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I Introduction 

In this note we study closed oriented 4-manifolds whose universal covering is spin 

and ask whether there are restrictions on the divisibility of the signature. Since any 

natural number appears as the signature of a connected sum of r 2,s, without the 

assumption on the universal covering there cannot exist any restrictions. Certainly, 

the most famous such restriction was proved by Rohlin in [10], where he showed 

that the signature a of a smooth 4-dimensional spin manifold is divisible by 16 

(compare part (2) of our Main Theorem for a new proof). The Kummer surface 

K shows that this is the best possible general result. Dividing by a certain free 

holomorphic involution on K, one obtains the Enriques surface (compare [1]) 

which by construction has signature 8 and fundamental group 7//2. Furthermore, 

Hitchin showed in [5] that there exists an antiholomorphic free involution on the 

Enriques surface. We will refer to the quotient as the Hitchin manifold which then 

has signature 4 and fundamental group 7//2 x 7//2. Rohlin's theorem admits a nice 

generalization to nonspin 4-manifolds, compare [4, Theorem 6.3]: 

a(M) = FoF  - 2-f l (F)mod 16. 

Here F is a (not necessarily orientable) surface in M which is dual to W2 M. This 

implies that there exists a Pin--structure on M \ F  which induces a Pin--structure 

on F and hereby a quadratic refinement of the 7//2-intersection form on F. Thus 

the 77/8-valued Brown-Aft invariant fl(F) can be defined. 

Starting with a surface F, the above formula suggests that one can construct 

further examples of 4-manifolds with small signature and universal covering spin. 

But so far, all attempts using this method failed and therefore we tried to find 

a different way of attacking the problem. This was motivated by the questions of 

several people at the Oberwolfach Topology Conference in 1990 who wanted to 

know whether the signature of all closed oriented 4-manifolds whose universal 
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covering is spin is divisible by 4 respectively for which fundamental groups it is 
always divisible by 8 or 16. 

In our Main Theorem below we will answer these questions but first we want to 

introduce some useful notations. Let M be a manifold with fundamental group 
and universal covering spin. Choosing a 2-equivalence u : M  ~K(rc,  1), the 

 9 ~ p U 

homotopy fibratlon M ~ M -~ K(rc, 1) induces an exact sequence 

0 ---+ HZOz; 7//2) ~ HZ(M; 7//2) ~ H2(./~; 7//2). 

Since 0 = w 2 ] ~  = p*(w2M), there exists a unique element w ~ H2(~; 7//2) with 

w2M = u*(w). Moreover, the pair (re, w) is determined by M up to automorphisms 

of ft. Calling the isomorphism class of this pair the w2-type of M, we can now 
formulate our question more precisely. 

What are the possible siynatures of closed oriented 4-manifolds with a 9iven w2-type 
(r~, w)? 

Note that in our formulation a manifold can have a w2-type (~t, w) only if its 
universal covering is spin. By taking connected sums along 1-skeletons of such 

manifolds (see [9]), one shows that the possible signatures form an ideal in 7/. We 
define the natural numbers a(rt, w) (respectively aTOP(z, W)) by the requirement that 

they generate the ideal 

{a(M) E 7/IM is a (smooth) closed oriented 4-manifold with w2-type (re, w)} . 

We remark that in the topological setting Freedman's I Esl-manifold [3] is an 
example of a 4-dimensional spin manifold with signature 8, so that one has to be 

careful about the category. However, part (9) of the following result shows that the 

answer for both categories agrees for all nonspin w2-types. 

Main Theorem. Let ~ be a finitely presentable 9roup and w ~ H2(7~; 7Z/2). Then 

(1) a(zc, w) divides 16. 

(2) a(=, O) = 16. 

(3) I f  w # 0 then a(rc, w) divides 8. 
(4) a(n, w) = 8 / f 0  # w ~ Ext(Htrt; 2~/2) q H2(rt; 7//2). 

(5) l f  Sqlw r {a ~ wla ~ Hi(re; 7Z/2)} then a(rt, w) divides 4. 

(6) I f  the multiplication by w is injective on H 1 (~t; 7//2) then a(Tr, w) divides 2 if 
and only if fa(w)r + b w w l b e n 2 ( r c ; 7 / / 2 ) } ) + K e r ( k 4 : H 4 ( z ; 7 / / 4 ) ~  

Hom(Ha(n), 7//4)) where i4,2:7//2 ~7/ /4 and go is the Pontrjagin-square [15, 

Sect. 4]. 
(7) I f  the multiplication by w is injective on HI(~; 7//2) then a(rc, w) = 1 if and 

only if w 2 r {b 2 + b w wlb ~ n2(~; 7//2)} + Ker(kz:n4(n; 77/2) ~ Hom(H4(r0, 7//2)). 
(8) aT~ (rc, O) = 8. 

(9) ar~ (rc, w) = a(zc, w) if w # O. 

As an immediate corollary to this result, we will obtain the following examples. 
Note that the Hitchin manifold very nicely fits into example (b). 
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Examples. (a) If n is a finite group with cyclic or quaternion 2-Sylow subgroup, 

then o-(n, w) = 8 Vw + 0. 

(b) o-(77/2 x 77/2, w) = { 

4 i f  w = x 2 --t- x l - x 2  + x 2 , 

16 if w = 0  , 

8 else , 

where {xl, x2} is the usual basis for Hi(Z~2 x 77/2; 77/2). 

(c) o-((77/4) 6, w) = 2 for a certain class w. 

(d) Let re:= 77/16 >,~ 77/8 be a semidirect product with action of 77/8 on 77/16 

given by t ~ t 5. Then there exists a class w ~ He(E; 77/2) such that o-(g, w) = 1. 

Let me now briefly outline the proof of the Main Theorem. First recall that the 

signature is an invariant of the oriented bordism class of a manifold. Since we are 

interested only in the signatures of manifolds with a fixed w2-type (g, w), we define 

the concept of (lr, w)-bordism 9roups as follows. The class w gives a fibration 

w: K(g, 1)--, K(77/2, 2) and we can form the pullback 

B = B(~, w) , K(rr, 1) 

BSO , K(7l/2, 2) 

where ~' denotes the stable universal bundle over BSO. Now the bordism groups 

O.(g, w):= n.(~(rc, w)) 

can be defined as in [12]. They consist of bordism classes of triangles 

j / / / ~  i ~(~' w) 

M , BSO 
v 

where M is a smooth closed oriented manifold and v is the stable normal Gaul3 

map of M given by some embedding into Euclidean space. The map ~ is called 

a ~(rc, w)-structure on M. Using obstruction respectively surgery techniques one 

proves the following result. 

Proposition [9]. Let ~(n, w) be a fibration as above. Then 

(1) For any manifold with w2-type (g, w) there exists a ~ (Tz, w)-structure ~ which is 

a 2-equivalence. 
(2) Every bordism class in f2,0z, w) is represented by a manifold with wz-type 

(~, w). 

It follows that the ideal a(z, w). 7/ in question is just the image of the signature 

homomorphism 
a: ~ ( ~ ,  w) --, 7z. 

In the next part we will develop a technique for computing these bordism groups 

and as an application are able to prove the Main Theorem. We finish this 

introduction by remarking that this note is part of my PhD thesis [14]. 
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II The James spectral sequence 

Our aim is to construct a spectral sequence with E2,q ~- Hp(K(Tz, t); ..qOSpi"~, which 

converges to f2p+q(n, w). We first use the Pontrjagin-Thom isomorphisms (see 

e.g. [12]) 
s w) =" ~z,(mr w)) and --.QSpin _~ ~, (m Spin) 

to translate the bordism groups into (stable) homotopy groups of the correspond- 

ing Thorn spectra. Assuming w2(,/) to be a fibration, the definition of ~(~z, w) as 

a pullback gives a commutative diagram 

BSpin i , B f , K(n, 1) 

BSpin , BSO , K (TZ/2, 2) 

in whichfis  a fibration and ~(n, w) o i is the universal bundle over BSpin. Moreover, 

the orientability of ~(n, w) implies that the homotopy equivalences of the fiber 

BSpin induced by elements of n are all homotopic to the identity. Therefore, the 

existence of a spectral sequence as above follows from the following more general 

result by applying it to the fibration f a n d  using stable homotopy as the generalized 

homology theory. 

Theorem. Let h be a generalized homology theory which is connected, i.e. 7zi(h ) = 0 

Vi < O. Furthermore, let F ~ B ~ K be an h-orientable fibration and ~ " B --, BSO 

a stable vector bundle. Then there exists a spectral sequence 

E2,q ~- Up(K; hq(M(r hp+q(M~) 

(which we shall call the James spectral sequence for the fibration f because James 

juggled around with Thorn spaces in his book [6] in a similar way we are going to 

do it.) 

Remark. All spectral sequences we wilt consider will be 1.quadrant spectral 

sequences, so there will not occur any problems concerning their convergence. 

This is the reason why we assumed the generalized homology theory h to be 

connected. 

Proof. Since SO = U,~N SO(n) is a topological group, there is a contractible space 

ESO on which SO acts freely and a model for BSO is the orbit space ESO/SO. As 

a subgroup of SO each SO(n) also acts freely on this space ESO and if we define 

BSO(n) := ESO/SO(n) then the maps i,: BSO(n) - .  BSO are fiber bundles with fibers 

SO~SO(n). Similarly all maps i~, +1 : B S O ( n ) ~ B S O ( n  + 1) are fiber bundles with 

fibers SO(n + l)/SO(n). From the originally given stable vector bundle ~ over B we 

now construct a sequence of fiber bundles over B by the pullback 

b. 

B. , B 

BSO(n) , BSO . 
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Composing the maps bn with the original fibration f :  B --* K we get a sequence of 

fibrations f .  : Bn ~ K with fibers Fn together with vector bundles 4n over each B. 
such that the following diagrams commute: 

Fn ~ Bn L ~. K Bn , BSO(n) 

i.+ ~ 

BSO(n + 1) . 

By definition, the Thom spectrum M4 consists of the family of Thom spaces 

{T(4n), sn:S ~ /x T(4n)~ T(4n+I)} and similarly M4IF= {T(r snIS 1 /x T(r 
We will obtain the desired spectral sequence converging to h.(M~) as a direct 

limit of relative Serre spectral sequences as follows: For  any n ~ N, the disk-sphere 

bundle pair (D(4.), S(~.)) is a relative fibration over Bn with relative fiber (Dn, S"- 1). 

Composed with f .  : Bn ~ K this becomes a relative fibration over K with relative 

fiber (D(4ntF.), S(r IF.)). This fibration is h-orientable because we are considering 

oriented vector bundles and the original fibration fwas  assumed to be h-orientable. 

Thus there is a relative Serre spectral sequence (see [13, Chap. 15, Remark 2]) 

"E: Hp(K; hq(O(~.l F.), S(~.tFn))) ~ hp+q(O(~n), S(~.)). 

Replacing ~. by ~.  9 e~ we obtain a spectral sequence which is isomorphic to the 

above via the suspension isomorphism for the generalized homology theory h. We 

shall identify these two spectral sequences and obtain from the vector bundle 

homomorphism 3. G e~ ~ 4.+ 1 homomorphisms of spectral sequences nE ~ "+ ~E. 

More exactly, we obtain a family of commutative diagrams 

n i n+l~;~i 
E p , q  ) ~ p , q  

E i p _ r , q + r _ l  ) n + l K , ' i  ~ p - r , q + r -  1 

and we can define a spectral sequence E by the direct limit, i.e. we set 

(E~,~, d~):= ~ 
n n 

The exactness of the direct limit functor gives the isomorphisms ~.,.~'i+~ =~ H(E., . ,  d ~) 

which show that we have in fact defined a spectral sequence. By definition we have 

E~,q = lim Hp(K; hq(D(~nlFn), S(~nlFn))) 
n 

_~ Hp(K; lim hq(T(~.lF.))) 
n 

~- H p ( K ;  h q ( M ~ l F ) )  . 

Since all nE are 1.quadrant spectral sequences we obtain Ep~,q = lim nEp~,q with 

graded object 

lira hp+q(D(~.lF.), S(~.IF.)) ~ ~ hp+q(T(~.)) ~- hp+q(M~) . [] 
n n 
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Remark. By construction, the James spectral sequence is natural with respect to 
commutative diagrams of fibrations 

F'  , B' , K '  

F ~ B ~ K 

such that ~' = ~ o q~. 

We next want to determine those differentials d2 in the James spectral sequence 
which are interesting for the groups f24(n, w). In this case the generalized homology 

theory is stable homotopy and the fibration f :  B-- ,  K(n,  1) is the pullback as in 
diagram (*). Note that the class w ~ HZ(n; 7//2) did not enter into the E2-term of the 

James spectral sequence so that we strongly expect it to enter into the differentials. 
For the result below we recall the following facts. Let i: S o --* M Spin be the unit of 

the ring spectrum M Spin coming from the inclusions of the bottom cell 
D"/S"-a  ~ T(~,). One knows that t , :n i (S  ~ ~ n i (M Spin) is an isomorphism for 
i < 2 and thus induces isomorphisms 

Qspi ,~7/  and osp i ,=  7//2 for i =  1,2.  

Proposition 1. Let  Sq 2 : H p- 2(n; 7//2) ~ HP(n; 7//2) denote the homomorphism given 

by S@(x) :=  SqZ(x) + x u w. Then the following assertions hold: 
= ( oSpin~  (1) For p < 4, the differential d2 : Hptn; oo 1 J --* Hp_ 2(n; ~?Szpi") is the dual of  Sq 2. 

(2) For p =< 5, the differential d 2 : H;(n; ~'~SoPin ) --~ Hp_ 2(~Z; ""lOSpin]! is reduction 

mod 2 composed with the dual o f  SqZ~. 

Proof  Set ~ := ~(n, w) and note that for the fibration {pt}  --* B ~ B the James 

spectral sequence 

Hp(B; hq(M~l { pt ) )) ~ hp+q(M~) 

translates by construction into the Atiyah-Hirzebruch spectral sequence for M~ if 

one uses the Thom isomorphism Hp(M~) ~- Hp(B) and the fact that Mr ~- S o 

as spectra. By the lemma below, the differentials d2 in the Atiyah-Hirzebruch 
spectral sequence are given by dual of Sq 2 on H*(M~; 7//2), respectively the 
composition with the reduction mod 2. But under the Thorn isomorphism these 

maps become Sqw2(r on H* (B; 7//2). Now we use naturality of the James spectral 

sequence for the fibrations 

id 
{ p t }  , B , B 

BSpin , B , K(n,  1) 

to get for all x e Hp(n; 7//2), p __< 4: 

d2(x)  d 2 ( f , ( y ) )  2 , = = (Sqw2~r ( f , ( y ) )  = (Sq~)* (x )  

and the corresponding result for x E Hp(n; Z), p < 5. 

Here we used that f ,  is onto for p __-_ 4 which follows from the Hurewicz 

Theorem since f is a 4-equivalence. Finally, we also used that f ,  : Hs(B; Z) 
Hs(n;7Z) is onto. This is equivalent to the vanishing of the differential 
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d5 : Hs(rc; 7/,) -+ H4(BSpin) ~- 7I in the Serre spectral sequence for the fibration f 
But since f is the pullback of the fibration BSpin-~ BSO ~ K(7Z,/2, 2) and the 

corresponding differential d5 vanishes (Hs(K(TI/2, 2); 77) is finite !), we are done by 
the naturality of the Serre spectral sequence. [] 

Remark. It is conceivable that the assertions in Proposition 1 also hold for 

arbitrary p although our proof only works in the range described. 

Lemma. Let X be a spectrum and Hv(X; ~Sqpin):::~ OSpin(Y'~ the corresponding 

Atiyah-Hirzebruch spectral sequence. Then 
(1) The differential dz:Hp(X;f2 spi") Hv-z(X; Spi, f~2 ) is the dual of 

Sq2: H p- 2(X; 77/2) --, H"(X; 77/2). 

(2) The differential d 2 : Hp(X; ~dSo pin) ---* Hv_ 2(X; ~Ospi"~l , is reduction mod 2 com- 

posed with the dual of Sq 2. 

Proof Using the inclusion of the botton cell t : S o -~ M Spin, the naturality of the 
Atiyah-Hirzebruch spectral sequence shows that in the range in question we can as 

well compute the differentials d2 for the spectral sequence 

G ( x ;  G') G'+q(x)  9 

Now the differentials d2 are stable homology operations and thus are induced from 
elements in 

[H77/2, Z2H77/2] ~- HZ(H77/2; 77/2) = (Sq 2) ~ 77/2 in part (1) and 

[H77, Z2H71/2] ~ HZ(H77; 77/2) = (Sq2er2) ~ 77/2 in part (2). 

Here for any abelian group A, HA denotes the spectrum associated to ordinary 
homology with coefficients in A. To finish the proof we have to show that in 

both cases d2 4=0. For this just take X:=Sp-2H77/2 and recall that 

~i(Sp-2H77/2)={~/2  else.ifi=p-2' [] 

We finish this section by describing the edge-homomorphisms of the James 
spectral sequence in the case that the homology theory h is stable homotopy. The 

edge-homomorphism coming from the base-line is eb : ~z,(M~) ~ H,(K; ~o(M~lF)) 

where by the Hurewicz- and Thom isomorphisms 7b(M~IF) ~- 77 (assuming that 

F is connected) and thus 

eb : fJ,(~) ~ ft,(Me) ~ H,(K) .  

Proposition 2. Let [~: M --* B] ~ Q,(r i.e. ~ o ~ is a stable normal Gaufl map for M. 

Then the above edge-homomorphism is given by 

eb [~: M -~ B] --- f , ~  ~, [M] ~ H , ( K ) ,  

where [M] ~ H,(M) is the fundamental class given by the orientation determined by ~. 

Proof Using the naturality of the James spectral sequence for the fibrations 

ic l  

{pt} , B , B 

F , B ~ K 
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we are reduced to showing eb [~ 'M ~ B] = g, [M] in the spectral sequence for the 

upper fibration. Let us now choose an embedding M ~ S "+k for sufficiently large k. 

Then we obtain a commutative diagram 

T~, _~ 
H,+k(S "+k) , H,+k(T(v(M ~ s"+R))) , H,+k(T(~k)) ) H,(M~) 

H.(M)  , H.(B) 

where a generator of H,+k(S "+k) is mapped to [M] ~ H,(M). This proves that the 

diagram 
Hurewicz 

~.(M~) ~ H.(M~) 

(**) Pontrjagin-Thom i ~ ~b ~ [Thom 

Y2,({) , H,(B) 

commutes if we set q~ [9: M -~ B] := ~. [M].  

Since the James spectral sequence for a fibration where the fiber is a point is 

isomorphic to the Atiyah-Hirzebruch spectral sequence under the Thorn isomor- 

phism, diagram (**) shows that it suffices to show that the Hurewicz homomor- 

phism is the edge-homomorphism for the Atiyah-Hirzebruch spectral sequence for 

M~. But this follows from the fact that this edge-homomorphism is a stable 

homology operation from stable homotopy to ordinary homology, i.e. an element 

of [S ~ H7/] ~- Z. Moreover, the Hurewicz homomorphism generates this group 

and if we take the spectrum Z"H7I as a test case we can conclude that the 

edge-homomorphism cannot be a nontrivial multiple of this generator. Finally, 

using the spheres S" as a second test example, one sees that the sign is correct, 

too. [] 

The edge-homomorphism of the James spectral sequence coming from the 

inclusion of the fiber is a map eb': Ho(K; n.(M~IF)) ~ n,(M~) and if we also 

assume K to be connected then 

eb' : Q,(~]F) --* Q.(~). 

Proposition 3. Let [~: M --* F]  ~ Q,(~IF), i.e. ~]F o ~ is a stable normal Gaufl map for 

M. Then the above edge-homomorphism is given by 

eb ' [9 :M ~ F ]  = [M, io~] m ~2,(~), 

where i: F --* B is the inclusion of  the fiber. 

Proof. This is just the naturality of the Pontrjagin-Thom construction, combined 

with the fact that in the Serre spectral sequence this edge-homomorphism is given 

by the induced map i. ,  see [13, Chap. 15, Remark 5]. [] 

III Proof of the Main Theorem, smooth case 

(1) follows from the existence of the Kummer surface K because a spin manifold 

admits a ~(n, w)-structure for all pairs (n, w). 
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(2) Our  aim is to prove Rohlin 's  theorem using only the i somorphisms 

0 if i = 1 , 2 , 3 ,  

I2s~ g if i = O, 4 

and the fact that  ospl, = 0 which was proven in an e lementary  way in [7]. If  we ~ 3 
apply  the James spectral sequence to the fibration BSpin ~ BSO --* K(77/2, 2), we 

can conclude that  f2 spi" ~ 77/2 for i = 1, 2 and we obtain a filtration 

f2svi'/Image(di) ~- F2,2 c_ F3,1 c Os40 ~- > 77. 
r 

2g/2 2g/2 Z/4 

Because Image(di) ~ f2 svi" is a torsion group and thus the signature vanishes on 

this subgroup,  the divisibility of the signature on f2 ]vi" equals the produc t  of the 

orders of the three subquotients  in the filtration. But since the h o m ol o g y  of 

K(77/2, 2) is given by 

Hi(K(7Z/2, 2); 7Z/2) -_ 7Z/2 for i = 2, 3 

H4(K(Tl/2, 2); 77) ~ 77/4 

the above subquotients  are as claimed once we show that  there are no differentials 

involved. All differentials leaving from Hs(K(77/2, 2); 77) ~ 77/2 are trivial because 

the edge -homomorph i sm f2s~ Hs(K(TI/2, 2); 77) is onto. This follows from the 

fact that  the nontrivial  element z e Hs(K(7Z/2, 2); 77) is realized by the oriented 

5-manifold M : =  SU(3)/S0(3). To verify the last assertion, note that  M is simply- 

connected and non spin with the following cohomology  groups: 

01 02 3140  
HI(M; 77) 77 0 77/2 77 

HI(M; 77/2) 77/2 77/2 77/2 77/2 

Then  Poincar6 duality and the long exact sequence for the coefficient sequence 

77 --* 77 --* 77/2 together  with the fact that  its bounda ry  map  reduces m o d  2 to Sq 1 

implies that  

0 * (w2(M) to Sql(w2(M)), [ M ] )  = (t2 u Sql(t2), (w2), [ M ] ) ,  

i.e. (w2), [ M ]  = z .  

The only other  possible differentials in dimension 4 are 

d2:E2.i--*E2,1+l, i = 0 , 1  . 

But using Proposi t ion  1 these are given by (Sq~)* respectively by (Sq22) * o r2. N o w  

in our si tuation (Sq~)* = 0 because Sq22(z2) = Sq202) + 12 u t2 = 0 and thus 

Rohlin 's  theorem follows. 

(3) The commuta t ive  d iagram of f ibration (*) implies that  

w.  : n2(Tz; 77/2) --* H2(K(7Z/2, 2); ~ /2)  ~ 2g/2 

is onto  if w ~ 0. 
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We now apply the James spectral sequence to both fibrations. The lower 
fibration was discussed in (2) and for the upper fibration, the James spectral 
sequence gives a filtration 

~QSpln Z F2,2(lr, w) _c F3 ' 1(7~ ' w) Z ~4(~, w) . 

Here certainly differentials can exist and thus the subquotients of this filtration 
are only subquotients of 2 Ep,4_p(rC, w). Now consider an element x~  
H2(z ;Z /2 )  ~-E2 2(~, w) with w,(x)4= O. Then x cannot be hit by a differential 

since x = di(y) would give the contradiction w , ( x ) =  di(((rc, w),(y)) to the 
arguments in (2). Therefore, x survives to infinity to give an element ff 
F2,2(~,  w) ~__ ~"24(g , w) mapping to r w),(s ~ t72,2\~-2 Spln. Thus the correspond- 
ing manifold has signature 8 (mod 16). 

(4) I f M  is a manifold with w2-type (=, w) and u : M  ~ K(rt, l) is a 2-equivalence 

then the universal coefficient sequence shows that under our assumption one has: 

(wz(m) ,  x )  --- (u*(w), x )  -- (w, u . ( x ) )  = 0 VX ~ H2(M; Z) 

which implies that the intersection form on H2 (M; Z) is even. But since or(M) is just 
the signature of this form, it follows that a(M) is divisible by 8. Since by (3) there 

also exists a manifold with signature 8 in this w2-type, we are done. 
(5) To prove a(Tr, w)14, we want to find an element in F3,1(rt, w ) c  f24(~, w) 

which maps to F3, l \F2,  2 under ((it, w),. 
Take an arbitrary element x ~H3(~z; 7Z/2). Then w , ( x ) +  0 if and only if 

(Sqlw,  x )  ~ 0 because H3(K(Z/2 ,  2); 7//2) is generated by Sql(12). Such an ele- 

ment x cannot be hit by a differential since again this would contradict our 

knowledge about the spectral sequence for the fibration with total space BSO. 

Therefore, x survives to infinity if and only if d2(x) = 0 which is equivalent to 

( a ~ w , x ) = 0  Va~Hl(~;77/2) 

because by Theorem 1 the dual of d2 is multiplication by w (Sq 2 vanishes on 
1-dimensional classes). Obviously our assumption is equivalent to the existence of 

an element x satisfying the above two conditions. 

(6) works exactly the same way as (7) so we omit the details here and rather 
prove the more interesting part (7). 

(7) We have a commutative diagram 

ql q'l r,l 
Ha(u) w, ~_ , H , (K(Z /2 ,2 ) )  > 77/4 

which shows that w, o q is the signature mod 4. Recall that H4(K(77/2, 2); 77/4) is 

generated by the Pontrjagin square go and thus as a map into 77/4, w, is given by 

w , ( x )  = (go, w , ( x )  ) = (w*(go), x )  = (go(w), x ) ,  x ~ H4(rc) . 

Reducing further mod 2 gives (w 2, x).  Moreover, x lies in the image ofq if and only 

if di(x) = 0 for i = 2, 3. 
By assumption multiplication by w is injective on Hi(n;  77/2) which is equiva- 

lent to the surjectivity of d2 :E~, 10z, w) ~ E 2, 2(~, w). But this implies the vanishing 

ofda on Ea, o(rt, w). 
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Thus if the image of 

w. :{x e H4(g) ldz(x)  = 0} --* 7//4 

is n. 7//4 with n e {0, 1, 2} then a(zc, w) = n mod 4. 

In particular, a(~, w ) -  1 mod4 if and only if there exists an x e H4(n) with 
(w 2, x )  + 0 and dz(x ) -- 0(<:~ (b  2 + b w w, x )  = 0Vb ~ H2(zr; 7//2) by Theorem 1). 

Claim: These two conditions are equivalent to our second assumption 

w 2 r {b 2 + b w w]b ~ HZ(n; 7//2)} + Ker(k2 :H4(~; 7//2) ~ Horn(H4(=), 7//2)). 

To see this equivalence, first observe that Ker(k2) is by definition the subgroup of 

H4(g; 7//2) which annihilates all of H4(7c ). Dividing out Ker(k2) and defining 

A := H4(~)/2- H4(z0, 

U:= kz({b 2 + b w wlb ~ H2(~z; 7l/2)}) ~ Hom(H4(~), 7//2) = Horn(A, 7//2) 

and p : =  k2(w 2) E Horn(A, 7//2), we get the following statement which is equivalent 

to the claim: 

2x ~ A with p(x)  4: O and u(x) = O Vu 6 U c~ it q~ U . 

In other words, we want to prove U = Ann(Ann(U)) if we define the annihilator by 

Ann(U):= {y ~ A i u ( y )  = 0Vu E U} . 

Clearly we have the inclusion U ~ Ann(Ann(U)) and since both sides are finite 

dimensional 7Z/2-vector spaces for the equality we have to show that their dimen- 

sions agree. But this follows directly from the nondegeneracy of the bilinear form 

Hom(A, 7//2) x A ~ 7//2 

(u, a) ~ u(a) . [] 

We finish this section by verifying the statements for the examples (a)-(d) from the 

introduction: 
(a) follows directly from part (4) of the Main Theorem because the groups in 

question fulfill the assumption there. 
(b) If w 4: x 2 + x l .  xz  + xZ~ =: y, there exists an inclusion i: 7//2 ~ 7//2 • 7//2 

such that i*(w) = O. 

Now if M is a 4-manifold with wz-type (~, w) then the double covering corres- 

ponding to i(7//2) is a spin manifold and thus its signature is divisible by 16. 

Therefore, a ( M )  - 0 mod 8 and the assertion follows from part (3) of the Main 

Theorem. The case w = y is handled by part (5) of the theorem because one 

computes that 

Sq l ( y )  = x ~ . x 2  + x l . x  2 r { a . y l a ~  H1(7 / /2  x7//2; 7//2)} . 

(c) is a straightforward computation in the cohomology of the abelian group 

(7//4) 6 together with part (6) of the Main Theorem. 

(d) We want to apply part (7) of the Main Theorem and will make use of the 

following computation of the 7//2-cohomology ring of the group zc given in [2-]: 

H*(rc; 7//2) --- 7//2[a,  b, v, w] / (a  z = b 2 = O) 
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with deg(a) = deg(b) = 1 and deg(v) = deg(w) = 2 and 

b = P*(B), v = p*(v) and i*(a) = ~, i*(w) = t~. 

Here 

7//16 ~ ( t )  ~ n ~ 7//8 

P. T e i c h n e r  

is the split extension in question and ~,/~ respectively fl, v are the generators for the 

corresponding cyclic groups. 

Obviously multiplication by w is injective on H 1 (n; ~7/2) and thus we have to 

show that 
w 2 r { y . w  + y21y~H2(n;  7//2)} + Image(rz) .  

Assume that w 2 can be written as 

W 2 = l l ( y , w  + y 2 )  + I2"r2(x), 11~7//2 with x ~ H 4 ( n )  and 

y =  2 1 . w  + 22 .v  + 2 3 . a . b ,  2 i~7 / /2  . 

Now observe that the map  i* factors through the fixed point set of the action 
t ~ t s, i.e. through the group H 4 ( ( t ) )  z/8. 

If the element n generates H 2 ( ( t ) )  then n 2 generates the group H 4 ( ( t ) )  and 

thus we see that 7//8 acts as n ~-~ 5. n respectively a s  n 2 ~ 25-n 2 = 9"  n 2. This 

shows that 
H4((t))~/8= (2 .n2) .  

rz(i*(x)) = 0 Vx ~ H4(n) . 

and therefore 

If we use the relations 

i * ( v ) = i * ( b ) = O  and t h u s i * ( y ) = 2 1 . w  

we get the following contradiction: 

0 :~ I z2 = i*(w 2) = 11 "(i*(y)" i*(w) + i*(y) 2) = 11  9 ( ) q *  W e + ) 2 .  w 2) = O .  

IV The topological case 

A topological manifold has a stable normal Gaug map v : M  ~ BTOP,  where 

TOP = ~ TOP(n) 
n>=o 

and TOP(n) is the topological group of all base point preserving self-homeomor- 

phisms of IR". Then B T O P  is the classifying space of stable fiber bundles with 

fiber IR" and specified zero-section. There are the obvious inclusion maps 

O(n) -~ TOP(n) which induce a fibration BO ~ B T O P  with fiber TOP/O.  

Similarly, if B P L  is the classifying space for stable piecewise linear bundles then 

there is a fibration BPL-- )  B T O P  with fiber TOP/PL.  The fundamental result of 

[8] says that this fibration is a principal fibration, induced by an H-map  

f~ : B T O P  ~ K(7I/2, 4) 
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which the authors call the triangulation obstruction and which is today known as 
the Kirby-Siebenrnann invariant. Up to dimension 6, the spaces B P L  and BO are 
equal and thus the Kirby-Siebenmann invariant gives in the 4-dimensional case 
a unique g/2-valued obstruction for the existence of a lift of the topological stable 

normal GauB map M *  --, B T O P  over BO. It was not until the striking results of 
Freedman in [3] that one could prove the nontriviality of this obstruction. Since 
for spin manifolds Kirby and Siebenmann had proven in I-8, p. 325, Theorem 13.1] 
the formula 

***) Is(M) -= ~ (mod 2) , 

this follows from the existence of Freedman's 4-manifold [Es ]. Using this manifold, 

it follows directly from the work of [-8, p. 322-325] that for G = O, SO or Spin the 
natural maps 

~ __+ ~Gro~" 

are isomorphisms for i < 3 and injective with cokernel 7/./2 for i = 4. Moreover, the 
signature divided by 8 gives an isomorphism of Qspi, roP onto Z, whereas 
f2 s r ~  Z x 2g/2 via (or, [~). Our aim is to extend these results to the bordism 
groups f2r~ w):= f2r~ w)) where ~'(g, w) is defined via the pullback 

B' , K(~,  1) 

~'(~,w) ~ ~w 

B S T O P  w2 , K(7l/2,  2) 

Note that we obtain the 'linear' fibrations ~(~, w) from the introduction by pulling 
back the topological ones via the natural 3-equivalence BSO ~ BSTOP.  

Proposition 4. Let ('(n, w ) : B ' - ~  B S T O P  be a fibration as above. Then there is an 

exact  sequence 

****) 0 ~ f24(=, w) --, Qroe(=, w ) - - ~ 7 l / 2  --, 0 

which splits i f  and only i f  w 4= O. 

Proof  The exactness of the sequence follows directly from the above information 
about f2 sr~ respectively f2 spi"r~ i <  4, by comparing the James spectral se- 

quences of the fibrations ~(n, w) and ~'(~, w). Note that it is easy to generalize the 

James spectral sequence from vector bundles to fiber bundles with fiber IR" and 

zero-section. We only have to replace the relative fibration (disk bundle, sphere 
bundle) by the relative fibration (total space, total space\zero-section) to which we 
can also apply the relative Serre spectral sequence. 

However, we also have to use topological transversality in dimension 4 
(see [11]), to be able to use the Pontrjagin-Thom isomorphism 

Oroe(~, w) ~ n4(Mr w)). 
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It  is clear that  a splitting of the exact sequence (****) is the same as the choice of an 

element of  order  2 in f24T~ w) with nontrivial  f~-invariant. If  w = 0 then the 

relation (***) holds in f2~~ w). This implies that a ~'(z, w)-manifold with 

nontr ivial  ~ - invar ian t  has nontr ivial  signature and thus cannot  have finite order. 

In part icular,  the exact sequence (****) does not split. 

Now consider the case w + 0. The James  spectral sequence for r w) and 

~'(~, w) gives a commuta t ive  d iagram of exact sequences 

0 , ~'~Spin ' F2, 2(re, w) P o~ , E 2 , 2 ( z , w )  , 0 

I .2 1 p,o, 
0 ' I2spi"r~ - ' fr~ ,w) , E~,2(~,w ) , 0 

z / 2  ~ / 2  . 

Since E ~ = H2(~; 77/2)/Image(dz) is 2-torsion and the first vertical map  is multi- 
2 , 2  

plication by 2, the middle horizontal  sequence splits. This implies tha t  the image of 

F r ~  w) is 8.77 and therefore the m a p  the signature on 2,2 t , 

(8) prOe . FroPtz  w~ ~ 77 x E~, 2(~, w) 
, ' 2 , 2 t  ~ ! 

is a well-defined i somorphism.  Recall f rom par t  (3) of the Main Theorem that  

there exists a (differentiable) 4-manifold [ M ]  e F2.2 (z, w) with wz-type (Tt, w) and 

signature 8. It follows directly from the above  i somorph ism that 

Fr~ w) c Q~~ w) [ M ] - - I - I E s I ] ~  2 , 2 , ,  - 

is an element of order  2 which clearly has nontrivial  fs-invariant.  [] 

Corollary. l f  w 4= 0, the image of the signature on (24(rc, w) equals the image of the 
signature on o r ~  (n, w). 

This corol lary proves pa r t  (9) of  our Main  Theorem. The  fact that  8 divides 

ar~ 0) is p roven  exactly as part  (4) and thus the existence of IEsI finishes the 

p roof  of  par t  (8). 
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