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ON THE SIGN CHANGES OF COEFFICIENTS
OF GENERAL DIRICHLET SERIES

WLADIMIR DE AZEVEDO PRIBITKIN

(Communicated by Ken Ono)

Abstract. Under what conditions do the (possibly complex) coefficients of
a general Dirichlet series exhibit oscillatory behavior? In this work we invoke
Laguerre’s Rule of Signs and Landau’s Theorem to provide a rather simple
answer to this question. Furthermore, we explain how our result easily applies
to a multitude of functions.

1. Introduction

Let {an}∞n=1 be any nontrivial sequence of complex numbers. If the numbers are
all real, then it is natural to ask whether the sequence is oscillatory. This means
that there exist infinitely many n such that an > 0 and infinitely many n such
that an < 0. To accommodate the possibility that the numbers are not all real,
we introduce a generalized notion. We call the sequence {an}∞n=1 oscillatory if, for
each real number φ ∈ [0, π), either the sequence {Re(e−iφan)}∞n=1 is oscillatory or
is trivial. Geometrically, this means simply that no matter how we slice the plane
with a straight line going through the origin, there will always be infinitely many
terms of the sequence on either side of the line, unless all of the terms are on the
line itself. In the latter case, which can happen for at most one slice, there must
be infinitely many terms on either open ray emanating from the origin.

In this note we harness the generating power of a general Dirichlet series to supply
a simple condition which guarantees that a sequence is oscillatory. Specifically, we
show the following:

Theorem 1. Let F (s) =
∑∞

n=1
an

eλns be a nontrivial general Dirichlet series which
converges somewhere. Here the coefficient sequence {an}∞n=1 is complex and the
exponent sequence {λn}∞n=1 is real and strictly increasing to ∞. If the function F is
holomorphic on the whole real line and has infinitely many real zeros, then {an}∞n=1

is oscillatory.

As usual, here and throughout, ‘the function F ’ refers to the analytic continu-
ation (assuming it exists) of the function defined originally by the series. In the
next section we prove Theorem 1, and in the last section we demonstrate its wide
applicability.
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2. Proof of Theorem 1

The proof relies upon the following two important results:

Laguerre’s Rule of Signs. Let F (s) =
∑∞

n=1
an

eλns , with {λn}∞n=1 real and strictly
increasing to ∞, be a nontrivial general Dirichlet series which converges somewhere.
If the coefficient sequence {an}∞n=1 is real and has finitely many sign changes, then
the number of real zeros of F in the interior of its domain of convergence is less
than or equal to the number of sign changes of {an}∞n=1.

This result, a little-known generalization of Descartes’s classic rule, was provided
in 1883 by Laguerre [8]. His proof uses Rolle’s Theorem and induction on the num-
ber of sign changes. Note that the zeros are counted according to their multiplicity.
(For similar statements and some extensions, consult [10, pp. 46–48].)

Landau’s Theorem. Let F (s) =
∑∞

n=1
an

eλns , with {λn}∞n=1 real and strictly in-
creasing to ∞, be a general Dirichlet series which converges somewhere, but not
everywhere. If the coefficient sequence {an}∞n=1 is real and has finitely many sign
changes, then the function F has a singularity at the real point of its line of con-
vergence.

This theorem, given by Landau [9] in 1905, is rather well known. (For the proof,
see [5, p. 10] or [11, pp. 67–68].)

We are now ready to prove Theorem 1. Let’s first consider the special case where
the coefficient sequence {an}∞n=1 is real. By way of contradiction, suppose that it is
not oscillatory, in other words, that it has finitely many sign changes. There are just
two possibilities: (i) F converges everywhere, but is nontrivial; or (ii) F converges
somewhere, but not everywhere. In the first scenario, we know by Laguerre’s Rule of
Signs that the total number of real zeros of F is finite. This negates the hypothesis
that F possesses infinitely many real zeros. In the second scenario, we see by
Landau’s Theorem that F must have a singularity at the real point of its line of
convergence. This contradicts the assumption that F is holomorphic on the real
axis. Either way, we have established Theorem 1 for {an}∞n=1 real.

We next examine the general case where the coefficient sequence {an}∞n=1 need
not be real. Let φ ∈ [0, π), and consider the auxiliary function

Gφ(s) =
e−iφF (s) + e−iφF (s)

2
=

∞∑
n=1

Re(e−iφan)
eλns

.

Clearly, the function Gφ is holomorphic on the real line, where it also has in-
finitely many zeros. Hence, for each φ we must have that either the sequence
{Re(e−iφan)}∞n=1 is oscillatory or is trivial. This means that {an}∞n=1 is oscillatory
and secures Theorem 1 altogether.

3. Examples and comments

We sketch some fundamental examples to illustrate the utility of Theorem 1. For
succinctness, we shall label the function defined originally by a nontrivial general
Dirichlet series as EZ if it is entire and has infinitely many real zeros.

(1) Suppose f is a nontrivial complex-valued continuous function on the half-line
R+ = (0,∞) that is O(y−N ) as y → ∞ and O(yN ) as y → 0, for every nonnegative
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integer N. Since f is “rapidly decreasing” as y → ∞ and as y → 0, its Mellin
transform

M{f ; s} =
∫ ∞

0

f(y)ys−1 dy

converges everywhere and is clearly entire. Furthermore assume that f possesses
an expansion of the type

f(y) =
∞∑

n=1

anh(eλny), y > 0,

where {an}∞n=1 is complex and {λn}∞n=1 is real and strictly increasing to ∞. Here
h is some complex-valued continuous function on R+ that is rapidly decreasing as
y → ∞ and O(yc) as y → 0, for some real number c. Next, consider the general
Dirichlet series

F (s) =
∞∑

n=1

an

eλns
,

and suppose it converges somewhere. An easy calculation tells us that

M{f ; s} = M{h; s}F (s)

for Re(s) � 0 (in fact, wherever F converges and Re(s) > −c). Observe that
M{h; s}, the Mellin transform of h, is analytic for Re(s) > −c. Now, if the reciprocal
of M{h; s} admits an analytic continuation to an entire function that has infinitely
many real zeros, then obviously F is EZ, and therefore by Theorem 1 {an}∞n=1 is
oscillatory.

We remark that if the growth condition on f as y → 0 is relaxed, then a more
involved situation ensues. Let’s assume, for example, that (an extension of) f is
in the Schwartz space of R. (Recall that this consists of the infinitely differentiable
functions which together with their derivatives are rapidly decreasing as |y| → ∞.)
Then M{f ; s} is analytic for Re(s) > 0 and (thanks to integration by parts) admits
a meromorphic continuation to all of C with at most simple poles at the nonpositive
integers. In fact, M{f ; s} is analytic at s = −m, m ≥ 0, if and only if f (m)(0) = 0.
If we retain the assumption that 1/M{h; s} extends to an entire function with
infinitely many real zeros, then it is clear that F has a meromorphic continuation
to all of C with at most simple poles at the nonpositive integers. Furthermore, F
is analytic at s = −m if and only if f (m)(0) = 0 or 1/M{h;−m} = 0. So F is entire
if and only if f (m)(0)/M{h;−m} = 0 for all m ≥ 0. Now, F is EZ if it’s entire and
either f (m)(0) = 1/M{h;−m} = 0 for infinitely many m or if infinitely many of the
real zeros of 1/M{h; s} survive to be zeros of F. Under such favorable conditions,
it follows by Theorem 1 that {an}∞n=1 is oscillatory.

What does h look like? Note that under the stipulations stated in the last
sentence of the first paragraph of (1), h is neither of compact support on R

+

nor rapidly decreasing as y → 0. (But if c = 0, then (an extension of) h could
conceivably be in the Schwartz space of R.) Some candidates for h are afforded by
the prototypical example of the decaying exponential function

e−y, y > 0,

by the generalized gamma function

Γy(α) =
∫ ∞

0

tα−1e−t−y/t dt, y > 0, α ∈ C,
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and by the extended generalized gamma function

Γν(α; y) =
(

2y

π

)1/2 ∫ ∞

0

tα−3/2e−tKν+1/2(y/t) dt, y > 0, α ∈ C, ν ∈ C.

Here K is the modified Bessel function of the second kind (also called the Macdonald
function), and in fact, Γy(α) = 2yα/2Kα(2

√
y). Note that Γ0(α; y) = Γy(α). It is

rather well known that
M{e−y; s} = Γ(s)

for Re(s) > 0, and easy to verify that

M{Γy(α); s} = Γ(s)Γ(s + α)

if Re(s) > 0 and Re(s + α) > 0, and

M{Γν(α; y); s} = π−1/22s−1Γ
(

s − ν

2

)
Γ
(

s + ν + 1
2

)
Γ(s + α)

if Re(s + 1/2) > |Re(ν + 1/2)| and Re(s + α) > 0. In all three cases the reciprocal
of the Mellin transform is entire in s and (assuming α or ν is real for the last
case) has infinitely many real zeros. What’s more, by repeatedly invoking the key
convolution property [4, p. 308]

M

{∫ ∞

0

tα−1h1(t)h2(y/t) dt; s
}

= M{h1(y); s + α}M{h2(y); s}

for two suitable functions h1 and h2 on R+, it is not hard to churn out infinitely
many more such functions. For additional information about the aforementioned
gamma functions, see [3], and for an interesting discussion concerning Mellin trans-
forms, read [2, pp. 106-114].

(2) Let F (s) =
∑∞

n=1
an

eλns and G(s) =
∑∞

m=1
bm

eµms be nontrivial general Dirich-
let series which converge somewhere. As usual, the coefficient sequences {an}∞n=1

and {bm}∞m=1 are complex and the exponent sequences {λn}∞n=1 and {µm}∞m=1 are
real and strictly increasing to ∞. Define the Dirichlet product of F and G by
H(s) =

∑∞
�=1

c�

eν�s , where

c� =
∑

λn+µm=ν�

anbm

and {ν�}∞�=1 is the ascending sequence formed by all the values of λn + µm. Sup-
pose that H converges somewhere. It is known that this will be the case if at
least one of G or H converges absolutely somewhere, or if an = O

(λn−λn−1
λn

)
and

bm = O
(µm−µm−1

µm

)
. Note that the former must happen if at least one of F or G

is an ordinary Dirichlet series (or, more broadly, if at least one of lim sup log n
λn

or
lim sup log m

µm
is finite). Because H converges somewhere, it follows that H = FG

wherever all three series converge. (For an explanation of all the above facts, see
[5, p. 9 and pp. 62-66].) Now, assume that F is EZ and that the function G is
entire. Then of course H is itself EZ and so by Theorem 1 {c�}∞�=1 is oscillatory.
More generally, suppose that both F and G have analytic continuations to func-
tions that are meromorphic on the real line, that at least one of them possesses
infinitely many real zeros, and that the real zeros and real poles cancel out in such
a way that the function H is holomorphic on the real line and has infinitely many
real zeros. Then it is plain by Theorem 1 that {c�}∞�=1 is oscillatory. This for-
mulation may seem rather obvious, and yet can be useful. For a simple example,
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let F (s) =
∑∞

n=1
an

ns be a nontrivial ordinary Dirichlet series that converges some-

where, and let G(s) =
1

ζ(s)
be the reciprocal of the Riemann zeta-function. Then

we have that the Dirichlet convolution

c� =
∑

d|�, d > 0

adµ

(
�

d

)
,

where µ now denotes the Möbius function. If F is EZ, say, with zeros at all of
the nonpositive integers, then both {an}∞n=1 and {c�}∞�=1 are oscillatory. For an
even simpler example, let F be any nontrivial ordinary Dirichlet polynomial that
vanishes at s = 1, and let G(s) = ζ(s).

(3) Is it possible for a general Dirichlet series to have infinitely many real zeros in
the interior of its domain of convergence? The answer is yes, and there are two basic
scenarios, both of which we illustrate briefly. First recall that if a general Dirichlet
series converges somewhere, then it must be zero-free for all sufficiently large real
values of s. (Also, if it converges absolutely somewhere, then it must be zero-free for
all sufficiently large values of Re(s). For details on this, see [1, p. 227] as well as [5,
p. 6].) Now let f1 be any nontrivial entire function that has infinitely many positive
real zeros, and consider its Maclaurin series f1(z) =

∑∞
n=0 anzn, z ∈ C. Then the

general Dirichlet series F1(s) = f1(e−s) =
∑∞

n=0
an

ens , which is periodic with period
2πi, converges everywhere and possesses infinitely many negative real zeros. Next,
let f2(z) = f1( 1

1−z ) and consider its Maclaurin series f2(z) =
∑∞

n=0 bnzn, |z| < 1.
Note that f2 has infinitely many positive real zeros less than 1 and that they must
accumulate at z = 1, an essential singularity of f2. Then the general Dirichlet series
F2(s) = f2(e−s) =

∑∞
n=0

bn

ens converges for Re(s) > 0, where it has infinitely many
positive real zeros. Of course, these zeros must accumulate at the origin, which
must be an essential singularity for F2. Clearly both {an}∞n=0 and {bn}∞n=0 are
oscillatory (by the “complexified” version of Laguerre’s Rule of Signs). We remark

that
{∑n

k=0 bk

}∞

n=0
is also oscillatory. (This follows immediately from considering

(1 − e−s)−1F2(s).) To see a concrete example of the above, the interested reader
may examine, for instance, f1(z) = sin πz or f1(z) = 1/Γ(1 − z).

(4) Much of what we said has applications to arithmetic functions, particularly
those connected with general L-functions and automorphic forms. We shall not
pursue this here, except to say that all of the results pertaining to oscillatory
behavior found in [6] and [7] can be established anew by applying Theorem 1. In a
sequel we hope to address such matters further.
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