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Abstract—In this paper the calculation of the signal be-
havior and the achievable signal-to-quantization-noise ratio of
continuous-time (CT) incremental Sigma-Delta (I-SD) ADCs is
described. The presented method allows for the analysis of I-SD
ADCs in frequency domain including the specific non-idealities
of the CT modulator. In the state of the art, it is described
that the omission of the preceding sample-and-hold for the I-SD
ADC alters the transfer characteristic compared to a Nyquist-
rate converter. So far, for CT I-SD ADCs this behavior is only
investigated via simulations. In this work the model of a discrete-
time I-SD ADC is generalized and adapted for the CT case.
This allows to analytically obtain the signal and noise transfer
function of the I-SD ADC in frequency domain in combination
with arbitrary reconstruction filters due to the utilization of the
lifting method in a fast and accurate way.

Index Terms—Incremental, Sigma-Delta, transfer function.

I. INTRODUCTION

The advances in CMOS scaling over the last decades

allowed digital circuits to improve enormously, making the

signal processing in the digital domain very efficient due

to higher transit frequencies and the down-scaling of the

transistors. The therefore ongoing shift to the digital domain

raises a high demand on high performance analog-to-digital

converters (ADCs). Analog circuits, however, do not equally

benefit from technology scaling, thus classically used ADC

architectures become more difficult to design. By trading in

circuit precision against time, one type of ADC living with

this trend is the Sigma-Delta (SD) ADC, which is based on

oversampling and noise shaping [1]. However, its averaging

behavior excludes it from being used in applications where

sample-to-sample conversion is required, such as in multi-

plexed or other Nyquist-rate applications.

A solution for this drawback can be the usage of an

incremental Sigma-Delta ADC [2]. It provides the benefits of

both worlds, the Nyquist-rate behavior and the oversampling

and noise shaping capabilities of a freely running SD ADC.

The I-SD ADC, consisting of an incremental Sigma-Delta

modulator (I-SDM) and a reconstruction filter with subsequent

down-sampling, is depicted schematically in Fig. 1a. The

working principle of the I-SD ADC is similar to a conventional

Sigma-Delta ADC. The difference is the usage of a reset after

M cycles at the internal sampling rate fs as in Fig. 1b. This

reset window removes any memory from the system leading

to true Nyquist-rate behavior [3]. As in their freely running

counterparts, the I-SDM in Fig. 1a can thereby be realized

with a discrete-time (DT) or CT loopfilter implementation.
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Fig. 1. Basic diagram of an I-SD ADC (a) and its reset signal (b).

Usually, a sample-and-hold element (S&H) precedes the I-

SDM. As a consequence, the I-SD ADC has a constant signal

transfer function (STF) equal to one. A preceding anti-aliasing

filter (AAF) has to guarantee the Nyquist criterion. However,

it can be omitted as proposed in [4] or [5], as the applied

input signal is usually only slowly varying as compared to

the internal sampling rate fs. This leads to a modified transfer

characteristic with regard to the input signal, showing lowpass

characteristic with a slight signal attenuation at and above the

edge of the signal band. Throughout this paper, the absence of

the S&H is assumed. For individual DT I-SD ADCs as e.g. in

[6] or [7], the altered transfer behavior is analyzed analytically.

However, for the CT case, this effect is only mentioned e.g.

in [4] and determined by simulations, but has so far not been

generally analyzed.

In this work, a general way to calculate the STF of CT I-

SD ADCs utilizing arbitrary reconstruction filters is presented,

which has, to the authors knowledge, not been covered in

literature so far. It makes use of the lifting method [8] and

is able to directly include non-idealities as excess-loop-delay

(ELD), finite DC gain and gain-bandwidth-product (GBW)

into the calculation. To achieve this, the principles for calculat-

ing the transfer-behavior of DT I-SD ADCs are reviewed and

subsequently extended and adapted to CT domain. Moreover,

the same method allows to derive a noise transfer function

(NTF) for I-SD ADCs. Based on the calculated NTF, an

estimate of the signal-to-quantization-noise ratio (SQNR) can

be obtained in frequency domain. This is especially useful in

an early design phase on system-level.

Section II discusses the working principle of I-SD ADCs.

The transfer behavior of DT I-SD ADCs is outlined in Sec-

tion III. In Section IV an overview of the lifting method is

given. Subsequently, the work from Section III is extended to

CT I-SD ADCs and the SQNR estimation is introduced. In

Section V simulations on system-level verify the applicability

of the presented method. Section VI concludes the paper.
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II. I-SD ADC WORKING PRINCIPLE

A block-diagram of the basic architecture is shown in

Fig. 1a, consisting of the I-SDM, the digital reconstruction

and decimation filter. As an example for further explanations,

the linear model of a first order DT I-SD ADC is taken as

shown in Fig. 2a. Therefore, the quantizer is replaced by a

noise source e[k] and the linear gain q as e.g. described in [1].

In contrast to the frequency domain analysis of conventional

Sigma-Delta modulators (SDMs), DT I-SD ADCs are often

described in time domain. Due to the finite number of time

steps, the equations can be determined in a straightforward

way. In the case of a DT I-SDM the continuously running input

signal u(t) is sampled by the switched capacitor network at

the integrator input resulting in samples un[k]. Here n denotes

the n-th Nyquist rate sample and k = 1 . . .M is the running

variable of the oversampled modulator, where M samples at fs
are used to generate one Nyquist sample at fN. Also in I-SDM,

M is often called the oversampling ratio (OSR). Consequently

the integrator output is calculated in time domain by

yn [k] =

k
∑

l=1

(un [l]− dn [l]) . (1)

The basic difference of an I-SDM to a conventional SDM is

its periodically applied reset window as shown in Fig. 1b.

Therefore, the I-SDM generates M samples dn[k] for k ∈
[1,M ] with

dn[k] = q · yn [k] + e [k] (2)

which the reconstruction filter and the subsequent decimator

use to create one sample

D[n] =
1

M

M
∑

l=1

dn [l] . (3)

The output D[n] yields the digital representation of the analog

input at Nyquist-rate fN. Therefore, each conversion cycle is

independent from each other and true Nyquist ADC behavior

is obtained. A detailed description can be found in [1] or [3].

III. TRANSFER CHARACTERISTIC OF DT I-SD ADCS

The STF or NTF of a conventional DT SDM are usually

obtained with the help of the Z-transform by using the lin-

earized, time invariant system model. However, in the overall

transfer characteristic for I-SD ADCs also the reconstruction

filter and the time-variant behavior due to the reset have to

be considered. In Section II, it is shown that DT I-SD ADCs

can be described in time domain in a straightforward way.

Nonetheless, a description via the Z-transform or in frequency

domain is often desired. Therefore, in this chapter the repre-

sentation of an I-SD ADC as filter with finite impulse response

(FIR) as introduced in [7] is shortly reviewed. Afterwards, this

work extends that approach to higher order modulators and

shows the calculation of the overall STF and NTF via time

domain considerations and in frequency domain for DT and

CT modulator implementations. In the following a normalized

sampling frequency fs = 1 is assumed for simplicity and

readability of the analysis.
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Fig. 2. Linear model of a DT first order I-SD ADC (a) and equivalent FIR
filter with an oversampling ratio of M = 3.

A. I-SD ADC as FIR Filter

In this section it is shortly reviewed that DT I-SD ADCs

can be modeled as an FIR system as it was introduced in [7]

for a first order DT modulator. The reset changes the system

from an LTI to a linear time varying system (LTV). The idea

is shown for a general DT transfer function with applied reset

and can therefore be the basis for both, the NTF and STF

calculation. The Z-transform of the overall transfer function

of a freely running DT Sigma-Delta ADC, TFfree, is given by

TFfree (z) = TFsdm (z) ·Hrec (z) (4)

with TFsdm (z) being the STF or NTF of the freely running

SDM and Hrec (z) being the transfer function of its recon-

struction filter. In time domain, this yields a convolution sum

hfree [k] = hsdm [k]∗hrec [k] =
∞
∑

l=−∞

hsdm [k−l]·hrec [k] (5)

with the respective impulse responses of the two subsequent

systems. Without reset, the impulse response hfree [n] of the

ADC would be infinite due to the infinite impulse response

hsdm [n] of the modulator. However, it is proven in [7] that

by truncating the convolution sum (5), the impulse response

of an equivalent FIR filter

hFIR [k] =
M−1
∑

l=0

hsdm [k−l] · hrec [k] (6)

can be obtained for k ∈ [0,M−1], which accounts for the

reset, as it is the case in an I-SD ADC.

B. Generalization of the TF Calculation

In [7] a first order DT I-SD ADC was described, however,

this approach can be generalized to higher order modulators.

1) Calculation via Time Domain Operations: By general-

izing the mathematical model of the DT I-SD ADC as an FIR

filter, (6) can be rewritten as

hFIR [k] = hfree [k] · rectM [k]

= Z−1 {TFfree (z)} [k] · rectM [k] . (7)

The expression rectM [k] is a DT rectangular window function

with length M

rectM [k] =

{

1, 0 ≤ k ≤ M−1

0, otherwise.
(8)
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Fig. 3. Block diagram of a CT SDM (a) and the corresponding lifted model
(b) as basis for the STF calculation.

and TFfree (z) is the combination of the STF or NTF of

the freely running SDM and the reconstruction filter transfer

function as defined in (4). As commonly known, the impulse

response of an FIR are the weighting coefficients of the filter

taps. Therefore, the Z-domain representation can be written as

TFdt,incr (z) =
M−1
∑

l=0

hFIR [l] · z−l. (9)

Consequently, by utilizing (7) and (9), the Z-domain repre-

sentation of any modulator transfer function TFsdm (z) and

any reconstruction filter transfer functions Hrec (z) can be

obtained. This approach is applicable to both STF and NTF.

With the application of the discrete-time Fourier transform

(DTFT) and by substituting z by z = ej2πf , the frequency

response can be obtained:

TFdt,incr(f) =
M−1
∑

l=0

Z−1 {TFfree (z)} [l] · e
−j2πfl (10)

2) Calculation in Frequency Domain: Above, the calcula-

tion of the I-SD ADCs transfer function is described via the

impulse response in the time domain. However, so far literature

has not shown the calculation directly in the frequency domain,

which might be useful, if the Z-domain representation is not

entirely known due to e.g. non-ideal behavior. This can be

achieved by applying the DTFT directly to (7) yielding

TFdt,incr(f) = TFdt,free(f)⊛Xrect,N (f) (11)

with

Xrect,M (f) = DTFT {rectM [k]}

=
sin (Mπf)

sin (πf)
· e−j(M−1)πf . (12)

The necessary ⊛-operator stands for the CT circular convo-

lution which requires the solution of the convolution integral

X(f)⊛ Y (f) =
∫ fo+fs
fo

X(ν) · Y (f − ν) dν.

IV. TRANSFER CHARACTERISTIC OF CT I-SD ADCS

CT I-SD ADCs have not been proposed often in the

literature. Still, they were always emphasized to feature similar

transfer function properties as their freely running counter-

parts, such as an implicit AAF. Nonetheless, the calculation

of the frequency response of CT I-SD ADCs is, to the best of

the authors knowledge, not covered in literature so far. This

section presents a method to obtain the frequency response of

a CT I-SD ADC having the possibility to include non-ideal

effects, which originate from in the CT I-SDM.

A. Lifting Method for Freely Running SDMs

There have been several methods proposed dealing with

the calculation of the transfer function of freely running CT

SDMs [9][10]. These methods share the common idea that

the feedback path around the quantizer of the CT SDM can

be investigated as an equivalent DT filter, due to its sampled

input and output nature. The system is therefore modeled as

a CT prefilter accounting for the CT behavior and a DT filter

in the feedback accounting for the DT behavior. This idea

still holds true as basis for further considerations on CT I-

SD ADCs. Nonetheless, the methods to obtain the equivalent

DT filter – as described in the mentioned papers – are not

generally applicable. The transformation method in [9] cannot

account for excess-loop-delay (ELD) and the approach in [10]

requires the spectral representation of the feedback DAC.

In order to overcome the limitations of these transforma-

tions, the lifting method is used in this work to obtain the

equivalent DT filter [8]. The DT model, analytically derived

with this method, behaves exactly as the CT model at the

sampling instants. Therefore, it is also an accurate method

to simulate a CT modulator with the high speed solvers of

its DT counterpart. Finally, in [11] it was shown that the

lifting method can be utilized to obtain the NTF and STF

of freely running CT SDMs including arbitrary DAC feedback

waveforms and non-ideal loopfilter behavior – which is shortly

reviewed in the following as reference.

An arbitrary CT SDM as in Fig. 3a with the CT filter

function HCT (s) and the transfer characteristic of the feed-

back DACs can be transformed by the lifting method to a

model with CT prefilter HCT (s) and the DT filter H(z) in the

feedback path as in Fig. 3a, which is the conventional way of

the STF calculation of a freely running CT SDM proposed in

[9]. The DT filter is obtained by

H(z) = HDTn
(z)−HDTn−1

(z) · z−1. (13)

The function HDTn
(z) accounts for the non-delayed signal

part in the current clock cycle, whereas the delayed function

HDTn−1
(z) accounts for the signal part that is shifted into the

next clock cycle by ELD. A more detailed description of how

lifting is used to calculate the STF on non-ideal CT loopfilters

can be found in [11]. With the equivalent DT filter H(z) in

(13), the NTF of the freely running CT modulator can be

expressed by

NTFct,sdm(z) =
1

1 + q ·H(z)
(14)

in Z-domain and transformed to frequency domain with the

usage of the DTFT by substituting z = ej2πf . As a result,

the STF of the CT SDM including non-idealities can then be
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written corresponding to [11] by concatenating the prefilter

HCT(j2πf) and the NTF accordingly:

STFct,sdm(f) =
q ·HCT(j2πf)

1− q ·H (ej2πf )
. (15)

B. Calculation of NTF for CT I-SD ADC

The NTF of an I-SD ADC allows to directly estimate the

SQNR of the I-SD ADCs in combination with the white noise

model in a general way, comparable to its freely running

counterpart. The estimated SQNR is determined by

SQNRest =
∆2

12
·

∫ 0.5

−0.5

|NTFincr(f)|
2 df (16)

with the quantizer step size ∆ [1]. As the NTF of the freely

running CT SDM can be expressed due to the lifting method in

Z-domain by means of (14), the approach from Section III-B1

can be applied to obtain the NTF of an CT I-SD ADC.

Inserting (14) in (7) and the resulting term in (9) gives

NTFct,incr (f) =
M
∑

l=0

Z−1 {NTFct,free (z)} [l]·e
−j2πlf (17)

with the combined transfer function of the freely run-

ning modulator and reconstruction filter NTFct,free (z) =
NTFct,sdm (z) ·Hrec (z) as in (4).

C. Calculation of STF for CT I-SD ADC

For the CT modulator, the reset window is also continuous-

time and can be expressed by the rectangular window function

rectT (t) =

{

1, |t| < TM

2

0, |t| > TM

2

(18)

with TM = M
fs

. However, due to the mixed-signal nature of

the modulator, time-domain calculations are not as straight-

forward as shown for the DT modulators in the method in

Section III-B1. A feasible way to calculate the STF is in fre-

quency domain. Therefore, (18) is transformed via the Fourier

transform to frequency domain, similarly as in Section III-B2:

Xrect,T (f) = F {rectT (t)} = sinc (f) =
sin (π · f/fs)

π · f/fs

For a causal system, the rectangular function (18) needs to

be shifted by TM/2 and therefore the reset window in the

frequency domain becomes

X ′

rect,T (f) = sinc (f) · e−jTπf/fs . (19)

The frequency response of X ′

rect,T (f) is illustrated along-

side its DT counterpart in Fig. 4, visualizing its CT na-

ture as the amplitude decreases with increasing frequency.

In contrast, the frequency response of the DT rectangular

function is expectedly mirrored at 0.5 fs. Consequently, the

multiplication with the reset window in the time domain

corresponds to a convolution of the combined transfer func-

tion of the freely running modulator and the reconstruction

filter STFct,free(f) = STFct,sdm(f) · Hrec

(

ej2πf
)

with the

frequency response of the CT reset window:

STFct,incr(f) = STFct,free(f) ∗X
′

rect,T (f) . (20)

0 0.2 0.4 0.6 0.8
0

5

10

f/fs

Xrect,M (f) Xrect,T (f)

Fig. 4. Fourier transform of DT and CT rectangular functions for M = 10.
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Fig. 5. Block diagram of a CT 3rd order I-SDM in CIFF architecture (a) and
a CT 2nd order I-SDM in CIFB architecture.

V. PROOF OF CONCEPT

In order to proof the validity of the presented analysis, in

this section the accuracy of the calculated transfer functions is

investigated on system-level. Alongside two exemplary CT I-

SD ADCs, two DT I-SD ADCs are shown in order to compare

the different STFs and NTFs. Non-idealities as e.g. finite GBW

or DC gain are not covered due to space limitations. However,

simulations revealed equally good matching.

A. CoI Reconstruction Filter

The presented approach can be used for I-SD ADCs com-

prising arbitrary, linear reconstruction filters. In the presented

examples, a chain-of-integrator (CoI) reconstruction filter is

used, which has the same reset window applied. The CoI filter

is utilized as it is commonly used in I-SD ADCs due to its

simplicity [1]. For a first order I-SD ADC, this can be as

simple as in (3). In general, the non-delaying, L-th order filter

can be expressed in Z-domain by

Hrec, (z) =
M
∑

l=1

wL[l] · z
−(l−1) (21)

with the filter weights

wL[l] =
1

(L− 1)!

∏L−1

i=1
(M−l+i). (22)

B. Comparison of Calculations and Simulations

The architectures of the exemplary I-SDMs are shown in

Fig. 5. A 3rd order CT I-SDM in CIFF architecture is depicted

in Fig. 5a and a 2nd order modulator in CIFB architecture

in Fig. 5b. The DT counterparts reassemble these examples

with DT integrators. The 2nd order CT modulator has an

additional compensation path for an ELD of 0.5 fs, which is

omitted in the DT case. All integrator outputs are scaled to

full scale swing and NRZ DACs are used. The OSR is chosen

as M = 150. The simulations use an input signal at 0.3 fb
and -6 dBFS amplitude and are based on 214 samples at fN.
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TABLE I
COEFFICIENTS AND QUANTIZER GAIN OF THE EXAMPLE DESIGNS.

b1/a1 a2 a3 d14 d24 c1 c2 c3 q

CT3 0.188 - - 5.316 6.807 0.424 0.178 6.016 1.000
CT2 0.040 0.250 0.165 - - 2.114 1 - 4.279
DT3 0.188 - - 6.835 7.879 0.424 0.178 6.016 1.001
DT2 0.125 0.234 - - - 0.718 1 - 5.842

TABLE II
SQNR OF THE EXEMPLARY ADCS AT -6 DBFS INPUT AMPLITUDE.

CT2 CT3 DT2 DT3

Estimated: 73.6 dB 99.4 dB 75.2 dB 99.4 dB
Simulated: 74.8 dB 100.9 dB 75.5 dB 100.2 dB

The coefficients of the modulators are shown in Table I for

a single-bit quantizer. Alongside, the quantizer gain, obtained

by simulations as described in [1], is stated.

1) STF: The STF of the DT I-SD ADC is numerically cal-

culated based on (10), the CT STF based on (20). Simulations

to proof the validity of the calculations are marked alongside

the calculation results with crosses in Fig. 6 for the CT ADC

and in Fig. 7 for the DT ADCs. The simulations match

perfectly the calculated functions. The DT STFs in Fig. 7

clearly show the symmetry around 0.5 fs in contrast to the

CT STFs with their continuous roll-off at higher frequencies.

The lowered STF at higher frequencies of the second order

I-SD ADCs becomes clearly visible as well. This is reasoned

in the transfer characteristic of the second order CoI filter,

which shows higher attenuation at high frequencies then the

third order one.

2) NTF: The NTF of the CT I-SD ADC is numerically

obtained based on (17) and the DT NTF based on (10). They

are depicted in Fig. 6 for the CT case and in Fig. 7 for the

DT case. The raised NTF of the second order modulators

can be directly seen. Moreover, the calculated NTFs allow to

directly estimate the SQNR of the I-SD ADC by (16) with the

quantizer step size ∆ = 2 in the case of the single-bit quantizer

[1]. In Table II, the estimated and simulated SQNR values at

the same input amplitude are stated. The respective values

match closely. In order to verify the course of the NTF, the

linearized model of the modulator is utilized for simulations.

Therefor, the quantizer is replaced by its gain q and the signal

source representing the quantization noise as in Fig. 2a. The

resulting values annotated in Fig. 6 and in Fig. 7 match again

exactly with the calculations.

VI. CONCLUSION

In this paper the calculation of transfer functions of CT I-SD

ADCs without S&H is presented. The mathematical derivation,

which is based on the lifting method, can be used to obtain

the transfer functions involving arbitrary reconstruction filters.

Moreover, for the CT I-SD ADCs the non-idealities of the CT

modulator as e.g. ELD can be accounted in the calculation.

Therefore, the method to derive the transfer functions of a

DT I-SD ADC is adapted to the NTF and extended for the

CT nature of the STF. The given examples illustrate that the

presented method allows a fast and precise way of calculating

the transfer characteristics which match reference simulations.

Moreover, the NTF allows to predict the SQNR of the ADC.
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Fig. 6. Calculated STF and NTF of the exemplary 3rd (solid) and 2nd (dotted)
order CT I-SD ADCs with annotated simulation results.
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Fig. 7. Calculated STF and NTF of the exemplary 3rd (solid) and 2nd (dotted)
order DT I-SD ADCs with annotated simulation results.
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