053 a3)I(b a)

(1/3)h(b2+ah +a2).

This formula, which was detailed in a papyrus from 1800 B.C., rep-
resents a high point in the geometry of the ancient world. It can be
appreciated by any student who reaches the level of first-year algebra.
Truly enterprising students can conjecture the formula for the volume
of an incomplete pyramid in the fourth dimension or in higher dimen-
sions.

Cylinders and Discs

The volume of water in a circular cylinder is a little more than three-
quarters of the volume of the rectangular box in which the cylinder
just fits (Figure 15). If we pour the water from the cylinder into box-
shaped containers of the same height, with square base whose side equals
the radius of the cylinder, then we can fill three such boxes and still
have some water left over. Experiments with different cylinders and
related boxes will quickly show that this pattern works for cylinders
of any radius or height. The same ratio, of course, relates the area
of a circle to its circumscribing square. Because children can measure
poured quantities more easily than painted areas, it may be easier for
them to grasp this fundamental ratio first in terms of volume and then
subsequently in terms of arca.
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FIGURE 15. A set of cups containing a circular cylin-
der matched to four rectangular boxes of the same height

whose bases form a square that encloses the circular base

can be used to show that the volume of the cylinder
is just a little bit more than the volume of three of
the boxes. Hence the area of the circular base is

just a bit more than three-quarters of the area of thc
corresponding square.

The idea of perimeter can be introduced by using a string or a belt,
unmarked at first. The distance around a square tile is four times the
length of the side of the tile, regardless of the size of the tile. If one
circular disc has a radius twice that of another, then a string around
the larger will fit twice around the smaller. A string around a disc will
go around a square with sides equal to the radius a little more than
three times. The crucial fact that the ratio of the circumference of
the disc to the perimeter of the square is the same as the ratio of the
volume of the cylinder to the volume of the surrounding box would be
established only much later. But the fundamental idea that there is a
fixed ratio between the perimeter of the disc and the perimeter of a
square is something that i.:very child should appreciate. long before any
mention of the mysterious number Jr.

Pl.! relation between the area and circumference of a cirrle can be
easily seen by cutting a circle like a pie and reassembling the pieces into
a nearly rectangular shape. The area of a disc turns out to be equal
to the area of a rectangle-like region with one side equal to the radius
and the other equal to half the circumference (Figure 16). Subdividing
the disc into more slices would make the correspondence even more
exact. (Much later students will appreciate the limit concept hidden
in this demonstration.) Unfortunately, there seems to be no such nice
correspondence between the volume of a sphere and the volume of a
rectangular box.

.10
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FIGURE 16. By slicing a circle into thin pie-shaped pieces and
reassembling them into a rectangular-shaped region, children can
readily see that the area of a circle is the radius (the height of the
reassembled rectangle) times half of the circumference (the width
of the rectangle).

VISUALIZING DIMENSIONS

Children in Froebers kindergarten played with cubes and with subdi-
vided cubes, squares and subdivided squares, and rods and subdivided
rods (Figure 17). Eight small cubes fit together to form a large cube.
twice as long, twice as wide, and twice as high. Four square tiles fit
together to form a large square, twice as long anG twice as wide. Two
thin rods form a rod twice as long as the original.

Children at all levels can explore similar exercises. Here is a small
cardboard box filled with sand, wrapped in paper, and tied with string.
Here is another boxtwice as long, twice as wide, and twice as high.
How much more string do we need to tie it, or paper to cover it, or sand
to fill it? It isn't necessary to have the ability to measure length or area
or volume in order to experiment and find the answers: twice as much
string, four times as many sheets of paper, eight times as much sand.

FIGURE 17. Nested cubes, squares,
and rods illustrate the fundamental
property of doubhng factors: they rep-
resent the power of 2. depending on
dimension.

34



DIMENSION 25

These perceptions about changes of scale can take place even before the
child has much experience with multiplication, and they can reinforce
understanding of arithmetic processes.

Growth Factors

Children who first encounter changes of scale in the lower grades will
recognize much later, when they learn about exponential notation, that
doubling the size in dimension three leads to an increase in the volume
of a factor of 23, whereas doubling the size of a two-dimensional square
increases its area by 22. Whatever it might mean to have a box in
four dimensions, exponents make very clear a pattern of doubling that
predicts its size will increase by 24.

Each dimension, therefore, corresponds to its own growth exponent.
A surprising fact is that there are geometric objects whose growth expo-
nents are not whole numbers. These strange objects, which have a kind
of "fractional dimension." are examples of a fascinating collection of
geometric patterns known as "fractals." Since the creation of fractals
usually requires a process that is applied an infinite number of times, it
is only with the advent of modern computer graphics that it has been
possible to carry out the experiments necessary to explore them effec-
tively.

One of the earliest examples of a fractal was invented long before
computers by the Polish mathematician Waclaw Sierpifiski. The first
step in creating Sierpinski's figure is to remove a small triangle from the
middle of a large one. The second step is the same as the first: remove
the middle of each of the remaining triangles. Repeat this over and over
again to obtain what is known as the "Sierpitiski gasket" (Figure 18).

What's remarkable about Sierpifiski's gasket is that doubling its size
produces a figure that is composed of three copies of the original fig-
ure. This is very strange, because wir experiments with tiles and cubes
show that doubling factors are always powers of 2: if we double the
size of something of dimension one, we get two copies of the origi-
nal, whereas if we double the size of something of dimension two, we
get four copies of the original. The Sierpitiski gasket, therefore, must
have a dimension somewhere between one and twohence a fractional
dimension. (Specifically, its dimension is the number d with the prop-
erty that 24 = 3; this number d is the logarithm of three to the base
two, namely 1.5849.... }

Fractals can be used to motivate a large number of mathematical
discussions. Since they arise as a result of an infinite process, they can
be discussed in relation to geometric series or repeating decimals. The
unusual doubling properties of fractals give a geometric interpretation

3 5
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IN; U RE 18. This infinitely punctured tnangle, known as Sierpin-
ski's gasket, comprises three half-size copies of itselfnot two or
four as one would expect if its dimension were one or two. Hence
it has a fractional dimension in between one and two.

for the logarithm to base two. Other fractal processes lead to figures
like the Mandelbrot set, including some of the most striking examples
of mathematical art.3

Rates and Averages

One of the most important skills we can give our students is the abil-
ity to interpret data geometrically. The geometry of area and volume
can help students understand concepts like rates, accumulations, and
average value. Here are three simple examples that illustrate this point:

A driver travels at 40 miles per hour for 1 hour, then at 46 miles
per hour for 2 hours. How far does she travel, and what was her
average speed?
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FIGURE 19. A bar graph geometrizes
data from three similar problems and
shows visually how the average corre-
sponds to the height of a single rectangle
with the same base and the same total
area.

A designer makes $40,000 a year for 1 year and then $46,000 for
the next 2 years. What were his total earnings for that period,
and what was his average salary?
A fish tank is filled to a depth of 40 centimeters and two identical
tanks are filled to a depth of 46 centimeters. What is the average
depth of the water in the tanks?

All of these problems involve the same calculation, and all can be
illustrated on the same diagram (Figure 19). In each case the total
accumulation can be interpreted geometrically as the area of three rect-
angles. The average will be the height of a single rectangle with the same
base and the same total area. It is also possible to graph the accumula-
tion in a way that indicates exactly how many miles had been covered
(or how much money had been earned) by a given time (Figure 20).

FIGURE 20. A linear graph displays the accumulation from three
problems, indicating total miles covered or dollars earned. The
relation between the corresponding bar and linear graphs is a
precursor to calculus.
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Each bar graph representation of rates (which mathematicians call
a step function) leads to an accumulation graph formed from straight
lines (i.e., a polygonal function). The process of finding the rate from
the accumulation leads ultimately to the differential calculus, and find-
ing accumulations from rates leads to the integral calculus. Although
it is certainly not necessary for students to realize this connection as
they develop their understanding of speeds and distances or salaries
and earnings, every student can benefit from this type of mathematical
experience both as preparation for calculus and as preparation for life.

Drawing Cubes

All children in Froebel's kindergarten practiced drawing. They played
with drawing on one level while they learned on another. They learned
to observe spheres, cylinders, and cubes; ultimately they learned to draw
what they saw. In our day there is not as much emphasis on drawing, so
we miss opportunities to develop the ability of our students to visualize
geometrical relationships.

The most common way of representing a cube in most books is to draw
a square, then translate it along an oblique axis (usually at a 450 inclina-
tion) and then to connect corresponding points (Fieure 21). Although
this is a perfectly valid representation of the structure of a transparent
cube, no view of a cube actually looks like this image. Whenever we
look at a cube, if one face appears as a square, then we must be looking
directly toward that face; in this case the opposite face will be directly
behind the face we see and not off to the side as it is in the traditional
drawing. This is true whether we use a straight-down "orthographic"
projection or foreshortening (Figure 22), where the back face appears
smaller than the front.

Another popular method of drawing uses "isometric projection,"
which expresses three edges of a cube as segments of equal length

FIGURE 21. The typical representation of a cube
as two identical squares with edges connected is
quite unreal since no cube can ever appear just this
way.

3S
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FIGURE 22. Two correct views of a cube are given by the
"onhographic" projection (lookin3 straight down) on the left or
a foreshortened projection (on the right).

FIGURE 23. The symmetric "isometric" view of a cube, both
solid and transparent. arise by 'ooking one corner at a 450 angle.

Then the opposite corner lies directly behind the front corner. so
only seven vertices are distinguished in this view.

FIGURE 24. Two views of a cube in general position: ortho-
graphic ion the left) and one-point perspective on the right).

29

meeting at 120 angles (Figure 23). This method has the disadvantage
that two vertices of the cube are represented by the same point..

If we wish a more general image of a cube, we must draw each face

as a non-square parallelogram (using a straight-on projection) or as a
trapezoid (if we use one-point perspective) (Figure 24). The straight-on

(or orthographic) projection is particularly easy to draw since the picture
of a cube is completely determined once the position of the edges at one
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FIGURE 25. In an orthographic drawing, parallel lines in the
cum are rendered as parallel lines on the page. Here the full
orthographic view of a cube is determined by the orientation of
the three edges at any corner.

corner is specified. In an orthographic projection, parallel edges of the
cube appear as parallel edges in the image, so we can easily complete
the picture once we know the position of the three edges at any comer
(Figure 25).

Once we know how to represent a three-dimensional object on a two-
dimensional page or computer graphics screen, we can go on to a much
more complicated exercise, that of drawing a four-dimensional analogue
of a cube, called a hypercuhe or tesseract. Many students encounter the
idea of a four-dimensional cube in science fiction or fantasy literature,
such as Robert Heinlein's story ...and He Built a Crooked Housew or
Madeleine L'Engle's .4 Wrinkle in Time° or Edwin Abbott Abbott's
Flatland.'

04

FIGURE 26. By adding a fourth direction to the traditional
three-line corner that represents three-dimensional space, we lay
a foundation for drawing four-dimensional objects. It shows the
direction in which to move a cube to form a four-dimensional
hypercube.

' 11
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Usually a hypercube is constructed by moving an ordinary cube in
a direction perpendicular to our space. Although we cannot actually
achieve such a motion, we can still draw a picture of hat such a con-
struction would look like when the image is projected to a plane (Figure
26). We first draw the cube determined by three of the edges, then move
a copy of the cube along the fourth diret,tion and connect corresponding

points.
The same procedure enables us to design a three-dimensional model

of a four-dimensional cube, using sticks attached by clay balls (as sug-
gested in the last century by Froebel) or more modern materials like
drinking straws threaded together with yarn, or some standard building
sets. Once again, the full image of a straight-on projection is determined
as soon as we specify the four edges coming out of a point (Figure 27).

Just as a foreshortened view of a cube looks like a square within a
square with corresponding corners connected, so the analogous fore-
shortened view of a hypercube looks like a "cube within a cube" with
corresponding corners connected (Figure 28).

FIGURE 27. The completed hypercutte formed hv ..onnecting corresponding vertices on

two copies of a cube

HGURE 28. A foreshortened view of a hypercube, imagined as a cube within a cube
with corresponding corners connected.

41
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FIGURE 29. By rotating a sphere on which an equatnr ha-, men
drawn, it is easy to see that the imagei of a circle are always some
typc of ellipse.

FIGURE 30. To draw cylinders and
cones, one begins with an ellipse tha,
represents a suitable perspective as the
circular base.

A cube looks different from different perspectives. A sphere on the
other hand always looks like a disc. Any way we look at it. it looks
the same. If we mark an equator. then va-ious views give images that
are ellipses in different positions (Figure 29). Students also need to be
aware of the basic principles of drawing these fundamental forms. It is a
fact that a circle always looks like an ellipse, including the extreme case
where the ellipse is still a circle or where it degenerates into a doubly
covered straight-line segment. Observing this fact makes it easier to
draw convinc,ng cylinders and cones (Figure 30).

Modern computers are fast enough to produce a sequence of images
showing different views of a rotating cube or hypercube. giving the il-
lusion of a three-dimensional object. This process is very familiar to
today's students who have grown up with computer-animated special
effects and television commercials. We can make use of this experience
to give students new appreciation for mathematical forms. As interac-
tive programs become more widely available, students of all ages can
have unprecedented opportunities, never before possible. to manipulate
anJ explo:e geometric forms in three and higher dimensions.

COORDINATES IN DIFFERENT DIMENSIONS

One of the most important insights we can trz.smit to students at all
levels is the uti;ity of coordinate descriptions both to specify locations
and to give instructions. Examples of coordinates can be made available
at ever: stage of a child's development. There is no best way to develop
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understanding of different coordinate dimensions. You don't have to
learn the first dimension completely before going into the second and

then the third (and beyond). The invitation to examine coordinates
from a dimensional standpoint is available at all times: we only have

to make students aware of what they are seeing. Although experiences
of different dimensions are always present, it is useful for our present
analysis to separate phenomena according to the number of coordinates

needed to locate a position or give an instruction.

Number Lines and Circles

Even at a very early age children can understand the significance of
addresses. Anyone can appreciate the ordinary algorithm used for find-
ing a specific location in terms of its street address: first go to the street,
then find the number of some building. If it happens to be the one
you are looking for, you are done. If not, go to a nearby building and
check its number. If it is closer to the one you want, keep going in that
direction. If it is :arther away, go in the other direction. Stop when you
get to the number you want.

Discussion of even this simple algorithm illustrates a number of im-
portant topics. We identify a location by a specific number, and we
move along a one-dimensional path, in one direction or another, to get
from one position to another. After the basic procedure if: understood
one can add refinements such as whether the address is on the even or
odd side of the street. Estimating the distance one has to travel in order
to get from one location to another is another refinement, leading to
the seometric interpretation of subtraction as well as to the notion of

absolute value.
Early exercises can take place on a number line with r.,,sitive addresses

or on real streets in a scavenger number hunt. Later the same notions
can be used for scales with negative values, like temperature, where the
vertical orientation of the thermometer emphasizes the directionality.
"What happens when the temperature goes from 65 degrees to 40 de-
grees?" "It goes down by 25 degrees." Such observations can take place
far in advance of introducing signed numbcrs.

Many cities use directional addresses in their street plan (e.g.. in New
York City there is both a West and an East 42nd Street). In this case
the algorithm to find a building from knowledge of its address is slightly
different but still easy enough to discuss at an elementary school level.
The distance between two addresses on the same side is determined
as usual, while the distance between two locations on different sides is
the sum of their addresses. No memorization is required for such a
statement! Signed numbers do not have to be myster;ous.

4
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A similar one-dimensional algorithm works in setting a clock, wheth-
er it is analogue or digital, depending on whether or not one can go
backward as well as forward. Setting a watch is slightly different from
finding a street address, even on a curving road that does not come
back on itself. On a circular drive, however, the problem of locating
a specific address is analogous to the problem of setting a watch: you
can go in either direction and ultimately arrive at your destination. Of
course one direction might be muult easier than the other.

The problem lf deciding on a strategy for locating an address on a
circular drive is a good example of the kind of multistep problems that
students should learn to attack. In this example, as in many others,
there is no single answerthere are several strategies that will achieve
the same result. The person facing the situation must decide first what
the choices are and then what might be the advantages of each. The aim
of minimizing effort is very easy to understand, easier than minimizing
cost measured in money or some other quantity.

One-dimensional examples require just one number to locate any
point. Directions for moving from one position to another are also
one-dimensional: "Go three houses to the right" or "Go around coun-
terclockwise five spaces" or "Go halfway around the circle to the oppo-
site point." This last sort of instruction depends on the size of the circle
and can form the beginning of an appreciation of angular measure.

Setting a clock, whether analogue or ligital. provides an excellent ex-
ample of "wrap-around." This phenomenon can also be viewed on a
linear scale, for example, on the selector of many car radios. In many
analogue devices the moving indicator stops at the extreme left or ex-
treme right, while in the digital versions the indicator simply goes from
the top value to the bottom. Finding a particular radio station then
presents two different sorts of problems depending on the nature of the
radio selector.

The dimensionality of gauges is an important concept that arises over
and over again in mathematics as well as science. As students become
more sophisticated in the kinds of numbers they use, they can introduce
fractions or decimals into number lines and number circles. Locating a
telephone pole along a road in a rural area requires a different kind of
address, using fractions or real numbers representing actual distances.
The numbers become more complicated, but the procedures remain the
same.

Locating objects or addresses in a one-dimensional world can be ac-
complished efficiently by the bisection algorithm (or the variation of it
that divides each interval decimally), a procedure with almost universal
significance that is related, for example, t^ the informal technique used
to find phone numbers. First you make a guess to divide your problem
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into two partsby opening the phone hook or by picking a number.
Then you compare your guess with what you want and make a new
guess that is in whichever part (above or below your first guess) that
contains what it is that you are looking for.

A similar scheme can be use6 to find the "address" of the length of
the diagonal of a square without requiring a calculator with a square
root key. Finding the decimal equivalent of a fraction can be viewed as
a more sophisticated version of the one-dimensional address problem.
If we want to find 3/17. we can multiply different decimals by 17 to see
if the product is bigger or smaller than 3. All decimals get put into one
category or the other: it never comes out even. For 3/16 on the other
hand one decimal does come out even, so there is a fixed location on
the decimal line for the solution to this problem.

Lengths and Perimeters

The fundamental geometry problem for one-dimensional phenomena
is the determination of distance along a path. Key examples include
calculation or comparison of perimeters of curves and polygons. There
is one geometric numbern that all students should learn to under-
stand.

Despite its universal significance, most people do not know how to
answer when you ask what lr iS. Most lay persons respond with a numer-
ical estimate. 3.1416 or 22/7, without knowing in either case whethe.
this approximation is too large or too small. Mathematicians will give a
definition in terms of a geometric property, usually something like "the
ratio of the circumference of a circle to its diameter" or "the ratio of
the area of a disc to the area of a square with side equal to the radius."
The fact that these two ratios are the same is. of course, a major theo-
rem of mathematics. One can get a tremendous amount of mileage out
of a continuing discussion of the estimation of 7t, from the first time a
kindergarten student realizes that the belt around a can reaches a little
more than three times across the top, to second-semester calculus where
one studies integrals for arc length.

Finding the circumference of a circle is a one-dimensional problem,
so its answer should have a representative on the number line. But
where is it? How can we determine whether or not a given number is
',!ss than this length or greater? Comparisons with the circumference of
circumscribed and inscribed polygons is an effective strategy for dealing
with these questions. Although such comparisons cannot determine ir
exactly, they can convincingly show whether 22/7 is slightly above or
slight!), below n.

4 ;
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Certain counting games are especially important for developing in
children facility in the arithmetic of algebraic quantities. Students can
choose instruction cards saying "move forward two spaces" or "back
three" (F2 or B3), and they can follow the instructions with counters.
Then they can be asked to trade two cards for a single card that accom-
plishes the same effect. By considering double or triple jumps, they gain
experience with the idea of multiplying a signed number by a positive
integer. The variations in the game are manifold. The operation of
taking up three 84 cards from one's hand is the same as taking up one
1312; putting down three B4 cards is the same as taking up one F12.
One might introduce a symbolism: P3B4 "Put down three 84 cards."
which is the same as T3F4 = "Take up three F4 cards." Similarly. PBS
= TF5 and PF2 T82, yielding a complete algebra of transactions.

The pedagogical trouble with signed numbers is that we use them
both for locations and for operations. The rule that "the product of
two negative numbers is positive" is one of the earliest stumbling blocks
that convince many students that mathematics means memorizing, not
reasoning. Appropriate experience with counting games can restore in-
tuition to the rules of negative numbers. Board games help students
appreciate the value of scoring, first with simple addition (especially
where movement depends on the throw of a pair of dice) and later in
more complicated games where the score can be positive or negative.
Scoring experiences are generally one-dimensional.

Planes and Surfaces

Children should become skilled in both following and giving direc-
tions. Any child should learn how to direct a person from one part of
the school to another and perhaps to describe the neighborhood of the
school. Although the algorithm for getting from one street address to
another in an actual town might be quite complicated, an ideal town
has a simpler structure. We can imagine a sequence of imaginary towns
with different dimensional propertiesa frontier town all stretched out
along a single street or a village laid out on a rectangular plot. A model
village could stimulate a good deal of the discussion, while a grid on
which children could design their own town would allow for more vari-
ation.

No matter what the streets are named, we can still give directions on a
grid by saying: "Go right two blocks, then turn left and go three blocks."
For persons with a clear orientation, the instructions can be varied: "Go
east two blocks, then north three blocks." The first instruction depends
on the direction that the person is facing, and the second does not.
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If the map of a village is hanging on a wall, we can use the natural
coordinate directions: "Go right two blocks and up three." Certain pairs
of instructions can then be combined: "Go left two, then up three" and
"Go left three and down five" combine to give "Go left five and down
two." By playing this game with cards, we can easily introduce the
operation of adding ordered pairs and even of multiplying numbered
pairs by positive integers. If we introduce "put" and "take" operations,
we can extend the one-dimensional algebra of signed numbers to an
algebra of two-dimensional quantities.

Notice that this algebra of instructions does not require the use of
coordinates in the plane. The exercise carries additional value when ad-
dresses are given in terms of street numbers or compass directions. For
one thing, this avoids the complications caused by negative numbers.
To go from E3N4 to E7N2 requires a move of E4S2. The correspon-
dence between this commonsense approach and the algebraic statement
(7, 2) (3, 4) = (4, 2) is something that can come much later in a stu-
dent's mathematical development. There are a great many people who
are confused by negative numbers. They shouldn't be.

"Taxicab geometry" provides an effective variation on the use of di-
rectional instructions. Students play the role of dispatchers, telling cab-
bies how to get from one lecation to another. "Just go three streets
north and two avenues west" would be such a direction. The efficiency
of the instructionsand the profit of the cab companydepends on
many factors such as one-way streets, accidents, and traffic jams. One
can easily imagine a board game that would model realistic city traffic
and get students used to the idea of a two-coordinate instruction set.

The surface of the earth is another familiar example of a two-dimen-
sional object. Even though it exists in three-dimensional space, we need
only two numbers, latitude and longitude, to specify any location. A
dispatcher of ships can give instructions to go 10 miles due east and then
5 miles due north. On the surface of the earthbut not on a flat plane
the order of these operations makes a difference: going 5 miles due north
and then 10 miles due east can put a ship at a different position! The
extent of this difference is an intrinsic indicator of curvature.

In teaching geometry we should not ignore the interactive video game.
Today's students take for granted the fact that wc can manipulate im-
ages on a two-dimensional screen by pushing buttons, turning dials, or
twisting joysiicks. Programs like LOGO offer students experience in
giving 'simple geometric instructions to move points and objects around
on a screen. This gives mathematics teachers a chance to introduce any
number of important concepts, including repeated operations to form
regular or star polygons and recursive processes for drawing fractal ob-
jects or space-filling curves.
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Many video games employ wraparound, which introduces interesting
ideas in different two-dimensional geometries. Frequently when a point
is guided off the left side of a computer screen, it appears et the same
height on the right side. This is analogous to the phenomenob on the
digital radio dial, which just as well might be thought of as operating
on a circle. A segment with its endpoints identified can be treated as
a circle. Analogously, if we think of the points on the left side of a
computer screen as identified with the corresponding points on the right
side, then we are dealing not with a flat rectangle but rather with a
cylinder.

But even more can happen. It is often the case that when a point
moves off the top of the screen, it reappears at the corresponding po-
sition on the bottom, so we get a cylinder with its top and bottom
identified. This gives a figure like an inner tube, which mathematicians
call a torus. The geometry of a torus is in some ways like that of the
plane, but in other ways it is very different. In the plane any polygon
that does not intersect itself divides the plane into two pieces. But if we
take a closed polygon that goes around the top of the torus, it does not
separate the torus into two pieces: its inside is the same as its outside.
Related to this phenomenon is the fact that on a torus we can find two
closed curves that cross at exactly one point (Figure 31). whereas if two
closed curves in the plane cross (not just touch), they must intersef t in

FIGURE 31. A torus, the mathematical namt fur a doughnut-
shaped surface, is a two-dimensional surface in shich two closed
curves can intersect in just one point and in which a dosed curve
need not separate its inside from its outside.
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an even number of paints. An unusual object in many ways, the torus

is ideal for keeping track of pairs of numbers from circles.

Three-Dimensional Space

It is a short step from two to three dimensions. From the two-

dimensional village layout, we can move to the model of a city, where

we have a height for each location as well as a position on the grid.

We can augment taxicab geometry with elevator geometry. We specify

a position by three numbers, for example, E3N4U9, referring to the

ninth floor of a building at location E3N4. We can then determine

an algorithm for getting from this location to E7N2U5. Note that in

this particular geometry it makes a big difference in what directions

one moves. The usual algorithm would be D9E4S2U5. Veginning with

D4 gets you to the right level but in the wrong building! The situation

would be different for a game played on a jungle gym, with instructions

to move from one position to another by going a certain distance left

or right, forward or back, up or down. In this case we can carry out the

instructions in any order.
Another three-dimensional geometry arises if we want to specify the

position of an airplane, giving its longitude, latitude, and altitude. Once

again, it makes a difference in which order we give the numbers that

indicate a given location or the directions for getting from one point to

another.

Higher-Dimensional Spaces

The intuitions that students accumulate in dealing with coordinate

pairs in the plane and coordinate triples in three-dimensional space lead

naturally to coordinate geometry in higher dimensions. A thorough un-

derstanding of two and three dimensions provides an important foun-

dation for the powerful generalizations of vector and matrix algebra in

science and engineering, in economics and social science, and especially

in computer science and graphics. We illustrate this progression with

two examples.
The vertices of a square can be given by four points (0,0), (1,0). (1,1),

and (0.1). To obtain the vertices of a cube, we can take the points of a

square with zero in the third coordinate and then move the square one

unit in the third direction to obtain four more vertices, with a I in the

last coordinate:

(0.0.0). (1,0.0), (1, 1,0), (0,1.0),

(0.0, 1), (1, 0.1), (1, 1, 1), (0, 1, 1).

49
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FIGURE 32. Generalizing the
thagorean theorem to three dimensions
by applying it to two different triangles
found in a rectangular box.

NEW 4PPRO4(11ES TO NUMERAC)

Thus we can describe either the square or the cube as having vertices
that are either 0 or 1 in each coordinate.

The procedure generalizes automatically: to obtain the vertices of a
hypercube, we start with the eight vertices of a cube and put 0 in the
final coordinate and then "move the cube in a fourth direction" to obtain
eight more points with 1 the last coordinate:

(0, 0, 0,0), (1.0,0,0), (1, 1,0,0). (0. 1,0,0),

(0.0, 1,0), (1,0, 1,0). (I, 1.1.0). (0, 1. 1,0).

(0, 0, 0, 1). (1, 0, 0, 1). (1, 1, 0. 1). (0. 1, 0, 1),

(0,0, 1,1), (1,0,1.1). (1.1,1, 1), (0,1,1.1).

We thus obtain the sixteen vertices of a hypercube, with 0 or 1 in each
of four coordinates. It is this sort of representation that is ideal for
communicating with a computer.

A second topic that generalizes in a very nice way is the Pythagorean
theorem. If we think of this theorem as a way of calculating the length of
the diagonal of a rectangle with given sides, then the extension to three
dimensions is immediate: given a solid bounded by rectangular sides,
we first apply the theorem to one side and then apply it to a rectangle
built over the first diagonal (Figure 32). We easily get e2 e2 d2

e2 + (a2 b2), so the length of the diagonal of a rectangular prism with
sides a, b, and c is Ja2 + 1,2 + c2 . The pattern is establ;shed, and the
distance formula in four-dimensional space follows almost immediately.
Students can then calculate the lengths of diagonals of the hypercube
with the 0-1 coordinates. It turns out that the length of the major

e"-.)
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diagonal of a four-dimensional cubesay from (0,0,0,0) to (1,1,1,1)
is V4 = 2, which is twice the length of a side.

CONFIGURATION SPACES

The coordinate descriptions that are so useful in giving locations and

direction in familiar spaces of one, two, and three dimensions work

equally well for phenomena whose specification requires more than
three numbers. Exploratory data analysis, a statistical technique for
dealing with these representations, is one of the most important appli-

cations of dimensions in current research. The ability to visualize and
interpret multidimensional data sets may be one of the best gifts we can

present our students in this modern age.
Some the most useful and interesting examples of higher-dimension-

al phenomena occur as configuration spacescollections of georr etric

objects representing certain structures or motions in the natural w, d.
The most familiar spaces are the one-dimensional collection of points

on a line, the two-dimensional collection of points in a plane, and the
three-dimensional collection of points in space. But we can also consider

the collection of lines in the plane, the collection of planes in space, the

collection of all possible circles in a plane, or the collection of spheres

in space. We illustrate this process by presenting several examples of

phenomena that lead to higher-dimensional configuration spaces.
Consider the following (slightly unrealistic) situation: The lighting

director of our local theater has to arrange a set of lights over the stage so
as to illuminate certain parts of the floor at certain times. Sometimes the
size of a spot is supposed to change during the course of a performance.

Sometimes one colored circle is supposed to be contained in another.
How can she keep track of all the circles of light and then design lighting

directions so that an assistant can carry them out?
In this particular theater the lights all have the same form. A single

bulb is suspended from a wire hanging down from the ceiling, and a
conical shade directs the light out in a beam that meets the floor in

a disc of light. The sides of the shade come down at a 450 angle, so
the radius of the disc is equal to the height of the bulb above the floor

(' .gure 33). This makes it easy for the director to specify the location

of any light, since she can indicate the position of the center of the disc

using the same coordinates that the director of the play uses to give

her instructions. That uses two coordinates, but the lighting director
needs another number to represent the radius of the disc. She could,

as an alternative, specify the height of the bulb above the floor, since
in this idealized situation these two numbers are the same. Hence any

particular disc can be represented by three coordinates, the first two
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FIGURE 33. A spotlight with a shade set at a 45° angle will
illuminate a spot on the floor of a stage whose radius equals the
height of the light above the stage.

being the location of the center and the third giving the radius (or, in
our special case, the height).

In this way we see that the collection of discs in the plane is three-
dimensional; this collection is an example of a configuration space, each
disc representing one element in the configuration of spotlights. To
exploit the three-dimensionality as a bookkeeping device, the director
can record the position of each light by giving three coordinates: for
example, (6. 8, 5) refers to the light with center at the (6, 8) position on
the floor and a radius (or height) of S.

To call this a space indicates something more than convenience of
recording. It is a signal that the arithmetic of the coordinates reflects
properties of the geometry of lights. For exan'ole, a spotlight with coor-
dinates (6,8, 5) stays on the stage, while the light (6.4. 5) shines off the
front of the stage. It is easy to determine a rule to tell when a light stays
away from the front rim of the stage, namely that the second coordinate
be larger than the third.

More complex problems facing the lighting director can also be solved
by referr'.ig to the coordinates. For example, when will one spot be en-
tirely separate from another? In words, this happens when the distance
between the points in the plane given by the first two coordinates is
greater than the sum of the third coordinates. In symbols, the condi-
tion is expressed by 1(x (y yi)2 > r + r'.

In this configuration space the three coordinates do not play the same
sorts of roles; so even though the geometry of the configuration space is
three-dimensional, it treats the last coordinate differently from the first
two. It is not identical to the usual geometry of ordinary three-space,
where the Pythagorean theorem treats all coordinates the same way. An
important aspect of configuration spaces are the special symmetries they
possess.
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The Fourth Dimension

Sooner or later everyone hears that time is the fourth dimension.

That idea, however, limits the idea of dimensionality. Already in the

last century writers realized that there are many situations in which time

can be viewed as a fourth dimension, but by no means does it demand

any special role as the fourth dimension. When physicists, especially

relativity physicists, specify an event by giving three space coordinates

and one time coordinate, they are using a four-dimensional configura-

tion space. This space has its own geometry that is not the same as the

geometry of four-dimensional Euclidean space, where distance is given

by the generalized Pythagorean theorem. In the theory of relativity the

distance between two events is given by the expression

111(x - xf )2 (y y1)2 + :1)2 (t

where time is measured in special units related to the speed of light.

The three-dimensional configuration space of spotlights provides a

useful analogy for a four-dimensional space used in molecular modeling.

The atoms that make up a molecule can be represented by smaii spheres

of different radii. The description of a particular molecule, like the
description of stage lighting, consists of a list of spheres of different sizes

in different positions. Each sphere requires three coordinates to specify

its center and one coordinate for the radius. Thus the configuration

space of atoms is four-dimensional, and a molecule is a collection of

such atoms arranged in a particular formation.

Using the language of the configuration space, we can describe a

molecule to a computer and ask it to display different views, If we

ac,k the computer to check that two atoms do not intersect, this involves

an algebraic condition in four coordinates, namely

(x x`)2 + + (: + r')2 > 0.

The geometry of this configuration space ,s much closer to that of rela-

tivity theory than it is to ordinary Euclidean four-dimensional geometry.

Interestingly it is this sort of questionavoiding intersectionsthat ap-

pears in the science of robotics, using large numbers of coordinates to

keep track of objects moving through configuration spaces of high di-

mension.
Suppose each light on our sample stage possesses a rheostat that can

control the currenthence the brightnessof the spot. If we add

brightness to the coordinates of the spotlight, then the configuration
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space will be four-dimensional. If we want to encode the color of each
spotlight as well, then the dimensionality jumps again. The specification
of color requires three more coordinates representing either hue, satu-
ration, and value or the relative amounts of red, yellow, and blue (for
pigments) or red, green, and blue (for lights). So the lighting director
will now have seven coordinates for each spotlight: two for floor posi-
tion, one for radius, one for brightness, and three for color. Thus evev . ki

simple example can lead to a configuration space of high dimensionality.
Relativity physics began by considering four-dimensional collections,

with three dimensions for space and one for time. Recently modern
physics has become much more complicated. Some current models keep
track of seven dimensions that act like space and four that act like
time, to give an I l-dimersional configuration space. Another important
model uses a configuration space with 26 dimensions. In each case the
choice of the model depends to some degree on the kinds of mathematics
that apply in these dimensions, as an aid to keeping track of the complex
interrelationships among events in these high-dimensional spaces.

Statics and Dynamics

Here's yet anothe° type of configuration space, set up by a simple
story. For the schoo scut,. ire show two students want to decorate the
back wall of the hall with a pattern of plastic strings. They decide to
stretch them from the left-har.d edge of the wall down to the floor. By
trial and error the week before the show, they come up with a ple"..iing
design, using more than twenty strings. They can't leave them up until
the show so they have to find a way of recording the positions so they
can put them up again later. How many numbers do they need to specify
the position of each string? What is the dimensionality of the collection
of strings?

It is easy to see that the dimensionality of this configuration space
is two: it takes just two marks to locate a given string, one along the
floor and one up the left edge of the wall, and each of these locations
can be specified by a single number. The pair of numbers (4,3), for
example, could represent the string that goes from the point four feet
over on the floor to the point three feet up on the wall edge (Figure 34).
The collection of pairs, one pair for each string, tells the positions of
all strings. It is even possible to record these ordered pairs in a specific
sequence so the students will know which order to follow when they
replace them.

In a way this coding is like the old game of "connect the dots" where a
polygon is determined by a sequence of ordered pairs. so by connecting
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FIGURE 34. A configuration space of
two dimensions can represent the positions
of strings that run from the floor to loca-
tions on the left edge of the wall.

the dots in order we draw the polygon. In our sculpture story the basic
elements are not points but segments: by forming the sequence of string
segments, we re-create the wall sculpture.

If we increase the dimensionality of the configuration space, we can
allow the bottom of the string to be placed anywhere on the floor, with
the top still somewhere on the left edge of the wall. We still need one
number for the height, but now the record will have to include two num-
bers for the floor coordinates. The collection of segments would then
be three-dimensional, yielding greater possibilities of mon interesting
sculptures.

By allowing the strings to start anywiiere on the vertical wall and
end up anywhere on the floor, we would have a realization of a four-
dimensional system. Simple algebra would then enable one to predict,
for example, whether or not two strings are going to intersect. When we
are laying strings along a wall, it is commonplace for them to intersect.
Such intersections are rare if we are in a three-dimensional collection
and rarer still for the four-dimensional system of segments in space.
It is also interesting to look for configurations of segments that cor-
respond to familiar configurations in ordinary space. What collection
of segments in a two-dimensional configuration space corresponds to a
line joining two points? What segments in a three-dimensional collec-
tion correspond to a coordinate plane in three-space? Questions such
as these can yield striking and unpredictable visual effects in the string
sculpture.

The dimensionality of a configuration space becomes especially im-
portant when we consider dynamic problems. When a point is moving
on a line, we can describe its state at any given time by giving two num-
bers, one for its position and a second for its velocity. The state space
is therefore two-dimensional, and a point moving according to a given
physical law, like a ball bobbing up and down on a spring, will describe
a curve in that state space. Similarly a point moving in a circle, like a
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swinging pendulum, will have a two-dimensional state space giving its
angular position and angular velocity.

The state space of a point moving in a plane will be four-dimensional,
with two points for location and another two for velocity. Scientists
analyzing the motion of a satellite have to work in a six-dimensional
state space, with three coordinates for position and three for velocity.
The laws of physics will restrict the actual states of a system to some
lower-dimensional space. Indeed, scientists devote a good deal of effort
to analyzing the shapes of these spaces. For example, the motion of two
pendulums corresponds to a curve on a torus in four-dimensional space.
The study of such high-dimensional dynamical systems is an extremely
important subject in modern applied mathematics.

SLICING IN DIFFERENT DIMENSIONS

When Froebel presented his geometric gifts, he did not want them to
appear static. One of the first gifts was a display of three basic forms
suspended by strings in various ways (Figure 35). As the objects rotated.

FIGURE 35. Froebers kinderga-*en included basic shapes that
could b: hung from eyelets at different positions, then viewed from
different perspectives to see various cross-sectional shapes.

5 6
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FIGURE 36. The central diagonal cross
section of a cube turns out to be a regular
hexagon whose six edges cut off triangles on

each of the six faces of the cube.
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children could observe them from different views and ultimately come
to an appreciation of their symmetries and structures.

In the model devised by Froebel, the sphere, the cylinder, and the cube
all had eyelets attached so that they could be suspended in different
ways. Because of its symmetry, the sphere had only one eyelet. The
cylinder had three: one in the center of an end disc, one in the center
of a side, and one on the rim. The cube also had three: one in the
center of a face, one in the center of an edge. and one at a vertex.

The various views of these rotating objects lead to one of the most
intriguing exercises in understanding forms in space, namely the deter-
mination of cross-sectional slices. One way to visualize this without
actually applying a knife to a real model is to imagine what would hap-
pen if we gradually submerged the block in water. How will the shape
of the watei level change?

The exercise that is most difficult for students is to visualize the shape
of the "equator" of a cube suspended from a vertex. A student who
has looked carefully at a real cube will have a much better chance of
figuring out that the answer is a hexagon (Figure 36). This fact can
be demonstrated nicely by stretching a rubbei- band around a cube. A
cardboard model for the pieces of this decomposition of a cube can be
made by cutting corners from three squares and placing them on the
sides of a regular hexagon (Figure 37).

A transparent plastic cube half filled with a colored fluid can be ma-
nipulated to show the various slices through the center. If the cube is
exactly half full, the shape of the liquid's surface will always be a central
slicethat is, a slice through the centerregardless of the cube's ori-
entation. It is a good challenge to then ask students to figure out which
position of the cube produces the central slice with the greatest area. (It
is not the hexagonal slice!)

Already in the last century when Milton Bradley took up the man-
ufacture of Froebel's kindergarten materials in the United States, he
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FIGURE 37. By folding this template into a solid figure. one
gets half of a cube sliced on the central diagonal. Two such solids
can be reassembled to form the cube by placing the hexagon faces
together.

included in one of his sets another figurea cone. The conic sections
are phenomena that can be seen and appreciated long before students
are introduced to analytic geometry. Once again, a transparent cone
partially filled with liquid can illustrate the changing conic sections as
the object rotates.

FIGURE 38. As the central slice of a six-sided cube yields a
regular six-sided polygon, so the central slice of a four-sided
tetrahedron yields a regular four-sided polygonthat is. a square.
The template on the right provides the means for constructing
half of a tetrahedron., two such pieces make an excellent geometric
puzzle.

tz 3
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< >
FIGURE 39. Appearances can be deceiving: the di-
recuon of the arrowheads changes the apparent length
of the lines without changing their actual length.

The investigation of slices of polyhedral objects leads to an interesting
puzzle. If we slice a triangular pyramid by a plane parallel to one of
its faces, we get a series of triangles, lf we slice by planes parallel to
one of the edges, we get rectangles, and in the central position, a square

(Figure 38). Students can make cardboard polyhedral models of the
two pieces of this decomposition by cutting and folding an appropriate
pattern. Many people find it very difficult to put these two identical
pieces together to form a triangular pyramid. The difficulty seems to
be a three-dimensional analogue of the optical illusion that makes two
lines of equal length seem different if we put arrows on the ends (Figure

39).

Visitors from Higher Dimensions

Over one-hundred years ago Edwin Abbott Abbott used slicing to il-
lustrate the dimensional analogy in his classic satire Flatland.' it is a
great exercise to try to take on the viewpoint of A Square, living in a
two-dimensional universe, especially when he is visited by a sphere from

a higher dimension. The frustrated attempts of the sphere to teach A
Square about the third dimension give wonderful insights into the chal-
lenges of communication and visualization in geometry. (Early parts of
Flatland may be difficult for some students, and some of the social satire
may be skipped over at first reading. Abbott was an active education
reformer and worker for equality who was satirizing the narrow-minded
attitudes of Victorian England with respect to class society and partic-
ularly with respect to women. Only at the end does A Square begin to
gain a more enlightened view of his society.)

What would happen if we were visited by a sphere from a dimension
higher than our own? Instead cf growing and changing circles in a
plane, we would see growing and changing spheres in space. We would
be inclined to interpret such an event as the inflation and deflation of a

balloon, but the point of the exercise is that such a phenomenon could
be interpreted equally well as the slices of a hypersphere penetrating our
three-dimensional universe.

If A Square were visited by a cube from the third dimension, he
would see a variety of polygons, depending on the position of the cube

5;1
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as it passed different water levels. What would be the analogous three-
dimensional slices of a four-dimensional hypercube? This is one place
where computer graphics can be of great help (as in the film The Hy-
percube: Projections and Slicing).3

Slicing techniques are important in many modern scientific appli-
cations, especially since the development of computer graphics. X-
ray tomography uses computer graphics in the reconstruction of three-
dimensional objects from planar sections. Topographers and geologists
construct and analyze contour maps showing the elevations of different
configurations above and below the surface of the earth. Similar slicing
methods are used by biologists, while researchers in materials science
use computer graphics to show the parts of a three-dimensional surface
with a given temperature or density. Exploratory data analysis uses
techniques of projections and slicing to investigate high-dimensional
data sets from social sciences as well as from the -,hysical and biologi-
cal sciences.

Students of calculus will appreciate the power of slicing techniques
for example, in relating the volume of a surface of revolution to the
changing areas of its circular cross sections or in finding the contour
lines on the surface of a graph in three-space. Long before students
are introduced to the notions of critical point theory, they can already
understand and appreciate slicing phenomena that relate different di-
mensions. What happens if we slice a doughnut or a bagel in different
directions? It is easy to carry out the actual experiments and see that
there are positions where the slice yields a pair of circles. Less obvious
is the slice that consists of two interlocked circles. Again, a good way
to see this would be to experiment with a transparent inner tube filled
halfway with colored liquid. Geometry can be a surprising observational
science.

COUNTING COMBINATIONS

Many combinatorial and algebraic questions arise in the investigation
of geometric figures; these can be introduced at different educational
levels, right up to the frontiers of research. How many edges does a
triangular pyramid have? We can follow Froebel's suggestion and make
a model out of toothpicks and peas, then count the edges. Or we can
simply draw a picture of the object (Figure 40) and count the six edges.

The procedure for drawing such a diagram suggests an algorithm for
determining the number of edges. Start with a point, then choose a
distinct point and draw the one edge connecting it to the one we already
had. Now choose a new point and connect it to the previous two points
to get two more, for a total of three. (We have to be careful not to
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FIGURE 40. The tetrahedronthe simplest regular poly-
hedrahas four triangular faces, six edges, and four vertices.

FIGURE 41. By adding one new point
with line-segment connections to each pre-
vious vertex, one can construct in sequence
the complete graphs on I, 2, 3. 4, 5, 6.

points.

choose the new point on the line containing a previous edge.) Next
choose a new point not lying on any of the three lines determined by
the edges already construct( j, and then connect this new point to the
previous three. This yields three new edges, for a total of six.

We can repeat this process to draw the figurecalled a complete
graphdetermined by five points (Figure 41). First choose a point not
on any of the six lines containing previously constructed edges, and then
connect it to the previous four points to obtain four new edgesfor a
total of 10. A similar construction can produce the complete graph on
six points and more if so desired.

What is the pattern that emerges from this procedure? It becomes
apparent if we arrange the results in a table:

Number of points: 1 2 3 4 5 6

Number of edges: 0 1 3 6 10 15

In each case the number of edges is the number of pairs of points, which
leads directly to the study of combinations. Based on the sequence of
construction, it is elasy to see th3t the number of edges at stage n is
the sum of all numbers less than n. For example, the number of edges
formed by six poilas is I + 2+ 3 + 4 + 5 = 15. Some students may know
the formula n(n + 1)/2 for the sum of the first n integers, perhaps in
conjunction with the famous story of the young Gauss who used this
formula to add up all the numbers from 1 to 100. Another type of
pattern is revealed by the tablethat the number of edges at any stage
is the total of the previous number of edges and the previous number
of vertices.

G
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FIGURE 42. A display of different triangles determined by com-
plete graphs shows that every subset of three vertices determines a
triangle. Hence counting triangles is equivalent to counting tnples

of vertices.

Counting Triangles

Spatial perception tests often ask students to extract a simple figure
from a complicated one. Counting edges is one of the simplest of such
tasks. Next in difficulty would be ceunting the number of distinct tri-
angles (Figure 42). By marking each triangle we can extend our table to
include the new information:

Number of points: 1 2 3 4 5 6

Number of edges: 0 1 3 6 10 15

Number of triangles: 0 0 1 4 10

To fill in the missing value we can reason from patterns, many of
which are just like those that relate edges to points. Since there are as
many triangles as there are distinct triples of vertices, the total number
of triangles is just the combinations of a certain number of objects
taken thro e at a time. Alternatively, as before, we can use a recursion
relationship: the number of triangles at any stage is the sum of the
previous number of triangles and the previous number of edges. The
latter is the easiest to calculate: it shows that the numbei lf triangles
that can be formed from 6 points is 20. [In general the numi.1/4c for n
points is n(n 1)(n 2)/6.1

Stunents who have studied some algebra will be able to relate these
numbers to the binomial coefficients:

4
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(a + b) = a + b

(a + b)2 a' + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ah2 + b3

(a + h)4 = + 4a3b + 6a2b2 + 4abl +

(a + b)5 a5 + 5a4b + 10a3b2 + I 0a2b3 + 5ab4 +

(a + b)6 = a6 + 6a5b + 15a4h2 + 20a3b3 + 15a2b4 + 6ab5 + b6
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Removing the literal factors leaves a shifted version of Pascal's trian-
gle:

I

1

1

1

1

1

1

/
3

4

5

6

1

3

6

10

15

1

4

10

20

1

5

15

1

6 1

The fourth row, for example, gives in succession for n = 0, 1, 2, 3, and
4 the numbers of objects with n vertices formed from the four points:
dots, lines, triangles in the middle, with the empty set and the whole set
at the ends (where n = 0 and n = 4).

Observant students may see another important patternthat the sum
of any row is a power of 2. There is a sophisticated way of stating
this observation: the sum of the numbers of simplices of different di-
mensions in an n-simplexincluding the whole object and the empty
simplexis 21. This same relationship can be observed by setting
both a = I and b = I in the table of binomial expansions or by relating
the binomial coefficients to the combinations of n + 1 elements taken
k + 1 at a time. The total number of possible combinations is then
2" , th,. total number of subsets chosen from among n + 1 elements.
This basic counting argument can motivate many topics ia elementary
probability.

Counting Squares and Cubes

Similar observations emerge if students investigate the numbers of
vertices, edges, and faces of cubes and bypercubo in various dimen-
sions. Just as there is a hierarchy of subsimplices within each simplex,
there is an analogous sequence of squares and cubes within each n-
dimensional cube. A 3-cube has 8 vertices, 12 edges, and 6 squares, as
can be verified by an actual count. A square, or 2-cube, has 4 vertices,
4 edges, and I square. A 1-cube is a segment with 2 vertices and I edge,
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FIGURE 43, Framework for hypercube:
two cubes with joined edges yield 16
vertices and 32 edges.

FIGURE 44. Shading helps identify two
horizontal groups of four parallel squares
in the hypercube. There are six such
groups in all, three associated with the
original cube and its displaced copy and
three associated with the edges that join
the two cubes.

NEW APPROACHES 70 NUMERACY

and a 0-cube is point with 1 vertex. This dr.ta can form the beginning
of another table:

DIMENSION: 0-cubes 1-cubes 2-cubes 3-cubes 4-cubes

(points) (lines) (squares) (cubes) ;hypercubes)

Vertices Edges Faces Cubes 4-Cubes

Point: 1 0 0 0

Line: 2 1 0 0

Square: 4 4 0

Cube: 8 12 6 0

Hypercubc: 16 .)

When we try to fill in the missing numbers for a hypercube, the process
becomes a bit more difficult. We know how to generate a hypercube
move an ordinary cube in a direction perpendicular to itself. As the
cube moves, the 8 vertices if ace out 8 parallel edges. This yields 12
edges on the original cube, 12 on the displaced cube, and 8 new edges
traced by the movement for a total of 32 edges on the hypercube (Figure
43).

Counting squares presents more of a problem, but a version of the
same method Lan be used to solve it. First observe that there are 6
squares on the original cube and 6 on the displaced one. To these 12
we must add the squares traced out by the edges of the moving cube.

't
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FIGURE 45. A groo of four vertical
squares in a hypercube determined by the

horizontal displacement of the original
cube. These squares are easier to see
when background lines are removed, as
in the lower figure

It helps to group edges and squares in parallel bundles. The edges in
the hypercube come in four groups of 8 parallel edges. Similarly the
squares can be classified in four groups of 4 parallel squares, one such
square through each vertex. Two horizontal groups are rather easy to see
(Figure 44); another group of four vertical faces become clearer when
we remove some of the extraneous lines (Figure 45).

Student teams can easily idt ntify the remaining three groups of four
squares. It is easier to do this when the four squares do not overlap
and relatively more difficult when the overlap is large. The entire set
consists of 24 squares.

Grouping edges or faces is particularly effective when an object pos-
sesses a great deal of symmetry, as does the hypercube. We can study the
relation between symmetry and grouping by looking at different dimen-
sions. Symmetries of a cube, a square, or a segment arise by permuting
the edges at each venex in different ways and by moving each vertex
to another position. The collection of all symmetries of the cube or
hypereube is an important example of a group, an algebraic structure
that reflects geometric properties. The symmetry group of a cube is
the collection of permutations of its vertices that preserve its structure.
The attempt to codify the relation of permutations to symmetries of al-
gebraic and geometric structures provided considerable impetus for the
development of modern algebra during the past two centuries. Even now
symmetry groups continue to fuel theoretical work in atomic physics.
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The crucial observation about the hypercube is that it is so higi:ly
symmetric that every point looks like every other point: if we know
what happens at one vertex, we know what happens at all vertices. Fir
example, at each of the 16 venices of the hypercube there are 4 edges,
for a total of 64. But this process counts each edge twice, so the actual
number of edges is half of 64, or 32.

At each vertex there are a certain number of square faces. How many?
As many as there are ways to choose two edges from among the four
edges that meet at the vertex. Once we have chosen one edge from
among the four, there remain three possibilities for the second; together,
these yield 12 pairs. As before, each pair of edges appears twice in this
list, once in each order. So these 12 pairs yield 6 different squares at
each vertex. All 16 vertices together then yield 96 squares. But each
square is counted four times, once for each of its vertices. Hence the
true total is 96/4 -,-- 24 squares in a hypercube. This reasoning confirms
the direct count of six groups of four squares that we saw in drawings
of the hypercube, but it is reached by a method that would work even
if applied to a five-dimensional cube.

Seeking Patterns

Advanced students can express these results in a general formula.
Let o (k,n) denote the number of k-cubes in an n-cube. To calculate
o(k,n) we begin, as before, by counting how many k-cubes there are at
each vertex. Each k-cube is determined by a subset of k distinct edges
from among the n edges emanating fror.-! each vertex. Therefore the
number of k-cubes at each vertex is C(k,n) = (Z) = n!,110(n k)!, the
combination of n things taken k at a time. Since there are C(k,n) k-
cubes at each of the 2n vertices, the total number of k-c, es appears to
be 2"C(k, ). But in this count each k-cube is counted 24 L:mes, so we
divide by that number to get the final formula: o (k, n ) 2"-k C(k,n).

Remembering the pattern of powers of 2 that come from the sums of
rows in the simplex table, we naturally seek a similar pattern for cubes.
In this case the entries in each row add up to a power of 3:

DIMENSION: 0-cubes

(points)

Vertices

1-cubes

(lines)

Edges

2-cubes 3-cubes

squares) (cubes)

Faces Cubes

4-cubes

( hypercubes)

4-Cubes Sum
Point: 1 0 0 0 0 1

Line: 2 1 0 0 0 3

Square: 4 4 1 0 0 9

Cube: 8 11 6 1 0 27
Hypercube: 16 32 24 8 1 81

1: 6
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FIGURE 46. Subdivision of the sides of segments, squares, and

cubes (and even hypercubes) into three equal parts yields 3, 9. 27.
or 81 similar small ohjects---always a power of 3.
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There are several ways tp react to this obseivation. We can generate an
additional row of the table to gain some additional information, but the
conjecture is fairly firmly established with the five completed rows. We
can observe that each entry is the sum of twice the entry directly above
it plus the entry to the left of that one, so the sum of entries in one row
is three times the sum of entries in the previous rowan argument that
can easily be translated into a formal proof by mathematical induction.
We may also use the explicit formula for the number of k-cubes in an
n-cube, to sum a typical row:

0(0,n)+D(1,n)+ 1,n) +0(n,n)

24 + C(1, n)::'1 + ((2, n)2';' + C(n 1,1)2 ± C (n , n)

= (2 + 1) n 3".

All these approaches help explain why the rows sum to power of 3.
But perhaps the most satisfying observation that justifies this fact is
that we may divide the sides of an n-cube into three equal parts whose
projections divide the entire cube into 3" small cubes (Figure 46). The
result is a small cube coming from each vertex of the originai cube,
one from each edge. one from each two-dimensional face, and so on.
The final small cube is in the center. Thus the total number of small
n-cubes, which is Y. is equal to the sum of the number of k-cubes in
the n-cubesince there is one small n-cube for each point. edge. face,
3-cube, etc.

One of Friedrich Froebers kindergarten gifts was a cute subdivided
into 27 small cubes. He would have liked this final demonstration.
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One of the principal factors in human intellectiwl development is our
desire to make sense of the physical and Wological worlds in which we
live. We search historical records for clues that explain our present con-
dition, and we devise theories that might predict the future. In nearly
every description of the past or forecast of the future, prominent factors
include quantitative attributes: length, area, and volume of rivers, land
masses, and oceans; temperature, humidity, and pressure of our atmo-
sphere; populations, distributions, and growth rates of species: motions
of projectiles, tides, and planets; revenues, costs, and profits of eco-
nomic activity; rhythms, intensity, and frequency of sounds, light, and
earthquakes.

Perceptive observers have noted that patterns in objects can be mod-
eled by 'lumbers in ways that aid reasoning. It may be an exaggeration
to say, as Lord Kelvin once claimed:32

When you can measure what you are speaking about and express it in numbers.
you know something about it: but when you cannot measure it. when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind.

But it is not an exaggeration to say that the number systems of mathe-
matics are indispensable tools for making sense of the world in which
we live.

The human fascination with numbers is also reflected in countless
examples of whimsical or superstitious numerology. From the Greek
Pythagoreans to Martin Gardner's fictional Dr. Matrix,1° people have
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found meaningboth sublime and sinisterin numerical values
attached to letters, words, names, places, and dates. The endless va-
riety of patterns in numbers has piqued the mathematical curiosity in
millions of professional and amateur mathematicians of all ages. Un-
fortunately, those same patterns have served as the basis of various
pseudoscientific enterprisesfrom astrology to numerology.

QUANTITY IN SCHOOL MATHEMATICS

Given the fundamental role of quantitative reasoning in applications
of mathematics as well as the innate human attraction to numbers, it is
not surprising that number concepts and skills form the core of school
mathematics. In the earliest grades all children start on a mathemat-
ical path designed to develop computational procedures of arithmetic
together with corresponding conceptual understanding that is required
to solve quantitative problems and make informed decisions. Children
learn many ways to describe quantitative data and relationships using
numerical, graphic, and symbolic representations; to plan arithmetic
and algebraic operations and to execute those plans using effective pro-
cedures; and to interpret quantitative information, to draw inferences,
and to test the conclusions for reasonableness.

The skills required for these tasks are contained in the arithmetic of
various number systems and in the generalizations of arithmetic reason-
ing to elementary algebra. The public recognizes these number systems
by their common names (whole numbers, fractions, decimals); math-
ematicians use more formal terms (integers, rationals, real numbers).
Regardless of their names, these number systems are well-known parts
of mathematics and have been taught in school for centuries. Experi-
enced teachers have devised countless clever strategies for developing
student skill in solving traditional probiem types. So it is entirely rea-
sonable to ask, "What can be new and exciting about teaching quan-
titative reasoning?" Surprisingly, the answer ought to be. "Just about
everything!"

Influence of Technology

School arithmetic and algebra have always b?en dominated ay the
goal of training students to manipulate numerical and algebraic sym-
bols. The purpose of all this manipulation is to answer arithmetic prob-
lems or solve algebraic equations. The core of elementary and middle
school mathematics features addition, subtraction, multiplication, and
division of whole numbers and fractions; the core of secondary school
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FIGURE 1. Hand-held calcula-
tors can now display graphs of
all functions ordinarily studied in
school mathematics. Some can
even perform most common types
of symbolic manipulation to sim-
plify and solve equations.

mathematics covers similar operations on polynomial, rational, and ex-
ponential expressions.

In the past, proficiency with these routine manipulative skills has been
a ,;rerequisite for effective use of mathematics. However, the emer-
gence of inexpensive electronic calculators and computers has changed

that condition forever. It is now about 15 years since the technology
of transistors, printed circuits, and silicon chips first made hand-held
calculators available on the mass consumer market. Rapid progress in
electronics has now produced solar-powered scientific calculators that
perform arithmetic on numbers that can be entered and displayed in
decimal, common fraction, or exponential form. Many calculators also
have single-button subroutines for evaluating elementary functions and
performing common statistical calculations. Programmable calculators
offer more powerful capabilities. including graphing, symbolic manipu-
lation, and matrix operations (see Figure 1). Each of these mathemat-
ical procedures is available in more powerful and sophisticated form
through programs that run on desktop computers now widely available
in schools.

The computational capabilities of machinesboth existing and
envisionedsuggest some exciting curricular possibilities. Elementary
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school students can now deal with realistic numerical datavery large
and very small numbers in decimal and fractional formwithout
prerequisite mastery of the intricate computational algorithms for
operations on those numbers. Middle school students can deal with
questions about variables, functions, and relations expressed in algebraic
language long before they master the rules for manipulating those ex-
pressions. In the world outside of school, almost everyone relies on cal-
culators and computers for fast and accurate computation. But school
curricula have yet to change significantly in response to these new con-
ditions.

Calculators and computers are also having a profound effect on the
nature of mathematics itself. With access to those tools, mathemati-
cians can search for patterns in much the way that scientists explore re-
sults from experiments with systematically manipulated variables. The
experimental mathematician can test special cases on a computer in a
small fraction of the time required by "paper-and-pencil" algorithms.
In many cases these calculations could not be done at all by traditional
means, and the patterns that emerge would never have been seen. The
experimental data of mathematics can be sorted, analyzed, and dis-
played graphically to reveal both regularities and variations. The ulti-
mate standard for verification remains foanal proof by reasoning from
axiomatic foundations. However, calculators and computers have cre-
ated a new balance between theorem-finding and theorem-proving.

Use of calculators and computers for mathematical work has also
led to a dramatic increase in interest in algorithmic methods and re-
sults. Many of the deepest and most beautiful results of mathematics
are those that guarantee the existence of numbers with interesting prop-
erties or solutions to important equations, yet those same theorems and
their proofs quite often give no clue as to how one might effectively
construct the promised object. Mathematical contemporaries of Euclid
could prove that there is no largest prime number and that any natural
number whatever can be factored uniquely into a product of primes.
But mathematicians working today still devote great energy to practical
ano theoretical problems posed by the need to construct large primes
and to find the promised factorizations of large composite numbers.
The search for effective and efficient algorithms that will guide com-
puter procedures has become a central aspect of both pure and applied
mathematical research in our technology-intensive world.
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Influence of Applications

A second fundamental change atTecting school curricula is the ex-
tension of quantitative methods to nearly every aspect of contemporary
personal and professional life. Although numbers have always been use-
ful, their uses have been rather predictable and limited to well-defined
familiar problems. Today, quantitative literacy requires an ability to
interpret numbers used to describe random as well as deterministic phe-
nomena, to reason with complex sets of interrelated variables, and to de-
vise and interpret critically methods for quantifying phenomena where
no standard models exist. Examples are all around us:

U.S. census figures are used to describe our current population
and to apportion resources to various social programs. How can
the population and its characteristics best be counted?
Several hurricanes strike Central and North America each fall.
How can the "size" of each be measured in the most meaningful
way?
The consumer price index is used to calculate cost-of-living in-
creases in Social Security payments and a number of other salary
scales. How can inflation best be measured?
Players on football teams in different conferences are often com-
pared statistically :o see who is best, in part to determine fair
compensation. What data should be used to :ank the quarter .
backs most accarately?
Banks, credit card companies, and airline and hotel reservation
systems process billions of financial transactions daily, using na-
tional communication networks that are protected against errors
and unauthorized intrusion. How can secure systems be devised
and used intelligently?

Each of these problems and many others of similar complexity and
significance require the ability to organize, manipulate, and interpret
quantitative information. Skill in traditional written algorithms for
arithmetic and algebra or in solution of traditional "types" of word
problems is not only insufficient preparation for those tasks, it is largely

irrelevant.
Quantitatively literate young people need a flexible ability to identify

critical relations in novel situations, to express these relations in effective
symbolic form, to use computing tools to proceas information, and to
interpret the result. of those calculations. The underlying mathematical
ideas used in this modeling often extend beyond numbers and fractions
to matrices, linear algebra, and the arithmetic of congruence classes.

The useful computational tools extend beyond ;land-held calculators to
spreadsheets, data bases, and dynamic simulations.
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Influence of Psychological Research

Another recent change in conditions for teaching about quantity in
school mathematics is the emergence of an extensive body of research
on human cognition. While there is a long history of research on math-
ematics teaching and learning from a psychological perspective, the past
thirty years has seen an unprecedented search to identify the ways that
young people develop understanding of number systems and their ap-
plication. As a consequence, researchers are acquiring rich insight into
the interplay between human cognitive development and the concepts,
principles, and skills that we want young people to learn. This research
shows real potential for informing decisions about design of curricula
and instructional approaches in school mathematics.

FUNDAMENTAL CONCEPTS

The convergence of rapidly escalating demands for social and sci-
entific application of quantitative skills with powerful new technolo-
gies that support those skills has prompted reconsideration of goals for
school mathematics. To paraphrase the title of a 1982 report of the
Conference Board of the Mathematical Sciences,29 we are still asking.
"What quantitative abilities will be fundamental in the future of math-
ematics?" Despite e.tenf.;ve professional debate over the past decade.
there is as yet no consensus on a prudent course of change, and most ev-
idence su ests that schools have not moved toward any radical change.

In a mature branch of mathematics such as number theory, analysis,
or algebra, many fundamental concepts and operations can be presented
in a coherent system of abstract ideasa few definitions and axioms
from which every other fact and principle follow logically. But this rig-
orous, efficient organization of contemporary mathematics is only the
final product of an historical process in which fundamental ideas Were
used informally long before they become formal definitions and theo-
rems. Furthermore, practical working knowledge requires more than an
ability to recite or derive formal principles. It requires th-, ability to
recognize quantitative relationships in a broad range of concrete situa-
tions as well as the technical skills to represent and reason about those
relationships.

In thinking about school mathematics many mathematicians and
teachers have argued that the best guide is a curriculum that retraces
the meandering historical path by which numerical techniques have de-
veloped. Others suggest that we should capitalize on structural insights
that have emerged at the end of that path, to provide for children a more
efficient way to develop number concepts and techniques. There is little
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research evidence to suggest the right choice among these options, but
it seems safe to say that quantitative understanding requires grasp of
insights provided by each perspective. It seems important to convey to
students, as quickly as possible, effective modern techniques for repre-
senting and reasoning about numerical data. But that instruction will
undoubtedly be more successful if it is informed by understanding of
the roots of numerical techniques in human experience and the path by
which ideas and skills have evolved over time. Students must efficiently
learn concepts, techniques, structural properties, and uses of the number
systems33but with an honest portrayal of the many informal and halting
ways that new mathematical ideas and methods actually develop.

Numbers and Operations

In searching for a framework of fundamental number concepts to be
developed in school mathematics, it is helpful to begin with a simple
question: How are numbers use ? In common sources such as daily
newspapers, cookbooks. instruction manuals, or household bi.agets, one
will find a long list of situations in which numbers play a v ital role.
Furthermore, skill in quantitative reasoning is a critical prerequisite for
success in any scientific, technical, or business occupation, and the list
of ways that numbers are used in those fields is both long and diverse.

Designers of curricula are understandably frustrated by the challenge
of selecting material that will prepare students for all problem-solving
situations they might reasonably face outside school. However, a search
for common features in quantitative reasoning tasks shows that they can
be grouped into a few categories. One common analysis of number uses
shows that every example involves one of three basic tasks:

I. MEASURING. To use operations of arithmetic to reason about
sizeto answer questions like "How many?" or "How much?"

2. ORDERING. To use numbers to indicate position in a sequence
with the relations of "greater than" or less than."

3. CODING. To provide identifying labels for objects in a collection.

Illustrations of these different tasks abound in ordinary life. Here are
some particular examples:7.'3

Standard measurement tasks involving concepts such as length,
area, volume, mass, and time all employ numbers to indicate
size. The operations of addition, subtraction, multiplication, and
division correspond directly to operations such as joining, com-
paring, or partitioning of objects that numbers measure. Other
important conceptr. such as velocity, acceleration, and density
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also use numbers to indicate size, but they are usually derived
by operations on basic number measurements.
As customers enter a store they are often assigned numbers to
indicate the order in which they will be served. Customers who
enter early will have lower numbers than those who enter later
the order of arrival corresponds to the order of service numbers.
In this ease positive whole numbers are used to indicate order.
It makes no sense to add or multiply service numbers, although
subtraction might help to estimate expected waiting time.
The teams in any athletic league are commonly listed in the order
of their competitive standing, from first through last. However,
without further information, those rankings tell little about the
distance between teams in that order.
In analyzing games of chance each possible outcome is assigned
a number between 0 and I as its probability. Event A being
more likely than event B corresponds to the probability p(A) be-
ing greater than the probability p(B). Furthermore, if A and B
ar: disjoint, p(A u B) should equal p(A) + p(8). In this situa-
tion tne assignment indicates a measure of likelihood. But those
measures are then used to order events by likelihood. The oper-
ation of union for disjoint events corresponds to the addition of
rational numbers.
The uniforms of athletic teams generally have numbers for each
individual player. While the numbers sometimes indicate an
assigned position, arithmetic operations or relations involving
those numbers seldom give any significant information. These
numbers are used solely as labels.

This taxonomy of uses of numbPrs might seem too obvious to men-
tion. But it offers the first step toward a framework for organizing the
profusion of quantitative reasoning tasks into manageable familiesa
way to find significant themes among the details of number concepts,
skills, and applications. With suitable refinement the taxonomy can
help reveal to both teachers and students the experiential root meaning
of numbers, to focus instruction on the forest as well as the trees.

For just that purpose Usiskin and Beill3 have proposed a more de-
tailed analysis of fundamental kinds of number uses. They suggest six
different uses of single numbers:

Counts for discrete collections (populations);
Measures for continuous quantities (time, length. mass);
Ratio comparisons (discounts, probabilities, map scales);
Locations (temperature, time line. test scores);
Codes (highway, telephone, product model numbers); and
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Derived formula constants (n in A = nr2).

A parallel taxonomy suggests ways that operations on numbers can be
matched to operations on objects that numbers describe:

Addition models putting together or shifting;
Subtraction models take-away, comparison, shift, or recovering
an addend;
Multiplic-Hon models size change, acting across, or use of a rate
factor, and
Division models ratios, rates, rate division, size change division,
or recovering a factor.

While mathematicians and teachers might question the meaning of
these categories and debate their completeness or independence, it seems
certain that attention to such analyses will help focus instruction on the
fundamental task of preparing students to use numbers effectively to
solve problems. Examples of the different ways that numbers are used
highlight the essential components in any quantitative reasoning task.
In simplest form, quantitative reasoning involves phenomena, a num-
ber system, and a correspondence between phenomena and numbers
that preserves essential structure. Each object is assigned a number in
such a way that "similar" objects have "similar" numbers and relations
among objects corresponding to relations in the number system. To un-
derstand this modeling process students need extensive experience with
the structural properties of various kinds of number systems.

While students must certainly acouire comfortable skill in dealing
with many specific uses of numbers, they also need to acquire a broader
perspective on properties that number uses have in common. There
is clear evidence from research in mathematics education that under-
standing fundamental structural properties of a mathematical system
facilitates retention of the system and application to new situations.
School mathematics should, therefore, emphasize the ways that differ-
ent types of number systems serve as models of measuring, ordering,
and coding, together with the war that standard operations model fun-
damental actions in quantitative situations.

Variables and Relations

Elementary uses of numbers focus on descriptions and inferences con-
cerning specific quantitative factsthe cost of 5 candy bars priced at
500 apiece, the area of a field that is 50 feet long and 30 feet wide, or the
average speed of a car that travels 300 miles in 5 hours. Mastery of con-
cepts required by such tasks is certainly a central and formidable task
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of school mathematics. However, for quantitative reasoning to yield
results with greater power than unadorned number facts, it is essential
that such reasoning be firmly rooted in general patterns of numbers and
related computations.

The typical pattern is a relation among two or more varying quantities.
For example,

As time passes, the depth of water in a tidal pool increases and
decreases in a periodic pattern.
As bank savings rates increase, the interest earned on a fixed
monthly deposit also increases.
If a sequetice of squares have sides 1, 2, 3, 4, S. , the areas of
those squares are I. 4, 9, 16, 25, ....
For any rectangle of base b and height h, the perimeter p is
2b + 2h.

The key mathematical ideas required to reason about such patterns are
the core concepts of elementary algebra: variables, functions, relations,
equations, inequalities, and rates of change. In school mathematics
today students spend a great deal of time working with variables as
letter names for unknown numbers and with equations or inequalities
that place conditions on those numbers. Algebra instruction focuses on
formal procedures for transforming symbolic expressions and solving
equations to find the hidden value of the variable.

But those skills are only a small pail of the power that algebra pro-
vides. In each of the examples above, and in countless other similar
problems, the conceptual heart of the matter is understanding relations
among several quantities whose values change. The notion of variable
that students must understand is not simply "a letter standing for a
number" or "an unknown value in an equation." It must also include
thinking about variables as measurable quantities that change as the
situations in which they occur change.

Variables are not usually significar by themselves, but only in re-
lation to other variables. In most realistic applications of algebra the
fundamental reasoning task is not to find a value of x that satisfies one
particular condition, but to analyze the relation between x and y "for
all x." The most useful algebraic idea for thinking about relations of
this sort is the concept of function.

To develop understanding required for effective application of alge-
bra, students need to encounter and analyze a wide variety of situations
structured by relations among variables. They need comfortable un-
derstanding of relational phrases such as "y depends on x," "*.v is a
function of x," or "change in x causes change in y." It is helpful if they
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FIGURE 2. The behavior of fundamental types of relations
among variables can be seen most readily from typical graphs.
Graphs (a) and (b) illustrate direct and inverse relations. (c)
and (d) show accelerated and converging variation. and (e) and
(f) illustrate cyclic and stepped variation. Virtually all variation
actuall) observed is a combination of these basic types.
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develop a repertoire of criteria for characterizing and sorting, by struc-
ture, the relations they encounter. For instance, the report Science.for 411
Americans of the American Association for the Advancement of Science'
suggests that students should be sensitive to at least the following kinds
of relations among variables (see Figure 2):

Direct and inverse variationas one variable increases, another
also increases (or decreases) at a similar rate.
Accelerated variationas one variable increases uniformly, a
second increases at an increasing rate.
Converging variationas one variable increases without limit.
another approaches some limiting value.
Cyclical variationas one variable increases uniformly, the other
increases and decreases in some repeating cycle.
Stepped variationas one variable increases, another changes in
jumps.

The idea behind learning properties ,f whole families of relations is
typical of all mathematics: recognition of structural similarities in ap-
parently different situations allows application of successful reasoning
methods to new problems. With the focus of algebra directed at vari-
ables and functions, equations and inequalities can be used to represent
specific conditions:

If the height of a projectile is a function of its time in flight with
rule h(t) 16/2 + 881, the equation 1612 + 88t = 0 asks when
the projectile is at ground level (see Figure 3).
If the population of a country (in millions) is a function of time
with rule p(t) = 120(20.031). the inequality 120(2° °3" < 200 asks
when the population will stay below 200 million (see Figure 4).

Of course, thinking about quantitative relations as functions encour-
ages reasoning that extends beyond familiar equation-based questions
to notions of rates of change, maxima and minima, and overall trends.

FIGURE 3. The standard parabolic trajectory be-
comes visible in a graph of the height of a projecule as

a function of its time in flight.
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FIGURE 4. The common exponential curve repre-
sents the equation that describes the growth of a
country's population.

While these questions are not generally consid?red central to school
algebra, there can be no doubt that they are important considerations
in any situation that algebraic expressions model.

PROCEDURES

The first step in effective problem solving is to analyze the problem
to identify number concepts that match problem conditions. But that
is only part of the modeling phase of solving problemsthe conceptual
description of what is known. Problem solving also requires inference of
new information that gives new insight. In mathematics that inference
invariably relies on systematic techniques for representing and manip-
ulating information and, in quantitative problems, on procedures for
calculating results. Recent analyses of mathematics pedagogy describe
this kind of knowledge as procedural knowledge, in contrast to the con-
ceptual knowledge required to identify fundamental ideas." Procedural
knowledge includes techniques required to represent information and to
execute operations that yield solutions to specific numerical problems.

Numerical Representation

Formal mathematics is a subject that deals with mental constructs that
are abstracted from patterns in objects. But mathematicians have also
devoted a great deal of energy to find ways of representing ideas in con-
crete form. Their goal is a system of symbols that convey mathematical
information effectively in unambiguous and compaa form.

Representation of ideas serves as an aid to memory and as a medium
for communication. In mathematics the representations become ob-
jects of study themselvessourceF of new abstractions that, surprisingly
often, serve as useful models of unanticipated patterns in concrete sit-
uations.
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The fundamental idea that enables efficient representation of num-
bers is the place value system of numeration. Every whole number has
a uniyue representation in the standard base 10 numeration system,
and rational numbers can be expressed using decimal fractions or as
quotients of whole numbers. These customary systems are sometimes
replaced by place value systems with different bases, especially in cases
where the alternative base has obvious advantages for a particular pur-
pose.

While the place value system is taken for granted today, in thinking
about mathematics teaching it is worth remembering that the evolution
of such a powerfnl representation scheme took a very long time. There
are signs in the record of ealy Mesopotamian mathematics that a base
60 numeration system, using few number symbols, was understood and
used. However, the place value concept eluded Greek mathematicians
in their golden era. It was not until Hindu mathematicians of the eighth
fentury saw how to use 0 (zero) as a place holder that the foundation
of place value notation was secured.

The second major task in represe:.ting numerical information is to
express Hationships that are true for all numbers, for many numbers,

or for certain unknown numbers. The fundamental mathematical con-
cepts involved are variables, functions, and relations. We now rou-
tiiiely use letters to name variables and to write rules for functions and
relations. But again, it is worth recalling that the historical develop-
ment of contemporary algebraic notation is a long storytestimony to
the fact that the use of literal variables with algebraic syntax. such as
y = x 4(x + 2y-1 is anything but obvious.

Graphical Representation

While traditional place value numerals and algebraic expressions are
the most important symbolic forms for recording quantitative informa-
tion, many other representational forms are in common use. The most
popular are those that identify numbers with points in a geometric line
or pairs of numbers with points in the plane.

For example, conditions on variables such as 1A- 21 < 3 are quite
common in algebra and its applications. The solutions can be given in a
similar symbolic form, but it has become almost as common to display
the results on a number lire graph (Figure 5). Although this repre-
sentation is certainly not as compact or computationally useful as the
symbolic version, it conveys quickly a total picture of the quantitative
condition.

The use of visual representation to display a rdation among quan-
titative variables is especially effective when one variable is a function
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FIGURE 5. Intervals portrayed on a number line provide an
effective picture of the points that satisfy ix 21 < 3.
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of another. Here's a common example: The position of a piston with
4-inch stroke in an engine running at 3000 rpm is given by the function
y = 2 sin( I0Ont), where t is time measured in seconds. The pattern of
piston positions is well displayed by a function graph (Figure 6). Like
the number line graph, this visual image of a relation between two vari-
ables is not particularly effective as a computational aid, but it does
convey the significant periodic pattern in piston motion in a way that is
far less apparent from the symbolic form.

The use of number lines and coordinate graphs is a very familiar
mathematical technique. However, the advent of graphing calculators
and computer software has made a dramatic impact on the ease of
producing graphs and thus on their usefulnem. It is now possible to
produce graphs quickly and accurately both from formulas and numer-
ical data drawn from scientific experime,As or from large data bases
that computers have made accessible. As a result, graphic displays are
becoming common and increasingly sophisticated. Thus it is impor-
tant for mathematics students to become adept at interpreting graphic
representations intelligently and- 'to understand the connections among
symbolic, graphic, and numerkal forms of the same ideas.

There hag been great opt. mism about the potential payoff of using
these linked multiple reriesentations as an aid in teaching. However,
early experiments have..revealed the fact that the messages provided by
graphs are not grasped by young learners as easily as might be expected.
while the effects cq scale and the limited viewing window inherent in
computer display's create surprising perceptual misconceptions.

FIGURE 6. The motion of a piston is
pictured by a sine graph, which conveys
certain kinds of information more effec-
tively than standard algebraic formulas.
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Computer Representation

Cartesian graphs of numerical and algebraic patterns are only the
most familiar strategies in an impressive array of visual representations
for quantitative data. The burgeoning theory of graphs and networks

includes many new techniques for representing situations with interact-
ing quantitative and spatial structure. In some cases, network diagrams

are used to display quantitative information like the costs of shipping
foods or laying utility lines along various possible paths. In others, nu-
merical representations such as matrices are used to organize and display

geometric information like the number of possible paths between nodes

of a graph. The field of exploratory data analysis includes many other

new and effective techniques for representing numerical information in

ways that convey meaning quickly, concisely, and effectively. The use
of computers to produce those displays is becoming standard practice

in all areas of applied mathematics.
One of the principal r. asons for using compact symbolic forms to ex-

press relations among quantitative variables is the marvelous econon.y
of capturing the full pattern of many numbers or n-tuples with a single

symbolic sentence. However the abstraction required to reduce collec-
tions of data to symbolic rules also makes the information in those data
less accessible to many potential users. Fortunately, computer tools also

make dist 'ay and reasoning with large data sets easy.
For example, the difference equation ya .1 = 1.0 ly 445, where

yo = 5000, describes the balance of a $5000 loan at 12% interest that
is being paid back in monthly payments of $445. For most people the

Payment Interest Pnncipal Balance

$5000.0f/

$445.00 $50.00 $395.00 $4605.00

$445.00 $46.05 $398.95 $4206.05

$445.00 $42.06 $402.94 $3803.11

$445.00 $38.03 $406.97 $3396.14

$445.00 $33.96 $411.04 $2985,10

$445.00 $29.85 $415.15 $2569.95

$445.00 $25.70 $419.30 $2150.65

$445.00 $21.51 $423.49 $'727.16

$445.00 $17.27 $427.73 $1299.43

$445.00 $1::.99 $432.01 $867.43

$445.00 $8.67 $43633 $431.10

$445.00 $4.31 $440.69 ($9.59

FIGURE 7 Spreadsheet representation of the halar ,:e of a $5000

loan at 12% interest that is being paid hack in monthly rayments

of $445.
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actual pattern in the dollar value of that loan and the distribution of
payments to principal and interest is more informatively displayed in a
simple spreadsheet such as that shown in Figure 7.

Of course, construction of this spreadsheet requires some ability to
express relations in the symbolic form that has became standard with
spreadsheets. In this case the formulas repeat with changing indices as
follows:

Payment Interest Principal Balance

= 5000.00

= 445 0.0l*D2 = A3-B3 = D2-C3

= A3 = 0.0 l *D3 = A4-B4 = D3-C4

Computer-generated numerical representations of algebraic expres-
sions are proving to be a very useful tool in practical problem solving.
For instance, to prepare the previous example, we calculated the ap-
propriate monthly payment by experimental successive approximation,
not by using the more conventional formula. But these representations
also serve as a bridge from the concrete world of arithmetic reasoning
to the more abstract world of algebra and statements that begin "for
all x ...." Furthermore, the web of related represeotations comes full
circle when computer curve-fitting tools are used to find symbolic rules
that fit patterns in collections of numerical data.

Algorithms

The second major aspect of procedural knowledge consists of tech-
niques commonly referred to as algorithms for using mathematical in-
formation to solve problems. An algorithm is a "precisely-defined se-
quence of rules telling how to produce specified output information
from given input information in a finite number of steps."23

Developing student skill in execution of mathematical algorithms has
always dominated school curricula at both elementary and secondary
levels. The most prominent algorithms have been procedures for adding,
subtracting, multiplying, and dividing whole numbers, common frac-
tions, and decimals, along with the parallel operations on polynomial
and rational expressions in algebra. But those are only the most ba-
sic and familiar among a vast library of routine mathematical tools.
Euclid's algorithm, for example. is only one of several common meth-
ods for finding the greatest common divisor of two integers; the Sieve
of Eratosthenes is only one of many algorithms for identifying prime
numbers; the quadratic formula is one of many algorithms for solv-
ing quadratic equations; and there are dozens of algorithms for solving
systems of linear e-uations and inequalities.
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Design and app.ication of algorithms are obviously at the heart of
mathematics. The power of mathematics comes from the way that its
abstract ideas can be applied to solve problems in contexts with no
surface similarities. The algorithms of irithmetic and algebra that are
used in business and economics are the same as those used in physics
and engineering. At the same time the context-independent nature of
mathematical algorithms makes them easily programmed for computer
execution. This fact has major implications for school curricula: any
specific algorithm that is of such fundamental importance and broad
applicability to merit inclusion in elementary or secondary school will
certainly have been programmed and made available in standard calcu-
lator and computer software. Inexpensive calculators can perform most
numerical, symbolic, and graphic algorithms that are taught in school.
Thus, current technology seriously undermines any argument that stu-
dents must develop proficiency in executing any particular algorithm
because they will need that skill later in life.

At the same time that learning of specific algorithms has diminished
in importance for school mathematics, it has become far more impor-
tant for everyone doing quantitative work to have general understand-
ing of the algorithmic point of view.9'23'26 To be an intelligent user of
computer-based algorithms, it is useful to Inderstand such attributes as
accuracy, economy, and robustness as well as fundamental mathemati-
cal concepts like induction and recursion that are too little appreciated
in traditional curricula. In short, the algorithmic aspect of mathematics
takes on a very different appearance when calculators and computers
take over routine systematic procedures. This new condition requires
fundamental reconsideration of goals for quantitative study in school
mathematics.

Conceptual and Procedural Knowledge

Calculators and computers have clearly taken over routine aspects of
both representation and manipulation of quantitative informationthe
two key components of procedural knowledge. The task of translating
these new conditions into new goals for curricula poses a critical psycho-
logical question concerning the interplay between conceptual and pro-
cedural knowledge. Many mathematics educators worry that extensive
use of calculator and computer tools, with corresponding de-emphasis
of training in skills, will undermine development of conceptual under-
standing, proficiency in solving problems, and ability to learn new ad-
vanced mathematics.

The interaction of understanding and skill in mathematics has been
studied and debated intensely for many years but with renewed enthu-
siasm in the past decade. A recent meta-analysis of over 70 research

C
, 1
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studies" concluded that wise use of calculators can enhance student
conceptual understanding, problem solving, and attitudes toward math-
ematics without apparent harm to acquisition of traditional skills. More
limited research in algebra suggests similar conclusions. While there is
a great deal of work in progress on this issue, the principal reported
results are from Demana and Leitze1.8

However, in almost all of those experiments the calculator or com-
puter was used to complement instruction in traditional arithmetic and
algebraic skills. What remains an open and very important problem
is to determine the consequences of more daring experiments in which
students are taught to rely more heavily on technological help with arith-
metic and symbolic manipulation. It seems safe to sa) that the debate
over proper consideration of clneeptual and procedural knowledge will
continue for some time. It is certainly the central issue raised by the
impact of technology in school mathematics.

Number Sense

While tnci-c is considerable debate concerning the risks and bene-
fits of shifting attention in school mathematics from traditional skills
to concepts and problem solving, there is no disagreement about the
importance of developing student achievement in a variety of infor-
mal aspects of quantitative reasoning, to develop what might be called
number sense. Even if machines take over the bulk of computation, it
remains important for users of those machines to plan correct opera-
tions and to interpret results intelligently. Planning calculations requires
sound understanding of the meanings of operationsof the character-
istics of actions that correspond to various arithmetic operations. In-
terpretation of results requires judgment about the likelihood that the
machine output is correct or that an error may have been made in data
entry, choice of operations, or machine performance. (Development of
number sense is discussed in detail in the February 1989 issue of The
Arithmetic Teacher, especially in the article by Howden.16)

There are two fundamental kinds of skill required to test numerical
results for reasonableness. First is a broad knowledge of quantities in the
real world: ;s the population of the United States closer to 20 million,
200 million, or 2 billion? Is the speed of an airplane closer to 100,
1000, or 10,000 kilometers per hour? What are approximate percent
rates for a sales tax, a car loan, the tip at a restaurant, or success of a
major league baseball hitter? While this sort of information isn't part
of formal mathematics, it is an invaluable backdrop for judgment of
arithmetic applied to real problems.

The second component of computational number sense is the ability
to make quick order-of-magnitude approximations. As an electronic

S S
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calculator produces an exact answer, it is important for users to check
that the displayed results are "in the right ball park." This means, for
instance, determining by quick rounding and mental arithmetic that
345 + 257 + 1254 is approximately 1850 or that 85 x 2583 is approx-
imately 200,000. Skillful mental calculation of this sort is not achieved
by extensive training in mental execution of traditional written algo-
rithms, but in flexible application of place value understanding and
single-digit arithmetica very different agenda than the goals of tra-
ditional school arithmetic. Since there has been considerable attention
given to informal arithmetic and computational estimation over the past
decade, there now are clear goals, creative curriculum materials, and ef-
fective teaching suggestions for this important but long-neglected topic.

Symbol Sense

There is almost certainly a comparable informal skill required to deal
effectively with symbolic expressions and algebraic operationsto culti-
vate student symbol sensebut ideas and instructional materials in this
area are not as fully developed. A reasonable set of goals for teaching
symbol sense would include at least the following basic themes:

Ability to scan an algebraic expression to make rough estimates
of the patterns that would emerge in numeric or graphic represen-
tation. For example, given f(x) = 50*21, a student with symbol
sense could sketch the graph of this function and realize that
function values will be positive and monotonically increasing
with small values of f(x) for negative x and rapidly increasing
values for positive x.
Ability to make informed comparisons of orders of magnitude
for functions with rules of the form n, n2, n3, .... and le . This
skill, a bridge between number and symbol sense, plays an impor-
tant role in judging the computational complexity of algorithms
for mathematical and information-processing tasks that are at
the heart of computer science.
Ability to scan a table of function values or a graph or to inter-
pret verbally stated conditions, to identify the likely form of an
algebraic rule that expresses the appropriate pattern. For exam-
ple, given the following table, a student with symbol sense could
predict that the rule for the best-fitting function is likely to be of
the form f(x) my + b with m approximately 15 and b about
500:

Sales x 0 10 20 30 40 50

Costs 1(x) 510 675 825 960 1100 1240
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Ability to inspect algebraic operations and predict the form of
the result or, as in arithmetic estimation, to inspect the result
and judge the likelihood that it has been performed correctly.
For instance, a student should realize almost without thinking
that the product of linear and quadratic polynomials will be a
cubic polynomial.

Ability to determine which of several equivalent forms might
be most appropriate for answering particular questions. For in-
stance, good symbol sense should allow students to realize that
the factored form of a polynomial readily yields information
about its zeroes but makes very difficult calculation of deriva-
tives or integrals.

Promising work from current projects shows how numerical and graph-
ic computer tools can be used effectively to build student intuition about
algebraic symbolic forms. Nevertheless, the development of more gen-
eral symbol sense remains an important research task on the path to
new approaches for developing conceptual and procedural knowledge
of quantity.

NUMBER SYSTEMS

For a great many students mathematics is a vast, loosely connected
collection of facts, procedures, and routine word problems. However, it
is important to remember that the unique power of mathematical con-
cepts depends on abstract meaning, which lies at the heart of any specific
embodiment. Learning the fundamentals of any branch of mathemat-
ics should include recognition of those deep structural principles that
determine the relations among its concepts a.id methods. For number
systems a rather small collection of big and powerful ideas determine
the structure of each system. When one steps back from specific details,
it becomes clear that a few central principles govern all algebraic and
topological properties of numbers. These principles can be used to de-
rive all specific facts of various number systems and to guide the match
between formal systems and significant quantitative problems.

In the historical development of number systems, the progression be-
gan with the natural numbers. Extensions over many centuries added
fractions, then negative numbers, and, finally, a rigorous characteriza-
tion of real numbers. From a perspective near the end of the twentieth
century it is possible to organize all those structures from the top down:
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The real number system R is the only complete erdered field.
The rational number system Q is the smallest subfield of R.
The integer number system I is the smallest ring in R that in-
cludes the multiplicative identity.
The natural number system N is the smallest subset of R that
includes the multiplicative identity and is closed under addition.

In the terse form that is characteristic of formal mathematics, these
four statements contain a great deal of information about structure.
They imply that each number system is a set with two binary operations
and a binary order relation; that the operations are commutative and
associative; that multiplication distributes over addition; that there are
two identity elements, one for addition and the other for multiplication;
and that the operations interact with the order relation in familiar ways.

There are, however, other important properties of the individual num-
ber systems that are not so apparent from such minimalist characteriza-
tions. There are significant differences in the algebraic and topologkal
properties of the various systems, differences that make each of spe-
cial interest from both pure and applied perspectives. Analysis of those
differences, in progression from the simplest to the most subtle, helps
develop student insight into the nature of numbers and number systems.
While students should emerge from school mathematics with rich con-
ceptual and procedural knowledge, it is also important that they have
some sense of the theoretical principles that provide logic& coherence
to number systems.

Natural Numbers and Integers

The fundamental additive, multiplicative, and order structures of the
natural numbers and integers are based on several simple but powerful
principles. First is the principle of finite induction:

" M is a set of natural numbers that contains I, and if M con-
tains the number k + I whenever it contains the number k , then Al
contains all the natural numbers.

This property implies that the natural numbers (and their extension to
all integers) form a discrete set, a sequence of equally spaced elements
with no number between any integer k and its successor k + I . They
provide a set of tags for ordering stages in any process that can be viewed
as occurring in a sequence of discrete steps.

The finite induction principle is used to define concepts v. ith integer
parameters, like x", and to prove propositions thai invol, t all natural
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numbers. For example, to prove that 1 + 3 + 5 + + (2n 1) = n2 for
all n, one depends on the principle of finite induction:

I. Let M be the set of numbers for which the equation is true. Since
I = 12, we know that I E M.

2. Now suppose that k E M. Then I + 3 + 5 + ...+ (2k 1) = k2. It
follows that 1 + 3 + 5 + + (2k 1) + (2k + 1) = k 2 + 2k + 1 =
(k +1)2, so the equation is also true for k + 1. Hence k + 1 also
belongs to M.

3. It follows from the principle of finite induction that M contains
all the natural numbers, so the formula must be true for all n.

The method of proof by mathematical induction is used through-
out mathematics, providing special power in combinatorial propositions
like the binomial theorem. It has become particularly important as a
proof technique in computer science, where discrete algorithmic pro-
cesses are the central objects of study.

While natural numbers and integers share the discrete eider structure
imp-lied by the principle of induction, there is one critical difference
between the two systems--the existence of additive inverses for integers:
for every integer a there is an integer a such that a + a = 0. This
makes the integers into an additive group, implies that snbtraction is
defined for all ordered pairs of integers, and shows that evt:ry equation
of the form a + x = b has a unique solution in I.

Although the additive structures of N and I are extremely regular
and easy to work with, multiplication and division of natural numbers
and integers hold much more interesting challenges. Since the integers
contain no multiplicative inverses (except the trivial cases of 1 and 1,
division is a restricted operation in N and I, and many equations of the
form ax = b have no integer solutions. Furthermore, there is no simple
pattern suggesting which multiplication equations (or related divisions)
are solvable. Thc integer 24 is divisible by 2, 3, 4. 6, 8, and 12, but its
neighbor 23 has no proper factors and 25 has only one proper factor.
A set of 24 objects can be partitioned into equal subsets in s;,< different
ways, but a set of 23 cannot be partitioned in any such way.

Multiplication and division of integers are governed by two principal
properties. The fundamental theorem of arithmetic guarantees that any
positive integer can be written as a product of prime factors in exactly
one way. The division algorithm guarantees that for any positive in-
tegers a and 5 there are unique integers g and r such that a = bq + r
with 0 < r < b. These two principles are of enormous practical and
theoretical significance in the theory of numbers and, in more general
form, in algebra.
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The firstthe prime factorization theoremis one of many similar
results in mathematics showing how complex expressions can be studied
effectively when they are written as a combination of irreducible factors.
These applications range from the mundanr.! task of finding least com-
mon multiples or greatest common factors to the parallel fundamental
theorem of polynomial algebra which assures that any polynomial with

complex coefficients can be written as a product of linear factors (from

which the zeroes can be easily obtained).
The division algorithm is, of course, basic to the familiar procedure

for long division of natural numbers and decimals as well as to the

parallel factor theorem of polynomial Agebra. It provides the essential

concept for developing the arithmetic of congruences: For any integers

a and h, a h (mod rn) if and only if a = mk +b for somek. The finite

cyclic groups and fields that arise from this theory have proven useful in

dramatic ways as models for discrete phenomena, including increasingly
important applications in computer science, in cryptography, and in

transmission and storage of business and governmental information.

Rational Nunn:yrs

The smallest number system that includes elements representing each
possible division of integers a/h (for nonzero b) is, of course, the
rational number system Q. Mathematicians call Q a field, a term used
to describe other structures with similar number-like properties. In (2

every nonzero element has a multiplicative inverse, and every linear

equation of the form rx + s = t has a unique solution for rational r, s,

and t (for nonzero r). However, this algebraic power is gained at the

expense of simplicity.
The standard ordering of rational numbers makes them a detue set

between any two rational numbers there is a third rational number. In
particular, there are positive rational numbers as small as one might
wish. On the other hand., for any rational numbers a and h, there is an
integer n such that na > b; this property makes the rational numbers
into an Areinmedean ordered field. While the operations and ordering of
rational numbers are significantly more complex than integers, the den-
sity and Archimedean properties of Q combine to lay the groundwork
for precision in measurement, guaranteeing that a unit of any desired
refinement can be used to cover a length of any finite extent.

Real Numbers

The natural numbers, integers, and rational numbers provide for-
mal systems to model the structures of many practical quantitative
reasoning tasks. But unresolved questions raised as long as 2000 years
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FIGURE 8. The position on a rational number line
corresponding to the length of the hypotenuse of a right
triangle with legs of length I has a hole, since there is
no rational number equal to

ago make it quite clear that the rational numbers are not the last word
in number systems. The proof that there is no rational number whose
square is 2 (or 3. or 5, or any other integer that is not a perfect square)
reveals an algebraic incompleteness in the rational number system (see
Figure 8). When numbers are used as measures of geometric figutes,
the Pythagorean theorem shows that there are line segments with no
rational measures. There are "holes" (although not very big holes) in a
number line that has only rational coordinate points.

The rational numbers can be extended in a variety of ways to include
elements that fill some of these holes and that fulfill specific algeJraic or
geometric needs. The extension Q(vr.-2) = la + hv2a,h E 21, for in-
stance, is an ordered field, under a suitable definition of addition, multi-
plication, and inverses. However, the only complete or<:ered fieldone
that fills all the holesis the real number system R. It is an ordered
field in which every nonempty subset that is bounded from above has
a least upper bound in R. A key theorem of number systems. one that
establishes a distinctive role for R, is that any such complete ordered
field must be isomorphic to R.

Since the real numbers seem only to fill Infinitesimal" holes on the
rational number line, several other differences between the two number
fields are genuincly surprising. First, while every rational number is
the solution of a simple equation ax = b where a and h are integers,
there are transcendental real numbers (like e and it) that are not solu-
tions of any such polynomial equation. Furthcrmore, while the rational
numbers can be placed in one-to-one correspondence with the natural
numbers and are thus countably infinite (a surprising result that was not
comfortably understood until early in this century), this is not true for
the real numbers. In fact, the transcendental numbers alone are more
numerous than the algebraic numbersthose that arise as solutions to
rational algebraic equations. While this last result was proven at least
100 years ago through ery clever reasoning with transfinite cardinal
numbers, there are still Labile outstanding questions about the charac-
ter of specific real numbers.

The real numbers provide a significant step in the development of
quantitative concepts and methods in another fundamental sense. While
the natural numbers, integers, and rational numbers are each infinite sets
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of numbers, their primary use is to count, order, and compare finite sets
of discrete objects. The real numbers provide the essential mathemati-
cal tool to describe and reason about infinite and infinitesimal processes.
They alone support rigorous development of the concepts of 1imi and
continuity; they provide the bridge to analysis of motion and change.

Complex Numbers

The extension from rational to real numbers enables solution of many
simple and significant algebraic equations. But it leaves an equally sig-
nificant collection of algebraic equations still unsolvable. Simple poly-
nomial equations like x2+ I = 0 or X2 + +1 = 0 have no real roots. The
number system required to give meaningful solutions to these equations,
and to all polynomial equations in general, is the complex numbers C.
The complex numbers constitute the smallest possible kid extension of
the real numbers that contains an elerent i with square equal to I,
the required root of x2 + I = 0. Rema. kably, the extensior to deal with
this single equation provides solutions to all oth,-r polynomial equations
and opens a rich structure of mathematical properties and applications.

"- very complex number can be expressed in the form a + hi, where a
am b are real numbers. Thus the complex numbers are determir by

oidered pairs of real numbers. While the real numbers can be ordered
in one-to-one correspondence with the points of a line, the complex
numbers correspond to points of a two-dimensional plane and are not
linearly ordered. This loss of simple order might seem to promise a
much more complicated life in C than in the real numbers or their
subsets. However, it brings along benefits as well. The correspondence
between complex numbers and points in the plane opens a powerful
connection betweeen the arithmetic and algebra of C and the geometry
of shapes and transformations in the plane (see Figure 9).

The complex numbers include some numbers originally described as
**imaginary" by mathematicians who could not admit the possibility
of a negative square. Nevertheless, they have proven useful as mod-
els of many verv real physical phenomena, from the flow of alternating

FIGURE 9. Points in the plane corre-
spond to complex numbers. with addition
of vectors in the plane reflecting addition
of complex numbers. Multiplication is

more complicatedthe magnitudes of the
vectors multiply as expected, but the angles

add.

- It

13 't
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electrical current to the flow of air over an airplane wing. They also settle
a fundamental algebraic question of pure mathematics: every polyno-
mial of degree n has exactly n linear factors. Thus every polynomial
equation has at least one and at most n distinct complex roots.

New Number Systems

Our sketch of fundarrenta! principles of number systems covers very
familiar ground. When mathematicians of the late nineteenth century
showed that the real number system is the unique complete ordered field,
following earlier proofs by Gans., and others that the complex number
system is algebraically closed, it seemed that t;,e story of number systems
was complete. While that is, in some sense, an accurate statement, the
development of new number systems is by no means finished.

For example, since their invention in the ritel-nineteenth century, the
algebra of matrices has become an invaluable tool for reasoning about
complex numerical data. A matrix is a kind of super-number; within
ce lain families of matrices, the operations of addition and multiplica-
tion have algebraic properties very similar to those of the real numbers.
The most prominent exception is the fact that matrix multiplication is
noncommutativea fact that has many important consequences in the
theory of linear algebra. Matrices are particularly useful for describing
complex sets of quantitative data such as those that computers routinely
manage.

't he application of computing to quantitative rew,:- ling has ctim-
ulated development of mathematical systems in another direction of
both practical and theoretical interest. Despite their seemingly endless
memory and instantaneous speed, computers work not with the famil-
ar number systems such as I,Q. or R, but in finite approximations of
those systems whose faithfulness is limited by the ability nf computer
languages to rep:esent numbers with only a finitt number of positional
places. These "truncated" models of number systems do not obey the
conventional structural properties of numbers (such as associativity of
addition). Thus it seems important that students extend their study to
inclvde the structural properties of those finite systems that underlie so
much of their actual quantitative work.

The discovery of number-like mathematical systems like matrices that
fail to obey structural properties that our naive imuition tells us are
true was a dramatic step in the development of modern mathematics.
Contemporary algebra originated in an attempt to provide a theory to
explain the structural properties of various number systems. In the
last 150 years algebra ha; generated a rich array of abstract theories
that spring from study of structure inherent in various operations and
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relations on sets. Mathematicians have shown that generalization of
number systems can provide a stimulating intellectual playground. But
they have also shown that this abstract mathematical realm frequently
has impressive practical applications. Although groups, rings, fields.
lattices, boolean algebras, monoids, and Turing machines were created
primarily as abstract possibilities, they are now used routinely as tools
for research on fundamental problems of computing and information
sciences.

During the middle of this century, mathematics was strongly influ-
enced by interest in exploring generalizations of number systems. In
1973 Garrett Birkhoff 3 %rote that, "by 1960 most younger mathemati-
cians had come to believe that an mathematics should be developed
axiomatically from the notions of set and function." Furthermore, he
and MacLane, "wrote another *Algebra' which went further in the di-
rection of abstraction, hv organizing much of pure algebra around the
central concepts of morpaism, category, and 'universality'." Inrovative
school mathematics programs of the 1960s explored the possibilities of
organizing curricula around similar abstract structural concepts.

Fashions change, in mathematics as well as in design of human ar-
tifacts. Today the abstract axiomatic point of view seems much less
promising as a guicie to either mathematics research or education. None-
theless, there are central principles that lie at the heart of number sys-
tems and /1gebra. They provide coherent organization for what can be
an impenetrable maze of specific facts and techniques, and this organi-
zation is as useful for students as for practicing mathematicians. Thus
it seems wise for curriculum planners to identify and build from such
principles as they plan school curricula.

APPLICATIONS

School mathematics must develop in students an understanding of
basic principles, proficiency in techniques, and facility in reasoning. But
the ultimate test of school mathematics is .vhcher it enables stlidents
to apply their knowledge to solve irrpoi;.ant quantitative problems. The
ability to solve problems is not only the most important goal of school
mathematics but also the most difficult educatiwial task.

The term "word problem" strikes terror in the hearts of mathematics
studentr; of all ages. The key first step in effective work on problems
is to identify in problem situations concepts that are structurally sim-
ilar to those of number systenr. Traditional approaches to this task
can be sorted into two brot classes. The pragmatic approach helps
students cope with a variety of classical (and nearly routine) problem
types. The aim is to provide students with strategic guidelines for
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each problem typea special chart for organizing information about
time/rate/distance problems. a dictionary for translating key quantita-
tive words into symbolic expressions, and so on. The more ambitious
approach attempts to train students to use generic high-level strategies
(or heuristics) that apply to problems in many different areas.

It seems fair to say that neither approath is demonstrably effective
in providing stuoents with confident and iransferable modeling and
problem-solving skills. The (unfortunately) popular "key words" ap-
proach fails because the flexible, versatile, and often ambiguous
structure of ordinary language cannot be translated into mathematical
statements by any dependable algorithm. At the other extreme, while
students can learn generic high-level heufstics suggested by Polya and
others, it has proven very difficult to develop their facility in the kind
of metacognitive monitoring of thought that is required to deploy those
heuristics effectively in specific situations. Recent work to develop a
metacognitive perspective on probkm-solving strategies shows promis-
ing but not yet definitive results."

Modeling

While the search continues for effective new strategies to teach prob-
lem solving, there is an equally significant change emerging in think-
ing about the nature of quantitative problems themselves. In many
contemporary applications of mathematics one thinks less about solving
specific well-defined problems and concentrates instead on constructing
and analyzing mathematical models of the problem setting. The clas-
sical quantitative problems of school mathematics usually include nu-
merical information and a single question that can be answer d by a
numerical calculation or by solving an equation. Outside schoot, prob-
lem situations generally have missing or extraneous information as well
as many ili-defined questions.

In a mathematical modeling approach, the first step is to identify rel-
evant variables. The next is to describe, in suitable formal language,
relations that represent cause-and-effect connections among those vari-
ables. Specific questions can then be posed in terms of input or output
values or global properties of the modelmg relations. Finally, computer
tools can be used to answer those questions by numerical, graphic, or
symbol methods.

Measurement

The most common sources of numerical variables are measurements.
Thus the theory and technique of measurement play important roles in

(i 3
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quantitative literacy. Like the arithmetic of number systems, measure-
ment feels like a familiar and well-known facet of school mathematics
hardly in need of new thiuking. However, this critical interface between
mathematics and its applications is not a remarkably successful topic in
the curriculum.

The prototypical measurement tasks in school mathematics are find-
ing length, arca, and volume of geometric figures. It seems fair to say
that for most students learning about measurement includes brief ex-
posure to a few standard units for length and then practice in use of
formulas for perimeter, area, and volume based on those length units.
Area is [length x width] or [( 1 / 2) x base x height] or En x r21, volume
is [length x width x height] or [7r x r7 x h], and so on. Most exercises
become atithmetic practice in the formula of the lesson at hand.

Students exposed to this formal approach to measurement generally
form limited and very rigid conceptions of length, area, and volume.
Confusion of area and perimeter is a depressingly common error on
su. dent assessments. The common "rule" followed by unthinking stu-
dents, regardless of any wording in the problem statement, is that if
there are two numbers attached to sides of a pictured rectangle one
multiplies them; if there are numbers on each side of a rectangle, one
adds them.

The emphasis on formulas also leaves students ill prepared to deal
intelligenily with the approximate nature of real measurements, the cu-
mulative effects of errors in combinations of measurements, and the
generalization to irregular shapes that occur in so many practical appli-
cations or to the curves and surfaces that are fundamental in calculus.
Furthermore, few students realize or take advantage of structural simi-
larities that underlie most applications of measurement.

At the heart of any measurement process is a mapping that assigns
numbers to objects. The mapping assigns measure 1 to some designated
unit. Other objects are then covered by copies of the unit. The choice
of unit element is arbitrary, but once the choice is made, it provides the
standard by which all others are measured. Thus every measurement
consists of a unit and a numberthe number of whole and partial copies
of the unit needed to exactly cover the measured object. The mathe-
matics studetit who understands this principleas a general property of
many important measurementshas acquired productive insight into
the connection between real situations and quantitative models.

The unit and covering properties of measurement explain quite clearly
just what is being indicated by any particular measurement; moreover,
the attachment of units to -neasurements can be exploited to guide for-
mal reasoning about scientific principles. In many sciences quantitative
reasoning is guided by a well-defined algebra of quantities commonly



QUANTITY 91

called "dimensional analysis.'' In this method each arithmetic opera-
tion is performed not only on numbers but on the units as well. If the
end result is a number whose units are appropriate for the prob:em, the
aliens anal analysis lends support to the appropriateness of the oper-
ations that have been pertbrmed. While this attention to units as well
as numbers in measurement is not as common in mathematics as in
science, it has strong supporters amo.ig those who have been concerned
with helping students make the connection between formal mathematics
and its applications)8,21.31

The theory and practice of measuring quantitative concepts in the
physical world have a long history in mathematics and its teaching.
However, just as many classical mathematical methods have been gen-
eralizeg and applied in new domains, measurement has been extended
to important uses throughout the social sciences. While the basic idea
is the sameassigning nt 'bers to objects or eventsthese new mea-
sures often obey structural properties that are very different from the
measures of length, zrea, and volume.

Political scientists and sociologists have designed a variety of mea-
sures of influence or power in social situations. Economists have de-
vised measures of costs and benefits to quantify options in decision
making. Psychologists and educators use a vast array of measures to
describe aptitudes and achievements of individuals. Statisticians mea-
sure probable cause-and-effect relations among many different kinds of
stochastic variables. In each case, numbers, operations, and relations
are used to model significant structural properties of situations. Some-
times classical principles and concepts are directly applicable. But it is
increasingly common that effective quantitative reasoning in the social
and human sciences requires understanding of aspects of number that
permit flexible construction of new responses to new situations.

GOALS

Without question the most important goal of school mathematics is
to develop students' ability to reason intelligent17 with quantitative in-
formation. The mathematical concepts, techniques, and principles that
model quantitative aspects of experience are provided by structures of
number systems, algebra, and measurement that have long been the
heart of school curricula. However, the emergence of electronic calcu-
lators and computers as powerful tools for representing and manipu-
lating quantitative information has charenged traditional priorities for
instruction in those subjects. It no longer makes sense to devote !arge
portions of the school curriculum to training students in arithmetic or
algebraic algorithms that can be performed quickly and accurately by

1 t,
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low-rost and comeniert calculators. The availability of powerful aids
to computat ion has also led to a dramatic increase in the range of sit-
uations to which quantitative reasoning is being applied. Thus school
mathematics must prepare students to use their knowledge of number.
albebra, and measurement in flexible and creative waysnot only in
routine, predictable calculations.

To prepare students for the challenge of quantitative reasoning in the
modern world, school mathematics must develop students' abilities to

Understand fundamental properties of number systems and the
match between those mathematical systems and real-life situa-
tions in which they are embodied.
Describe and interpret quantitative structures using symbolic.
verbal, and graphic representati, is.
Perform both exact and approximate cz.lculations involving arith-
metic and algebraic ideas by various appropriate methodsmen-
tal operations, paper-and-pencil techniques, calculators, or com-
puters.
Apply numerical and algebraic expertise to solve both routine
and original quantitative problems.

The school experience likely to develop these general skilk and under-
standings must be rich in opportunities to explore intereiAg and im-
portant quantitative situations as well as in the structures that illuminate
mathematical ideas embodied in specific settings.
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Uncertainty
DAVID S. MOORE
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INTRODUCTION

"Uncertainty" is intended to suggest two related topics: data and
chan:T. Neither is a topic within mathematics; they are both, however,
phenomena that are the subject of mathematical study. Roughly speak-
ing, statistics and probability are the mathematical fields that deal with
data and chance, respectively.

Recent recommendatiws concerning school curricula are unanimous
in suggesting that statistics and probability should occupy a much mor-
prominent place than has been the case in the past.12' 14 However, bt.-
cause of the emphasis that these recommendations place on data anal-
ysis, it is easy to view statistics in particular as a collection of specific
skills (or even as a bag cf tricks). The task of this essay is not to urge
attention to data and chance in the school curriculumthey are already
attracting attentionbut to develop this strand of mathematical ideas
in a way that makes clear th overall themes and strategies within which
individual topics find their natural place.

Any discussion that is intended to influerce teaching should retkct
the experience of teachers and students. Suggestions for curriculum re-
form detached from that experi,mce offer utopian hopes that are disap-
pointed in practice Statistics in the schools is not utopian; new material
presently being tested is practically useful and aids rather than displaces
development of number concepts am; skills. Nonetheless, it is easy in
our enthusiasm to overbok practical problems and to urge the teaching

95
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of subject matter that is unrealistic in quantity or level. It is important
to call attention to the difficulties and potential false steps. as well as to
the advantages, in using data and chance in the teaching of mathemat-
ics. In writing this essay I have tried to err in the practical rather than
the utopian direction.

Data

Interest in teaching statistics is certainly due in part to recognition
of the place that working with data plays in everyday life and in many
occupations. It is increasingly common to teach matimmatical topics
that are of direct use, rather than to select topics simply because they
lead to later topics in mathematics. Statistics is such a topic.

News reports present national economic and social statistics, opinion
polls, medical data from both epidemiological studies and clinical trials,
and business and financial data. Many citizens must deal with data in
more detail on the job. Farmers and agribusiness use crop forecasts and
the results of agricultural field trials. Engineers are concerned with data
on prodt..ct performance, quality, and reliability. Manufacturing work-
ers are increasingly asked to record and act on data for process control.
The health sciences struggle with data on cost and effectiveness as well
as with data from medical research. Business runs on data of every va-
riety: costs, profits, sales projections. market research, and much more.
There are compelling vacticai ccasons to learn statistics.

As these examples suggest, data at,: not merely numbers. but numbers
with a context. The number 10.3 ii the absence of a context carries
no information; that the birth weight of a baby is 10.3 pounds enables
us to comment on the healthy size of the child. That is, data engage
our knowledge of flit,. context 5o that we can understand and interpret,
rather than simply carry otit arithmetical operations.

There are, therefore, stk-ong pedagogical as well as practical reasons
to teach statistics in the schm..-!s. Statistics combines computational ac-
tivity in a meaningful setting with the exercise Df judgment in choosing
methods and interpreting results. Statistics in the early grades is taught
not p-iroarily for its own sake, but because it is an effective way to de-
velop quantitative understanding and to apply arithmetic and graphing
to problem solving.

Teachers who understand that data are numbers in a context will al-
ways provide an appropriate context when posing problems for students.
Calculating the mean of five numbers is an exercise ;n arithmetic, not
statistics. Calculating the mean price of a popular music tape at five
retail outlets is statistics, particularly when combined with a look at the
spread in the prices and a comparison with the price of other types of
music.



UNCERTAINTY 97

It is essential that the practical and pedagogical advantages of work-
ing with data not succumb to an exclusive emphasis on teaching oper-

_,

ations. Teachers and developers of curriculum material must exercise
imagination in providing data that are meaningful to students. In the
upper grades, data from other academic subjects (such as science) can
be used, although students rarely connect such data with their every-
day life. In the lower giades, data produced by the students themselves
are bes.. Students can produce data in many ways, such as questioning
the class ("How many children live in your house?") or by asking each
student to measure, count, or estimate some quantity.

The additional effort required to provide data rather than simply num-
bers should be taken into account when planning instruction. Good
data are not just an attractive feature for motivating students: they are
essential to the nature of statistics. Yet it is important that the effort
required to produce data not overshadow the mathematical ideas taught
and learned.

In particular. attempts to produce good data on important issues out-
side school are always much more difficult than is at first apparent.
Unpleasant experiences with time-consuming and confusing attempts
to produce data may well discourage teachers from teaching statistics.
The difficulties associated with data production activities form the first
of nveral potential harriers to effective reform. Curriculum materials
must provide both interesting data and practical, tested suggestions for
production of data by students. Over time, teachers can collect and
share data sets that pertain to their community and school. Computers
are an ideal means of storing and sharing data.

Chance

Some phenomena have predictable outcomes: drop a coin from a
known height and the time it takes to fall can he predicted from basic
physics. Except for a rather small measurement error, the outcome
is certain. If we toss the coin, on the other hand, we cannot predict
whether it will show heads or The outcome is uncertain. Yet
coin tossing is not haphazard. If we make a arge number of tosses,
the proportion of heads will be very close to one-half. This long-term
regularity is not just a theoretical construct but an observed fact:

The French naturalist Ruffon (1707-1788) tossed a coin 4040
times. Result: 2048 heads, a proportion of 2048/4040 = 0.5069
of heads.

Around 1900 the English statistician Karl Pearson heroically
tossed a coin 24.000 times. Result: 12.012 heads, a proportion
of 0.5005.
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The English mathematician John Kerrich, while imprisoned by

the Germans during World War II. tossed a coin 10,000 times.
Result: 5067 heads, a rroportion of 0.5067.

Phenomena having uncertain individual outcomes but a regular pat-
tern of outcomes in many repetitions are called random. "Random" is
not a synonym for "haphazard" but a description of a kind of order
different from the deterministic one that is popularly associated with
science and mathematics. Probability is the branch of mathematics
that describes randomness.

The experience of children in and out of school provides less contact
with randomness than with data. For example, students do not meet
areas of science in which random behavior appears (such as genetics
and quantum theory) until secondary school and then only if they elect
solid science courses. Uncertainty is of course a pervasive aspect of all

human experience: it is the order in uncertainty that is hard to observe in

casual settings. Even state lotteries, although familiar to many students.
give little experience with the orderly aspect of randomness because of
their emphasis on extremely unlikely large prizes. These well-publicized
games of chance use actual physical randomization but appear to make

people rich haphazardly.
Psychologists have shown that our intuition of chance profoundly

contradicts the laws of probability that describe actual random behav-
ior. This incorrect understanding is very difficult to correct by formal
instruction. Attempts to teach probability and statistical inference with-
out adequate intuitive prepaiation are a second major pitfall in intro-

ducing data and chance into school curricula.
Even at the college level many students fail to understand probability

and inference because of misconceptions that arc not removed by study
of formal rules. The conflict between probability theory and students'
view of the world is due at least in part to students' limited contact with
randomness. We must therefore prepare the way for the study of chance
by providing experience with random behavior early in the mathematics
curriculum. Fortunately. the study of data provides a natural setting for
such experience. The priority of data analysis over formal probability
and inference is an important kinciple for instruction in uncertainty.

Artificial chance devices (coins, dice, spinners) can be used to pro-
duce data in thc classroom with the intent of applying data analysis
skills to discover the orderly nature of these devices. Uncertainty also
appears in data from sources other than chance devices. Repeated mea-
surements of the same quantity (made by several students, for example)

yield varying results. Natural variation appears in the heights, reading
scores . or incomes of a group of people. It is perhaps surprising that

1 7
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the patterns of variation in careful measurements or in data on many
individuals can be described by the same mathematics that describes
the outcomes of chance devices.

Experience with variation in data is a first step toward recognizing the
connection between statistics and probability. At a later stage the role
of deliberate randomization in statistical designs for producing data
strengthens this connection. Finally, formal statistical inference uses
the language and facts of probability to express the confidence we can
have in conclusions drawn from data.

Although the usefulness in everyday life of an understanding of ran-
domness is less obvious than the necessity of dealing with data, prac-
tical arguments for teaching about chance are not absent. One goal of
instruction about probability is to help students understand that chance
variation rather than deterministic causation explains many aspects of
the world.

Suppose that a basketball player over a Long season has rude
70% of her free throws. At the end of a tournament game she
attempts five free throws and makes only two. "Nervousness,"
say the fans. But this causal explanation need not be correct.
A player having a probability of 0.7 of making each shot has a
probability of about 0.16 of missing three or more of five shots,
Such a performance can easily be simply chance variation.

Some understanding of probability enables us to consider the role of
chance rather than seek a specific cause, oftentimes spurious, for every
occurrence.

Calculators and Computers

While the advent of fast, easily accessible computing has had an im-
pact on mathematics as a whole, it has revolutionized the practice of
statistics. An obvious effect of the revolution is that more complex anal-
yses on larger sets of data are now easy. But the computing revolution
has also brought about changes in the nature of statistical practice. In
the past statisticians conducted straightforward but computationally te-
dious analyses based on a specific mathematical model in ordcr to draw
conclusions from data. Instruction in statistics showed a corresponding
emphasis on learning to carry out lengthy calculations.

Now the paradigm statistical analysis is a dialogue between model
and data. The data are allowed to criticize or even falsify the origi-
nal model. Diagnostic methods to aid this process are a major field
of research in statistics. All are computationally intensive, and the
most widely adopted make heavy use of graphic display. In addition,

1fI
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freedom from the limits once imposed by hand calculation has led to

new methods for inference from even quite small data sets.3 This chang-

ing nature of statistics is readily reflected in instructional s les, espe-

cially in increased emphasis on graphical methods and informal data

analysis.
The influence of computers has led to some soul searching among

mathematicians, some of whom question the nature of a proof based on

a computer search of possible cases too numerous for human scrutiny.
At a more elementary level, both teachers and parents ask whether early

use of calculators will impede understanding of numbers and arithmetic
operations. Statisticians, on the other hand. have welcomed calculators

and computers as a liberating force. Calculating sums of squares by

hand does not increase understanding., it merely numbs the mind. In
these circumstances it is natural for a statistician to urge the use of
calculators and computers in instruction about data at all levels

College teaching of statistics already makes universal use of calcula-

tors and wide use of statistical software on computers. (There is. of

course, a continuum rather than a disjunction between ci.lculators and

computers as technology continues its advance.) Here is a typical exer-

cise from basic statistics, reconsidered in the light of easy computing.

Figure 1 presents a scatterplot of data on the age at which
each of a group of children spoke their first word and their later

scores on a test of mental ability. Does age at first word help us

predict the later test score?

Once upon a time a student would be asked to plot the data and then

calculate the least squares regression line (the solid line in Figure 1)

together with the correlation coefficient r 0.640. Perhaps the plot
would be omitted to save time. Most studenis would require at least 15

minutes for this exercise with a basic calculator. Only a sadist would

ask much more of them.
But it is apparent that the data include two outliers, labeled as cases 18

and 19 in the plot. How do these cases intlLence the regression analysis?

An interactive software package of the kind that is widely available on

all varieties of computers provides immediate answers, which can be

visually displayed if the computer has graphics capabilities. Case 19.

although far from the regression line, does not have a large influence

on the position of the line or the value of the correlation r. Case 18.
on the other hand, is highly influential. Removing this point moves the
regression line to the dashed line in the figure and reduces the correlation

to r = 0.335, about half its original value. Thus the evidence that age
at first word predicts later ability scores is much weaker if case 18 is
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FIGURE I. Data on the age at which each of 21 children first spoke (horizontal scale)
and their Gesell Adaptive Score, the result of an aptitude test taken at a later age. Case
18 is particularly influential in the sense that deleting this point substantially moves the
regression line and changes the value of numerical measures such as the correlation.

dropped. (These data are discussed in detail in Examples 3.10 and 3.14
of Moore:` 3 most of the figures in this essay are drawn from that text.)

Automating the calculations preserves our energy for a discussion of
the data. It is natural for the discussion to take the form of group prob-
lem solving. "ls anything unusual? Outlying point& How, important
are they? Let's try doing the analysis again without them." We are
then encouraged to seek additional information about the context of
the datato ask. for example, if the child of case 18 is so slow to begin
talking as to be out of place in a study of normal child development.
The example also leads us to ask what makes an observation influential.
a question that leads to new and important subject matter in statistics.

Automated calculation allows students to concentiate on othei aspects
of problem solving: planning an appropriate analysis, interpreting the
results in their context. and asking new mathematical questions sug-
gested by an exercise. But it is also true that automated calculation can
hide the nature of the work that ;.s carried out and impede judgment
about whether the work was appropriate to this specific problem. Too
often, students believe that computers simply inform us about the truth.
as in the Star Warc movies.

In a classroom exercise on sampling,16 students were asked to record
the colors of a large sample of M&M candies and to compare the
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results with computer-produced samples from a uniform distribution of
the same colors. The distribution of colors in the candies was far from
uniform. The purpose of the exercise was to demonstrate from the com-
parison that the candy colors were not, in fact, uniformly distributed.
Yet "... some students simply believed that the computer model was
correct bec".ase it was on the Lomputer, even though they hat; entered
the population model themselves."

Overoptimism about the efl'ectiveness of computers is a major poten-
tial pitfall in teaching statistics, as is insufficient planning to integrate
calculators and computers into the curriculum. Graduated use of calcu-
lators and computers is essential if students are to gain their advaotages
without coming tc. believe in a "magic box."

Basic arithmetic skills are needed for mental arithmetic and estima-
tion, which are important in checking automated calculations. Four-
function calculators preserve control over the order of operations, which
must be requested one by one, while automating only the algorithms.
A child must understand, for example, the distinction between divisor
and dividend in order to use a calculator for long division. A child must
know that one 5nds a mean by adding the observations and dividing by
their number in order to compute T with a basic calculator. Children
can therefor: begin to use calculators in their study of data as soon as
the operations are understood. Later, a calculator that will compute the
sample ma n and standard deviation directly from keyed-in data can
be used to bypass routine algorithms already mastered.

At a mow advanced level, some histograms should be made by hand
before turning to attractive software that chooses groups and creates
histograms directly from the raw data. Perhaps most importantly, ex-
perience with physical chance devices and physical simulations such as
drawing ,:olored beads from a box should prccede computer simulations.
"Microworlds" need have no connection with reality, yet students tend
to believe that the computer presents reality. A carefully graduated
transition from physical to digital is very import.,it. The practice of
graduated use is easiest when calculators and computers are part of the
normal classroom environment to be used as needed, not reserved for
special projects or upper grades.

From Data to Inference

There are several organizing principles that help us see the mathemat-
ical study of data and chance as a coherent whole. One such principle
is the progression of ideas ,from data analysis to data production to prob-
ability to inference. The discussion in this essay is organized in these
same stages:

iij
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Data analysis, which involves organizing, describing, and sum-
marizing data.
Producing data, usually to answer specific questions about some
larger qopulation.
Probability, the mathematical description of randomn-ss.
inference, the drawing of conclusions from dr ta.

This progression of topics represents both the logical development of
the field and the level of difficulty of the concepts. It therefore gives
the general order in which statistical topics should appear in the school
curriculum. Of course, the latter three headings will appear informally
from the beginning in the context of data analysis. Experience in pro-
duc.ng oatain particular, experience with chance outcomescan be-
gin in the earliest grades. Similarly. informal conclusions based on data
should be encouraged from an early stage.

The main drawback to this outline is that i does not emphasize that
probability is important in its own right, not merely as a part of statis-
tics. Both the concept of probability and basic mathematical facts about
probability ean be introduced in elementary school as soon as fractions
are understood. There is, however, a natural place for probability in the
progression of statistical ideas. Statistical designs for producing data are
characterized by the deliberate use of chance in random sampling and
randomized comparative experiments. Here is an opportunity to pro-
vide more experience with randomness and to advance to a study of
random variation in numerical summaries (sucn as the mean of several
observations). Both physical random selection and simulation can be
used.

On the other hand, formal statistical infererce requires some under-
standing of probability. Therefore it makes sense that the section on
probability be between those on producing data and inference. Because
of the great conceptual difficulties that students encounter in probability
and in probability-based inference. foimal mathematical treatment of
these subjects should probably be an elective rather than a core course
in secondary school.

DATA ANALYSIS

Data analysis is descriptive statistics reborn, with new methods,
greater emphasis on graphics, and a consistent philosophy due to John
Tukey. (Volumes 3 and 4 of Tukey's Collected Works contain his writ-
ings in this area.' A reviewer recommends paper 12 in Volume 4 as
a good starting point.) The essence of data analysis is to "let the
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data speak- by looking for patterns in data without at first consider-
ing whether the data are representative of some larger universe.

Inspection of data often uncovers unexpected features. If the data
were produced to answer a specific questionthis is the setting in which
such traditional methods as confidence intervals and significance tests
are best justifiedthe unusual features may lead us to reconsider the
analysis we had planned. Careful data analysis therefore precedes for-
mal inference in good statistical practice.

In other cases we do not have specific questions in mind and want
to allow the data to suggest conclusions that we can seek to confirm
by further study. We then speak of "exploratory data analysis," on the
analogy of an explorer entering unknown lands.

The best-known contributions of data analysis are new methods for
displaying data, such as stemplots and boxplots (or stem-and-leaf plots
and box-and-whisker plots if you prefer longer terms). From these ex-
amples it is easy to see data analysis as a collection of clever tools and
miss the organizing principles. Both analyses of complex data sets and
the order of instruction about data can usefully be guided b:, three sim-
ple principles:

I. Move from simple to complex, from examining a single variable
to relations between two variables and connections among many
variables.

2. When examining data, look first for an overall pattern and then
for marked deviations from it -,41 pattern.

3. Move from graphic display to numercaI measures of specific as-
pects of the data to compact mathematical models for the overall
pattern.

Displaying Data

The first and third principles suggest that learning about data starts
with displaying the distribution of a single variable. Most such data are
either countsthat is how qualitative variables such as color become
numericalor measurements with units. Specific methods for data dis-
play can advance in parallel with the development of early quantitative
cameos. "How many of each color in a bag of M&Ms?" can be deter-
mined by counting and displayed with stacks of colored blocks.

Later a stemplot of two-digit numbers can reinforce the distinction
between the 10's and the I's place in whole numbers. A stemplot of two-
digit data lists each 10's digit as a "stem" and records the observations
by placing their l's digits as "leaves" on the appropriate stem. Here,
for example, is a stemplot of the number of home runs Babe Ruth hit
in each of his years with the Yankees.
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Still later we come to histograms. To construct histograms of data with
more than a few values requires an understanding of "betweenness" and
the ability to group numbers, as well as skill in making and using scales
on graphs.

Choice among the available variations on stemplots and histograms
requires more judgment as the numbers making up the data become less
simple. Stemplots of numbers with several digits often require round-
ing or truncation, for example. Grouping numbers with several decimal
places into classes for a histogram requires a clear understanding of
order for decimal numbers. Careful planning is important to avoid in-
advertently presenting students with tasks that go beyond their number
skills. But it is also clear that data analysis in the elementary grades can
reinforce important concepts and skills from the existing mathematics
curriculum by applying them in interesting settings.

When we have constructed a display, we must interpret it and com-
municate our understanding to others. Children are not naturally able
tq "read" data any more than they are born able to read words. They
must be taught both the strategy of looking at data and specific Patures
to be aware of. The strategy is expressed in the second principle: look
for pattern, then for deviations. The specific features change as we ad-
vance through the stages mentioned in the first principle. An example
will illustrate the process in the case of single-variable data.

In 1961 Yankee outfielder Roger Maris broke Babe Ruth's
record of 60 home run:: in a single season. Here is a back-to-
back comparison of yearly home runs hit by Ruth (on the left)
and by Maris during their years with the Yankees:

RUTH MARIS
0 8

346
52 2 368
54 3 39

9766611
944 5

0 6 1

The overall shape of Ruth's distribution is roughly symmetric. The
center is at about 46 home runs, in the sense that he hit more than 46

114
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half the time and fewer half the time. There are no strong deviations
from the overall pattern. In particular, Ruth's famous 60 home runs in
1927 do not stand out from the other values, it is Babe's best effort but
not unusual in the context of his career.

In contrast, Maris's record of 61 homers in 1961 is an outlier that
falls clearly outside his overall pattern. That overall pattern (excluding
the outlier) is again roughly symmetric and is centered at about 23.
The different locations of the two distributions show Ruth's general
superiority as a home-I:an hitter.

To see the overall pattern of the distribution of a single variable, we
learn to look for symmetry or skewness, for single or multiple peaks,
for the center and the degree of spread about the center. Important
deviations from a regular pattern include gaps and outliers. Notice that
while constructing the display is an operation to be learned, interpreta-
tion requires judgment.

No distribution of real data has the perfect mirror symmetry of some
mathematical shapes. Not all distributions are well described as either
symmetric or skewed. Too much emphasis on classifying what we see
will frustrate both teachers and students. Learn to observe marked fea-
tures, not to debate unclear features. Note also that looking at data
naturally leads to attempts to interpret what we see, as when we noticed
that Ruth's 60 was not an unusual performance for him, while Maris's
61 was an outstanding achievement far beyond his usual level.

Interpreting the overall shape of a distribution is an important part
of learning to look at data. The histogram in Figure 2 displays student-
collected data on the lengths of words in Popular Science magazine. The

0 20

0 15

0 10

OL

0 0

1mor

11,..
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WORD LENGTH

FIGURE 2. Student-collected data on the length of words in
Popular Science magazine reveal a skewed distribution since
shorter words are more common than longer ones.
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FIGURE 3. Data on the mean verbal SAT score by state reveal
a double peak that reflects two different test-taking traditions: in
some states most college-bound students take the SAT, whereas in
other states only a few dosince the majority take the ACT exam.
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distribution is right skewed because there are many two- to five-letter
words and fewer 19ng words. (The usual statistical terminology takes
the direction of the skewness to be the direction of the longer tail, not
the direction in which most observations are concentrated.)

The histogram in Figure 3 shows the mean score by state on the verbal
part of the Scholastic Aptitude Test (SAT). This distribution is double
peaked. The peak near 425 represents states in which most college-
bound students take the SAT., the higher-valued peak represents states
in which most students take the American College Testing (ACT) exam-
ination and only students applying to selective colleges take the SAT.

Numerical Description

Already in examining the Ruth and Maris home-run data we saw that
calculation can help us describe data. By simple counting ("half more
and half less") we can give numbers that make more exact the difference
in centers that we see in the stemplots. The natural progression of math-
ematiral tools is expressed in the third organizing principle: graphics to
numerical measures to mathematical models.

In the case of the diAribution of values of a single variable, the basic
aspects to be described numerically are the center (or location) and the
spread (or dispersion) of the distribution. (The older term "central ten-
dency," which is both longer and less clear than "center" or "location."
is rarely used by statisticians and should be abandoned.) There are two
common sets of descriptive measures for location and spread: the me-
dian with the quartiles (or perhaps other percentiles) and the mean with
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the standard deviation. Percentiles require only counting and an under-
standing of simple fractions (1/4, 1/2, 3/4 for median and quartiles).
The mean is the arithmetic average. So the mean, median, quartiles,
and smallest and largest values can be introduced as students develop
basic arithmetic skills. These simple measures form a helpful descrip-
tive vocabulary.

Experience with the connection between the shape of displayed data
and numerical measures strengthens number sense. Although both the
displays and the measures seem elementary, the amount of mathemati-
cal understanding required to use them effectively (as opposed to simply
calculating the measures) should not be underestimated. In one field test
of new teaching material, for example, neither students nor the teacher
could believe that adding observations to the right end of a particular
distribution with many tied observations in the center left the median
unchanged)9 Hands-on experience with many sets of data, including
attempts to estimate measures by looking at the display and discussing
results, helps students construct their own understanding of such ap-
parently simple ope,ations as counting halfway up the ordered list (the
median) and averaging all the values (the mean).

Numerical description of a distribution by the median, quartiles, and
extreme observations leads to a new graphic display, the ',whit. An
example shows how useful this device can be. U.S. Department of
Agriculture regulations group hot dogs into three types: beef, meat, and
poultry. Do these types differ in the number of calories they contain?
In Figure 4 three boxplots display the distribution of calories per hot dog
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FIGURE 4. Three boxplots display visually the median. quar-
tiles, and extremes of calories provided by various brands of hot
dogs belonging to three standard types: beef. meat. poultry. One
can easily see that poultry hot dogs as a group contain fewer
calories per hot dog.
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among brands of the three types. The box ends mark the quartiles. the
line within the box is the median, and the whiskers extend to the smallest
and largest individual observations. We see that beef and meat hot dogs
are similar but that poultry hot dogs as a group show considerably fewer
calories per hot dog.

Mathematical Models

In this brief discussion of single-variable data, we have not yet men-
tioned either the standard deviation or the final stage in the progression
from graphical display to numerical description to mathematical model.
The standard deviation has several disadvantages for data description.
It is unpleasant to calculate with a basic calculator, is very sensitive to
a few extreme values, and is difficult to motivate clearly. (The mean
or medianof the absolute deviations of the observations from their
mean is preferable on all three counts.)

Yet the standard deviation is very important in statistics, mainly be-
cause it is the natural measure of spread for normal distributions. Nor-
mal curves provide an example of a compact mathematical description
of the overall pattern of a distribution of data. They are mathematical
idealizations thai do not catch the irregularity of real data or deviations
such as outliers. Normal curves arc, for example, perfectly symmetric.

Most curriculum materials intended for general students stop short
of presenting normal distributions. This is true, for example. of the
Quantitative Literacy series7. ' developed jointly by the American
Statistical Association and the Natioaal Council or Teachers of Math-
ematics. One reason may be the trad:tional view of normal and other
distributions as probability distributions, to be developed only after con-
siderable study of probability. Rut it is not necessary to introduce for-
mal probability to suggest that the heights of a large group of people of
similar age and sex are roughly normal or that the stopping point of a
spinner is roughly uniform over a circle.

Figure 5 shows a histogram of the Iowa Test vocabulary scores of
all 947 seventh-grade students in Gary. Indiana. with the normal curve
that approximately describes the distribution of scores. It shows quite
clearly how a normal curve provides an idealized mathematical model
for certain distributions of data.

Moving from particular observations to an idea'.zed description of
"all observations" is a substantial abstraction. The use of a mathe-
matical model such as a normal or uniform distribution to formulate
this abstraction is a substantial step toward understanding the power
of mathematics. Computer simulation is quite helpful at this point.

11 6
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FIGURE 5. A histogram of vocabulary scores of nearly IOW
seventh-grade students shows close adherence to the idealized
distribution of the bell-shaped normal curw.

Students can formulate a "population model" on the basis of their ex-
perience with data, enter their model into the computer, and simu!ate
observations from the population. Comparing simulated data to the
model provides more experience with probability and randomness. The
basic properties of normal curves, the idea of standardizing observa-
tions to the scale of standard deviation units about the mean, and the
use of the standard normal table to calculate relative frequencies can be
developed in the setting of models for regular patterns in data.

Although distributions in the mathematical sense complete the pro-
gression of descriptive methods for single-variable data, they must ap-
pear rather late even when it is understood that distributions can appear
before a full introduction to probability. Meanwhile, experience with
several-variable data would have been advancing as students develop
the necessary mathematical concepts and skills. The beginning study of
two-variable data comes later than examination of a single variable, in
accordance with our first principle, but usable mathematical models are
more accessible in the two-variable case.

The basic graph for two-variable data is the scatterplot. which pro-
vides a setting for understanding coordinates in the plane. Clusters
(female and male students?) and outliers in a scatterplot provoke dis-
cussion. The simplest overall pattern is a linear trend. The mathe-
matical model that gives a simple description of a linear pattern is a
straight line with its equation. Numerical measures include measures

1
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of the center and spread of each variable separately, the slope of a fitted
line as a description of linear relationship, and perhaps the correlation
coefficient as a measure of the strength of linear association.

The correlation coefficient, like the standard deviation. is tied to tra-
ditional statistical models and methods whose advantages, while real.
are not clear until a quite advanced stage of study. The correlation co-
efficient is closely related to least squares regression; that is. c. relation
measures the strength of a specific kind of straight-line association. Just
as the standard deviation should be delayeci until normal distributions
give it a context, correlation and least squares regression need not make
their appearance until secondary school students undertake a substantial
study of statistics for its own sake.

Much of data analysis. while useful in its own right, can be taught
from early elementary school through the first years of secondary school
as part of the general effort to develop quantitative skills and reasoning.
In this setting. straight lines can be fit by eye or by simple methods
that are computationally easier than least squares and more resistant
to extreme observations. The Quantitative Literacy materialw offers a
clear explanation of such methods for use in the middle grades.

Other aspects of several variable data deserve priority over correla-
tion and least squares regression. These include the distinction between
explanatory and response variables, the relation of association to causa-
tion, and the effects of unmeasured lurking variables" on an observed
association. These ideas are subtle but not computational .. they are best
grasped by guided experience with and discussion about actual data, us-
ing a variety of display and computational methods: and they are closely
related to an understanding of the kinds of explanations offered by the
natural and social sciences.

In teaching data analysis in a general school curriculum, topics should
be chosen not for their importance in the discipline of statistics but for
their immediate relevance to students, their usefulness in strengthening
general quantitative understanding. and their contribution to develop-
mg reasoning about uncertain data. Statistics is important in its own
rightmore important than calculus in most occupationsand that im-
portance should be reflected in a substantial elective course in the upper
secondary years that includes more advanced data analysis as well as
data production, probability, and inference.

PRODUCING DATA

Good data are as much a product of intelligent human effort as are
compact disc players and hybrid corn. There are several reasons why
producing data is an important part of teaching about data and chance.

2 u
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Data analysis is most effectively carried out on data with which we arc
intimately familiar, for familiarity suggests both expected features to
look for and explanations for unexpected features. Statistical designs
for producing data to answer specific questions are the conceptual bridge
linking data analysis to classical probability-based inference. And there
is no better cure for the extreme attitudeseither unwarranted cynicism
or misplaced trustwith which statistical evidence is often greeted than
experience that begins with a question and ends with answers based on
data that we ourselves have produced.

Data used in the teaching of statistics come from several sources.
Much of it is provided data, numbers simply provided by the teacher
or the text. With concerted effort to choose data on topics within stu-
dents' experience or interests and to provide appropriate backuound
information, provided data can offer a good setting for interpretation
and discussion as well as for building skills. Provided data a. more
useful with older children who have the wider knowledge and experi-
ence to understand the context of the data. Interesting information that
students could not produce themselves can be put before the class, and
the time and effort saved can be well used. Government data on nearby
towns or neighborhoods. for example. often show patterns in popula-
tion, housing. income, an health that are informative and surprising.

A second category, class data, is collected in the classroom and is rel-
evant primarily to students in the class without raising the question of
whether conclusions about some larger population are warranted. Class
data provide a natural setting for teaching data analysis. which has a
similar restriction on the scope of its conclusions. Simple questions are
a beginning: "How many children live in your house?" "How much
money do you have in your pocket?" The first question produces wholie
number data, the second two-place decimals. Planning the production
of data involves thinking ahead to the analysis that will be called for, a
reminder as relevant to professionals armed with software as to teach-
ers attentive to whether their students should face counts or decimals.
Measurements can also produce class data: with a tape measure, find the
shoulder width and armspan of all the students, then make a scatterplot
and study the relationship revealed.

Experiments are a third source of data. Experimentation is active
data production. Observation, whether questioning or measuring, seeks
to collect data without changing the people or things observed. In an
experiment we actually apply some stimulus in order to observe the re-
sponse. The distinction between explanatory and response variables
an essential part of causal explanationsis clearest in the setting of
an experiment. The experiments most familiar in basic science, unlike
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the questions or measurements that produce class data, do invite con-
clusions that apply to the world at large. When students heat a closed
volume of air and watch a balloon expand, they are asked to understand
not just the behavior of the one balloon but also the effect of heat on
gases in general. This rather large conceptual leap is often left implicit.

Moving from class data to statistically designed samples has the great
advantage of making explicit the transition from data about this one
class to data that represent a larger population. How to sample is a topic
within statistics, with implications far broader than merely generating
attractive data for analysis. Statistics also has much to say about how to
experiment, although the advice is not relevant to most experiments in
basic science. The design of samples and of experiments is a major topic
in the systematic study of data production. But another topic comes
first, both logically and in classroom experience: asking questions and
measuring to produce class data both raise the issue of measurement.

Measurement

To measure a characteristic means to represent it by a number. This
basic notion already introduces an abstraction. Thinking about mea-
surement leads at length to a mature grasp of why some numbers are
informative and others are irrelevant or nonsensical. First, what is a
valid (appropriate or meaningful) way to measure a particular charac-
teristic? Begin with tangible physical characteristics. Length is easywe
agree that a ruler will do it. Area is harder, because we have no device
that we can "put beside" the many shapes possible in two dimensions
as we put a ruler beside any length. We must concern ourselves with
understanding the characteristic to be measured, with devising a satis-
factory instrument, and with the units that result and their relations to
other units. Even for physical measurements the study of these ques-
tions extznds throughout the school years both in mathematics and in
science.

But the validity of physical measurements is simple compared with
the measurement problems of the social and behavioral sciences. What
is a good way to measure how rich a family is or the friendliness of a
fellow student? What do the Iowa Tests or the ACT and SAT college
entrance examinations really measure? A detailed examination of such
questions would lead too far afield. But students should be encouraged
always to ask whether data are in fact valid for the proposed use. Drivers
iver 65 years of age are involved in more fatal accidents than drivers
aged 16 and 17. So teens aren't so risky after all? Nothere are many
more drivers over 65. The rate rather thar the count of accidents is the

.1 91 2
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appropriate measurement. and the fatal accident rate for teens is about
three limes that fcr the elderly.

The second major aspect of the quality ot measurements, after va-
lidity, is accuracy. A measuring process may show systematic error, or
bias, as when a scale always reads 3 rounds low. Bias is a straightfor-
ward idea only when the "true value" that measurement should yield is

deafly understood. Possible bias in SAT scores is a continuing source
of intense debate, since no "correct" value is available for comparison.
ks usual, physical measurement is much more straightforward than be-
havioral or social measurement.

A measuring process also shows ranation: that is, repeated Teasure-
ments of the same quantity do not give identical rcsults.Theialiations
in common instruments such as bathroom scales and tape measures are
small relative to the desired accuracy, so we am accustomed to ignoring
variation in measurement. Activities that demonstrate measurement
variation are needed. Requiring students to interpolate between scale
markings when measuring length or weight. or to estimate a length or
count by eye, provides a set of varying measurements whose distribu-
tion can be displayed and discussed with the tools of data analysis. Bias
is described by the center of the distribution of measurements and vari-
ation by the spread.

Measurement activties followed by discussion of the data they pro-
duce increase students' sensitivity to the issue of the quality of mea-
su:ements. Here is an example from a college class.

The instructor asked each student to measure and record his
or her pulse rate (heartbeats per minute) on a piece of paper.
A stemplot of thc collected data showed an outlier that almost
certainly resulted from a gross error, though no one would ad-
mit having recorded a seated pulse rate of 180. The stemplot
also showed a suspicious concentration of pulse rates ending in

0. Questioning revealed that several students had learned in
aerobics classes to count beats for 6 seconds and multiply by
10. This led to a diFi.ussion of the measurement methods used.
Most students harl counted beats for 60 seconds. The class de-
cided that this is more accurate than the aerobics class method,
but it suffers from partial beats at the neginning and end of the
60-second period. Someone suggested timing exactly 50 beats
with a stopwatch ane 1.-a1culating beats per ute from this
time. This was accepted as a more accurate p. .tical measure-
ment method.
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Statistical 1>signs

Design of sample surveys and experiments is a core topic in statistics
and a major transition in concepts. Data analysis emphasizes under-
standing the specific data at hand. Now the data are regarded as repre-
senting a larger population. It is the population we seek to understand.
Students do not find this added abstraction easy to assimilate. They
persist. for example, in trying to explain variable results when an
perimental task is carried out by several students in terms of individual
characteristics of Sarah, Matthew, and Ruth. The "sampling" point of
view regards these students as representative of a large population of
students. We are no longer interested in individual features that may
explain the performance of Sarah, Matthew, and Ruth.

The transition from data analysis to inference follows a parallel oath
in mathematical abstraction. The sample mean i is no longer just a
single number, a measure of location for these data. It is a realization
of a random variable to be considered against the background of the
distribution of the random variable; it must be viewed against what
would happen if we repeated the data production process many times.
The difficulty of these new ideas cannot be disguised

Fortunately, the intimate connection of designed data production
with the ideas of probability and the logic of inference need not ap-
pear at once. There is much valuable insight into data to be gained
first. It is very important, for example, to recognize unrepreser, tative
data. Anecdotal evidence based on a few individual cases known to
us influences our thir 1 ing in ways that cannot withstand examination
and therefore must be examined. Individual cases catch our attention
because they are unusual in some way or because they occur in our im-
mediate environment. Examples and discussion will show that there is
no reason to expect these cases to be in any way typical.

Improper sampling methods, especially voluntary response samples
in which the respondents choose themselves, are also fair game. Here
is an example:

Advice columnist Ann Landers conducts a voluntary response
survey every few years by asking her readers to .espond to a
provocative question. The results are always good for news ar-
ticles and radio interviews that publicize her column. Her first
survey is the most instructive because a comparison is available.
In 1975 Ann Landers asked "If you bad it to do over again,
would you have children'!" Almost 70% of the nearly 10,000
respondents said "no." Many accompanied their responses by
heart-rending tales of the cruelties inflicted on them by their

;) 4
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children. It is the nature of voluntary response to attract peo-
ple with strong feelings, especially negative feelings, about the
issue in question. A nationwide random sample commissioned
in reaction to the attention paid to Ann Landers's results found
that 91% of parents would have children again.

Voluntary response can easily produce 70% "no" when the truth is
90% -yes." Such data carry no useful information about anyone except
the people who stepped forward. Yet the news media not only report
voluntary response data as if they described a general population, they
also operate call-in and write-in polls that produce more such data. Alert
students will easily find examples. Discussion of anecdotal evidence
and voluntary response makes clear the need for a systematic method
for selecting samples.

The statistician's recommended method is to let impersonal chance
select the sample. Random sampling eliminates the biases of personal
choice, whether by the sampler or by the respondents. The deliberate
use of chance is the most important statistical principle for produc-
ing data. It seems at first unnatural to abandon human judgment, but
chance appears las outrageous when set against anecdotal evidence and
voluntary response. The use of chance is illustrated by simple random
samples, which give all possible samples of the stated size the same
chance to be the sample actually chosen.

Simple random samples are easy to experience in the classroom, first
by drawirg names from a hat or varicolored beads from a sampling
bowl. Use of a random number table fo!lows, and finally computer
simulation. Do recall the warning that too rapid introduction of the
computer will obscure the nature of random selection. The more elabo-
rate random sampling designs used in national sample surveys need not
appear in introductory instruction.

The simplest randomized comparative experiments are closely related
to simple random samples. Once again the need for good design can
be made apparent by discussion of some uncontrolled or unrandomized
experiments. Here is an example:

A political scientist interested in the effectiveness of propa-
ganda in changing opinions conducted an experiment with stu-
dent subjects. The students took a test of their attitude toward
Germany, then read German propaganda regularly for several
months, after which their attitude was again measured. The year
was 1940. Between test and retest. Germany invaded and con-
quered Holland and France. The students' attitude toward Ger-
many changed drastically, but we shall never know how much
of this change was due to reading German propaganda.
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The design of this experiment had a form familiar in laboratory ex-
periments in the natural sciences:

Observation Treatment I,- Observation

Outside the controlled environment of the laboratory, experiments with
such simple designs often fail to yield useful data. The effect of the
treatment cannot be distinguished from the effect of external variables,
though not all such disturbances are as dramatic as the fall of France.

Statistically designed experiments involve two basic principles: com-
parison (or control) and randomization. The simplest randomized com-
parative design compares two treatments, one of which may simply be
a control treatment such as not reading propaganda. Here is the design
in outline:

Random

Allocation

Group 1 0.Treatment I Observation

Group 2 0. Treatment 2 Observation

The random allocation assigns a simple random sample of the subjects
to Treatment I; the remaining subjects receive Treatment 2. Random-
ization assures that there is no bias in assigning subjects to treatments.
The groups are therefore similar (on the average) before the treatments
are imposed. Comparison assures that outside forces act equally on
both groups. If care is taken to treat all subjects similarly except for the
experimental treatments, any systematic difference in response must re-
flect the effect of the treatments. The logic of comparative randomized
experiments al:vws conclusions about causationthe response is not
just associated with the treatment but is actually caused by it.

As in the case of sampling, more elaborate designs are common in
practice but need not appear in beginning instruction. Classroom expe-
rience with randomization is easy and valuable. Consider, for example,
tokens such as gumdrop figures that represent subjects to be assigned to
two competing treatments for severe headaches. Students carry out the
random assignment. Some of the tokens bear a mark on the bottom,
invisible when the randomization is done. These subjects, unknown to
the experimenters, have a brain tumor that will render any treatment in-
effective. How evenly did randomization divide these subjects between
the two groups? Do the randomization repeatedly and display the dis-
tribution of counts. Repeated randomization provides experience with
random variation that leads toward probability and inference.
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Some Cautions

With the fundamentals of both data analysis and data production in
hand, older students can contemplate serious statistical studies. Ex-

amples from recent curriculum projects include a sample of student
opinion about the selections served in the school cafeteria; a sample of
vehicles at a local intersection, classified by type and home county as
revealed by the license plate; and an experiment on the effect of dis-
tance and angle on success in shooting a nerf basketball. The design of
such studies provides valuable experience in applying statistical ideas.
Analysis of real data to arrive at solid conclusions is satisfying. But the
practical problems of producing the data must be anticipated and kept
within acceptable limits.

Here is an ex,:erpt from a report of a careful study' of new statistics
material for secondary schools. Some of the data production activities
were quite elaborate, including both the road traffic survey and the nerf
basketball experiment. Their experience is cautionary.

Our field test experiences have convinced us that data collection is an important
component of statistics education for at least two reasons. First. learning how
to design and conduct data collection activities (e.g., determining independent
and dependent variables and sample size) is fundamental to statistics. Second.
data collection is a motivating experience that makes statistical analysis more
meaningful and interesting to students.

Our experiences also convinced us, however, that data collection can present
some formidable challenges in the classroom. For example, our field test teach-
ers report that they spent an inordinate amount of class time collecting data as
opposed to exploring and analyzing data, only to find that ctudents' data was in-
complete or inaccurate. These challenges proved to be so disruptive to acz.demic
progress that the teachers grew reluctant to conduct statistical investigations that
depended on data collection.

PROBABILITY

Chance variation can be investigated empirically, applying the tools of
data analysis to display the regularity in random outcomes. Probability
gives a body of mathematics that describes chance in much more detail
than observation can hope to discover. Probability theory is an impres-
sive demonstration of the power of mathematics to deduce extensive
and unexpected results from simple assumptions.

Coin tossing. for example, is described simply as a sequence of in-
dependent trials each yielding a head with probability 1/2. From this
unassuming foundation follow such beautiful results as the law of the
iterated logarithm, which gives a precise boundary for the fluctuations
in the count of heads as tossing continues. The distribution of the count
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FIGURE 6. The law of the iterated logarithm describes the region
of fluctuations in coin tossing: the center line is the mean nj2.
bounded on either side by curves whose distance from the center
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of heads after n tosses of a fair coin has a mean of ri /2, which when
plotted against n appears as a straight line (see Figure 6). The standard
deviation of the count of heads in a tosses is 0.5vrii. The law of the
iterated lo arithm says that fluctuations in the count of heads extend

2 log log a standard deviations on either side of the mean. The count
of heads plotted against n will approach within any given distance of
this boundary infinitely often as tossing continues, but will cross it only
finitely often. Data analysis, even aided by computer simulation, could
never discover the law of the iterated logarithm.

As with other beautiful and useful areas of mathematics, probabil-
ity has in practice only a limited place in even secondary school in-
struction. Because the fundamentals of probability are mathematically
rather simple, it is easy to overlook the extent to which the concepts of
probability conflict with intuitive ideas that are firmly set and difficult
to dislodge by the time students reach secondary school. Misconcep-
tions often persist even when students can answer typical test questions
correctly. The conceptual difficulty of probability ideas is affirmed by
both the experience of teachers and by research.5.21

1 2S
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Guided experience with randomness in earlier years i an important
prerequisite to successful teaching of formal probability. It is no ac-
cident that mathematical probability originated in the study of games
of chance, one of the few settings in which simple random phenomena
are observed often enough to display clear long-term patterns. Teach-
ing can attempt to recapitulate this historical development by recording
data from chance devices and later from random sampling and com-
puter simulations. But no matter whether such experience occurs early

or late in a student's development, it takes significant time to gain ap-
propriate insight into the behavior of random events.

Basics

The first steps toward mathematical probability take place in the con-
text of data from chance devices in the early grades. Learn to look at the

overall pattern and not attempt a causal explanation of each outcome
("She didn't push the spinner very hard"). This abstraction is made
easier because looking for the overall pattern of data is one of the core
strategies of data analysis.

Next recognize that, although counts of outcomes increase with added
trials, the proportions (or relative frequencies) of trials on which each
outcome occurs stabilize in the long run. Probabilities are the mathe-
matical idealization of these stable long-term relative frequencies. As
students learn the mathematics of proportions, study of probability can
begin with assignments of probabilities to finite sets of outcomes and
comparison of observed proportions to these probabi!ities.

Comparison of outcomes to probabilities can be frustrating if not
carefully planned. Computer simulation is very helpful in providing
the large number of trials required if observed relative frequencies are
to be reliably close to probabilities. In short sequences of trials, the
deviations of observed results from probabilities will often seem large
to students. Psychologists20 have noted our tendency to believe that the
regularity described by probability applies even to short sequences of
random outcomes. This belief in an incorrect law of small numbers"
explains the behavior of gamblers who see a run of winning throws with
dice as evidence that the player is "hot," a causal explanaton offered
because we greatly underestimate the probability of runs in random
sequences.

Ask several people to write down a sequence of heads and
tails that imitates 10 tosses of a balanced coin. How long was
the longest run of consecutive heads or consecutive tails? Most
people will write a sequence with no runs of more than two
consecutive heads or tails. But in fact the probability of a run
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of three or more heads in 10 independent tosses ofa fair coin is
0.508, and the probability of either a run of at least three heads
or a run of at least three tails is greater than 0.8.

Probability calculations involving runs are quite difficultthis is a
good area for computer simulation. The runs of consecutive heads or
consecutive tails that appear in real coin tossing (and are predicted by
probability theory) seem surprising to us. Since we don't expect to see
long runs, we may conclude that the coin tosses are not independent 01
that some influence is disturbing the random behavior of the coin.

The same misconception appears on the basketball court. If a player
makes several consecutive shots, both fans and teammates believ:.: that
he or she has a "hot hand" and is more likely to make the next shot.
Yet examination of shooting data22 shows that runs of baskets made or
missed are no more frequent than would be expected in a sequence of
independent random trials. Shooting a basketball is like throwing dice.
though of course the probability of making a shot vanes from player
to player. As these examples suggest, even the idea of probability as
long-term relative frequency is quite sophisticated and needs careful
empirical backing.

Somewhat later a thorough understanding of prorortions motivates
the mathematical model for probability: a sample space (set of all pos-
sible outcomes) and an assignment of probability satisfying a few basic
laws or axioms that include the addition rule P(.4 or B) = P(A) + P(B)
for disjoint events. Further additive laws for simple combinations of
events can be derived from these or, more simply, motivated directly
from the behavior of proportions. These additive laws are the mathe-
matical content of elementary probability.

At this point in the development of mathematical probability, let
us pause for some nonnumerical exercises that apply probability laws
along with another aspect of mathematical thinking that is not natu-
ral in students: careful and literal reading of logical statements. Psy-
chologists studying probability concepts offer many exercises that reveal
misconceptions and can help to correct them. For example, Tversky
and Kahneman2i presented college students with a personality sketch
of a young woman and then asked which of these statements wets more
probable:

Linda is a bank teller.
Linda is a bank teller and is active in the feminist movement.

About 85% of the students chose the second statement, even though
this event is a subset of the first. This error persisted despite various
attempts at alternative presentations that might make the issue more
transparent. The subjects had not studied probability. "Only" 36% of

1 3 o
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social science graduate students with several statistics courses to their
credit gave the wrong answer in a similar trial. There is thus some
hope that study helps us recognize the relevance of mathematical facts
about probability in everyday thinking. Nisbett et al.17 report before-
and-after comparisons that provide stronger evidence of the effect of
formal study. Emphasis on the conceptual and qualitative aspects of
probabilistic thinking, both prior to and in company with study of the
mathematics of probability, is most worthwhile.

Further Study

The development of substantial applicable skills, as opposed to a basic
conceptual grasp of probability, requires more detailed study. At this
point we leave the core domain of mathematical concepts to which all
students should be exposed. There are several logical paths into inter-
mediate probability. The choice of material will depend, for example.
on whether probability will be pursued as an important topic in its own
right or whether it is intended primarily to lead to statistical inference.

First, a negative recommendation: do not dwell on combinatorial
methods for calculating probabilities in finite sample spaces. Combi-
natorics is a differentand hardersubject than probability. Students
at all levels find combinatorial problems confusing and difficult. The
study of combinatorics does not advance a conceptual understanding of
chance and yields less return than other topics in developing the ability
to use probabiiity modeling. In most cases all but the simplest counting
problems should be avoided.

A more fruitful step forward from the basics of probability is to con-
sider conditional probability, independence, and multiplication rules.
Knowledge of the occurrence of an event A often modifies the probabil-
ity assigned to another event B. For example, knowing that a randomly
selected university professor is female reduces the probability that the
professor's field is mathematics. The conditional probability of B given
A. denoted by P( BO), need not be equal to P(B) ; if the two are equal,
events A and B are independent. These notions involve both new ideas
and basic skills that are invaluable in constructing probability models
in the natural and social sciences.

It is quite possible to present the idea of independence and the mul-
tiplication rule P(A and B) = P(A)P(B) for independent events with
little if any attention to conditional probability in general. nis path
is attractive if the goal is to reach statistical inference most efficiently
and also avoids the considerable conceptual difficulties associated with
conditional probability. The binomial distributions for the count of suc-
cesses in a fixed number of independent trials are quickly within reach.
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as are other interesting applications such as reliability of complex sys-
tems.

If conditional probability is avoided, stress the qualitative meaning of
independence and the danger of casually assuming that independence
holds. The essay by Kruskal9 contains examples and reflections on the
casual assumption of independence, with emphasis on "independent"
testimony to alleged miracles. Topics related to independence, to bino-
mial distributions, and to the multiplication rule for independent events
should be staples of upper-grade secondary mathematics.

A careful study of conditional probability is attractive when the goal
is to enable students to construct and use mathematical descriptions
of processes at a moderately advanced level. Modeling of multistage
processes that are not deterministic requires conditional probabilities.
To give only a single example, the issue of false positives in testing for
rare conditions applies conditional probability to questions as current
as testing for drugs, the use of !ie detectors, and screening for AIDS
antibodies. Here is an example based on a recent report.° where a
detailed statistical analysis can be found:

The EL1SA test was introduced in the mid-1980s to screen
donated blood for the presence of AIDS antibodies. When an-
tibodies are present, ELISA is positive with a probability of
about 0.98; when the blood tested is not contaminated with an-
tibodies, the test gives a positive result with a probability of
about 0.07. These numbers are conditional probabilities. If one
in a thousand of the units of blood screened by ELISA contain
AIDS antibodies, then 98.6% of all positive responses will be
false positives.

The calculation of the prevalence of false positives among ELBA
blood screening tests for AIDS antibodies can be carried out with a
simple tree diagram such as that displayed in Figure 7. Students armed
with an understanding of conditional probability and tree diagrams can
easily program computer simulation of processes too complex to study
analytically.

Conditional probability brings a new set of conceptual difficulties that.
like those in the early study of probability, can be easily and unwisely
overlooked if instruction is overly directed at teaching definitions and
rules. Students find the distinctions among P(AIB), P(BIA), and P(
and B) hard to grasp. Display a photograph of an attractive and well-
dressed woman and ask the probability that she is a fashion model. The
answers show that the question is interpreted as asking the conditional
probability that a woman knovn to be a fashion model is attractive
and well dressed. That is, respondents confuse P(AIB) and P(B1A).
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he carried out in a tree diagram m uhich the appropriate conditional probabilmes are
multiphed along each branch.

Qualitative exercises in identifying the information that is known and
the event B whose probability is wanted are an essential preliminary to
formal work with P(.81,4).

Transition to Inference

Random sampling and experimenta: randomization provide experi-
ence with randomness that motivates not only the study of probability
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but also the reasoning of probability-based inference. Repeated sam-
pling or repeated experimental randomization dead), produces variable
results. This variation is random in the technical sense, rather than
haphazard, because the design uses an explicit chance mechanism. So
an opinion poll's conclusion that 61% of all American adults want a
national health insurance system requires a margin of error that re-
flects the probable degree of random variation in similar sample surveys.
Similarly, the conclusion that a new medical treatment outperforms a
standard treatment can be sustained only if the margin of superiority
exceeds the probable random variation in similar experiments.

The random outcomes observed from data production are statistics
such as sample proportions and sample means. Sample statistics are
random variables (random phenomena having numerical values). The
regular long-term behavior of such statistics in repeated sampling or
repeated experimental randomization is described by a sampling dis-
tribution. It is usual to view sampling distributions as probability dis-
tributions of random variables. Random variables, their distributions.
and their moments make up another block of material in intermediate
probability.

Proportions involve the distribution of a count, which is binomial
under slightly idealized assumptions. Sample means have a normal dis-
tribution if the population distribution is ilormal. General rules for
manipulating means and variances of random variables apply to sam-
ple proportions and means. In particular, the standard deviations of
sample proportions and means both decrease at the rate 1/iii as the
sample size n increases, a fact that leads to an understanding of the
advantages of larger samples.

What happens as the number n of observations grows without bound?
The major limit theorems cf probability address this question. The law
of large numbers says that sample proportions and means approach (in
various senses) the corresponding proportions and means in the under-
lying population. The central limit theorem says that both proportions
and means become approximately normally distributed as the sample
size grows.

Figure 8 illustrates the central limit theorem in graphical form. It
begins with the distribution of a single observation that is right skewed
and far from normal. Distributions of this form are often used to de-
scribe the lifetime in service of parts that do not wear out. The mean of
this particular distribution is I. The other curves in the figure show the
distribution of the mean of samples of size 2 and of size 10 drawn
from the original distribution. The characteristic normal shape is al-
ready starting to emerge when only 10 observations are averaged. A
computer simulation could show the effect even more dramatically.

4
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FIGURE 8. The central limit theorem
in action: the distribution of means of
samples drawn from a skewed distribu-
tion (a) displays a progression toward ine
normal distnbution as the sample size
increases from 2 (bi to 10 (ci.

This is a substantial body of material that is quite forbidding if for-
mally presented. Traditional college instruction in statistics insists that a
substantial dose of probabilityat least topics on independence and on
iandom variablesprecede the study of inference. Some understanding
of independence and of distributions with their means and standard de-
viations is certainly needed. But the degree of mathematical formalism
with which these topics are traoitionally taught is generally unnecessary
at the college level and out of the question in secondary school. Both
the length and the difficulty of the path to statistics via formal proba-
bility argue against this traditional approach. As Garfield and Ahlgren
conclude,5
...Teaching a conceptual grasp of probabihty still appears to be a very difficult
task, fraught with ambiguity and illusion. Accordingly, we make the pragmatic
recommendation for two research efforts that would proceed in parallel: one
that continues to explore means to induce valid conceptions of probability.
and one that explores how useful ideas of statistical inference can be taught
independently of technically correct probability.

Fortunately, the empirical emphasis of data analysis. developed grad-
ually beginning in the early grades, offers a setting for teaching both ba-
sic probability and elementary inference. Simulation, first physical and
then using software, can demonstrate the essential concepts of probabil-
ity and is particularly suited to displaying sampling distributions. Only
quite informal probability is needed to think about sampling distribu-
tions. As the earlier discussion of normal distributions indicated, data
description provides an adequate context for distributions as idealized
mathematical models for variation. The core mathematics curriculum
taught to all students should include data analysis and an empirical
introduction to only basic probability concepts and laws at about the
level of the Quantitative Literacy materia1.15
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INFERENCE

Statistics is concerned with the gath._ring, organization. and analysis
of data and with inferences from data to the underlying reality. "Infer-
ence from data to reality" is a knotty wpic indeed, with much room for
disagreements of a philosophical nature. It is not surprising that statis-
ticians disagree on the most fruitful approach to inference. Barnett2
gives a comparative overview of the competing positions.

Bayesian or Classical?

The most important philosophical divide separates Bayesian infer-
ence from classical inference. Some understanding of the distinction
is essential to wise curriculum decisions. The question of inference in
simplest form is how to draw conclusions about a population parameter
on the basis of statistics calculated from a sample. A parameter is a
number that describes the population, such as the mean height p of all
American women age 18 to 22. A relevant statistic in this case is the
sample mean height X of a random sample of young women, For pur-
poses of inference we imagine how 17 would vary in repeated samples
from the same population. The sampling distribution of the statistic
describes this variation. The sampling distribution reflects the underly-
ing parameterin this case p is the mean of the distribution of It is
because the sampling distribution depends on the unknown parameter
that the statistic carries information about the parameter.

Classical inference is rooted in the concept of probability as long-term
regularity and in the corresponding idea that the conclusions of infer-
ence are expressed in terms of what would happen in repeated data
production. To say that we are "95% confident that p lies betwem 64.5
and 64.7 inches" is shorthand for "We got this interval by a method
that is correct in 95% of all possibk samples." Probability statements
in classical inference apply to the method rather than to the specific con-
clusion at handindeed, probability statements about a specific conclu-
sion make no sense because the population parameter is fixed, though
unknown.

The Bayesian approach wishes to bring prior information about the
value of the parameter into play. This is done by regarding the
parameter p as a random quantity with a known probability distribu-
tion that expresses our imprecise information about its value. The mean
height p of all American young women is not random in the traditional
sense. But it is uncertain. I am quite sure that p lies between 54 inches
and 72 inches, and I think it more likely that p lies near the center of
this range. My subjective assessment of uncertainty can be expressed in
a probability distribution for p.

(.;
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In the Bayesian view the concept of probability is expanded to include
such personal or subjective probabilities. What is new here is not the
mathematics, which remains the same, but the iliterpretation of proba-
bility as representing a subjective assessment of uncertainty rather than
a long-run relative frequen0. The sampling distribution of the statisiic
X" is now understood to state conditional probabilities of the values of :V
given a value for p. A calculation then combines the prior information
with the observed data to obtain the conditional distribution of p given
the data. (The discrete form of this calculation uses a simple result
about conditional probabilities known as Bayes' theorem, from which
the Bayesian school takes its rame.) The conclusions of inference are
expressed in terms of probability statements about the unknown param-
eter itself: the probability is 95% that the true mean lies between 64.5
and 64.7 inches.

The Bayesian conclusion is certainly easier to grasp than the classical
statement. Moreover, prior information is important in many problems.
Statisticians generally agree that Bayesian methods should be used when
the prior probability distribution of the parameter is ki awn. What is
disputed is whether usable prior distributions are always available, as
Bayesians contend. Non-Bayesian statisticians do not think that my sub-
jective assessment is always useful information and so are not willing to
make general use of subjective prior distributions. The apparently clear
conclusion of a Bayesian analysis can depend strongly on assumptions
about the prior distribution that cannot be checked frem the data.

Fo: introductory instruction about inference, Bayesian methods have
several disadvantages. They require a firm grasp of conditional prob-
ability. Indeed, students must understand the distinction between the
conditional distribution of the statistic given the parameter and the con-
ditional distribution of the parameter given the actually observed value
of the statistic. This is fatally subtle. The subjective interpretation of
probability is quite natural, but it diverts attention from randomness
and chance as observed phenomena in the world whose patterns can
be described mathematically. An understanding of the behavior of ran-
dom phenomena is an important goal of teaching about data and chance:
probability understood as personal assessment of uncertainty is at best
irrelevant to achieving this goal. The line from data analysis through
randomized designs for data production and probability to inference is
clearer when classical inference is the goal.

Two types of inference, confidence intervals and significance tests, fig-
ure in introductory instruction in classical s!atistical inference. The rea-
soning behind both types of inference can be introduced informally in
discussions about data. Formal treatment and specific methods should

".
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be reserved for upper-grade secondary courses in probability and statis-
tics, and no attempt snould be made to present more than a few specific
procedures. Particularly in the case of significance tests, a formal ap-
proach obscures the reasoning to such an extent that it may bc better to
avoid hypotheses and test statistics altogether.

Confidence Intervals

The reasoning behind confidence statements is relatively straightfor-
ward. What is more, news reports of opinion polls and their margins
of error provide a steady supply of examples for discussion. How is it
that a sample of only 1500 people can accurately represent the opinion
of 185 million American adults? Random sampling provides a part of
the explanation; sampling distributions provide the rest, and confidence
intervals explain what the margin of error means.

Confidence statements can be introduced after students have some
experience with simulation of sampling distributions. The distinction
betw....ri population and sample, the idea of random sampling, and the
notion of a sampling distribution are fundamental to inference. Sim-
ulation allows the gradual introduction of confidence intervals during
the exploration of sampling and sampling distributions. The ideas of
confidence intervals can be taught via graphical display of simulated
samplesi° A more formal approach requires familiarity with normal
distributions.

Suppose that in a large county 30% of high school students drive cars
to school. Asking a simple random sample of 250 students whether they
drove to school today produces 250 independent observations, each with
probability 0.3 of being -yes." The proportion fi of "yes" responses in
the sample varies from sample to sample. Simulate (say) 1000 samples
and display the sampling distribution of /5. It is approximately normal.
with mean 0.3 and standard deviation 0.029. Repeated simulations
of samples of various sizes from this population demonstrate that the
center of the sampling distribution remains at 0.3 and that the spread
is controlled by the size of the sample. In large samples (about 1000 or
so) the values of the sample statistic 13 are tightly concentrated around
the population parameter p = 0.3. Students can see empirically that
samples of this size allow good guesses about the entire population.

But just how good are guesses based on a sample? We can quantify the
answer by describing how the statistic f) varies in repeated sampling. It is
a basic fact of normal distributions that about 95% of all observations
lie within two standard deviations on either side of the mean. So in
repeated sampling, 95% of all samples of 250 students give a sample

3 4 3
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proportion .13 within about 0.06 of the true proportion 0.3 who drive to
school. The simulation shows that this is so.

Now suppose that a sample of 250 students in another large county
finds 105 who drive to school. We guess that the true proportion p of
all students in this county who drive to school is close to 13 = 105/250 =
0.42. 11 (as is true) the variability is about the same as in the county
we simulated, /3 lies within ±0.06 of p in 95% of all samples. We say
we are 95% confident that the unknown population proportion p lies ,n
the interval 0.42 ± 0.06. More generally, the interval fi ± 0.06 is a 95%
confidence interval for the unknown p.

Figure 9 illustrates the behavior of a confidence interval in repeated
samples. As iepeated samples of size 250 are drawn, some of the inter-
vals 15 ± 0.06 cover the true proportion of I,. while others do not. But in
the long run, 95% of all samples produce an interval covering the true
p. That is, the probability that the random interval 15 ± 0.06 contains
p is 0.95. As is generally the case in classical inference, this probability
refers to the performance of the method in an indefinitely large number
of repeate,. samples.

The first portion of the argument above belongs to the study of sam-
pling and simulation and is essentially an empirical demonstration of
the surprising trustworthiness of samples that seem small relative to
the size of the population. The facts that emerge from such sampling
demonstrations are much more important than the formal dress we give
them in the second stage of the argument. The second stage belongs to
a more advanced study of inference. The qualitative conclusion that
most sample results lie close to the truth is made quantitative by giving
an interval and a level of confidence. The nature of this conclusion and
its limitations both need emphasis.

What are the grounds of our confidence sta:_inent? There are only
two possibilities.

I. The interval 0.42 ± 0.06 contains the true population proportion
p.

2. Our simple random sample was one of the few samples for which
13 is not within 0.06 points of the true p. Only 5% of all samples
give such inaccurate results.

We cannot know whether our sample is one of the 95% for which the
interval catches p or one of the unlucky 5%. The statement that we are
95% confident that the unknown p lies in 0.42 ± 0 06 is shorthand for
"We got these numbers by a method that gives correct results 95% of
the time."

As for the limitations on this reasoning, remember that the margin
of error in a confidence interval includes only random sampling error.
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In practice there are other sources of error that are not accounted for.
For example. national opinion polls are usually conducted by telephone
using equipment that dials residential telephone numbers at random.
Telephone surveys omit households without phones. Moreover, poll-
sters often find that as many as 70% of the persons who answer the
phone are women. Men will be underrepresented in the sample un-
less steps are taken to contact males. These Picts of real statistical life
introduce some bias into opinion polls and other sample surveys.

Significance Tests

The purpose of a confidence interval is to estimate a population pa-
rameter and to accompany the estimate with an indication of the un-
certainty due to chance variation in the data. Significance tests do not
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provide an estimate of an unknown parameter, but only an assessment
of whether an effect or difference is present in the population. The mere
recognition that such an assessment is needed, that not all observed out-
comes signify a real underlying cause, already shows statistical sophis-
tication. Judges of science fair displays who talk to the able students
who have prepared them find that any effect in the desired direction,
however small, is regarded as convincing. The role of chance variation
is not recognized.

Statistical significance is a way of answering the question "Is the ob-
served effect larger than can reasonably be attributed to chance alone?"
Here is the reasoning of significance tests presented informally in the
setting of an important example:

During the Vietnam era, Congress decided that young men
should be chosen at random for service in the army. The first
draft lottery was held in 1970. Birth dates were drawn in ran-
dom order and men were drafted in the order in which their
birth dates were selected. After the drawing, news organiza-
tions claimed that men born late in the year were more likely
to get low draft numbers and so to be inducted. Data analysis
(Figure 10) does suggest an association between birth date and
draft number. A statistic that measures the strength of the as-
sociation between draft number (1 to 366) and birth date ( to
366 beginning with January 1) is the correlation coefficiem In
fact, r = 0.226 for the 1970 lottery. Is this good evidence that
the lottery was not truly random?

A significance test approaches the issue by asking a probability ques-
tion: Suppose for the sake of argument that the lottery were truly ran-
dom; what is the probability that a random lottery would produce an r
at least as far from 0 as the observed r = 0.226? Answer: The proba-
bility that a random lottery will produce an r this far from 0 is less than
0.001. conclusion: Since an r as far from 0 as that observed in 1970
would almost never occur in a random lottery, we have strong evidence
that the 1970 lottery was not random.

Figure 10 displays the scatterplot of draft numbers assigned to each
birth date by the 1970 draft lottery. It is difficult to see any systematic
association between birth date and lottery number in the scatterplot.
Clever graphics can emphasize the association, as in the figure. But a
probability calculation is needed to learn whether the observed associa-
tion is larger than can reasonably be attributed to chance alone.

In a random assignment of draft numbers to birth dates, we would
expect the correlation to be close to 0. The observed correlation for the
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FIGURE 10. Data from the 1970 draft lottery reveal a slight
negative correlation. with birth dates near the end of the year most
likely to have low draft numbers. The trend can be seen more
readily by plotting the median draft numbers for each month.
The plot of monthly' medians connected by line segments to
display the trend, called a median truce, is a .ommon tool used
to highlight patterns in scatterplots of a response variable against
an explanatory variable.
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1970 lottery was r = -0.226. showing that men born later in the :ear
tended to get lower draft numbers. Common senst: a:one cannot decide
if r = -0.226 means that the lottery was not random. After all, the
correlation in a random lottery will almost never be exactly 0. Perhaps
that r = -0.226 is within the range of values that could plausibly occur
due to chance variation alone.

To resolve this uncertainty we compare the &nerved -0.226 to a ref-
erence distribution, the sampling distribution of r in a truly random
lottery. We find that a truly random lottery would almost never pro-
duce an r as far from zero as the r observed in 1970. The probability
calculation tells us what common sense could notthat r -0.226 is
a large effect, a surprising effect in a random lottery. This convinces us
that the 1970 lottery was biased. Investigation disclosed that the cap-
sules containing the birth dates had been filled a month at a time and
not adequately mixed. Later dates remained near the top and tended

4
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to be drawn earlier. (Fienberg4 gives more detail about the 1970 draft
lottery, including extensive statistical analysis of the outcome.)

Questions like "Is this a large outcome?" or "Is this a surprising re-
sult?" come up often in analyzing data. It is quite natural to give an
answer by comparing the individual outcome to a reference distribu-
tion, as we informally compare the birth weight of a child to the dis-
tribution of birth weights of all children. Students should certainly be
encouraged to recognize the role of chance variation and to assess "sig-
nificance" informally by comparing an individual outcome to a suitable
reference distribution. If probability and computer simulation are be-
ing developed, the comparison can be put in the language of probability
and sampling distributions. But formal "tests of hypotheses" need not
appear in the school curriculum.

There are several reasons for this. The mecnanics of stating hy-
potheses, calculating a test statistic, and comparing with tabled values
effectively conceal the reasoning of significance tests. The reasoning it-
self is somewhat difficult and full of subtleties. Effective examples of
the use of significance tests are more removed from everyday experience
than opinion polls and similar examples of confidence statements. An
understanding of data and chance, and the development of quantitative
reasoning in general better served by concluding the study of statis-
tics in the schools with probability, sampling distributions, coniidence
intervals, and a continuing emphasis on using these tools in reasoning
about uncertain data.

STATISTICAL TH IN KI NG

Statistics and probability are the sciences that deal with uncertainty.
with variation in natural and man-made processes of every kind. As
such they are more than simply a part of the mathematics curriculum,
although they fit well in that setting. Probability is a field within math-
ematics. Statistics, like physics or economics, is an independent disci-
pline that makes heavy and essential use of mathematics.

Statistics has some claim to being a fundamental method of inquiry,
a general %way of thinking that is more important than any of the spe-
cific facts or techniques that make up the discipline. If the purpose
of education is to develop broad intellectual skills, statistics merits an
essential place in teaching and learning. Education should introduce
students to literary and historical methods; to the political and social
analysis of human societies; to the probing of nature by experimental
science; and to the power of abstraction and deduction in mathematics.
Reasoning from uncertain empirical data is a similarly powerful and
pervasive intellectual method.
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This is not to say that detailed instruction in specific statistical meth-
ods for their own sake should be prominent in the school curriculum.
Indeed, they should not. But statistical thinking, broadly understood.
should be part of the mental equipment of every educated person. We
can summarize the core elements of statistical thinking as follows:

I. The omnipresence of variation in processes. Individuals are vari-
able; repeated measurements on the same individual are variable.
The domain of a strict determinism in nature and in human af-
fairs is quite circumscribed.

2. The need for data about processes. Statistics is steadfastly empir-
ical rather than speculative. Looking at the data has first priority.

3. The design of data production with variation in mind. Aware
of sources of uncontrolled variation, we avoid self-selected sam-
ples and insist on comparison in experimental studies. And we
introduce planned variation into data production by use of ran-
domization.

4. The quantification of variation. Random variation is described
mathematically by probability.

S. The explanation of variation. Statistical analysis seeks the sys-
tematic effects behind the random variability of individuals and
measurements.

Statistical thinking is not recondite or removed from everyday expe-
rience. But it will not be developed in children if it is not present in
the curriculum. Students who begin their education with spelling and
multiplication expect the world to be deterministic; they learn quickly
to expect one answer to be right and others wrong, at least when the
answers take numerical form. Variation is unexpected and uncomfort-
able. Listen to Arthur Nielsen16 describing the experience of his market
research firm with sophisticated marketing managers:

...Too many business people assign equal validity to all numbers printed on
paper. They accept numbers as representing Truth and find it difficult to work
with the concept of probability. They do not see a number as a kind of shorthand
for a range that describes our actual knowledge of the underlying condition. For
example. the Nielsen Company supplies to manufacturers estimates of sales
through retail stores. ... I once decided that we would thaw all charts to show
a probable range around the number reported: for example. sales are either up
3 percent or down 3 percent or somewhere in between. This turned out to
be one of my dumber ideas. Our clients just couldn't work with this type of
uncertainty. They act as if the number reported is gospel.

The ability to deal intelligently with variation and ur ertainty is the
goal of instruction about data and chance. There is some evidence
that instruction actually improves this ability. Nisbett et al." describe

1 4
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research on teaching various kinds of reasoning. They note that in-
struction in probability and statistics increases the willingness to con-
sider chance variation even when the instruction is of a traditional kind
that makes no attempt to apply probabilistic reasoning in unstructured
settings. Here is a typical example:

[Subjects were asked] to explain why a traveling saleswoman is typically dis-
appointed on repeat visits to a restaurant where she expesienced a truly out-
standing meal on her first visit. Subjects who had no background in statistics
almost always answered this problem with exclusively nonstatistical, causal an-
swers such as "maybe the chefs change a lot" or "her expectations were so high
that the food couldn't live up to them." Subjects whc, had taken one statistics
course gave answers that included statistical considerations, such as "very few
restaurants have only excellent meals. odds are she wi.s just lucky the first time,"
about 20 percent of the time.

Nisbett and his colleagues find it striking that instruction of a quite ab-
stract kind does have an effect on thinking about everyday occurrences.
The effect is stronger when instruction points out the applicability of
statistical ideas in everyday life, as school instruction should certainly
do. This is evidence that we are in fact dealing with a fimdamentat
and generally applicable intellectual skill. Nisbett also reports research
showing that training in deterministic disciplines, even at the graduate
level, does not similarly improve everyday statistical reasoning. This is
evidence that we are dealing witl; an independent intellect ual method.

Why teach about data and chance? Statistics and probability are use-
ful in practice. Data analysis in particular helps the learning of basic
mathematics. But, most important, it is because statistical thinking is
an independent and fundamental intellectual method that it deserves
attention in the school curriculum.
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MARJORIE SENECHAL

INTRODUCTION

We encounter patterns all the time. every day: in the spoken and
written word, in musical forms and video images. in ornamental design
and natural geometry, in traffic patterns, and in objects we build. Our
ability to recognize, interpret, and create patterns is the key to dealing
with the world around us.

Shapes are patterns. Some shapes are visual, evident to everyone:
houses, snowflakes, cloverleafs, knots, crystals, shadows, plants. Others.
like eight-dimensional kaleidoscopes or four-dimensional manifolds, are
highly abstract and accessible to very few.

"The increasing popularity of puzzles and games based on the in-
terplay of shapes and positions illustrates the attraction that geometric
forms and their relations hold for many people." observed geometer
Branko Gritnbaum. -Patterns are evident in the simple repetition of a
sound, a motion, or a geometric figure, as in the intricate assemblies of
molecules into crystals, of cells into higher forms of life, or in count-
, ss other examples of organizational hierarchies. Geometric patterns
can serve as relatively simple models of many kinds of phenomena, and
their study is possible and desirable at all levels."

But despite their fundamental importance, students learn very little
about shapes in school. The study of shape has historically been sub-
sumed under geometry (literally "earth measurement"), which for a long
time has been dominated by postulates, axioms, and theorems of Euclid.

139
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Just as Shakespeare is not sufficient for literature and Copernicus is
not sufficient for astronomy, so Euclid is not sufficient for geometry.
Like scholars in all times and places, Euclid wrote about the concepts
of geometry that he knew and that he could treat with the methods
available to him. Thus he did not write about the geometry of maps.
networks, or flexible forms, all of which are of central importance today.

Shape is a vital, growing, and fascinating theme in mathematics with
deep ties to classical geometry but goes far beyond it in content, mean-
ing, and method. Properly developed, the study of shape can form a
central component of mathematics education, a component that draws
on and contributes to not only mathematics but also the sciences and
the arts.

Like many other important concepts. "shape" is an undefinable term.
We cannot say precisely what "shape" means, partly because new kinds
of shapes are always being discovered. We assume we know what shapes
are, more or less: we know one when we see one, whether we see it with
our eyes or in our imaginations.

But we know much more than this. We know that shapes may be alike
in some ways and different in others. A football is not a basketball, but
both arc smooth closed surfaces; a triangle is not a square, but both are
polygons. We know that shapes may have different properties: a triangle
made of straws is rigid, but a square made of straws is not. We know
that shapes can change and yet be in so hm. way the same: our shadows
are always our shadows. though they change in size and contour
throughout the day.

In the study of shape, our goals are not so very different from those of
the ancient Greek philosophers: to discover similarities and differences
among objects, to analyze the components of form. and to recognize
shape- in different representations. Classification, analysis, and repre-
sentation are our three principal tools. Of course, these tools are closely
interrelated, so distinctions among them are to some extent artificial. Is
symmetry a tool for classifying patterns or a tool for analyzing them?
In fact, it is both. Nevertheless, it is helpful to discuss each of these
tools separately.

CLASSIFICATION

One of the great achievements of ancient mathematics was the discov-
ery that there are exactly five convex, three-dimensional shapes whose
surfaces are composed of regular polygons, with the same number of
polygons meeting at each corner. These shapes, known as the regular
polyhedra, are shown in Figure 1. This discovery so excited the imag-
ination of the ancients that Plato made these shapes the cornerstone
of his theory of matter (see his dialogue Tirnaeus), and Euclid devoted
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FIGURE I. The five regular polyhedra. Each is composed of a single type of regular
polygon, with the same number of polygons meeting at each corner. The tetrahedron.
octahedron. and icosahedron are made of triangles. the cube is made of squares. and the
dodecahedron is made of pentagons.

much of Book XIII of his Elements to their construction. They have
lost none of their fascination today.

It is easy today to underestimate the significance of the discovery of
the regular polyhedra. In its time it was a major feat of mathematical
imagination. In the first place. in order to count the number of ob-
jects of a certain kind you have to be aware that they are "of a certain
kind." That is. you must recognize that these objects have properties
that distinguish them from other objects and be able to characterize
their distinguishing features in an unambiguous way. Second. you must
be able to use these criteria to find out precisely which objects satisfy
them. No one knows just how the ancients made their discovery, but it
is easy for young children today. especially if they have regular polygons
to play with, to convince themselves that the list of regular polyhedra is
complete (Figure 2).

The key ingredients of mathematical classification were already in use
thousands of years ago: characterizing a class of objects and enumerat-
ing the objects in that class. What has changed throughout the centuries.
and will continue to change. are the kinds of characterizations that seem
important to us and the methods that we use for enumeration. Figure
3 shows several classes of objects that can be grouped together from
a mathematical point of view. Examples such as these can stimulate
student discussion: What properties characterize each class? Are there
different ways to classify these objects? What other objects belong to
these classes? We mention here a few of the classification schemes that
have proved effective in many applications.

Congruence and similarity. Two objects are congruent if they are ex-
actly alike down to the last detail, except for their position in space.
Cans of tomato soup (of the same brand) in a grocery store, square tiles
on a floor, and hexagons in a quilt pattern are all familiar examples
of congruent figures. Two objects are similar if they differ only in po-
sition and scale. Similarity seems to be a very fundamental concept.
Preschoolers understand that miniature animals, doll clothes, and play
houses are all small versions of familiar things. The fact that even such
young children know what these tiny objects are supposed to rel.eesent

1 4 ;0
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FIGURE 2, There are only five regular polyhedra because there are only five arrange-

ments of congruent. regular polygons about a point that can he folded up to make a convex

Polygonal vertex, Here we see the five arrangements. together with their completion as

patterns that can be folded up to make the entue polyhedron

shows that they intuitively understand change of scale. Building and

taking apart scale models of towers, bridges. houses. shapes of any kind

give the childof any agea firm grasp of this idea.
Symmetry and self-similarity. A square is symmetrical: if you rotate

it 900, 1800, 2700. or 3600 about its center. it appears unchanged. Also.

it has four lines of mirror symmetry across which you can reflect it onto

itself (Figure 4). It is easy to think of other objects that have the same

symmetries, or self-congruences, as the square: the Red Cross symbol,

a bracelet with four equally spaced beads, a circle of four dancers, and

a four-leaf clover (without its stem) are a few examples. Symmetry
classifies objects according to the arrangement of their constituent parts.

:1 5
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FIGURE 3. Examples of solid objects grouped into useful classes.

What do the shapes in each class have in common?

143

This can be rather subtle: for example. the two polyhedra in Figure 3b
have the same symmetries.

Just as congruence leads to symmetry (which is just another name
for self-congruence), so similarity extends naturally to self-similanty.
"The basic fact of aesthetic experience," according to art hivorian E.H.
Gombrich,9 "is that delight lies somewhere between boredom and con-
fusion." Perhaps this is one of the reasons why fractals and other self-
similar figures are generating so much excitement.

"Beauty is truth, truth beauty," wrote the poet John Keats. Self-
similarity has recently been recognized as a profound concept in nature.
The awarding of a Nobel prize for the formulation of "renormalization
groups" and the current worldwide cross-disciplinary interest in chaos
theory indicate the profound implications of similarity and scale for
science and mathematics. The study of scaling has stimulated (and been
stimulated by) the study of fractals and other self-similar geometrical
forms.

Combinatorial properties. Congruence and similarity are metric con-
cepts: they can be altered by changing lengths or angles. But some other

FIGURE 4. If a square is rotated
40°. 180°. 270°, or 3600 about its
center, it appears unchanged. Also,
it has four lines of mirror symmetry
across which you can reflect it onto

.151
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FIGURE S. In torus tic-tac-toe the opposite sides lf the board are identifiedthat is.
considered to be the same. It is as if the board were rolled into a cylinder, which was
then bent arot nd to form an inner-tube shape that mathematicians call a torus. Can you
tell which of these positions are quivalent in the torus-shaped game?

properties of shapes remain intact under such transformations. For
example, the numbers of edges and vertices of a polygon are not altered
if we stretch or bend the polygon. Thus the three hexagons of Figure 7
are all hexagons, even though they are neither congruent nor similar: a
hexagon is any closed loop made of six line segments. Being a hexagon
is a combinatorial property of a polygon.

Roughly speaking. the combinatorial properties of a shape are the
things we con count and the way they are fitted together. Thus from
the combinatorial point of view, the shapes in Figure 3a 'Are equiva-
lent, since each has 6 faces, 8 vertices, and 12 edges connected to each
other in the same way. Network problems often involve combinatorial
problems. For example, if we want to design a linking system for the
computers in a building, we are concerned first with finding the possible
arrangements of links and nodes that can provide the connections we
want, and only then need we consider how long the cables will have to
be.

Topology. Topological equivalence is even more general than combi-
natorial equivalence. From the standpoint of topology, all polygons are
lows and all convex polyhedra are alike. Piaget argued that topological
concepts occur prior to metric ones in child development; a child may
recognize a loop before distinguishing among kinds of loops, such as
circles and triangles. Being a loop, as opposed to a knot, is a topological
property of shape.

Topology in school is often described as "rubber sheet geometry." It
yields many excellent exanii;!t..s that can enlarge a child's concept of
the flexibility of shane. In rubber sheet geometry, the shapes of Figure
3c are indistinguisnable because each can be deformed into the other.
Knots, of the boy and girl scout variety, are an excellent subject for
hands-on study.I2 Children can learn to play tic-tac-toe or. a torus and
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other delightful games that require geometrical mental gynmastics (Fig-
ure 5).

With complexity of structure, topological classification necessarily be-
comes more sophisticated. Here computer visualization can be a useful
tool. Older students can appreciate the concept of orientation, which
characterizes the difference between a cylinder and a Mobius band (ori-
entable and non-orientable), and the concept of genus, which charac-
terizes the topological difference between a sphere and a torus (genus
zero and genus one). Understanding such concepts enriches greatly the
study of science and design as well as mathematics.

Naming

Shapes need names. One of the most fundamental uses of language
is to assign names to things. Naming is a primitive concept that is
echoed in our myths as well as in many contemporary religious practices.
Naming is the first step toward knowing, whether it is the name of a
person or the name of a shape. We cannot think about shapes (or
anything else for that matter) or explain our ideas to others if we do
not use names. Learning technical names is sometimes disparaged as a
rote activity, but such objections miss the point. Technical names are
usually not arbitrary; they encode the conceptual framework in which
we organize the things we are naming.

For example, in English-speaking countries. last names indicate the
family and first names designate an individual in a family. Thus Mary
Jones is a person named Mary who is a member of the Jones family.
The names of shapes serve similar functions: a tetrahedron is a mem-
ber of the polyhedron family, a representative of the subfamily of those
polyhedra that have four faces (see Figure 6). When we use the word

r

FIGURE 6. Mar} Jones is a member of the Jones
famil), and the tetrahedron is a member of the
polyhedron family.

153



146 NEW APPROACIIFS 10 NUMERACY

"tetrahedron" to name a shape, we are at the same time locating it in

its family tree and describing it in a meaningful way.

Although classification requires precision, there is no single "right"

way to classify shapes. Shapes are classified into families and subfam-

ilies in many different ways, depending on the properties that interest

us. For example, the discovery that the orbits of the planets around the

sun are ellipses, and not circles, revolutionized the stuidy of astronomy;

from this standpoint circles and ellipses are completely different. But

one of the great achievements of the ancients was the discovery that

both circles and ellipses are conic sections and in that sense are the

same.
From the point of view of topology, the distinction between shapes

that enclose regions, like balls, and shapes that have holes in them.

like bagels, is fundamental; within these broad classes, all shapes are

alike. But a football player would not be happy with a basketball as a

substitute, nor syniiid basketball player be willing to make do with a

baseball, because the individual kinds of balls have crucially different

properties. As another example of cross-classification, architects know

that :t is important to build houses that are sturdy, not houses that might

collapse. This concern transcends other ways that houses are commonly

classified, such as large and small, single story or multistory, rectangular,

or dome-like.
Classification skills develop gradually. Very young children learn to

recognize a great many shapes without being formally taught. Their

world is literally made of shapes: shapes that hold things, such as bowls

and bags and baskets; shapes to play with, such as balls and puzzles and

blocks; shapes to use, such as chairs and spoons and beds. Thousands

of shapes are part of children's lives. Later, in school, children learn

FIGURE. 7. Three hexagons that are

important in chemistry. The planar
hexagon (a) occurs in benzene (see
also Figure 30 below). The hexagons

in (hi and (ci are intended to he

nonplanar; both arc conformations of
cyclohexane. Hexagons made out of
flexible straws can easily assume any

of these shapes.
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FIGURE 8. Four natural spirals: (a) leaves of the sago palm. (b) horns of a mountain
sheep. c} glycerin mixed with food coloring and ink, td) the chambered nautilus. The
common shape su.4 ests a common creative mechanism, despite the striking differences
in material, scale, and natural forces.

names for some of them, such as circles, spheres. polygons. and some
simple polyhedra.

Alas, in our schools identikation and classification of shapes usually
stop just at the point where they can begin to be really interesting
where they begin to explore structures in three-dimensional space. How
many people realize that even polygens that are not flat can be interesting
and important? Many molecules have polygonal shapes. but often these
polygons are crumpled and their conformations are the key to their
chemical properties (Figure 7). Besides finite polygons and polygons
whose edges don't cross, there are zig-zag, star, and helical polygons.
By broadening the definition of polygon to include any closed loop, we
may also study knots. In addition lo their obvious practical importance
for tying things. knots enter into the design of networks such as clover-
leafs and are helpful in understanding the structure of some biological
molecules. Soap bubbles, soap films, and froths are also endless sources
of fascinating geometrical principles.

The study of polyhedra can be extended from simple shapes that are
easy to construct to others, such as star polyhedra. that are more com-
plex. Equally important are patterns, such as tilings of the plane, that
are beautiful as well as useful. The helix and the spiral are fundamental
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to biology and astronomy as well as to mathematics. But even to-

day, when "double helix" has become almost a household phrase, few

people realize that there is a fundamental difference between a helix.

which twists around an axis at a constant distance from it, and a spiral

(Figure 8). Most so-called spiral staircases are really helical, for obvious

practical reasons. Imagine what we would be like if our DNA wound

itself in spirals, or what the universe would be like if galactic spirals

were helices!

ANALYSIS

In order to interpret and create patterns in today's image-packed

world, it is not enough just to recognize similarities and differences;

we also need to analyze them. This leads us to investigate the way that

large shapes are built of smaller ones and to recognize patterns and their

properties.
When children make shapes out of blocks or Legos, they often imitate

the diverse compositions that they see around them (Figure 9). Nature

too creates patterns. Like man-made patterns, natural patterns appear

at many levels: atoms are organized into molecules, while molecules are

organized into crystals and cells, which in turn are often the subunits

of still higher-level organization.
When we examine patterns carefully, we find that the same forms

and arrangements appear over and over again, even when the objects

..

FIGURE 9. Many shapes are built from smaller ones. The

reinforcing beams in a bridge illustrate how repeated patterns are
used in engineering and architecture, as in nature, to form a whole

out of parts.
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FIGURE 10. Young children can investigate the ways in which
polygons can be fitted together to tile a plane surface.

involved arc very different.I6 This is not just a coincidence. The ge-
ometry of most patterns is governed by a very few basic principles of
formation, growth, and development. For example, in his fascinating
book Patterns in Nature,2° Peter Stevens discusses several ways in which
natural patterns are generated, such as stress, branching, meandering,
partitioning, close packing, and cracking. The results of these modes
of formation are remarkably similar, despite the variety of materials on
which they operate (see Figure 8).

Important aspects of pattern formation can be grasped by exploring
the ways in which copies of objects can be packed together. Students
quickly discover that there are only a very few ways to do this. This
fundamental property of shape can be studied at many levels. For ex-
ample, it can be studied intuitively and "hands-on" when the objects
being packed are circles or easy-te-construct polygons such as triangles,
quadrilaterals, and he;:agons (Figure 10). Older children can experi-
ment with less regular forms and discover some surprising things, such
as the fact any quadrilateral, even one that is not convex, will tile
the plane (Figure 11). (This is a surprising but very simple consequence
of the fact that the sum of the measures of the angles of a quadrilateral
is 3600.) High school students can study deeper properties of sphere
packing and tilings, such as their symmetry and how they can be gener-
ated. (Griinbaum and Shephard's Tilings and Patterns' is the definitive
resource for material on tilings.)
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FIGURE 11. Any quadrilateral will tile the plane. because the sum of the measures of
its angles is 3600, which is the same as the total number of degrees around each vertex.
So four copies of a quadrilateral arranged around a point with each angle used once will

fit just perfectly.

Discovering Symmetry

One of the most striking things about patterns of many kinds is their
symmetry, and this symmetry is an important tool in their analysis. A
pattern is something that repeats in same sense; symmetry is the concept
that makes that sense precise.

The study of symmetry begins by decomposing figures into congruent
parts. Although some shapes do not at first appear to be made of smaller
parts, it is often helpful to think of them as if they were. For example.
mirror lines divide a square into eight congruent sectors, which the
symmetries of the square permute. This decomposition helps us study
the way symmetries work. In particular, it reveals that symmetry is self-
congruence. It is this self-congruence that we consider beautiful and
that makes symmetry a meaningful organizing principle in the analysis
of structure.

Young children learn quite easily to recognize symmetry, not only in
squares and butterflies, hut also in animals, flowers, household utensils,
toys, buildings, and arrays of every kind. Symmetry can be found almost
everywhere. Older children can get great pleasure, and ri,ain -eat insight,
by creating symmetrical patterns and discovering the rules tn.L govern
them.

One of the most interesting but underappreciated technio!ies for ex-
ploring patterns is paper folding. We are all familiar with the pretty
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patterns that result when folded paper is cut and then unfolded. The
snowflakes, chains of dolls, and other repeating patterns that app7ar
are not created by magic but are simple consequences of the geome-
try of reflection. Many geometrical constructions., and even aspects of
number theory (some of them decidedly nontrivial), can be represented
by unfolded designs. Conversely, many interesting three-dimensional
shapes can be created by folding paper: the polyhedral nets of Figure 2
are one example; origami puzzles are another. Paper-folding problems
stimulate the geometrical imagination in niany ways.

Mirror Geometry

Mirrors can be used to study the principles of reflection. In particular,
building a kaleidoscope is an excellent way to discover how reflections
interact to generate the orderly arrangements that we call kaleidoscopic
pattern') The kaleidoscope is much more than a toy: it is a lesson
in mirror geometry. Even one mirror has much to teach us: adults as
well as children arc challenged by the "mirror cards" used in elementary
school classes. The kaleidoscope is more complex, but it too is based
on the principles of reflection in a mirror.

To explore the operation of a simple kaleidoscope, you just need two
rectangular pocket mirrors and some tiny colored objectsbits of plastic
or glass will do very well. Tape the two mirrors together along one
edge, with their reflecting surfaces facing each other. Place the objects
on a table, between the standing mirrors (Figure 12). If you look in
the mirrors you will see the objects repeated in a delightful pattern.
A little experimentation will show that some angles produce lovelier
configurations than others. Only certain angles produce, in the words
of the kaleidoscope's inventor, Sir David Brewster, "a perfect whole"
a finiti number of identical regions arranged in a circular pattern. By
playing with the mirrors, it is not difficult for children to discover which
angles produce this perfect kaleidoscopic image. By doing so they will
have learned an important lesson in the modern study of shape.

Reflections generate patterns with a finite number of subunits, pat-
terns that have rotational as well as mirror symmetry. The rotations
and reflections can be performed one after the other, always leaving the
"perfect whole" apparently unchanged. Formally, such a system of mo-
tions is known as a symmetry group. Many properties of shapes can be
analyzed by studying their symmetry groups; indeed, for more than a
century this strategy has been a guiding principle in the study of geome-
try. By using a kaleidoscope, students can understand this fundamental
idea by direct experience without making a lengthy detour through the
formal and abstract algebraic language in which it is usually expressed.

1 5 9
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AC.

FIGURE 12. The principle of the kaleidoscope is discovered by playing with two hinged
pocket mirrors. The objects appear repeated in infinitely varied patterns. but as the angle
between the mirrors is changed. some patterns reveal greater symmetry (and beauty) than
others.

4

FIGURE 13, A pyrite crystal. The lines on the cube's faces
indicate that the cr)stal's internal structure lacks some of the
symmetries of the cube.
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FIGURE 14. A cubic kaleidoscope
can be made by placing mirrors or
reflecting mylar on the inside of three
sides of one of the tetrahedral sectors
into which the cube is divided by its
mirror planes (a). The net for these
three walls is shown in (b); it consists
of half a square and a rectangle whose

base is the length of the square's edge and whose height is the length of the square's
diagonal. Cut along the dotted lines, and then tape tt edges a and 13 together (c).
With the cut end down and parallel to a table. look at a piece of newspaper or other
decorated material through the tetrahedron. You will see a decorated cube! By moving
the tetrahedron along the plane surface, you will see a changing pattern on the cube.

The symmetry of three-dimensional figures appears to be more intri-
cate, but actually the principles are the same as in the two-dimensional
case. For example, the symmetry of the cube includes reflections in two
kinds of mirror planes and rotations about three kinds of axes. Younger
students can learn a great deal about the symmetry of the cube by trying
to decorate it in ways consistent with its symmetry. Older students can
be challenged by the task of changing this symmetry by decoration.

Such decorations appear in nature, where they provide clues to the
structure of hidden patterns. For erample, the pyrite crystal in Figure
13 appears at first glance to be an ordinary cube, but closer inspection
reveals striations on the cube's faces. These striations are consistent
with some, but not all, of the symmetries of the cube. The reason
for the striations, it turns out, is that the arrangement of atoms inside
the crystal is less symmetrical than its external cubic form suggests.
Consequently, the pyrite crystal is a cube with texture, or a decorated
cube.

One of the more exciting and instructive exercises for older students is
to make a cubic kaleidoscope. The cube is divided by its mirror planes
into 48 congruent tetrahedra. If a model of one of these tetrahedra
is lined with mirrors or some reflecting paper such as mylar, with the
triangle belonging to the cube space removed and the opposite vertex
snipped off, an entire cube is generated by the reflections. Reflecting
mylar pasted onto cardboard or heavy paper will work well only three of
the four tetrahedral walls should be constructed so that you will be able
to see inside. Figure 14 shows how to construct such a kaleidoscope.'8

Using Symmetry

If all we learn about symmetry is to identify it, we miss the whole
point. Symmetry is an effect, not a cause.' Why are so many natural
structures symmetrical? For example, what atomic forces ensure that
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FIGURE 15. Semiregular polyhedra are
formed by using several kinds of regular
polygons as faces. with the same arrange-
ment at each vertex and all vertices inter-
changeable by symmetry operations.

the arrangements in crystals will be orderly? Although these are pro-
found and largely unsolved problems, a good working answer was given
over thirty years ago by James Watson and Francis Crick in describing
their discovery of the structure of DNA:22

Wherever, on the molecular level, a structure of a definite size and shape has
to be built up from smaller units ...the. packing arrangements are likely to
be repeated again and again and hence sub-units are likely to be related by
symmetry elements.

In other words, nature builds modular structures that organize them-
selves according to certain rules. Repetition of the rules tends to lead
to arrangements of modules that we call symmetrical.

Polyhedra provide a wealth of excellent examples of arrangements
that are repeated again and again. When you build a cube with card-
board squares by attaching three squares to each corner, you are con-
structing a shape that satisfies a certain packing arrangement: it must be
made of congruent regular polygons, and it must have the same number
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FIGURE 16. Convex deltahedra are

formed from equilateral triangles ar-
ranged with differing types of vertex
arrangements: three, four, or five tri-
angles may be joined at a vertex.

at each corner. By generalizing this construction to other polygons, we
obtain the five regular polyhedra (Figure I ). The arrangements can be
further generalized to include the semiregular polyhedra (Figure 15), in
which more than one kind of regular polygon can be used, and the con-
vex deltahedra (Figure 16). all of whose faces are equilateral triangles
but whose vertex arrangements need not all be the same."

The cover design for the biological journal 1 'irology contains an icosa-
hedron. The story of the discovery of icosahedral symmetry in viruses
and the ongoing efTcats of scientists to link that symmetry to their sub-
unit structures is very instructive." Viruses are tiny capsules that con-
tain an infective agent. The capsule is composed of protein subunits
that group together to form a closed shell. Watson and Crick realized,
in the course of early X-ray investigations into virus structure, that the
shells of many viruses had polyhedral or helical forms. Subsequent stud-
ies showed that the polyhedra were often icosahedra. and this suggested
many attractive models for the arrangement of the protein subunits. But
more recently these models have been found to be incorrect. The con-
nection between packing arrangements and overall symmetry in viruses
remains an unsolved problem. Problems such as these lead also to new
developments in mathematics: they force mathematicians to rethink
their definitions and to broaden the scope of their investigations.

Lattices

From earliest times the beautiful shapes that we call crystals have
been a source of wonder and admiration. Why do they have polyhe-
dral forms when most other natural structures do not? Quartz crystals
were the first to be studied: at first they were thought to be pieces of
permanently frozen ice. (It is instructive that our word "crystal" comes
from the Greek word Kincr(AAo;. which means ice.) By the seven-
teenth century. scientists began to suspect that the shapes of crystals
reflected an orderly, patterned, internal structure. Loag before the de-
velopment of modern atomic theory it was sugsested that crystals arc
made of stacks of tiny spheres that represented the basic particles of the
structure, whatever those might be. Later the particles were represented
as tiny bricks (Figure 17). Sphere packings and bricks (not necessarily
rectangular) are still important models for crystal structure.

1 I; 3
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FIGURE 17. An 1822 concept of crystal structure in which irious crystal shapes are
imagined as being built from tiny rectangular bricks.

Whether we use spheres or bricks, the important idea is that of an or-
derly array. Let us explore this a little further. A one-dimensional lattice
is a set of points equally spaced along a line. (Although we can draw only
part of the set, we assume that it goes on forever.) All one-dimensional
lattices are essentially alike, differing only in the spacing between points.
But there are two basic kinds of two-dimensional lattices: one in which
the points of the rows lie directly above one another, the other in which
they are shifted horizontally (see Figure 18). Each point of a lattice
"occupies" a certain portion of the planc, the region learer to it than to
any of the other lattice points. These regions, called Dirichlet domains.
display the symmetry of the lattice in a corresponding brick model. The
Dirichlet domains in two dimensionsthe bricksare always quadri-
laterals or hexagons, within each lattice the regions about each of the
points are congruent.

Lattices describe the underlying symmetries of patterns. Draw a one-
dimensional lattice on two or three different sheets of tracing paper. and
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FIGURE IS. The symmetry of
two-dimensional lattices is dis-

played by their Dirichlet domains.
polygons centered at each Janice
point which enclose the region of
the plane closer to the enclosed lat-

tice point than to any. other. These
polygons ma y. bc quadrilateral or
hexagonal: for a given lattice tho
are all congruent.

use them to create two-dimensional lattices. You will quickly discover
that you can change the symmetry of the lattice by shifting the relative
positions of the rows: you can check the symmetry by recalculating the
Dirichlet domains. No matter what you do, the symmetry will always be
of one of the five types shown in Figure 18. It is an important fact that
every two-dimensional repeating pattern, whether it is an arrangement
of points or ellipses or polygons. a wallpaper pattern, or an Escher-like
tiling of the plane, can be interpreted as a decoration of the Dirich-
let domains associated with a lattice that belongs to one of these five
symmetry types.

This simple observation raises a wealth of interesting questions. What
kind of packing arrangements can we creatc if we replace the points by
other shanes? What shapes can be fitted together without gaps to form
orderly patterns? What do we mean by orderly? What are the possi-
ble ways to extend arrays to three dimensions? lt turns out that there
are only a small number of solutions to problems such as these, which
explains why the same patterns reappear so often in r,-ystal structures,
trusses, biological tissues, honeycombs, wallpaper. textiles, and tiled
floors.

Three-dimensional lattices have been used by mathematicians and
scientists, beginning in the nineteenth century. to try to explain the ar-
rangements of atoms in crystals. In three dimensions there are 14 sym-

y types of lattices and 5 combinatorial types of Dirichlet domains
Figure 19),

It is difficult to overestimate the importance of play with cubes and
other blocks. Even one year olds enjoy building taller and taller tow-
ers and watching them fall down. Later, children use blocks to build

I 85
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FIGURE 19. There are five combinatonal types of Dirichlet domains for three-
dimensional lattices. These five shapes ,.re much less well known than the Platonic solids

but are at least as important!

houses. courtyards, and other structures. Young children are likely to
have trouble building octahedra, but they can use small cubes to build
larger cubes. The smallest composite cube is made up of 8 smaller ones;
the next larger is made up of 27; by guessing how this series continues
the child gains some understanding of volume. Older childrenof any
agecan also learn a lot from playing with cubes.

Cubes are the prototypical three-dimensional tile, and many struc-
tures. both mathematical and real, are based on it. It is worthwhile to
try to build polyhedra out of cubes. For example, try building a regular
octahedron by sticking sugar cubes together with glue. The larger you
make your sugar octahedron (if it isn't too messy), the closer the stepped
faces approximate smooth ones. Building polyhedra from cubes is thus
a sophisticated lesson in volume measurement. It is instructive that
H.S.M. Coxeter. in his classic work Regular Polytopes.5 refers to the
cube of any dimension as the "measure polytope." (The word "poly-
tope" refers to the higher-dimensional analogues of polygons and poly-
hedra.)

Dissection

An important problem in many fields is how to divide a region into
companments of various shapes. An architect or designer partitions
the interior of a building into rooms to serve certain purposes. We all
fret over the most efficient way to pack a suitcase or the trunk of a
car. A complex living object. such as a plant or a human being, has
grown from a single cell that, in the early stages of growth, divided
into "daughter" cells that grew and divided again. The study of how
dividing cells organize themselves into tissues and then into organs is
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one of the most exciting frontiers of biology. Some of the issues relate
to the geometry of dissection, compartmentalization, and subdivision.

There are many interesting mathematical problems dealing with dis-
section. One of the most famous theorems in this field says that any
polygon can be divided into a finite number of pieces and reassembled
to form a congruent copy of any other polygon of the same area. El-
ementary school children enjoy the challenge of creating shapes with
tangrams or other polygonal tiles; imagine the many challenging prob-
lems and puzzles that could be devised for older children related to
this dissection theorem. More advanced students can discover that the
analogous theorem for polyhedra is false; this is another fascinating and
important result.

Another intriguing dissection problem is the creation of "rep-tiles,"
tiles that can be fitted together to form replicas of themselves (Figure
20). Alternatively, we can create such tiles by subdividing one into
smaller congruent copies of itself. To create a tiling by rep-tiles, think
of the daughter tiles growing to the size of the original one and then
subdividing again. Repeating this process over and over again, we cre-
ate a tiling that is self-similar in a certain sense; many of these tilings
have no lattice structure. Is the tiling of Figure 20 lattice or nonlattice?

irii 40 0 4
LJLIMALEILJL111
FKiURE 20. "Rep-tiles" are tiles that can be fitted together to
form replicas of themselves. They build tilings that are self-
similar and that. like this one. may have no lattice structure. Such
Wings are of great interest today because they share many strange
properties with some newly discovered crystalline materials.
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(This is not easy to answer!) Tilings without lattices are of great inter-
est today among mathematicians and solid-state scientists because they
share many strange properties with some recently discovered crystalline
materials called quasicrystals.

Combinatorial Tools

Combinatorial properties of patterns are also very important because
they provide clues to what is possible and what is not. For example,
suppose we want to build a tetrahedronthat is, a polyhedron with four
faces. How should we start? Before cutting out polygons and trying to
tape them together, let's reason out the possibilities. In the first place, all
the polygons will have to be triangles, because as we build we will start
with one polygon and attach another to each edge. If our first polygon
had more than three edges, we would run out of polygons, since we only
have four. So to build a tetrahedron we attach a triangle to each edge
of our first triangle (Figure 2a), and then to make a closed polyhedron
we must fold up the configuration so that the other triangles meet in
a point. This means that the edges of the polyhedron must form a
network of four triangles.

We can go on from here to discuss properties (e.g., congruence) these
triangles might have, but it is important to note that we have already
made an important discovery: every tetrahedron is a combinatorial net-
work offbur triangles. Similar reasoning shows that there are two com-
binatorial types of pentahedra, polyhedra with five faces (you can find
them in Figure 6). There are exactly seven types of hexahedra (Figure
21), including, of course, the cube. It is a challenge for students to
discover why there are no more.

FIGURE 21. There are seven combinatorial types of hexahedra.

Try to visualize them as three-dimensional polyhedra!
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The combinatorial properties of shapes are sometimes more funda-
mental than their metric properties. If we try to build a convex poly-
hedron out of hexagons, we will never succeed: such polyhedra are
combinatorially impossible. It's better to know this in advance! A few
years ago a "World Sports Day" poster featured a giant soccer ball that
appeared to be made entirely of hexagons. The designer did not realize
that she had drawn an impossible figure!

The Nnciamental theorem of combinatorial theory for polyhedra is
Euler's Theorem, which is valid for every convex polyhedron (and some
others): the sum of the number of faces plus the number of vertices is
equal to the number of edges plus two. This can be written succinctly
as

F + = E + 2

where F is the number of faces (or cells) of the network. r is the
number of vertices. and E is the number of edges. (It is easy to verify
this equation with the networks in Figures I, 6, 19, and 27). Euler's
Theorem is easy to discover (with guidance), easy to teach, and, for
more advanced students, not difficult to use. The theorem and its many
corollaries and generalizations are important tools for enumerating the
combinatorial properties of objects.

REPRESENTATION

A third important tool in the study of shape is representation. In ev-
eryday life as well as in science, mathematics, and art, we deal not only
with shapes themselves but also with many kinds of representations of
shapesmodels, photographs, drawings. The tools of representation
include the ability to understand scale models: to read maps; to under-
stand shadows, sections, and projections; to reconstruct shapes from
their images; to draw accurately; and to use computer graphics. The
underlying issue is the same in each case. -to determine the relation
between a shape dnd its image or between different images of the same
shape.

Models

The simplest representation of a shape is a model of it, built to an
appropriate scale. A spherical globe is a model of the earth, or of the
moon, or of any planet. A globe is not an exact replica of the earth.
but an approximate one that displays certain features of the earth quite
well. It is approximate because it is perfectly round, which the earth
is not. Besides, it is constructed on such a small scale that even our
largest cities appear as tiny dots. But every child growing up in this

f;;)
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FIGURE 22. Mapmakers use many different methods of projecting the globe to create

flat maps. The choice of' projection determines many of the map's features.
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space age understands that the globe is a model of the earth. Most
models are approximate in the sense that they ignore some details in
order to present key features more vividly. Making a model entails
making a selection of which features are to be emphasized; this point
merits classroom discussion.

Maps

Interesting questions about the relation between shape and image
arise, for example. in the study of maps. Why do we use both globes and
flat maps? The answer is simple; they are useful for different purposes.
Although a globe and a flat map repment the same thing, namely the
earth, they display its properties very differently.

Flat maps can represent small regions of the earth quite well, since
part of the surface of a spherical object can be closely approximated
by a plane. But the representation gets worse and worse as you try to
increase the area represented by the map. The relation between globes
and flat maps leads quickly to very fundamental geometrical questions.
You can't make a sphere by folding up a sheet of paper, so to make a
flat map, you have to project the globe in some way. Mapmakers use
several different projection methods (Figure 22). Thus a map of the
earth is an approximation of a spherical surface, an approximation that
gets worse and worse as the portion of the globe being mapped is in-
creased. Every flat map necessarily distorts angles, areas, or both. Like
a mathematician considering more general kinds of maps, every map-
maker must compromise by deciding which features of representation
are most important for particular purposes.

Shadows and Lenses

Shadows, perhaps the most familiar examples of images, are never-
theless rather subtle because they distort contour as well as size. The
interesting question is to determine what sorts of distortions can occur,
and why.

Young children can learn a great deal by observing their own shadows.
To create a shadow, you need a light source (ifyou are outdoors, it is the
sun), an object (you), and a screen (the ground or a wall). The shadow
is your projection onto the screen, and what that projection looks like
depends on the positions of the light, the object. and the screen. Older
students can experiment, varying the positions of the light, the screen,
and the object that blocks the light to produce the shadow. From this
they can discover which properties of shapes are preserved and which
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FIGURE 23. The circle, the ellipse.
and the parabola as shadows cast by a
circle on screens in different positions.

are lost under this kind of pr jection. For example, all the conic sections
can be created as projecteki shadows of a circle (Figure 23).

At a more advanced level we can think of shadows as lps in which
only the outline of the map is retained. From this perspective the prin-
cipal difference between a map of the earth and your shadow on the
wall is the object being mapped.

Lenses, too, distort shape but in more predictable ways. Eyeglasses,
slide projectors, telescopes, microscopes, and cameras are only a few
of the tools through which lenses enter our lives. Indeed, lenses in
our eyes provide our only access to visual images. The study of lenses
involves many principles of geometry that can be taught at every level
from kindergarten through high school and beyond.

Drawing

In every culture and in every era artists have grappled witii the prob-
lem of representing three-dimensional shapes on two-dimensional sur-
faces. The solutions they have found are, in many cases, the same as
those of the mapmaker. For example. in Figure 24 the artist is literally
making a map of the shape he sees before him. The device he is using
is easy to make and can be used in the classroom with good results.
Perspective drawing is another example of mapping.

Before the camera became available to everyone, drawing was widely
taught. Today very few people know how to draw accurately, and, con-
sequently, they no longer notice things as carefully as they once did.
A few years ago there was great embarrassment (or should have been)
when Branko Griirfoaum discovered that the icosahedral logo of the
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FIGURE 24. Albrecht Durer's sketch of an artist making a map of the shape he sees
before him.

Mathematical Association of America, which appeared on all of its pub-
lications, was inaccurately drawn (Figure 25); this error had escaped de-
tection for several years even though it was seen regularly by thousands
of mathematicians. If visual illiteracy is so widespread even among
professional mathematicians, future generations run the risk of really
believing that they live in an Escher-like impossible world (Figure 26)!

In his article on the misdrawn icosahedron Griinbaum" presented
a small sample of his collection of badly drawn textbook figures (see
79gure 27). Looking at them with a trained eye is enough to make
one laugh or cringe (or both). But how many of us could do better?
Indeed, how many teachers of mathematics can even draw a respectable
cube? These gaffes presumably would not have occurred were authors
and graphic artists more familiar with the principles and practice of
perspective and projection. For many years technical drawing has been
relegated to courses in the fine and ind'istrial arts when, in fact, they
are essential for all students.
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FIGURE 25. The icosahedral logos of the Mathematical Association of Ameiica: the
old one is badly drawn: the new one is accurate. The error escaped detection for many
years. Can you tell which is which? (Flint: In drawing a projection of a three-dimensional
figure on a plane, parallel lines should stay parallel or else intersect in a single point.)
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FIGURE 26. Belvedore. by M.C. Esau. provides a visual com-
mentary on the subtleties of representing a three-dimensional scene
on a two-dimensional piece of paver.

Image Reconstruction

If the artist's problem is to represent a three-dimensional shape on a
flat surface, the viewer's problem is to recognize what shape the image
is supposed to represent. A visit to an art gallery is an exercise in image
reconstruction. So is the physician's task of reading an X-ray or a space
scientist's task of interpreting photographs of the surface of Mars.

f
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FIGURE 27. Some badly drawn figures. all taken from published books dealing with
geometry and related subjeet.

The painting, the X-ray, and the photograph are maps of shapes,
which we need to be able to read "in reverse." This subject, closely
related to the problem of visualization, is of great importance in the
study of shape, but it has not been organized in a way that can be used
in school. Here is a challenge: to bring to students of mathematics
the wealth of material related to shadows, cross sections, and projec-
tions. In addition to ideas now tat,ght in art classes and in the industrial
arts, students could learn about criteria for deciding whether a projec-
tion is properly drawn (i.e., whether a diagram is in fact a projection
of a three-dimensional form). Th9 could learn the principles of the
stereoscope and why stereoscopic pairs appear three-dimensional to us.
They could also learn to deduce symmetry 9.11c1 topological properties of
a three-dimensional shape from its two-dimensional representation. A
discussion of optical illusions and "impossible" figures can lead to many
important insights. Those familiar with the combinatorial properties of
polyhedra can study their representation through planar graphs and can
try their skill at reconstructing corresponding three-dimensional forms.

Computer Graphics

The computer is not a substitute fo, real three-dimensional mod-
els. Images on the computer screen, even the so-called 3-D images, are
meaningful only if the viewer has extensive prior experience with three-
dimensional structures. On the other hand, computer graphics can be
fascinating to students and can generate strong interest in the study of
shape. Good software can thus be invaluable in the study of shape and
should be used when appropriate. Moreover, every person should know
something of the geometry that underlies computer graphicsabove all,
coordinate geometryin order to use graphics packages intelligently and
critically.

In summary, the creation of images and the reconstruction of shapes
from their imav is central to the study of shape. All of the many

'r-
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facets of representation can be organized under the concept of map-
pings. "Real" maps are only one example; shadows, sections, images
seen through lenses, images produced by projection, images produced
by reflection, and images rendered by the graphic or photographic artist
are others. As increasingly detailed images of the very large, the very
small, and the formerly hidden are made visible by modern technology,
the need to understand this broadened concept of mapping becomes
increasingly urgent.

Mapping is a major theme of contemporary mathematics because it
provides a useful and illuminating way to organize relations among
shapes and patterns (including very abstract ones). It also helps us to
make our classification systems precise. Congruence and similarity can
be described in the language of maps. For example, the shapes in Fig-
ure 3a can be transformed into one another by a mapping that preserves
their combinatorial structure; the shapes in Figure 3b are related because
they have the same set of symmetries (which are mappings of the ob-
jects on to themselves); the shapes of Figure 3c can be transformed into
one another by a mapping that is a continuous deformation.

VISUALIZATION

Visualization is a broad subject with implications for many aspects
of our lives. It is centrally important to all of mathematics and has
been so throughout history. Mathematics made a great advance with
the invention of numerals, which are visual representations of numbers.
Certainly one of the major mathematical achievements of the last several
hundred years was the development of analytic geometry, which enabled
us to combine visual and formal mathematical thought.

Obviously, visualization is very important in the study of shape. But
it is also important for all of mathematics. To study change, we need to
see it; to study data, we examine various graphical representations. We
try to grasp the concept of higher dimension by drawing pictures and
by making models. Even the properties of numbers can be illuminated
by visual representationthat is what the number line is for. But it
is not true that we instinctively know how to "see" any more than we
instinctively know how to swim. Visualization is a too! that must be
cultivated for careful and intelligent use.

It may be helpful to retell a very old story about Galileo's discovery of
mountains and craters on the moon, a discovery that helped to change
forever the way we view the universe and our place in it. "Following
Aristotle, Euroneans of the Middle Ages and the Renaissance believed
that the moon was a perfer sphere, the pratotypical shape not only of
the visible planets and stars but of the entire universe," explains the art
historian Samuel Edgerton.°
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The problem, thus, was not to determine its shape, which all accepted, but to
explain the mottled appearance If its surface, that "strange spottednesse,- as
Harriot called it. Some ancient authorities had explained the spots by arguing
that the lunar surface was like a gigantic mirror reflecting the lands and seas
of the earth. Others had claimed that the moon was composed of transparent
substance with some internal denser matters giving off varying amounts of light.

Galileo found another explanation:8

I have been led to the opinion and conviction that the surface of the moon is
not smooth, uniform, and precisely spherical as a great number of philosophers
believe it (and the other heavenly bodies) to be, but is uneven, rough, and full
of cavities and prominences, being not unlike the face of the earth, relieved by
chains of mountains and deep valleys.

Thomas Harriot was an English astronomer who had also been looking
through a telescope at the moon at the same time that Galileo made
his discoveries. Harriot's sketches show, however, that the "strange
spottednesse" did not look like mountains nd valleys to him (Figure
28).

How could it happen that Harnot and Galileo. lookingat the same ob-
ject through comparable telescopes, did not "see" the same thing? True.
Galileo was the greater genius, but this fact alone is not very illuminat-
ing. Edgerton suggests a more persuasive reason: Galileo was a trained
artist, skilled in the use of perspective and chiaroscuro, the rendering of
light and shadow. Thus "Galileo did indeeti have the right theoretical
framework for solving the riddle of the moon's 'strange spottednesse.'
Unlike Harriot. he brought to his telescope a special 'beholder's share'
(as E.H. Gombrich would say): that is. an eyesight eduuted to 'see' the
unsmooth sphere of the moon illuminated by the sun's raking light."

FIGURE 28. Harriot's and Galileo's sketches of the lunar surface.
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FIGURE 29. The benzene ring was made visible on the atomic scale for the first time

in 1988. This image was produced b) a scanning tunnelling microscope. An educated

eye can see the triangular patterns of electrons connecting pairs of the six carbon atoms

in each ring.

"Galileo's telescopic discoveries opened the eyes of Europeans every-
where,- continues Edgerton. And, as his notebooks show, "even Harriot

'saw' shaded craters once he was aware of the Florentine's observations."
Today, we all see mountains and valleys when we look at the moon.

But would we see them if we didn't already know what we were supposed
to see? And what do we "see" when we look at the images presented to

us by modem technology? The educated "beholder's share" is just as
essential today as it was in Galileo's time. "Whether the object is a virus

seen through an electron microscope, a distant galaxy explored by radio
telescope, or a fetus observed in the womb by means of ultrasound.
theoretical assumptions have to be made before the raw data can be
translated into an image," writes Hans Christian von Baeyer in a recent
issue of The Sciences.2

Von Baeyer goes on to point out that this translation must be done by
the educated eye as well as by the internal workings of the computer. A
case in point is the first atomic-scale image of the "hexagonal" benzene
rings, which was produced for the first time in 1988 (Figure 29). Can
you see the hexagons? Or do you see some lumpy donuts? Or spher-
ical triangles? Scientists were able to find the triangular traces of the
hexagonat structure because they already knew that they were there.

Rudolf Amheim stressed the importance of visualization in scienc.:
in his aptly titled Visual Thinking:'
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The lack of visual training in the sciences and technology on the one hand and
the artist's neglect of, or even contempt for, the beautiful and vital task of mak-
ing the world of facts visible to the enquiring mind, strikes me, by the way, as
a much more serious ailment of our civilization than the "cultural divide" to
which C.P. Snow drew so much public attention some time ago. He complained
that scientists do not read good literature and writers know nothing about sci-
ence.. Perhaps this is so, but the complaint is superficial .... Snow's suggestion
that "the clashing point" of science and art "ought to produce creative chances"
seems to ignore the fundamental kinship of the two.

Like the weather, everyone talks about visualizatfon, but no one does
much about it. Visualization is not a simple matter it is a deep subject,
properly the domain of physiology and psychology and still not well
understood. Nonetheless, it is easy to teach shape as an important first
step in developing powers of visualization. The simplest way to teach
students to visualize is to provide them with a rich background of hands-
on experience with shapes of many kinds. A serious study of image
reconstruction would also be a step in the right direction.

CURRICULAR ISSUES

Students should learn to recognize the patterns of shape, to under-
stand the principles that govern their construction, and to be able to
move easily back and forth between shapes and their images. Although
the study of shape seems to fall between the cracks of traditional 6ub-
jects, the new Curriculum and Evaluation Standards for School Mat&
maticsr5 of the National Council of Teachers of Mathematics reflect an
emerging consensus that this situation must be improved.

The study of shape must be more than the sum of its parts an inte-
grated view of shape can help accentuate the whole subject. One possible
approach if; illustrated by the chart in Figure 30.

Forging Connections

Rethinking the subject as a whole provides with an opportunity to
forge substantive connections between the study of shape and the role
of shape in the real world. We can take seriously Arnheim's plea for
integrating art and science. We can also reduce the mystery of some
of our contemporary technology. The principles of the electron micro-
scope, the radio telescope, an,.: ultrasound are not wholly beyond the
scope of the K l 2 curricelum; high school students can, if we wish,
learn the foundation necessary to understand the action of these and
other modern imaging techniques.

Indeed a focus on shape makes many aspects of modern technology
much more accessible than is commonly supposed. Here are just three

79
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A Structure for Shapes

Identification and Classification

ELEMENTARY: INTERMEDIATE: ADVANcED:

Circles Spheres Surfares

Plane Polygons Zig-zag and star polygons. Hences. spirals, cylindrrs.

knots ton. Mobius bands

Polyhedra Polyhedra Pc.lyhedra

Puzzles Tiling the plane with poly- Escher-like ulings

gons

Networks Simple crystal structures

Congruence. similanty

Soap bubbles Soap bubble clusters Orientation, genus texture

ELEMENTARy:

Mirror symmetry rotational
symmetry

Congruence

Paper-fokting, patterns

Constructing and decon-
structing polyhedra

Linear/volume measurement

Making quilts and mosaics

Analysis

INTERMFDIATE:

Two-mirror kaleidoscopes

Ssrnmetry of finite figures

Dissection. puzzles

Rep-tiles: fractak

Natural patterns

Regular and semiregular
polyhedra

Angle measurement

Tiling the plane with poly.
guns

AMANcED:

Poly hedral kaleidoscopes

Symmetry as an organizing
prmciple: transformation
geometry

Exploring fractals

Scale in hiokv

Euler's formula for .lotyhedra

Fundamentals of plane and
3-1) geometry

Liinces. elementary tiling
theory

Representation and Visualization

ELEMENTARY:

Model-making

Drawing. reading, ane using
simple maps

Shadows

Drawing

Seale projectors

Tnrtle geometry

INTERMEDIATE

Model-making

Relief maps and lesel eurYes

The globe

Shadow grometry

Perspectisc drawing

Telescope and microscope

Plane coordinates

Explonng gcometrs with the
computer

ADVAMID:

Model-making

(ross-sections ot 3-1) shapes
structurrs

Geometry of the sphere,
protections, maps

Images and image reconstruc

!ion. impossible figures

Technical drawing, stereo-
tprs

Lens geonwtry, the camera

1- D coordinates

More computer graphics

FIGURE 30, An arrangement of topics related to shape that
pros ides structure and coherence to what might otherwise appear

a, an arhnrary collection of quite disparate topics.
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FIGURE 31. The structure of crystalline
silicon. It is made entirely of zig-zag hexa-
gons. This is also the structure of diamond
with carbon atoms at these positions instead

of silicon

examples of important shapes whose key features could easily be taught
in our schools.

The silicon chip, which has transformed the industrialized world in
just a few decades, is based on a structure that is a carrier of incredibly
miniaturized circuits. Although the circuits themselves are complex,
the crystal structure of the silicon that houses them is a simple modular
structure.

Fo7 example, c ystalline silicon is built of linked zig-zag hexagonal
rings (Figure 31), which are easy to make and instructive to study. In
the silicon structure the rings are linked to form cage-like polyhedra.
Elementary school children can learn to build and identify these sub-
structures, middle school children can learn to put them together, and
high school children can study the relation between the silicon structure
and the properties that make it so useful.

The CA; scan and other forms of computer-assisted image recon-
struction have revolutionized medical diagnosis in recent years. While
diagnosis by X-ray is an exerciw in reading shadows, diagnosis by CAT
scan is an exercise in reconstructing images from their cross sections.
Lile the circuitry on a silicon chip, the image reconstruction used in this
technology is a complex process, but the simplest geometrical principles
that undelie it are easily understood.

Here again we find that the same geometric principles are central to
many fields. For example, the construction of shapes from sections and
shadows has been the task of architects and builders for centuries. While
it is not feasible to bring a CAT scan machine or a construction site
into the classroom, many projects suitable for school can help students
understand the relation be.ween shadow or cross section and shape.

Snowflakes, especially the feathery ones, are enchanting. Children of-
ten learn to make paper snowflakes in school. an exercise that can easily
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FIGURE 32. Bralched snowflakes reveal the familiar hexagonal
symmetry of ice crystals repeated fractal-like at every wale.

be extended to a study of their symmetry. The hexagonal symmetry of
Llie snowflake provides an introduction to the symmetry of polygons: it
is an ideal subject for the elementary classroom.

But the snowflake has much m are to teach us. In the first place a
snowflake looks like a pattern we might see in a kaleidoscope. and so it
is. This suggests a study of the kaleidoscope, which, as we have seen.
is an application of the principles of mirror geometry. These same
reflection principles undergird contemporary technology: one need only
think of the reflection beams of burglar alarms and lasers or of radar
and sonar. Middle school ehildpm can easily understand and appreciate
such applications. At the high school level the emergence of hexagonal
symmetry from aggregates of water molecules can be explored and so
can the crystals' dendritic growth. or branching.

The branching of the snowflake is as characteristic as its symme-
try and is equally significant in the study of shape. First, corners of
the snowflake sprout beyond a hexagonal "core.- Then these branches
themselves sprout branches, the branches of the branches branch, and so
forth (Figure 32). The result is a structure in which a certain feature
branchingis increasingly repeated on a smaller and smaller scale. If
this process could be repeated indefinitely, the result would be a self-
similar structure: indeed, the snowflake is a fractal at an early stage of
its development.
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Geometry

The rote of geometry is a perennial issue in mathematics education
at all levels from elementary school to graduate school. For many years
geometry has been the problem child of the mathematics curriculum.
A glance through the National Council of Teachers of Mathematics'
1987 Yearbook Learning and Teaching Geometry" suggests some of
the many questions involved. The problem with geometry is due in part
to lack of agreement on what geometry is and why we should study it.
Do we study it to learn disciplined thought? To prepare students for
other subjects? Or is it because there is important content in the subject
itself?

Most high school geometry texts do point out examples of geometric
forms in nature, science, technology, and art, although none of these
connections is ever explored in any depth. The synthesis of method
and content is usually unsuccessful. Our geometry courses are uneasy
compromises between many important but very different goals: teaching
deductive reasoning. proving theorems of Euclid, introducing problem
solving, teaching visualization, and preparing the students for calculus.
The continuing debate indicates that none of these goals is particularly
well served in the present situation.

In almost all of these debates the teaching of geometry is defended
on the grounds that it serves external purposes, rather than on the im-
portance of the subject in its own right. For example. a recent article
on similarity' justifies the teaching of similarity with the following ra-
tionale:

Similarity ideas are included in many parts of the school curriculum. Some
models for rational number concepts are based on similarity .. thus, part of the
students' difficulties with rationals may stem from problems with similarity
ideas. Ratio and proportion are part of the school curriculum from at least th:
seventh grade on, and they present many difficulties to the student. Standardized
tests include many proportion word prokgems. Verbal analogies (a:b::c:d) form
parts of many intelligence tests. Similar geometric shapes would seem to provide
a helpful mental image for other types of proportion analogy situations.

All of these reasons are valid ones, but there is a striking omission: the
principal reason for teaching similarity ought surely to be that it is of
profound importance in understanding shape.

Meanwhile, outside the halls of education, the computer revolution is
rapidly changing the world in which we live. These changes are placing
new demands on the curriculum, demands that are just beginning to be
heard in the schools. The revolution in the study of shape and form
made Lpssible by the computer suggests that what we need is not just a
better compromise for geometry, but a new and coherent mathematics
curriculum that integrates shape into the entire course of study.

1 S 3
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Is Euclid to stay or go? This is no i. a useful question. We need
to ask instead what we want our students to know and why. Euclid
realized that careful reasoning about shape requires careful statements
of definitions and assumptions and very careful argument. In order
to analyze shapes, students must know how to measure lengths, areas,
and volumes as well as planar and dihedral angles. They need to know
properties of parallel and perpendicular lines, basic angle theorems, and
fundamental properties of figures. Moreover, they need to know how,
with ruler and compass, to construct such standard figures as equilateral
triangles, regular hexagons, and squares.

The study of shape therefore overlaps the traditional geometry cur-
riculum, but it cannot be subsumed under it as a brief module or
extracurricular activit) The shapes that students need to understand
today, and the things that they need to be able th do with them, are
too vast a subject for that. Moreover, there is considerable difference
of emphasis and purpose.

Traditional geometry shares more than just historical roots with clas-
sical civilization. Its role in school in some respects is analogous to the
curri,-::lar issues of classical versus modern languages. A student who
studies Latin or Greek learns rigorous thought and some important his-
tory and also acquires the basis for many modern languages, including
our own. Modern, spoken languages, on the other hand, are less rigor-
ous yet more fluid. They are the living flexible languages that people
actually use in everyday life. Ideally, students should learn both classical
and modern languages, although few have the time or opportunity for
both. A watered-down I. Win course enlivened with examples of cognate
words in Italian, Spanish, or French is not the solution to the problem.

All of the virtues of Latin and Greek are shared by classical Euclidean
geometry. For over 2000 years Euclid's Elemcnts has served not only as
the cornerstone of geometry but also as the very model of mathematical
reasoning. Deductive reasoning from axioms has been very fruitful, not
only for mathematics but also for science and philosophy. For em, nple,
it was questions raised by Euclid's axiomsrather than observation of
the real worldthat led to the discovery of non-Euclidean geometry,
which subsequently became the central tool in studying the large-scale
structure of the universe. Classical geometry has not lost its value, but
other needs require that we also introduce the mathematical counterpart
of modern language courses into our curriculum.

Studying Shape

Shape is a subject that cuts across many parts of mathematics and sci-
ence. It offers a rich variety of possibilities for imaginative, exploratory
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instructionfrom budding models to using computers, from observa-
tion to experiment, from manipulation to calculation. Shape holds ex-
traordinary potential for enhancing the quality of mathematics instruc-
tion, in several different ways.

The study qf shape is interdisciplinary. As we have already noted,
many subjects in which shape plays a role are not usually thought of
as mathematics in a narrow or restricted sense. For example, problems
of size and scale do not belong exclusively to mathematics. They lead
to at sorts of questions that send us to the library or to colleagues in
other departments. Could there ever have been giants? Could there
be people as small as mice? Our myths show that these questions are
older than our recorded history. The answers are not straightforward
applications of similarity. A giant could not be supported by his legs
if they were exactly similar to our legs; instead, the bone mass has to
be increased disproportionately. This complication makes the study of
biological scale more fascinating than it would bc if the answers were
simple.

Perspective is taught in art classes; geometrical optics is a branch of
physics; similarity and other transformations are central concepts of bi-
ology; chemists build polygons and polyhedra to model the structure of
molecules. Even within mathematics, shape is interdisciplinary: it re-
quires visual and computational skills, logical thought, and many other
tools. Teaching shape in a coherent, meaningful way can stimulate close
cooperation among teachers of many subjects.

The study of shape suggests projects cutting across several subjects.
For example, the study of similarity can be nicely complemented by a
study of lenses, requiring an excursion into physics. Even the names
associated with many of the laws of geometric optics (e.g., Fermat's
principle) stand as testimony to the fact that today's disciplinary borders
have not always been so high. It is precisely because we find the same
shapes everywhere that we need to study themas part of mathematics
in many different contexts.

The study of shape is a laboratory subject. All of us, children and
adults, learn about shapes by making them and studying models (Fig-
ure 33). As an ancient proverb says, "I hear and I forget; I see and I
remember; I do and I understand."

If we wish to build a shapea cube, a scale-model house, or a spiky
star polyhedronwe have to be able to cut out and assemble pieces
of the correct sizes. This is one of the reasons that basic geometry
(angle measurement, parallel lines, and so forth) remains indispensable.
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FIGURE 33. The eminent geome-
ter H.S.M. Coxeter studying a model.
Coxeier has devoted hi life to discov-

ring patterns in shapes

Building models, in this very concrete sense. is one of the best ways to
unify theory and practice.

Hands-on experimentation is essential. For example, when we make
a cube with our own hands, we gain much more insight into its metric,
combinatorial, and stability properties than if we just look at one. If
instead of cardboard squares we make the cube from plastic straws stuck
in balls of putty or in marshmallows, the cube will wobble. Though less
elegant, the wobbly cube is not a "bad" model. On the contrary, it is
a useful one because it teaches something about rigidity and flexibility.
It also teaches something about the shapes into which the cube can be
transformed while maintaining its con binatorial structure.

Everyone seems to agree that models and "manipulatives" are valuable
tools in the classroom. But too often one hears the lament that "if
only models were introduced early enough, we wouldn't have to use
them later on." This unfortunate attitude masks two implicit but very
inaccurate assumptions. First, that gross morphological shape is the
main thing that we learn from models and that it can all be learned in
elementary school: if you've seen one cube (once), you've seen them all.
This, of course, is nonsense: the humble cube plays a key role in the
study of volume, congruence, symmetry, and modular structures

The second assumption is that the main purpof.e in studying a model
is to develop our powers of abstract reasoning; here the model plays the
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role of training wheels on a bicycle. Certainly we want our students to
understand the sense in which a particular cube represents the general
concept of a cube. But even once this is understood, most of us still
have a lot to learn from real models.

Ideally, shape should be taught in a laboratory setting. At the very
least, every school should have a laboratory where students can explore
shape. A shape laboratory should include work tables, drawing and con-
struction equipment, three-dimensional models of many kinds, materi-
als for building them, and places to display them. If possible, it should
include computers with graphics capabilities. Textbooks should be sup-
plemented with workbooks, project material, and interactive computer
graphics programs.

The study of shape is fOr everyone. It is often said that studying shape
is ideal for slow learners, Certainly it is true that students who have trou-
ble with axioms and abstractions will find a hands-on, problem-oriented
shape curriculum less difficult and more meaningful. The misconcep-
tion lies on the other side of the cointhe widespread belief that more
advanced students do not need to study shape.

We do not have to look further than today's newspaper for evidence
of the folly of this belief. "Supercomputer Pictures Solve the Once
Insoluble," proclaimed the headline of a recent article on the front page
of the New York Times."

Scientists who are using the new supercomputer graphics say that by viewing
images instead of numbers. a fundamental change in the way researchers think
and work is occurring. "The human brain is the hest pattern recognizer in
history." says Heinz-Karl Winkler. a Los Alamos National Laboratory physicist.
"We can use it to visually scan vast quantities of data. We can zero in on a
structure in an image and distinguish between important things and unimportant
things."

It is our best students, not our weakest ones, who will he using super-
computers to study the shape of data and scientific images. How will
they know how to distinguish important from unimportant things in a
structure if they have never studied structure at all?

The study of .shupe is .fiin. Students enjoy working with shape. as we
all do. In teaching shape, especially in a workshop setting, a teacher
is unlikely to encounter the lack of motivation or the resistance that
sometimes arise in geometry courses. Unfortunately, fun is suspect in
some educational circles. One effective way to answer questions about
the educational value of exploring shape is to hold an open house in
the shape laboratory so that doubters can become converts by geuing
involved with the material themselves.

I L "$ 7
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The study of shape ts open ended. In a time of rapid change the study
of shape facilitates open ended strategies for learning. For example,
computer graphics is revolutionizing the study of shape. Just as the
supercomputer is changing methods of research, so ordinary computers
are providing images that most of us could not imagine a decade ago.

Many teachers say that computer software has completely changed
the way they teach. They no longer feel that they have to have all the
answers; instead, they become partners with the students in exploring
the properties of shape. These teachers are very enthusiastic about their
new way of teaching. Both their enthusiasm and the new "partnership
pedagogy" can be encouraged by imaginative curricula that embed ex-
ploration of shape throughout the entire curriculum.
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IAN STEWART

Every natural phenomenon. from the quantum vibrations of sub-
atomic particles to the universe itself, is a manifestition of change.
Developing organisms change as they grow. Populations of living crea-
tures, from viruses to whales, vary from day to day or from year to
year. Our history, politics, economics, and climate are subject to con-
stant, and often baffling, chanrs.

Some changes are simple: the cycle of the seasons, the ebb and flow
of the tides. Others seem more complicated: economic recessions, out-
breaks of disease, the weather. All kinds of changes influence our lives.

It is of the greatest importance that we should understand and control
the changing world in which we live. To do this effectively we must
become sensitive to the patterns of change, including the discovery of
hidden patterns in events that at first sight rippear patternless. To do
this we need to:

Represent changes in a cnmprehensible form.
Understand the fundamental types of change,
Recognize particular types of changes when they occur,
Apply these techniques to the outside world, and
Control a changing universe to our best advantage.

The most effective me ium for performing these tasks is mathematics.
With mathematics we build model universes and take them apart to see
how they tick, we highlight their important structural features, and we
perceive and develop general principles. Mathmatics is the ultimate
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in "technology transfer": patterns perceived in a single example can be
applied across the entire spectrum of science and business.

THE MATHEMATICS OF CHANGE

The traditional approach to the mathematics of change can be summed
up in one word: calculus. In calculus the changing system is mod-
eled by a special equation (technically, a dilliYential equation) that de-
scribes the relation between the rates of change of different variables. As
much heavy machinery (both theoretical and numerical) as is required
is brought to bear in an effort to solve the equation. Preparing students
for the study of calculus has been the central goal of school mathemat-
ics; setting up and solving the equations of calculus is the lifeblood of
traditional engineering mathematics.

Calculus remains an essential component of th- mathematics of
change. Newer methods such as discrete mathematics and computation
enhance rather than replace calculus. ut mathematics is itself subject
to change. New problems and new discoveries imply the need for a
much more varied range of mental equipment. Two important trends
ar,!, .vorth mentioning: the use of increasingly sophisticated approximate

.thods and exploitation of geometry and computer graphics. The first
ha been made possible by the enormous increase in computer power.
Because computing is based on digital manipulation, it requires an un-
derstanding of the discrete as well as the continuousand above all, of
the relation between the two.

The second trend is a major triumph of mathematical imagination:
the use of visual imagery to condense a large quantity of information
into a single comprehensible picture. Computer graphics has led to the
discovery that many aspects of change are manifestations of a relatively
small number of fundamental geometric forms. Mathematicians are
just beginning to understand these basic building blocks of change and
to analyze how they combine. The methodology involved has a very
different spirit from traditional modeling with differential equations:
it is more like chemistry than calculus, requiring careful counterpoint
between analysis and synthesis.

The graphical representation of various mathematical concepts arising
in the study of change has led to the discovery of a variety cf intricate
shapes, each of which appears in many different dynamical situations
and is thus a "universal" object in the mathematics of change.14 Fig-
ure 1 portras a number of these shapes. They illustrate well the vast
differences between today's visual methods and the forms traditionally
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FIGURE 1. New scenery in the landscape of change: (a) period-douNtng cascade.
(b) Lorenz attractor. (c) Ueda attractor. (d) ROssler .ittractor. le) vague altractor
Kolmogoroy, (f) Mandelbrot set.

studied in geometry, such as triangles and parallelograms*'' (.ieometr .
is now organic and visual rather than limited and formal.

:n consequence, there are very few branches of m7-hematies today
that do not have some bearing on change. In part this is because mathe-
matics is a highly integrated and interconnected structure. Furthermore.
change is such a complex and varied phenomenon that we need all the
ideas we can muster to handle it. To study change the scientist of the
future will need to combine. in a single integrated world view, aspects
of traditional mathematics, modern mathematics expe. imentation, and
computation. We will need scientists who reach as readily for a pencil as
for a computer terminal, who can draw crude but informative sketches
as readily as a computer graphic, and who think in pictures as readily
as in numbeis or formulas. The entire point of viewthe mental tool
kitof the working scientist will be very different from what it was even
a decade ago.

The patterns of change in nature and in mathematics are uncon-
strained by ccinve.itional categories of thought. In order to make
progress we must respond imaginatively and sensitively to new types
of pattern. Our own patterns of thought must themselves change.
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Variety of Styles

As the twentieth century draws to a close, a new style of mathemat-
ics is emerginga style whose characteristic is variety. Mathematics
is once again developing in close conjunction with its applications to
sciencephysical, biological, behavioral, and social. Much mathemat-
ics is inspired by computer or laboratory experiments or by the forms of
natural phenomena. Conversely, mathematical ideas developed for their
own sake, or in some distinct area of application, are being transferred
to other tasks and put to work.").25 This variety is a strength of the new
style of mathematics, and it should be encouraged at all levels. More-
over, computers (especially computer graphics) allow nonspecialists
from school children to managers, from school teachers to scientists
to witness the beauty and complexity of mthematies and to put it to
work.3.17

The emergence of this new style of mathematics does not imply that
the traditional emphasis on precise formulation of concepts and rig-
orous logical proof can be abandoned. On the contrary. they remain
an essential component of the mathematical endeavor. Rigor and pre-
cision are as essential to mathematics as experiment is to the rest of
science, and for much the saw- reason: they provide firm reasons for
believing that ideas and methous are sound. They are part of the sub-
ject's internal checks and balances, a constant safeguard against error.
The training of professional mathematicians will necessarily continue
to require accurate logical thinking and a precise understanding of the
meaning of "proof." The use of computers as "experimental tools" in
mathematics can stimulate and motivate new ideas and problems, but
these experiments alone cannot provide understanding of why the ob-
served phenomeua happen. Their role is to offer a degree of confidence
that certain phenomena do indeed occur.

In fact an important trend has become very noticeable, as experience
in the use of computers has developed. It is the disappearance of the
dismissive attitude, "Put it on the computer and that will answer all
your questions." When the answer to a problem is, say, a single number,
such as the failure load of an engineering structure, all of one's problems
indeed do disappear once that number is known. But today a typical
computer-based investigation may produce several hundred diagrams
representing the behavior of the system under various conditions. For
example, think of the flow of air past a space shutth: II,: different speeds
angles of attack, and atmospheric dens. Such a catalogue, despite
its apparently large size, is likely to be inadequate for determining the
behavior under all possible conditions. If the syst:in involves three
adjustable parameters, as does the one just mentioned, and each can take

J (:3
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up to ten values, then a total of a thousand combinations is possible.

With four such variables there are ten thousand, with six there are a

million.
In practice, six is a small number of parameters: ..imple problems

in chemical engineering typically involve several dozen parameters and

may involve hundreds. It is pointless to produce a computerized cat-

alogue of one million diagrams, let alone a billion or a trillion. The
fundamental question'What is really going on hereT'returns from

computer science to the realm of mathematics. Such questions require

input from the human brain far more than from the computer.

However, the role of the computer should not be underestimated. It is

becoming an ever more pnvalent . thinking aid. Computers cannot only

generate "results," but they can also be used to experiment at interme-

diate stages of understanding, to test hypotheses and possible mecha-

nisms. With appropriate safeguards, computer calculations can actually

produce rigorous proofs of mathematical results. Such computer-aided

proofs require very careful construction and a grea deal of human input

to set them up: they are far horn routine and ust ally require specially

constructed software and lengthy machine time. More than anything

else, they constitute a difficult specialist area of mathematics. "Put it

on the computer" is no panacea.

Approaches to Teaching

for reasons of exposition only, rigorous proof does not feature promi-

nently in this essay. It is part of the mathematician's basic technique,

and it remains just as important as it ever was, but it holds much less

interest for the nonspecialist. Accordingly, its role has not been made

explicit, although it underpins everything discussed.

However, the fact that proof is important for the professional math-

ematician does not imply that the teaching of mathematics to a given

audience must be limited to ideas whose proofs are accessible to that

audience. Such a limitation is likely to make mathematics dull, dry, and

dreary, for many of the most stimulating and exciting ideas depend upoi

highly complex theories for their proofs. Many mathematical concepts

can be grasped without being exposed to their formal proofs. Using an

idea is quite different from developing it. It is possible to "explain" quite

advanced concepts to children by means of examples and experiments,

even when a formal proof is too difficult.
For example, in the theory of chaos an important concept is that

of "sensitivity to initial conditions." If a system evolves from two

very similar initial states, the resulting motions can quickly become

totally different. Given access to suitable software, virtually anyone can

1 4
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appreciate this sensitive and paradoxical behavior in, say, the Lorenz
attractor (Figure lb) merely by watching how two almost equal starting
values move apart and become independent. However, a rigorous proof
that the Lorenz system really does behave in the manner that computer
experiments suggest is not only beyond the capacities of the average per-
son, it has not yet been achieved by professional mathematicians and
remains an active problem for future research.

The breadth of viewpoint and range of skills demanded by today's
mathematics will be important, not just for mathematicians and scien-
tists but for people in all walks of life. Change affects us all. Managers,
politicians, business leaders, and other decision makers must cope with
a changing world. They must appreciate how subtle change is; they must
unlearn outdated assumptions.

It is a tremendous challenge to devise methods of educating a genera-
tion of such versatile people. Our aim here is to Suggest ways to develop
in children some of the underlying ideas and to stimulate a new point of
view. We must advance beyond the traditional approach of arithmetit
leading to algebra and thence to calculus.

In the design of an effective new curriculum, one important compo-
nent is an understanding of the new viewpoints the. are developing at
the frontiers of research. Yet the curriculum must be suitable for all
children, not just for those who will become research scientists. Nev-
ertheless, pew kinds of mathematics that are evolving at the research
level set the style for applications and educdiion in the future. Thus it
is important for teachers and educators at all levels to understand the
general nature of these new methods and the kinds of questions that
they address.

Levels of Description

The mathematics of change can be viewed at many levels.

The big picture: What are the possible types of change?
Specific areas of mathematical technique: How are the equations
solved?
General areas of application: How does the size of an animal
population vary with time?
Individual applications: Design a chemical reactor to produce
margarine.
Simple theoretical examples: !low does a pendulum oscillate?

Mathematicians operate on all of these levels because insights obtained
at one level are often transferred to other levels. In mathematical
technology transfer, patteins are not tied to any particular area of ap-
plication.
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Simple theoretical examples are seldom of direct relevance to indus-

trial applications. For example, an analysis of pendulum dynamics is

of no direct use in the study of wing flutter in supersonic aircraft. In

practical terms the pendulum went out with the grandfather clock. But

simple examples have their uses: they prepare us for the complexities

of real life. A pendulum makes many important features of oscillation

more accessible than would a realistic model of a vibrating airplane

wing.
To illustrate these themes we will use some specific questions that

exemplify th r. ew style of mathematics. These questions have even

chosen not as s,lecific goals in themselves, but because they motivate

compelling mathematical ideis:

How do living populations change?
Where de meteorites come from?
Why are tigers striped?

Only the first of these questions appears to involve change. The oth-

ers seem to be about static phenomena.27 Meteorites are just thereor
notat random. A tiger is striped, a leopard is not, and never the

swain shall meet. In fact the questions are all about change of some

kind. Do meteorites really plung.. :nto the earth's atmosphere "at ran-

dom," or does something more structured lie behind their appearance

in the night sky? A mature striped tiger does not just exist as a static

object: it develops from a single (unstriped) cell. Somewhere "ong the

line of development the stripes first make their entrance. Change is the

common theme behind each of these varied questions.

POPULATION DYNAMICS

If we put a few rabbits on an uninhabited island. pretty soon there will

be a lot more rabbits. On the other hand, the growth cannot continue

unchecked, or soon there would be more rabbits than island. It follows

that change in a population is affected by both internal and external

factors. How they combine to influence changes in the population is a

good example of mathematical modeling that can be studied at many

different kvels.

Limits to Growth

We begin with the simplest case: a population consisting of a single

species with a constant (and therefore limited) food supply. Figure 2

shows typical experimental data for growth of such a population. Its

typical S-shaped curve is characteristic of many growth phencmena.27
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FIGURE 2. Changes in the s.a.e

of a yeast population growing in
an environment with a Iirr ited
food supply.
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Similar cur es arise if we measure particular features of a single devel-

oping organismfor example, the height or weight of a growing child.

It is common in many families to record the heights or weights of

c%ildren as they grow. These charts may be displayed on classroom

walls for discussion and comparison. The growth of young children

in a single class over a period of one or two years will illustrate linear
growth. The heights on the chart, plotted against time, will lie close to

a straight line. However, the complete growth record of a child from
birth to adulthood exhibits the characteristic S shape. Neither the initial

phase nor the final phase is linear. Early on the growth is approximately

exponential; later it saturates as it approaches a constant value.
Children who have recorded growth curves can be introduced to the

entire S-shaped curve, either as an experimental observation or as a
table of numbers. A goo,' exercise for children in middle school is to

use evidence from several childrens' growth curves together with data
from their own childhood to project their own adult heights. Later,

as older students, they can learn how to represent these curves with
formulas. Children can be encouraged to analyze the main featurt of
this curve and to consider why the curve has them.

Suppose Alice is 1 foot tall at age 0 and 4 feet tall at age 8. If this
growth rate continues-3 feet every 8 yearshow tall will she be at

ages 16 or 24 or 32? (Answers: 7 feet, 10 feet, 13 feet.) Even young
children can see that these answers are not credible. What's wrong? The

mathematics is fine, but the modelinear growthis inappropriate.

Moral: When you use mathematics you have to pick a sensible model

and not just calculate numbers blindly.

Levels of Analysis

A study of population growth can be carried on at several levels
viNtal, numerical, graphical, dynamicalwith the sophistication in-

creasing as the children become older. Verbal description of the yeast

growth curve shows a population that increases slowly at first but then

grows exponentially. That is, the breeding population increases by a

IC ".1
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constant factor in successive periods of time. However, when the pop-

ulation becomes sufficiently large, the rate of growth slows down, even-

tually leveling off at a st.mady maximum value.

This verbal model is purely descriptive. It is mute about why the

population levels off. The verbal description is helpful for general intu-

ition but useless for further analysis of behavior. Its principal role is to

summarize simpls the pattern of growth.

To appreciate the effect of exponential growthand to gain insight

into why such growth cannot continue uncheckedchildren can be told

the famous story about the emperor's reward. In a far country a person

performed an important task for the emperor, and she was asked to

name her reward. The reply was: "One grain of wheat on the first square

of a -.hessboard, two on the next, then four on the next, then eight,

and so on, doubling each time." The emperor was not very impressed

... until he worked out how the numbers grew!

Children can do the same with a calculator or a computer. Younger

children can experience exponential phenomena without using large

numbers by folding a sheet of paper repeatedly in half. How many

times can you manage before you get stuck?

Data on weights of animals, wingspans of birds, girths of trees, num-

bers of leaves on plants, etc., can be gathered (or presented) in the form

of numerical tables. Children can look for patterns in the numbers: Are

they increasing? Decreasing? Constant? They can calculate difference:

and ratios, make tables, and look for patterns. Numerical tables !eat,

naturally to graphical representation.
The growth curve provides a visual picture of the way in which the two

variables, population and time, are related. Such a graph, sometimes

called a time series, replaces numerical information by graphical: it is

the simplest example of the geometrization of change. The idea that

numbers can be represented by the positions of points, and changing

numbers by curves, is the basis of all geometric methods in the mathe-

matics of change (see Figure 3). Children need many opportunities to

learn that in mathematics a picture is indeed worth a thousand words.

For younger children experimental work is most appropriate. They

can count the aumber of eggs produced by ducks or chickens, measure

the height of a growing plant, measure the temperature each day at

noon, record the position of the moon in the sky. By graphing this

data, children can search for patterns of change and discuss possible

causes.
Older children can be 3e1 more ambitious tasks: the water level in

a pond, the number of leaves on a bush, the movements of the stock

market, experiments from physics and chemistry laboratories. Using

data from real phenomena is an effective way to integrate mathematics

into other school subjects. Algebra students can also use n:nnematical

1 PP
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FIGURE 3. Some of the mam different types of change. together

with their typical time series.

processes and formulas to generate theoretical data. to look for patterns,

and to compare theory with reality.

Dynamical Systems

The next level of exploration is to model not the patterns in the num-

bers but the process that gives rise to these patterns. In the traditional
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approach this idea leads to differential equations and thus requires

calculus. But another possibilityincreasingly attractive in an age of

computersis to throw off the chains of calculus and take seriously the

fact that the number of creatures in a population is discrete rather than

continuous.
Imagine that time t increases in .discrete whole number steps, t I,

2, 3, ... . The value of the population p at time t is written as p(t).

Its next value p(t + I) can then be related to its current value p(t) by a

specific growth law. This type of model is called a difference equation

or a discrete system.7.28
In living populations, unchecked breeding at a constant rate In cor-

responds to a law of the form p(t + I) = rrip(1), leading to exponential

growth: p(t) = p(0)ne, where p(0) is the initial population. The law of

restrained growth. which allows for limits imposed by lack of food or

space, modifies this law by subtracting a correction factor that reflects

these limits:

p(11- I) = Mp(t) ri[P(t))2

where m and n are constants that depend on the particular circum-

stances. This equation, known as the Verhulst law (named after the
nineteenth-century French scientist P.F. Verhulst), is one of the most

common algebraic models of limited growth.
Students can st,...ay this equation with tools from simple algebra. both

by making tables and by simplifying the equation. The population level

p(t) = In/ri is a cutoff level: once it is reached, the next value, p(t + I), is

0, as are all subsequent values. To study how the population compares

with the cutoff level, we can express p(t) as a proportion of rnIn by

changing the units of measurement by letting p(t) q(t) (m/n). This

leads to the equation

q(t + I) = rn(q(t) q(1)2).

where q(t) expresses the population as a fraction of the cutoff level.
Instead of two parameters rn and n, we now have just one parame-

ter in, which makes the mathematics much simpler. Because qit) is a

proportion of the cutoff population, it wili be some fraction between 0

and I.
Difference equations such as the Verhulst law are ideal for computer

calculation, because they express a simple repetitive procedure for de-

scribing the behavior at the next instant t +1 from the behavior now, at

time t. With a computer we can easily calculate solutions of the discrete

Verhulst law without knowing a formula for these solutions.

2uu
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(Indeed, there is no general formula for these solutions.) We can then

encapsulate the results in a single geometric object such as a time series

graph.
This illustrates an important general principle: discrete mathematics

is often more accessible than continuous mathematics (calculus). The
Verhulst law can be introduced and studied through tables of values as

soon as students begin their study of algebra, usually feur years before
they are introduced to calculus. However, it is also harder to derive the
detailed mathematical structure of discrete systems, and their treatment

tends to be experimental or at least computer based.

Numerical Experiments

The Verhulst law offers an excellent opportunity for numerical ex-

periments using only elementary arithmetic and calculators.3.73 Even

elementary school children can follow the rules. years before they arc

introduced to the formalism of algebra. The Verhulst law. whose alge-

braic form is
p(t + 1) enip(() p(t)21

can easily be translated into a table or a spreadsheet for exploration for
various values of the parameter in. (Note that we are now using p to

signify the population prodortion. which we previously called q, rather

than the population size.)
St.art with some value of p(0), say 01, and calculate in turn p(1),

p(2). p(3). . In words: new population equals old population minus

the square of the old population, multiplied by a constant.
For example, suppose m = 2. Then the successive values are

0.1, 0.18, 0.295. 0.416. 0.486, 0.499. 0.5. 0,5, ...

We see initial growth, settling dcwn to a specific final level. This growth

is similar to the experimentally verified growth of yeast and wher ho-

mogeneous populations (see Figure 2). When in -- 3 we get

0.1, 0.27, 0.591, 0.725. 0.598, 0,721, 0.603. 0.717, ... .

The values in this case appears to oscillate between about 0.6 and 0.7.

(In fact, this oscillation eventually die::: out, but very slowly: it becomes

more apparent at in = 3.1 or 3.2.) Finally, consider nr = 4:

0.1, 0.36, 0.922, 0.289, 0.821, 0.585. 0.970. 0.113.

Now we see no clear pattern at all! What has happened?
The Verhulsi. law leads to a rich range of behavior, including periodic

oscillations and apparently patternless. irregular behavior. The latter

is known as chaos. Here a simple experiment using a calculator brings
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quite young children to the frontiers of research. Indeed, this example

can lead to an enormous range of classroom activities: working out
numerical values on calculators, computers, or electronic spreadsheets
graphing the results; spotting patterns; analyzing why they occur.

Traditionally, random-looking behavior is modeled by statistics, using
equations that incorporate explicit random terms. But there is no ran-
dom term in the Verhulst law: it is deterministic. This example shows.
surprisingly, that behavior predicted by a simple and explicit law can
be highly irregular, even random.

This paradoxical discovery is called deterministic chaos. Irregular fluc-
tuations may arise from nonrandom laws, making it possible to model
many irregular phenomena in a simple manner. It also demonstrates
that simple causes can produce complicated effects. It is one of the
most exciting areas of current mathematical research.5.' '24

The Irregular Fruit Fly

It is always possible that chaotic behavior could be just an artifact
of the model and not a phenomenon of nature. Perhaps. But natural

populations do, in fact, display irregular oscillatory behavior. Figure 4

shows experimental data on a population of fruit flies kept in a closed

container and fed a constant protein diet.° When the population rises

too high, there is too little food and the flies are unable to breed properly.

The population then drops until there is excess foo42% then the flies breed

unrestrictedly and the population shoots up again.
The main overall effect is an oscillation with a period of about 38

days. However, as the time series shows, the way in which the popula-

tion changes is decidedly complex. Many of the peaks in the graph are
double, being more M-shaped than A-shaped. The height of the peak
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FIGURE 4. Variations in an experimental population of fain flies Olow arcgular
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varies: small, medium, large, in turn. After the first 450 days or so. the
changes become more and more irregular.

This graph illustrates an important question for mathematical model-
ing and for the analysis of scientific data. Some of the observed changes
are due to the population dynamics of fruit flies. Others may be due to
outside effects such as contaminated food, disease. orfor all anyone

knowsthe tides or the position of Mars in the sky. How can we tell
which are which?

It would be easy to assume that the regular effects--the .1f-shaped

peaks, the modulation in their sizeare unrelated to outside causes but

that the increasing itregularity after 450 days iF due to something go-

ing wrong with an outside cause, However, this assumption may be
incorrect. Numerical experiments with models similar to the Verhulst

law show that simple mathematical laws can produce both regular os-
cillations and irregular chaos. just by making slight changes to a single

parameter. In fact many aspects of the fruit tly data, irregularities in-

cluded, can be modeled by simple systems.
Children can be brought to understand the possibilities for complex

behavior in simple systems by performing numerical experiments. first

with calculators and later with computers. They can then search for

patterns in apparently irregular data. For example, given a time series
generated by the Verhulst law or related equations, they can plot p(t -4- I)

against pit) and observe that all the points lie on a smooth eurve. They

can analyze the curve to determine its geometric features; older children

can seek an appropriate formula and estimate the value of the growth

rate parameter nt.
More sophisticated versions of this geometric technique have been

applied to many sets of observational data, for example, to the appar-

ently random fluctuations that occur in the numbers of people suffering

from a disease such as measles. Often the experimental time series

appear random. Hut graphkal analysis suggests that a simple process.
resembling a difference equation, underlies the apparent irregutarities.

In consequence it is often possible to set up simple but realistic models

that reproduce the patterns of change in these systems.

Moving on to Calculus

Traditional analysis via calculus still has an important role to play in

modeling population growth. In this case it provides a .1i)rmu1a rather

than a picture or a list of numbers. In the calculus-based model the

value of p(t) need not be a whole number, whereas a real population

necessarily takes on whole number value-. The model is thus a con-

tinuous approximation to a discrete phenomenon. This is a common

2 .1
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technique and is often used when the maximum population size is fairly

large. Then the change caused by adding or removing a single individ-
ual is extremely tiny, so that the possible range of sizes cannot easily

be distinguished from a continuous range. The resulting model is a dif
erential equation, one of the key concepts of higher mathematics.' A
differential equation involves not just variables such as the population
p but also rates of change of variables. The rate of change of a variable
p with respect to time is traditionally denoted by dpIcIt.

The simplest differential equation for populations is a law of uniform

growth dplelt inp. This states that the rate of change dpIdt of the
population p at a given moment t is proportion-11 to the population p at
that same moment, where the constant of proportionality is in. In other

words, a larger population produces proportionately more offspring than
a smaller one. The solution to this differential equation is p(r)= p(0)e""
for an initial value p(0) at r = 0. which is the continuous version of
exponential growth. The population explodes, unchecked.

In practice other factors must come into play to limit the growth. As
with the Verhulst law, we modify the equation by subtracting a term
np- (where n is a second constant):

dp/dt = Inp - np.2.

The point of this extra term is that when p is small, p 2 is negligible in
comparison, so that the correction term up 2 has little effect; in this case

we obtain (almost) exponential growth. However, asp becomes larger.

the term -np 2 begins to dominate the dynamics. substantially reducing

the rate of growth. Indeed when p reaches the value nr In. the rate of
change of the population, dpIdt, becomes zero. When this happens, no
further growth takes place. So rn In represents the maximum popula-

tion. Using techniques of calculus, it is possible to find a formula for

the solution. The graph of this solution, known as the logistic curve, has

the same S-shape as the experimental data on yeast (Figure 2).

The rich %ariety of behaviorsteady, periodic, chaoticof the dis-

crete Verhulst law is absent from its continuous analog, which yields
only a smooth S-shaped curve. This shows in a particularly convinc-

ing manner that changing from discrete models to continuous ones. or
conversely, can lead to new phenomena: it is not just a harmless trick.

Examples slich as these raise important questions about the relation

between continuous and discrete models, relations worth exploring in

mathematics classes at many school levels.
The continuous model permits experimental data to be fitted to a the-

oretical curve, and this opens the way to prediction of tuture behavior.

For example. if a logistic curve is fitted to the population of the United

States up to 1930, it predicts that by the year 2000 the population should

20.4
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level off at around 200 million. More accurate techniques give a pro-

jected population for the year 2000 of 260 million, about 30% higher.

So the simplified approach does surprisingly well. Students armed with

population data (of an ecosystem, a nation, or the world) can try fitting

the logistic curve to this data to determine the constants rn and n and

to predict future trends.

METEORITES

The behavior of meteorites is a small part of the general problem of

the dynamics of celestial bodiesof moons, planets, stars, galaxies. The

regularities, or almost regularities, of the motion5 of the planets have

throughout history been a major motivation for the study of change. It

is not just a matter of fascination with the night sky: important down-

to-earth problems such as agriculture and navigation have at various

times depended upon knowledge of the movements of the stars and

planets.
Astronomy is a rich area for findinr, c,00d lassroom activities about

change: the phases of the moon, the tides, the apparent motion of stars,

the changing seasons, earth satellites. Another possibility is to recon-

struct Galileo's experiments using balls on inclined slopes and deduce

the law of motion in a uniform gravitational field. Data gathered in

such enterprises can fuel many rich mathematical explorations.
Historically, our understanding of such matters went through sev-

eral stagesinformal description, empirical models, geometrical mod-

els, dynamical modelsbefore culminating in the laws of motion dis-

covered by Isaac Newton. But these laws often lead to equations that

are very hard to solve. They can be solved exactly for a system of two

bodies, where they predict elliptical orbits. The problem of celestial

motion for a system of three bodies has been notorious for over two

centuries for its apparent intractability. With modem computers we

can see why: even simplified versionsfor example, where one body

has negligible masslead to complex and highly irregular behavior.

Computer packages now simulate planetary motion for systems of

two, three, or more bodies. Children as young as I I or 12 can use these

packages to experiment . with the behavior of the regular elliptical orbits

of two-body systems and the complicated behavior of three or more

bodies. By using tiv:se packages, they can gain more insight into the

geometry of planetary motion than Isaac Newton did in a lifetime of

study.
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Stability

Modern understanding of planetary motion stems from work of the
French mathematician Henri Poincare around the turn of the
century.9.22 In 1887 King Oscar II of Sweden offered a prize of 2500
crowns for an answer to a fundamental question in astronomy: Is the
solar system stable? We see now that Poincare's response was a major
turning point in the mathematical theory of celestial change.

Scientists call a system stable if it does not change when perturbed by
small disturbances. It is unstable it' small disturbances tend to become
magnified, leading to large changes in behavior. For example, a pin
lying on its side is stable, whereas a pin balanced on its tip is unstable
since it will always fall over (Figure 5).

Children can develop sound intuition about the notions of stable and
unstable systems, and indeed for the typical complexity of dynamical
systems. by exploring the behavior of various mechanical "executive
toys"multiple pendulums, interacting magnets. gyroscopes. For ex-
ample, consider a pendulum with a magnetic bob, arranged to swing
over the top of a szeond magnet. If the two magnets have opposite po-
larity, then the pendulum is stable in its downward position, attracted
by the lower magnet. But if the polarities are the same, and you try to
hold the pendulum over the lower magnet, it tries to move away. The
downward position is now unstableand the child can feel it!

Experiments of this type. usually carried out in a rather formal way.
are currently characteristic of physics classes. Less formal experiments
should be carried out in mathematics classes as well, as an integrated
part of the development of intuition for change and motion, for stabil-
ity and chaos. At later stages. after a child's intuition is better devel-
oped, such experiences can be formalized with appropriate mathemati-
c-al atodels.

FIGURE 5. Unstable and stable states of a pin: when bala:.ced
on its tip, any wiggle will cause a pin to fall. whereas when resting
on its side, small forces produce only small changes in the posy (on
of the pin.

2ni;
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Stability is an extremely impertant westion. An airplane must not
only fly, but its flight must be stable, or it will drop out of the sky. When
a car rounds a corner it must not tip over on its side. The solar system
is a very complicated piece of dynamics. How do we know that the
motion is stable? Will all the planets continue to move in roughly their
current orbits? Could Pluto crash into the sun? Could the earth wander
off into the cold of the outer planets? These are very subtle problems
whose answers are very difficult to diacern.

Rubber Sheet Dynamics

Poincard didn't solve King Oscar's problem: it was too hard. But he
made such a dent in it that he was awarded the prize anyway. To do it
he invented a new branch of mathematics now called topology Often
characterized as "rubber sheet geometry," topology is more properly de-
fined as the mathematics of continuity, as the study of smooth, gradual
changes, the science of the unbroken.8.18 Discontinuities, in contrast, are
sudden and dramaticOaces where a tiny change in cause produces an
enormous change in effect.

The celestial motion of two bodiesa universe consisting only of the
earth and the sun, sayis periodic: it repeats over and over again, once
eveiy year. (That is the definition of "year.") This periodic behavior
immediately proves that in such a solar systemcontaining only be
earth and the sunthe earth would not fall into the sun or wander off
into the outer reaches of infinity; for if it did, it would have to fall into
the sun every year or wander off to infinity every year. Those aren't
things you can do more than once, and they didn't happen last year, so
they never will. In other words, periodicity gives a very useful handle on
stability. In our real universe bodies will disturb this simple scenario;
nevertheless, periodicity is still important.

Under gravity, two bodies behave simply: they both move in elliptical
orbits about, their common center of gravity. Three bodies behave in an
unbelievably complicated manner, even if the problem is simplified by
assuming that one has a very small mass compared with the other two.
More than three bodies can lead to even worse behavior.

Juggling is an example of stable periodic motion. It is periodic be-
cause the same actions are performed over and over again; and it must
be stable since othenvise it wouldn't work. Juggling two bodies is rela-
tively simple; juggling more quickly becomes very complicated. If one
teaches children to juggle, they will learn quickly about the complexity
of dynamical systems. They can analyze the periodic pattern of juggling
motion. Why is juggling stable? What is the role of hand-eye feedback?
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FIGURE 6. Poincares geometric approach to
periodicity: if the state of a system describes a
closed loop in phase space. the system must be
periodic and hence stable.

Poincare grappled with the existence of periodic solutions, and he

found that they could be detected by a topological methei. Suppose

that at some particular instant of time the system is in some particular

state and that at a certain time later it is again in the identical state.
Then it must repeat, over and over again forever, the very motion that

took it from that state back to itself. Returning just once to a previous

state, perfect in every detail, is the essence of periodic motion.
Topology enters when this idea is made geometric.24 Imagine that the

state of the system is described by the coordinates of a point in some
high-dimensionll space, which scientists call phase space. As the system

changes, this point will move, tracing out a curve in phase spa:v. In

order for the system to return to its initial state, this curve must close up

into a loop (Figure 6). Stability of the system thus translates to "When

does a curve form a closed loon?" The question asks nothing about the

shape or size or position of the loop, merely that it be closed: it's a

question for topology. Thus the existence of periodic solutions depends

on topological properties of the curve that represents the changing state

of the system in phase space.
Phase space is an abstract mathematical space with many dimensions

that represent all possible variables that govern the state of a system,

FIGURE 7. Example of a phase por-

trait in which different curves repre-
sent possible evolution of a system
under different initial condifions.

21-1 S
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wh'ich is itself represented as a single point in phase space. As the state
changes, this point moves, tracing out a curve, or flow line. The picture
of how these flow lines fit together is called the phase portrait of the
system.' The flow is typically indicated by curved lines, corresponding
to the time evolution of the coordinates of various initial points (see
Figure 7). Arrows mark the direction of motion of time.

Phase Portraits

Once children have grasped the concept of graphing the changes in
a single variable, they can be introduced to phase portraits. Instead
of plotting the value of a single variable against time, in a time series
they can plot the sequence of values of two different variables in two
coordinate directions. Such exercises will develop insight into the mul-
tidimensional geometry of change. For young children these variables
might be the height and weight of growing animals or the tempera-
ture and rainfall per day. Older children could consider astronomical
phenomena such as the positions of the sun and moon, or measure-
ments made on an electronic circuit, or observations of a pendulum, or
p ice movements of two different exchange rates on the world currency
market.

The oscillations of a simple pendulum provide a very illuminating
example of a phase portraitbut suitable in full detail only for more
advanced students. The traditional approach to the pendulum is to
write down an approximate equation whose solution is a sine curve.
The approximation is necessary because standard techniques of calculus
cannot solve the true equation for an exact model. The student does
learn useful properties of the sine curve as well as a formula for the
period of a pendulum whose swings are small. However, this traditional
approach is in some respects unsatisfactory since the approximations
employed are rarely justified. It leaves the unwarranted impression that
lack of precision is acceptable in mathematics.

Instead, the law of conservation of energy can be applied to yield an
exact model for the motion of a pendulum. It leads to the equation

v = + 2cosO.

where v is velocity, C and k are constants, and 0 is the angle that the
pendulum makes with the vertical. By sketching this family of curves,
one in effect draws the phase portrait (Figure 8). All of the motions of a
real pendulum, including large swingseven cases when it revolves like
a propellercan be seen in this picture.24 With this alternate approach,
students obtain equally valid practice with the sine function, an accurate
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FIGURE it. Phase portrait of a pendulum in which all possible motions are visible,

model, no approximations, and an important physical principle (conser-

vation of energy). Isn't that a better way to think about the pendulum?

Resonance

The dynamical equations for three bodies cannot he solved by a for-

mula, but they can be put on a computer and solved numerically. Such

models provide a good meat:s of exploring the surprising effects of res-

onance on the motion of dynamical systems. Resonance occurs when
different periodic motions have periods that are in some simple numer-

ical relationship such as 1:1. 2:1, 3:2, and so on. For example. Titan, a

satellite of Saturn, has an orbital period that is close to 4:3 resonance

with that of another satellite, Hyperion. Specifically, Hyperion takes

21.26 days to complete one orbit and Titan takes 15.94. The ratio of

these is 1.3337, convincingly close to the ratio 4:3.

Older children can use a computer package to simulate planetary dy-

namics. They can study the motion of the moon or of a satellite in

transit from earth to moon. They can study the way in which Jupiter's

satellites are locked into resonant orbits. They can study the so-callea

Lagrange points, where satellites (or space colonies) can remain in sta-

ble positions 60 ahead of or beaind the moon. This too is a kind of

resonance.
Resonances are especially important in dynamics. They lead to a rich

and subtle geometry that is almost unbelievably complex. In Figure 9

the large circles represent regular motion: secondary "islands" between

the circles represent resonances; tertiari islands signal more delicate

multiple resonances. The spaghetti-like crossings represent chaos. The

structure repeats forever on smaller and smaller scales.
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FIGURE Q. Fractal structure near a periodic orbit: islands signal
resonances of various orders. while tangles represent regions of
chaos.

High school students can easily search astronomical tables to look
for evidence of resonances. This work involves plenty of practice with
fractions, decimals, calculators, and computers. It shows how simple
mathematics can produce deep insights to those who look at the world
from a mathematical perspective.

Resonances often generate chaos. Figure 9 has a particular disturbing
quality of self-similarity: each island has the same complexity, indeed
the same qualitative form, as the entire picture. This complicated self-
similar structure is not some mad mathematician's nightmare. It's what
really happens.

The concept of self-similarity together with the associated ideas of
fractal geometry." can be made accessible to children around the age
of twelve, maybe younger. The topic can be introduced using natu-
ral examples: coastlines, leaves, ferns, etc. Next, computer models of
fractals such as the Cantor set and snowflake and dragon curves can
be drawn and their patterns analyzed. Concepts of fractal structure and
self-similarity can easily be developed from these examples. Even young
children can appreciate the idea of fractal dimensionswhich need not
be whole numbers.
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Gaps and Clumps

Resonances feature prominently in Pnother astronomical conundrum,

the gaps in the asteroid belt, which is directly related to our original

question about meteorites. Most asteroids circle between the orbits of

Mars and Jupiter, although a few come much closer to the sun. How-

ever, the asteroid orbits are not spread uniformly between Mars and

Jupiter. Their radii tend to cluster around some values and stay away

from others (Figure 10). Daniel Kirkwood, an American astronomer

who called attention to this lack of uniformity in about 1860, also no-

ticed an intriguing feature of the most prominent gaps: if an asteroid

were to orbit the sun in one of these Kirknvod gaps. then its orbital pe-

riod would resonate with that of Jupiter. Conclusion: Resonance with

Jupiter somehow perturbs any bodies in such orbits, causing some kind

of instability that sweeps them away to distances at which resonance

no longer occurs. The special role of Jupiter is no surprise since it is

so massive in comparison with the other planets. The gaps are obvious

in recent data, especially at resonances 2:1, 3:1, 4:1, 5:2, and 7:2. On

the other hand, at the 3:2 resonance there is a clump of asteroids, the

Hilda group. So stability is not just a matter of resonance: it depends

on the type of resonance. The questions remain a subject of intense

investigation.
Recent computer calculations" show that an asteroid orbiting at a

distance that would suffer 3:1 resonance with Jupiter can either follow

a roughly circular path or a much longer and thinner elliptical path.

If the orbit of an asteroid is sufficiently elongated, it crosses the orbit

of Mars. Every time it does so there is a chance that the asteroid will

come sufficiently close to Mars for its orbit to be severely perturbed. It

will eventually come too close and be sent off into some totally different

orbit. The 3:1 Kirkwood gap is there because Mars sweeps it clean,

rather than being due to some action of Jupiter. What Jupiter does is

create the resonance that causes the asteroid to become a Mars crosser:

then Mars kicks it away into the cold and dark. Jupiter creates the

opening; Mars scores.
The same mechanism that causes asteroids to be swept up by Mars can

also cause meteorites to reach the orbit of the earth. The 3:1 resonance

4 t

FIGURE 10. Gaps and dumps in
the distribution of asteroids reveal res-

onance with the orbital period of Juni-

ter.

2 1 2



206 NEW APPROACHES TO NUMERACY

with "upiter thus appears to be responsible for transporting meteorites
from the asteroid belt into earth orbit, to burn up in our planet's at-
mosphere if they hit it.26 A cosmic football game, played among the as-
teroids by Mars and Jupiter, determines whether or not floating cosmic
rocksand perhaps sometimes mountainswill crash into the earth's
atmosphere. It would be hard to find a more dramatic example of the
essential unity of the entire solar system or a better example of the
interconnectedness of change.

THE TIGER'S STRIPES

"What immortal hand or eye dare frame thy fearful symmetry?" said
William Blake, referring to the tiger. Although Blake wasn't using the
word "symmetry" in a technical sense, it turns out that the behavior of
symmetric systems has a distinct bearing on the striped nature of tigers.

Symmetry is basic to our scientific understanding of the universe.'3
The symmetries of crystals not only classify their shapes but also deter-
mine many of' their properties. Many natural formsfrom starfish to
raindrops, from viruses to galaxieshave striking symmetries. Man-
made objects also tend to be symmetric: cylindrical pipes, circular
plates, square boxes, spherical bowls, hexagonal steel bars.

That symmetric causes have symmetric effects is a long-standard prin-
ciple in the folklore of mathematical physics. Pierre Curie made the case
succinctly:6 "If cei Lain causes produce certain effects, then the symme-
tries of the quses reappear in the effects produced." The principle
seems natural enoughbut is it true? The question is a subtle one in-
volving not just the meaning of "symmetry" but also that of "cause"
and "effect."

Recently scientists and mathematicians have become aware that, in an
important sense, Curie's statement is false. It is possible for a symmetric
system to behave in an asymmetric fashion. This phenomenon, known
as symmetry breaking, is an important mechanism underlying pattern
eol-mation in many physical systems from astronomy to zoology. The
....thematical theory of symmetry breaking provides a powerful method
;or analyzing how symmetric systems behave and applies across the
entire range of scientific disciplines.°

Curie Was Right ...

At first glance, Curie's statement is "obviously" true. If a planet in
the shape of a perfect sphere acquires an ocean, that ocean will surely be
of uniform depth, hence itself a sphere. The spherical symmetry of the
planet is reflected in a corresponding spherical symmetry of its ocean.
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It would appear bizarre if, in the absence of any asymmetric cause, the

ocean should decide to bulge unevenly.

On the other hand, if the planet rotates---bre,king the spherical sym-

metry and replacing it by circular symmetry about the axis of rotation
then the ocean will bulge at the equator, preserving the circular symme-

try. Isn't that typical of how symmetry behaves? Not always.

Curie Was Wrong .

Curie's principles may seem obvious, but they must be interpreted

very carefully indeed, for there are many symmetric systems whose be-

haviors are less symmetric than the full system. For example, if a perfect

cylinder, say a tubular metal strut, is compressed by a sufficiently large

force, it will buckle.28 The buckling is not a consequence of lack of sym-

metry caused by the force: even if the force is directed perfectty along

the axis of the tube, preserving the rotational symmetry about that axis,

the tube will still buckle. Buckled cylinders cease to be cylindrical
that's what "buckle" means. Similarly, a computer picture of a spherical

shell buckled by a spherically symmetric compressive force is shown in

Figure I observe that the symmetry of the buckled state is circular

rather than spherical.
It is important to understand that the loss of symmetry in these sys-

tems is not merely a consequence of small imperfections: asymmetric
solutions will exist even in an idealized perfectly symmetric mathe-

matical system. Indeed, such a "perfect" system largely controls how

symmetries can break. However, imperfections play an important role

in selecting exactly where. For example, when a perfect system such as

the sphere in Figure II buckles, the axis of circular symmetry can be

FIGURE I I. Symmetry-breaking buckling

of a uniform spherical shell subjected to
uniform external pressure. The shell buckles

in a cylindrically symmetric fashion.

BEST COPY AVAILABLE
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any axis of the original sphere; for an imperfect system some axes will
be preferred, their positions being related to weaknesses in the spherical
shell. The general form of the buckled sphere, however, will be the same
in both cases.

In this sense Curie's principles are perhaps valid for an actual physical
system (which is necessarily imperfect) but not for an idealized model.
Rather than attempting to resurrect Curie's principles in this fashion,
however, it seems preferable to understand the mechanism by which
perfect idealized symmetric systems produce behavior with less sym-
metry. This is called symmetry breaking. It seems to be responsible for
many types of pattern formation in nature, and it has a very well defined
mathematical structure that can be used to understand such processes.

What causes the symmetry to break? The answer is that natural sys-
tems must be stable. Curie was right in asserting that symmetric systems
should have symmetric states, but he failed to address their stability. If
a symmetric state becomes unstable, then the system will do something
elseand that something else cannot be symmetric.

How does the symmetry "get lost"? We answer this question by an ex-
ample. The catastrophe machine (Figure 12), invented for rather differ-
ent reasons by Christopher Zeman of Warwick University in 1969,19.20'31
shows that symmetry is not so much broken as spread around. Children
can make one and experiment with it.

The entire catastrophe machine has reflectional symmetry about the
center line. If you begin to stretch the free elastic, the system obey's
Curie's principles and stays symmetric; that is, the disk does not rotate
(Figure 13a). But as you stretch the elastic further, the disk suddenly
begins to turnmaybe clockwise, maybe counterclockwise (Figure 13b).
Now the state of the system loses its reflectional symmetry. The sym-
metry has broken, and Curie's principles have failed.

Where has the missing symmetry gone? Hold the elastic steady and
rotate the disk to the symmetrically placed position on the other side
(Figure 13c). You will find that it remains there. Instead of a single
symmetric state we have two 4,mmetrteally related states.

This is a oneral feature of symmetry breaking. The system can exist
in severa! states, each obtainable from the others by one of the sym-
metries of the full system. For example, the buckled spherical shell in
Figure 11 breaks symmetry from spherical to circular, and the eircular
symmetry occurs about some particular axis, clearly visible in the pic-
mit. In the "perfect" system any axis is possible, but all buckled states
have the identical shape, and they differ only by motions of the sphere.

Children can explore symmetry breaking with simple experiments.
They can compi ess a plastic ruler to find out when and how it bends.
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FIGURE 12. A 'catastrophe machine" can be constructed easily out of cardboard and
rubberbands. Attach a circular disk of thick cardboard, of radius 3 centimeters, to a board
using a drawing pin and a paper washer. Fix another drawing pin near the rim of the
disk with as point upwards. To this pin attach two elastic bands, of about 6 centimeters
unstretched length. Fix one to a point 12 centimeters from the center of the disk, and
leave the end of the other free to move along the center line as shown, for example. by
taping it to a pencil that you can move by hand.

They can use a spring to hold a rod upright, with the lower end resting
on a table, then add weights to the top and watch it sway or buckle.
They can make a "bridge" from a flexible metal strip, put weights on
top, and watch it collapse.

Older students can analyze the behavior of two rigid rods joined by
a springy hinge. These models lead naturally to more subtle questions
relating symmetry, stability, and continuous change. How does a rolling
body move if its center of gravity changes? How do ships capsize? The
analysis of models of such changes brings in a great deal of important
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FIGURE i 3. When thc rubber band is stretched. the symmetrical position of the pm
(a) becomes unstable. Two stable positions emerge on either side (h) and (ch but neither

of these has the symmetry of the original configuration, In this case, as in many other

examples in nature, instability break symmetry.

geometry, for example, tangents and normals to a curve, centers of grav-
ity, and even coordinate transformations.

For a more homely example, consider the flow of water through a
hose with circular cross section. Imagine the hose suspended vertically,
nozzle downwards. with water flowing steadily through it. This system is
circularly symmetric about an axis running vertically along the center of
the hose. And indeed if the speed of the water is slow enough, the hose
just remains in this vertical position, retaining its circular symmetry.

However, if the faucet is turned on further, the hose will begin to
wobble. In fact there are two distinct kinds of wobble. In one it swings
from side to side like a pendulum. In the other it goes round and
round, spraying water in a spiral. Similar effects are often observed
when children wash the family car. These wobbles do not possess circu-
lar symmetry about a vertical axis: indeed, they break it in two distinct
ways. They also break a less obvious but very important symmetty:
symmetry in time. The original steady flow looks exactly the same at
all instants of time. The oscillating flows do not. The time symmetry
is not totally lost, however: both wobbles are periodic and hence look
exactly the same when viewed at times that are whole number multiples
of the period. This shows how the continuous temporal symmetry of a
steady state breaLs to give the discrete symmetry of a periodic one.

Symmetry breaking is important in biology. When a spherically sym-
metric frog egg develops, it splits into two cells and the spherical sym-
metry is broken. At a later stage of development (Figure 14) a spheri-
cally symmetric mass of cells, the blastula. forms; but this first develops
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FIGURE 14. Creation and destruction of symmetry in the development of a frog
embryo: spherical symmetry breaks, then ts restored, then breaks again tato circular and

then bilateral symmetry.
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a circular dent (gastrulation) with only circular symmetry and then a
neural fuid, leading to mere bilateral symmetry.

Mathematically, the development of a circular dent during gastrula-
tion is directly analogous to the bucklirg of a spherical shell (Figure
11). This demonstrates that symmetry-breaking phenomena in quite
different physical realizations can have the same underlying mathemat-
ical structure. The unifying role of mathematics in science, one of its
most striking and important features, is clearly

This leads directly to our motivating question: Why does a tiger, with
its roughly cylindrical symmetry, have stripes? Blake's immortal poem
offers no useful clue.

Turing's Tiger

The theory behind the tiger's stripes goes back to Alan Turing, more
famous as one of the father figures of modern computing. Turing knew
that chemical changes produce the variations in coloring. The chemical
responsible for the stripes need not be the actual coloring matter; it is
more likely to be a precursor, formed during relatively early stages of
the tiger's development, which later triggers a series of chemical ch:nges
to create the stripes. However, the biological detailssome of which
remain controversialare not important here. Our aim is to it. itrate
some simple and general mathematical mechanisms for pattern forma-
tion in a familiar context.

Turing wrote down equations for this kind of chemical change.29 He
solved them numerically and then made pictures of the results. He
used to button-hole friends and show them his pictures. On some there
were stripes, on others irregular patches. "Don't these look just like the
markins on cows?" Turing would ask, in some excitement.

His calculations showed that patterns like stripes or spots can be cre-
ated by a mechanism of instability. Imagine a flat surface (mathematical
tiger skin) that contains a uniform distribution of some chemical. This
would in the course of time produce a tiger of uniform color, grayish
brown all over, more like a mountain lion. But the distribution of chem-
icals need not remain uniform: it can change. There are two important
types of change. Chemicals at a given place react, and the reaction
products diffuse from one place to another.

. ese two types of change compete. Reaction tries to alter the chemi-
cal mix; diffusion tries to mice it the same everywhere. The mathemat-
ics shows that when different influences compete the result is often a
compromise. Here the simplest compromise A. *hat the uniform distri-
bution of chemicals begins to form ripples. If instability occurs in only
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FIGURE 15. Competing chern:.cal forces lead

to instabilities. In (a), instability in one di-
rection leads to stripes; in (b), instability in a
second direction breaks up the stripes into spots.

FIGURE 16. Spiral scroll waves in a chemical reaction created by conflicting roles of

reak.ion (which changes the chemical mix) and diffusion (which restores uniformity).

one direction, then the ripples only run one way and we see stripes.

If a second instability sets in along a perpendicular direction, then the

stripes themselves ripple along their length and break up into spots (Fig-

ure 15). Competing chemical instabilities may well be the fundamental

difference. on a mathematical level, between tigers and leopards.

Chemical reactions that can generate periodic patternsspirals, target

patternscan be demonstrated in any school chemistry laboratory (Fig-

ure 16). The most famous one is the so-called Belousev-4Thabotinskii

reaction.2t Students can analyze these patterns to find their mathemati-

cal structure (e.g., what sort of spiral is it?) They can also use computer
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FIGURE 17. B) using simple computer packages. children can
explore reaction-diffusion in regions of different shapes.

FIGURE IS. Computer models of patterns on animal skins show
realistic-looking results. Tho also show that long thin stripes
?isually break up into spots.

packages to solve reaction-diffusion equations on different shapes of re-
gions aild see what kinds of patterns occur (Figure 17).

Patterns formed in the competition between reaction and diffusion
provide good examples of symmetry btcz..king. The initial uniform dis-
tribution of chemicals has greater symmetry than do the stripes or spots

or spirals. Symmetry breaking is a very common source of natural
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patterns. And what else is the breakirg of symmetry than a change
in pattern?

Computer models of how pigmemation-controlling chemicals might
diffuse through the tiger's tail produce plausible markings (Figure 18).
Long thin stripes are less stable than short fat ones and prefer to break up
into spots.16 This mathematical result could help explain the common
observation that a spotted animal can have a striped tail, but a striped
animal cannot have a spotted tail.

IMPLICATIONS

Change is a phenomenon that has a direct impact on every human be-
ing. It affects individual lives, national economies, and the future of the
entire planet. Until recently our understanding of change came mostly
from the traditional tools of calculus and its more advanced relatives
and ix as confined to the physical sciences, where accurate numerical
measurements are possible.

Initially, computers served to extend the techniques of calculus, by
making it possible to solve more difficult equations. The term "number
crunching" captures the style. But today's computers do more than just
crunch numbers. In particular they can represent and manipulate data
graphically. As a complementary development, today's mathematics is
also about far more than just numbers. It deals in structural features,
multidimensional spaces, transformations, shapes, formsin short, pat-
terns.

When calculus was invented, it evolved hand in hand with geom-
etry. Over the centuries, geometric-reasoning was replaced by rk-ore
powerfulbut less informativeanalytic techniques. The emphasis
shifted to formulas. Now, as we penetrate areas where formulas alone
are inadequate, the emphasis is shifting back to geometrynot to the
stilted formal reasoning often associated with the school treatment of
geometry, but to the geometry of space and shapeto the mathematics
of the visual.

Many basic skills are involved, often as complementary pairs, to pro-
vide two different ways to approach the same problems:

numerical and visual.
algebraic and geometric,
formal and experimental,
abstract and concrete,
analytic and synthetic,
algorithmic and existential,
conceptual and computational.
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Mathematics, the science of patterns, is itself changing. For the sake
of our future we must harness mathematics to the patterns of change.
And to do that we must change the way that mathematics is taught, to
create a new generation able to perceive and manipulate new patterns.
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70. 72. 73. 74. 82. 84. 87. 88
Algebraic expressions. 62. 64. 74. 77. 80.

85. 86
Algorithms. 7 8 31 36. 39. 64, 65, 77- 78.

80. 83. 84, 89
application of. 78
bisection. 34
combination counting. 50
computer-based. 78
defined, 77
design of. 78
development in schmils. 77
everyday. 33-35. 36. 39
"paper and pencil." 64
theme in mathematics, 7

Applications
algorithms. 78
measurement. SU

modeling, 89
quantification. 65
school mathematics. 88-91

Archimedes. 16. 84
Area. 12. 16, 17. 24, 67

circle. 22. 23
and pi. 35
rectangle. 17
right triangle. 16
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scalene triangle. 16
square. 35

Arnheim, Rudolph. 170-171
Astrology. 62
Astronomy. 198
Average value. 26. 27

Bayes' theorem. 128
Bayesian inference. 127. 128; see aist,

Classical inference. Inference
Belousov-Zhabotinskii reaction. 213

Bias. 131
in data 114

Binomial
coefr.cient. 52. 53
distributions. 122. 125

Biological instability. 212
Blastula cells. 210
Boxplots. see Displaying data

Calculators. 65, 99, 1(10
as complement, 78. 79
graphing. 75
influence of. 63. 64
in schools. 63

Calculus. 4.7. 13. 14, 19, 28 14 40 184.
215. 216

and formulas. 196
Cantor set. 204
Cartesian graphs. 76
Catastrophe machine. 208

Causation. 111
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Chance. 95, 97-99. 136; see also Confi-

dence Intervals. Inference, Out-
comes. Probability, Randomness.
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calculus and, 184
computer graphing of. 184
identifying patterns in. 183
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in mathematical research, 7
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in mathematics, 2. 184-189

models in calculus, 184
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planetary motion, 198-206
population. 189-198

representation of. 184
in school curriculum. 2. 188
teaching of. 187
universal concept. 189

Chaos theory, 143, 187
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Circumference. 23. 35
Class data, 112
Classical inference 127; see also Bayesian

inference, Inference
Classification

development of skills, 146
in schools. 147
of shape. 147-148
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networks. 160
properties, 143-144
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Combinatorics. 122
Comparative randomized experiments. 117
Complete graph. 51
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Computers and computing

algorithms, 78
analysis. 186-187
animation, 32
as complement, 78, 79
coordinates and, 39
geometry in schools, 175
graphics, 2, 14, 30, 161, 167-168,184-

185

mathematics, 64
models, 89, 214-215. 216

new number systems, 87
reaction patterns. 213
representation. 76-77
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shape simulation, 177
simulation of planets. 198
software, 75
statistical. 99, 100. 102
wraparound. 38
see also Calculators, Displaying data,

Representation, Visualization
Conceptual knowledge. 73. 78-79

Conditional probability, 122-124. 128
modeling. 123
see also Probability

Cones

drawing, 32
slicing, 48
volume of. 14, 15

Confidence
intervals, 129-131; see also Bayesian

inference. Classical inference.
Inference. Significance tests

statements, 129, 130
Configuration spaces. 41-45
Conic sections, 48
Connections, in mathematics, 5-7
Conservation of energy. 203
Context. in statistics. 96. 101
Continuity. see Topology
Continuous approximation to discrete

phenomena. 194
Contour mapping, 50
Converging variation, 72
Convex deltahedra. 155
Coordinates. 32, 33. 36-45

descriptions, 41

dimension, 32
geometry. in higher dimensions, 39
graphs, 75

Correlation coefficient, Ill
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Coxeter, H,S.M., 158
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Crystals. 155-157
Cubes. I I, 28, 29, 30. 31. 32, 40, 47. 53,
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counting of. 53-58
drawing. 28
in Froebel's kindergarten. 24
isometric projection. 28
learning tools, 157-158
orthographic projection. 28, 29
slicing. 47

Cubic. kaleidoscope. 153
Curie, Pierre, 206, 207, 208
Curriculum, 77. 88, 92, 95, 136, 171-180

data. 96-97
design, 66

development. 66
future of. 66
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quantification skills. 62-65. 77-79. 92
see also Teaching

Cyclical variation. 72
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and discs. 22
drawing. 32
slicing. 47

Data. 95. 96-97. 98. 99, 100. 101. 101, 104
curriculum. 96-97
definition of. 96
experiment. 112
measurement. 113
numbers in context, 96

Data analysis, 102. 103-Ill, 115. 119. 126
teaching of. 112

Data bases. 65
Data production. 102, 103. 111-.118. 135

Decomposinon
models, 17-18, 47. 49
slicing. 46-50

Decorated cubes. 153

Density. 16
Deterministic

chaos. 195
phenomena. and change. K. see also

Change

Diagnostic methods. 99
Difference equation (dynamic). 193, 196.

Differential equations. 105
Dimension. I I. 12, 11, 25. 30. 31. 32. 33.

36, 37, 39-44, 44 43 48 62. 91
Dimensional analysis, 41

Dimensionality
and change, 8
configuration spaces, 44-46
dynamic events, 44-46
similarity. 20

Dimension. I I. 12. 13. 25. 30, 31. 32, 31.
36. 37, 39-44. 44 SA 4g 62 441

Direct and inverse variation. 72

Direction-giving
as pan of learning. 36-37

Dirichlet domains. 156, 157
Discontinuities. 200
Discrete

mathematics, 184

system. dynamic 191
Displaying data. 27, 28. 104-105

boxplots. 104. 108
for children, 105
drawing. 164
graphic displays. 104
histograms. 104
mathematical mode's. 104
stemplots. 104
see also Computers and computing.

Representation, Visualization

225

Dissection. 158-160
Distribution patterns. 105
DNA, 148. 154
Double helix, 148
Dr. Matrix. 61
Draft lottery (1970). 132-134
Drawing

cubes. 28
as representation of shape. 164-166
see aiso Cubes. Displaying data

Dynamical systems, 192-194

Earth, as two-dimensional surface. 37
Edgerton. Samuel. 168-170
Egyptian monuments, as geometrical

examples. 20-21
Electron microscope. 171
Elements, 141. 176

Elevator geometry. 39
Equations. 70
Escher. M.C.. 165
Euclid. 7, 43, 64, 77, 139. 140-141. 175,

176

Euler's Theorem, 161
Evolution. ot number system. 74. 81
Executive toys. 149
Experimentation, in place of proof. 185
Exploratory data analysis. 41. 76. 104
Exponential growth, 190. 191, 197

Fermat's principle. 179
Fields, 84
Flatland. 30. 49
Foreshortening

in cube drawing. 28, 31
see atw Cubes

Four-dimensional cubes. 30: see also

Hypercuhe
Fourth dimension, 11, 23. 30
Fractals. 25-26. 143, 204
Froebel, Friedrich, 11-12. 14, 15. 17, 24.

28. 31. 46, 47. 58
Fruit fly experiment. 195
Fundamental change, 7

Galileo. 7, 168, 169. 170. 198
Gauss. 2. 51, 87
Geometric gifts. Roche!' s. 14. 46. 47, 4g

Geometric
patterns. 139
preparation of students. 20
series. 25

Geometry. 1, 2, 11. 12, 13. 14, 17. 22. 25.

26. 32 . 35 . 37, 38, 39. 43. 50, 173
analytic. 13
and children. II
implications of new approach. 215
plane. 12
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in schools. 174-176
solid. 12, 13

Globes, 161-163

Gombrich. E.H., 143. 169
Graphical representation. 74-75. 108. 109,

191

confidence intervals, 129
see also Computers and computing,

Displaying data, Representation,
Visualization

Greek mathematicians. 16. 64. 74, 140-141.
168. 175

Grouping, 55
Growth

exponential. 25, 190, 191. 197
factors, 25

linear, 190
model. 190
phenomena, and change. 190

Orttnbaum and Shepherd. 149
Oriinbaum. Branko. 139. 164. 165

Harriot, Thomas, 169
He Built a C'rooked House. 30
Heinlein. Robert. 30
Helix, 147-148

Hexahedra. 160
Higher dimensional spaces. 39
Hindu mathematicians, 74
Hypercube, 30-31, 32. 40, 50, 53-56,
The Hypercuhe: Projections and Slicing.

50
Hyperion. 203
Hypersphere. 49
!typothesis testing. 134

Icosahedron. 155. 164. 165
Image reconstruction. 166-167; see also

Representation, Symmetry. Topol-
ogy. Visualization.

Independent trials. 118, 119
Induction, see Mathemafical induction.

Natural numbers and integers,

Principle of Finite Induction
Inequalities. 70
Inference. 98, 102. 103. 112. 122, 126,

127-134; see also
Chance. Confidence intervals.
Significance tests

Instruction-giving, as part of learning. 36-
37

Integers, see Natural numbers and integers
Isometric projection, for drawing cubes, 28:

see also Cubes. Foreshortening.
Orthographic projection

lime). 201. 205. 206
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Kaleidoscope, 5. 151
exploration of symmetry, 5

Kelvin. Lord. 61
Kindergarten, II, 17, 24, 28, 47, 58; see

also Froebel. Geometric gifts
Kirkwood gaps. 205
Knots. 144. 147
Kolmogorov vague attractor, 185

Lagrange points. 203
Language of mathematics, 8
Latitude, 37, 39
Lattice. 155-158

one-dimensional, 156
two-dimensional. 156-157
three-dimensional, 157-158

Law of Large Numbers, 125
Law of Motion. 198
Law af the Iterated Logarithm. 118
Learning and Teaching Geometry. 175
Least squares regression, I 1 I
L'Engle. Madeleine, 30
Lenses, 163-164; see also Representation
Levels of analysis. 190-192
Linear algcbra. 62, 65; see also Algebra,

Algebraic expressions
Logistic curve. 198
LOGO. 37
Longioide. 37, 39
Lorenz attractor. 185. 188

Man-made patterns. 148
Mandelbrot set. 26, 185
Manipulatives. 14
! tapping, 168

of quantities, 90
Maps. 161. 162. 163; see also Displaying

data, Representation. Visualization
Mars, 205, 206
Mathematical

abstractions, 3
actions. 3
attitudes. 3
attributes. 3
behaviors. 3
classification. 141
dichotomies. 4
induction. 82-84
modeling for change. 196
models. 109-111. 161-163. 178, 184,

196

strands. 4

structures. 3
Mathematics

comparison with linguistics, 14
curriculum, 62, 63, 65, 66, 77. 88, 91-

92. 95. 96-97. 136
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fundamentals of. 3
goals, 62. 91-92
importance of early learning. 14
informal arithmetic. 80
maintaining rigor of old styk. 184
pattern and order. I -2
as a pipeline. 4
public perception of. I
and science. 184
statistics in schools. 95-96 100
variety in new approach. 184

Mathematics of change. 184
levels of description. 188-189

Matrices. 63. 65. 87
Maxims and minims. 72
Mean, 96. 107. 110. 119, 125
Measurement

of dimensions, 14: see also Dimension
us recurring theme m mathematics. 6:

see also Applications. Quantification
Measuring

quantitative concepts. 91: Are afso
Quantification

volumes. 14. 15. 16
Median, 107
Meteorites, 198
Mirror geometry. 151-153: see also

Geometry. Plane geometry. Solid
geometry

Mobius band. 145
Modeling. 69; see also Conditional

probability
Models. 104, 161-163. 178. 184: see also

L)isplasmg data. Representation

Naming
importance of techniLal names. 143-146
of shapes. 145
see also Classification

Natural
numbers and integers. 82, 84. see also

Principle of Finite Inductitm
patterns. 148: see also Patterns

Network problems and coridunatorial
properties. 143-144

Newton. Sir Isaac. 7. 198
Normal distribution. itt4
Number

lines. 33-35
sense. 79- 80. 108
theory. 66
use. 67. 68-69

Number sy.tems. 61, 62, 81 XX. 92
algebraic and topological properties. 81
evolution of. 74. 81
future of. 88
new. 87

Numerical
experimentation in change. 194..196
operations. 69
representation. 73; see also Display mg

data. Representation. Visualization
Numerology. 62

Orbiting patterns. 198
Order. in numbers, 68
Organic geometry, 185: see also Geonietry .

Visualization
Orientation of shape. 145
Origami, 151
Orthographic projection. 28 29: see also

Cubes. Drawing, Foreshortening.
Isometric projection

Oscar II. King of Sweden. 199, 200
Outcomes. 97. 98. 99. 120. 125: sec also

Probability
Outliers. 100. 106. 110
Overall trends. 72

Paper folding, as a learning tout. 130-151
Parallelograms. 16-17. 21

non-square, 29
Pascal's triangle. 53
Patterns

in change. 8. 183
m counting. 56
formation of. 149
identification of. I

in mathematics. 8
modeled by numbers. 61
natural. 149
Wf alsi) Mathemat I, al.

Mathematics
Pendulums. 45
Pentahedra. 160
Perfect whole. 151
Period-doubling cascade, 185
Permutations. 55
Phase

portraits. multidimensional Lhange. 202
203

space. 201-202
Pi. mathematical constant. 15. 21

4:rinition of, 35
estimation of. 35-36

Piaget, 144
Place value. 74. 80

evolution of. 74
notation, 74
numerals. 74

Plane geometry, 12. II. 14, we also (ieonictr)
Planes and surfaces, 36
Planetary motion. 198-206
Poincare. Henri. 2. 199. 200-202
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Polyhedra. 144. 145. 147. 151. 154. 155.
158. 159. 160, 161. 173. 178

slicing of. 48
Polynomials, 63. 81. 84. 85. 86. 87: see

also Number systems. Principle of
Finite Induction

Po !ropes, 158
Popular Science. 106
Population dynamics. 189-198
Predicting outcomes. 97, 98. 99: see also

Probability
Prime factorization theorem. 84
Principle of Finite Induction, 82, 83; see

also Natural numbers and Integers.
Number systems. Rational numbers.
Real numbers

Probability. 68, 95. 98. 102. 103. 109. 110,
118-128, 132-136

basics, 120
conditional. 122-124. 128
question. 132
runs. 120-121
theory for children, 98-99

Proble,,n solving, 99
Procedural knowledge. 73. 78-79
Properties

of number use. 69
of reflected shape, 151: see also Shape.

Symmetry
Provided data, 112; see also Data
Psychological research: see Quantification
Pyramids, 15, 18. 19, 20. 21. 50

slicing of. 48
Pyrite crystal: see Decorated cubes
Pythagorean theorem, 17. 40, 42. 43. 85
Pythagoreans. 61

Quantification
applications. 65
attribt.tes. 61
coding. 67
data and children. 62
everyday. 79
fundamental concepts. 66
inform:a ion. 65
intapretation of, 62. 79-80
literacy, 65. 90
measuring. 14. 67
ordering, 67
o.der of magnitude, 74
psychological research. 66
reasoning. 62. 67. 92
relationships. 66. 72
school curriculum. 62-65. 77-79, 92
technology. 62
of variation. 135

Quartiles. 107
Quartz crystals. 155
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Radio telescope. 171
Random variables. 125. 126, 127. see also

Randomness
Randomness, 97, 08, 99. 115. 116, 117.

120, 124-127, 128, 129-134
in outcomes, 98, 120. 125
in sampling, 115-117, 124-127, 129-

134: see also Confidence intervals,
Inference, Outcomes, Pmbability,
Significance tests, Uncertainty

Rate. 26-28. 113
of change, 70, 72

Ratio, 35, 203. 205
and proportion, 20, 22. 23

Rational numbers. 84, 85. 86
Real numbers. 84-85. 86
Recurring coneepts. 8
Regular polyhedra, 154-155

discovery of. 140
see also Polyhedra

Relativity theory. 43. 44
Renormalization groups. 143
Rep-tiles, 159
Repetition, and change. 8
Representation, 62. 161-168

computer graphics, 167-168
drawing. 164-166
image reconstruction. 166-167
lenses, 163-164
maps. 161-163
models. 109. 161-163. ^18. 184
of numerical ideas. 73
shadows. 163-164
see also Displaying data. Visualtzation

Resonance. 203-204
Rossler allraelor 185
Rubber sheet

dynamics. 200
geometry. 144

Sampling, 99. 115. 116. 124, 127, 130
distributions. 125. 129
see also Probability. Randomness

Saturn, 203
Scale models. 161. 118
Scaling. 141
Scanerplot, 110, 137
Science for All Americans. 72
The Sciences. 170
Scoring, 3S a learning aid. 36
Self-congruence. see Symmetry
Self-similarity. 142-143. 202

in lattices. 159
Semiregular polyhedra. 155: see also

Polyhedra. Regular polyhedra
Shadow and scale diagrams, "z0
Shadows. 163-164: see also Representa-

tion
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Shape

aims of stu,..y. 140
analysis. /43
applied to the real world. 171-173
c':asificati in, 140
in geometry curriculum. 175-1'76, 17
importance. 140
interdisciplinary nature. 177
as laboratory science. 177-1"
molecules. crystals, atoms. 148
open-ended study. 180
orbital patterns. 146
and pattern. curn7ular issues of. 171
patterns. 139
raid preschool children, 141
properties, 140. 146
protein subunits. 155
viruses. 155

Shear transformations, using Cava lien's
principle. IS: see also Volume

Sierpinski gasket, 25
Significance tests. 131-134
Silicon chip. 173
Similarity. 20

defined. 141
geometry, 175
in quantification. 69
see also Self-similarity

Simplex. subsimplices. 53
Simulation. 11. 102. 106. 123. 126. 129,

130. L44
computer. 109. 120. 125

Skewness. 106
Slicing. 46-50; see also Cones. Cubes.

Polyhedra. Pyramids.
Spheres

Solid geometry. 12-13: see also Geometry.
Plane geometry

Spheres. 43. 49

drawing, 32
slicing, 47
volume of. 14. IS

Spiral. 147. 148
Spread (dispersion). 107, 1! !. 114

Squares, 40. 53-58
Stable systems. 199. 208
Standard deviation. 108. 109. 110. 125: see

also Spread
Star Wars. WI
Statics and dynamics. 44

Statistical
designs. 112. I 15-118
inference, 103: see alw Inference
significance, 132: see also Inference.

Significance tests
uncertainty. 133

Statistics. 95. 96, 97. 99. 100. III. 113.
126. 127. 114. 135. 136
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St:pped variation, 72
Stereoscope and stereoscopic pairs. 167

&rends. combining multiple. 7
Subjective probability. 128: see also

Inference. Probability
Symbol sense. 80-81
Symmetry 5. 6, 47. 55..56. 142-143. 206-210

children and. 150, 174
in data. 108
discovering. 150-151
lattices. 156. 157
packing arrangements. 155
recurring theme in mathematics. 6
relationships. 208
significance and use. 153-155
through reflection. 151-153
cee also Cubic kaleidoscope. Kaleidoscope

Symmetry breaking. 206. 208. 212. 2/.4. 215

Symmetry group, 151

Taxicab geometry. 37. 39
Taxonomy of number use. 68: see also

Number use
Teaching, 187-188

'ornvAl proofs. 187
ra,idom events, 120
see also Curriculum

Technology transfer. 184
Tesseract. 30; see also Ilypercube
Tetrahedra. 48. 16
Tilings and patterns. I I. 149
Time, as the fourth dimension. 43
Titan. 203
Topology. 144-146. 200-202
Torus, 38-39
Trapezoid. 29

as incomplete triangle. 20-21
Triangles

counting. 52
similar.20-21

Truncated pyramid. 20
Tukey. John. 103
Turing's tiger stripes. 212

Ueda attractor. 185
Ultrasound, 171
Uncertainty

and change, 8

everyday 98-99
significance of. 135-136
order in. 98
variation as fundamental skill. 136
see also Chance. Inference. Outcomes.

Probability. Randomness
Uniform growth. 197

Variables and relations. 69. 70
Variance, 125
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Variation, in process. 135
Verhulst law, 193-1%
Vertices. 39
Video games as pan of learning. 37
Visual

imaging of geometry. 184
representation, and change, 8

Visual Thinking, 170
Visualization, 6-7, 8. 168-171

computer-aided, 145
dimensions. 24
of geometric relationships. 28
in geometry. 49
importance of. 168
interdisciplinary nature of. 171
as interpretation. 170-171
in learning. 11
multidimensional data sets, 41
problems, 47
quantitative relationships. 74
rectrring theme in mathematics. 6

Volume. 14-22. 26
Cava lien's principle. 18

INDEX

concept of, 14-16
cone. 14. 15
diagonal decomposition, 18
displacement, 16
in education. 14
incomplete/truncated pyramid. 20-21.
inegularly shaped objects. 16
pyramid. 15-16. 20. 21
shear transformation
sphere. 14. 15. 16

Voluntary response samples. 115. 116

Watson, James. 154. 155
Weiner. Norbert.
Wraparound. 34. 38
A Wrinkle in Time, 30

X-ray
investigations. 155. 173
tomography. 50
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Dimension emphasizes the need to provide
hands-on experience with higher dimensional
geometry throughout the school years, using
concepts ranging from vclume to fractals and the
fourth dimension.

Quantity examines how to enable students to
apply their growing mathematical prowess to
such diverse number matters as census data,
inflation trends, sports scores, and computer
security.

Shape explores how to orate a greater conscious-
ness of shape in the learning process, discussing
how photographs, maps, and kaleidoscopes can
relate to the study of shape.

Uncertainty describes how we can help students
understand the workings of data and chance
how these factors affect what happens in our
world and how they can help us make plans and
decisions.

On the Shouldas of Giants offers a frame-
work for dramatically revising our approach to
mathematics educationpresented in a way we
can all understand.

If we make the needed changes, we will turn
mathematics from one of the most dreaded class-
room experiences to one of the most engaging
and rewardingensuring that the next genera-
tion can step with confidence into the technologi-
cal world of the 21st century.

About the editor. . .

Lynn Arthur Steen is Professor of
Mathematics at St. Olaf College in Northfield,
Minnesota and is author of ten books, including
Everybody Counts, Calculus for a New
Century, and Mathematics Today.

Cover A computer-generated image of a torus (the sur-
face of a doughnut-shaped figure). When projected
from four-dimensional space, the torus divides all of
three-dimensional space into two symmetrical pieces.
Created by Thomas Banchoff and Nicholai; Thompson
at Brown University.
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