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A b s t r a c t  

This paper presents a review of recent experimental and numerical 

studies which deal with the analysis of form-induced stress in rough wall 

turbulent boundary layers. The aim of the paper is to assess the impor-

tance of this stress for various rough wall geometries and flow condi-

tions. Analysis of the significance of form-induced stress is first per-

formed by comparing its magnitude with the magnitude of Reynolds 

stress for each data set available in literature. Then, by selecting a special 

set of data, we analyze the comparison between the gradients of both 

stresses. We point out that the comparison of stress gradients gives a dif-

ferent perspective on the role of form-induced stress in rough wall 

boundary layers.  

Key words: form-induced stress, rough wall boundary layers, Reynolds 

stress. 

1. INTRODUCTION 

Double Averaged (DA) transport equations have proved to be an efficient 

tool for investigating transport processes occurring within the roughness 

layer of rough wall boundary layers. So far, most studies have focused on the 
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use of the DA momentum equations to interpret data obtained from experi-

ments and numerical simulations. In these studies, the contribution of differ-

ent terms was assessed in order to highlight the dominant momentum trans-

port mechanisms. In this context significant attention has been paid to 

quantify the importance of the “Form-Induced” (FI) stress (also called “Dis-

per-sive Stress” by the atmospheric science community). FI stress is a prod-

uct of spatial averaging, just as the Reynolds stress is a product of time aver-

aging. It represents the stress which arises from the covariance of the spatial 

fluctuations of the time-averaged flow.  

In numerical studies based on DA momentum equations, FI stress is 

usually neglected, since it is considered much smaller than the Reynolds 

stress. Behind this assumption there is the hypothesis that most of the mo-

mentum within the roughness layer is carried by turbulence. Although this 

hypothesis is often valid, various studies have shown that FI stress cannot 

always be neglected and that in certain cases it can have a magnitude compa-

rable with that of the Reynolds stress. In existing literature, the significance 

of FI stress has been investigated for various roughness geometries and flow 

conditions and it is the aim of this paper to review the results obtained from 

recent experiments and numerical simulations. These results are then re-

interpreted, where possible, by analyzing momentum balance based on stress 

gradients rather than on stress values. This type of analysis gives a different 

perspective on the importance of FI stress.  

The paper starts by defining the DA momentum equations used as the 

basis for reviewing results from the literature. The review of existing data is 

presented, as is usually done, by assessing the magnitude of FI stress for var-

ious rough surfaces and flow conditions. In the discussion section we select a 

special data set to show how significantly different insight is gained on eva-

luating the contribution of FI stress to momentum balance, if stress gradients 

rather than stress magnitudes are compared. In this section we also discuss 

the difficulties which arise when one wants to parameterize the FI stress 

term in the momentum balance equation.  

2. DOUBLE  AVERAGED  MOMENTUM  EQUATION 

In this paper we use the equations presented in Nikora et al. (2007), for two-

dimensional, steady, uniform and turbulent open channel flow conditions 

over a rough wall. For these flow conditions, the DA momentum equation in 

the streamwise direction is given as 

 xz
b xgS f

z
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∂
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and fx is the total drag per unit volume. In the above equations the straight 

over-bar and the angle brackets denote respectively the time and spatial av-

erage of flow variables whereas the prime and the wavy over-bar denote re-

spectively the time fluctuations and the spatial disturbances, i.e., u u u′ = −
and u u u= − ; x, z are the stream wise and bed normal coordinate respec-

tively (x is positive in the mean direction of the flow whereas z is positive 

from the wall towards the boundary layer top); u and w are the velocity 

components along x and z, respectively; ρ is the density; g is the gravity ac-

celeration; Sb is the bed slope; ν is the kinematic viscosity; φ is the porosity 

equal to the ratio between the volume occupied by the fluid and the total av-

eraging volume (φ = 1 above the roughness top). Volume averaging intro-

duces additional terms with respect to the traditional time-averaged Rey-

nolds equations. These are the FI stress uwρ− , which becomes a part of 

the fluid shear stress given by eq. (2), and the total drag fx. The latter 

represents the sum of the form drag and the viscous drag, i.e., the drag that 

the fluid exerts on individual roughness elements (per unit height and unit 

plan area of the flow) due to pressure and viscous forces; fx is non zero only 

below the roughness elements. The FI stress is a product of spatial averaging 

just as Reynolds stress is a product of time averaging and represents the 

momentum flux induced by the heterogeneity of the time-averaged flow.  

3. REVIEW  OF  EXISTING  DATA  ON  FORM-INDUCED  STRESS 

FI stress depends on the details of the time-averaged flow around individual 

roughness elements, which in turn depends on the roughness geometry and 

the features of the turbulent flow above the roughness. In this section we 

present results on FI stress for flows over vertical rods, cubes, spheres, two-

dimensional artificial dunes and gravel having different spacings and ar-

rangements. All these roughness geometries are not easy to identify by gen-

eral parameters which take into account, shape, spacing and dimension of 

each roughness element composing the surface. Furthermore, some of them 

have well defined shapes (cubes, spheres, artificial dunes and rods) whereas 

other resemble more a random field of elevations (gravel beds). For these 

reasons we proceed with the analysis by commenting results case by case 

without labeling each roughness with a series of parameters describing it. An 

attempt to identify the roughness characteristics most influencing FI stress 

behavior is however presented in the section devoted to discussion.  

Since the work of Wilson and Shaw (1977), the Double Averaging (he-

reafter we use DA as an abbreviation for either “Double Averaged” or 

“Double Averaging”) methodology has become a standard for data interpre-

tation in canopy flows. It seems therefore reasonable to start our analysis 

from this class of rough wall boundary layers. Canopy flows are usually con-

sidered to be those turbulent boundary layers occurring over trees or plants. 
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In laboratory studies such type of roughness is usually modelled as simple 

vertical rods which, despite lacking in leaves and branches, still induce flow 

properties similar to real plant canopies. Many detailed velocity data sets are 

available in literature within the roughness layer of rod type roughness. The 

recent experiments of Poggi et al. (2004a) and (2004b) provide an extensive 

data set which has been used to investigate the dependence of turbulence 

characteristics on canopy density. Velocities were measured in a water flume 

with varying canopy density from 67 to 1072 rod/m2 (equivalent to an ele-

ment area index  a = 0.27-4.27, where  a = nbHcp /S,  n is equal to the num-

ber of roughness elements, b their width, Hcp is their height and S is the total 

area).Velocity measurements were performed at many points above and 

within the roughness layer and therefore FI stress could be estimated reason-

ably well throughout the boundary layer depth. It was noted by Poggi et al. 

(2004a) that FI stress was negative close to the canopy top and positive be-

low, indicating upward and downward “Form-Induced” momentum transport 

near the canopy top and bottom, respectively. For dense canopy density FI 

stress was found to be negligible hence substantiating the data of Raupach 

(1994) and Kaimal and Finnigan (1994). Instead, for sparse roughness FI 

stress reached up to 30% of the total stress in the lower part of the canopy 

(z/Hcp < 0.5, where  z = 0  at the canopy bottom). Non negligible FI stress in 

sparse canopies was also found by Bohm et al. (2000). Above the canopy 

top, FI stress was found to be negligible for all the roughness densities inves-

tigated.  

Among the atmospheric science community, the DA technique has been 

recently applied for the study of boundary layers over urban-like rough sur-

faces. In a recent paper, Coceal et al. (2006) present results from Direct Nu-

merical Simulations (DNS) performed for turbulent boundary layers over 

cubes arranged in staggered and aligned configurations. The simulated flow 

is maintained by a constant pressure gradient and the roughness Reynolds 

number, (i.e., Re* = u*Hc /ν, where Hc is the cubes height and u* is the shear 

velocity) is within the fully rough regime. The roughness geometries used in 

this study resemble the structure that buildings and streets form in real cities 

and hence is used as a reference model for the study of transport mechanisms 

in urban environments.  

Results on the momentum balance for both cube arrangements are shown 

in Fig. 1. As for canopy flows, FI stress is negligible above the roughness 

elements, but becomes significant below the roughness tops reaching up to 

20% of the total shear stress τ0 , where  τ0 = τxz (z = Hc), and  z = 0  at the 

cubes bottom. FI stress for the two roughness configurations shows signifi-

cant differences in magnitude and also in sign (the sign varies with height for 

the aligned configuration), indicating a strong dependence of FI stress on 

roughness arrangement.  
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Fig. 1. FI (dashed lines) and Reynolds stress (solid lines) for the staggered (thick 

lines) and aligned (thin lines) cube arrangement (data from Coceal et al. 2006); Hc is 

the cube height;  z/Hc  = 1 at the roughness tops; τ0 is the shear stress measured at the 

roughness tops. 

In hydraulics, the DA methodology is receiving considerable attention 

for the study of open channel flow hydrodynamics (e.g., Nikora et al. 2001, 

2007, Maddux et al. 2003, Campbell et al. 2005, McLean and Nikora 2006, 

Manes et al. 2007). Recently, McLean and Nikora (2006) have applied the 

DA methodology for interpreting existing data consisting of detailed velocity 

measurements in open channel flows over two-dimensional artificial dunes 

and cobble beds. Dune experiments were carried out by varying flow condi-

tions and bed form aspect ratio (details on the experimental set up can be 

found in McLean et al. 1994). The aspect ratio, i.e., the wavelength λ to dune 

height Hd ratios were 20 and 10. It was observed that, FI stress reached up to 

50 and 75% of the bed shear stress for λ/Hd = 10 and 20, respectively (the 

bed shear stress was determined from the extrapolation of the Reynolds 

stress profile to the mean bed level). The contribution of FI stress appeared 

significant (i.e., comparable to the Reynolds stress) throughout the dune 

height for  λ/Hd = 20  whereas it was rapidly decaying with z for λ/Hd = 10. 

Interestingly, FI stress was negative at the dune crests for both roughness 

spacings, indicating once again an upward momentum transport contribution 

to the total flux. It was shown that the higher contribution of FI stress for the  

λ/Hd = 12  spacing was due to a significant increase in the spatial variations 

of the stream-wise velocity components, i.e., 
2 2

*u u< > . McLean and Niko-

ra (2006) related this increase to a smaller relative extension of the separated 

flow region in the case of the longer dunes.  

The data on the cobble bed presented by McLean and Nikora (2006) re-

late only to the flow region above the roughness crests where FI stress was 

observed to be extremely small. However, recent studies suggest that FI 
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stress might be non negligible (i.e., up to 30% of the bed shear stress) in 

open channel flows over gravel beds both above (Campbell et al. 2005) and 

below the roughness tops (Aberle 2006).  

As one can see, most of the information on FI stress behavior comes 

from empirical observations and theoretical arguments are lacking. To the 

author’s knowledge, the only study presenting a theoretical approach is that 

by Gimenez-Curto and Corniero Lera (1996). In this work, the authors point 

out that a necessary condition for FI stress to be non-zero is the presence of 

vorticity in the time-averaged flow. Furthermore, their theoretical considera-

tions lead to the conclusion that the contribution of FI stress to the total shear 

stress may increase with decreasing relative submergence of the flow, i.e., 

the ratio between flow depth and roughness height. This theoretical finding 

is somewhat substantiated by the experimental data of Manes et al. (2007). 

In this study, experiments were carried out in open channel flows over 1 

layer of spheres packed in a cubic pattern. Streamwise and vertical velocities 

were measured by means of Particle Image Velocimetry (PIV) in two central 

cross sections of the flume (Fig. 2), one over the tops of the spheres (top sec-

tion) and another over the points at which they touch (Valley section). This 

was done in order to capture adequately the spatial heterogeneity of the flow 

within the roughness layer. Two flow conditions were investigated with two 

different values of relative submergence, namely  D/Hs = 1.8  and 3.5, where 

D is the flow depth measured from the spheres tops to the free surface and 

Hs is the spheres height. For the lower submergence case, the relative magni-

tude of FI stress (i.e., 2

0 */f uw uτ τ = − , where τ0 is the shear stress meas-

ured at the spheres top) is almost twice as big as for the higher submergence 

case (Fig. 3a). However, this increase of FI stress is not accompanied by a 

significant relative increase of spatial variations of the flow (Fig. 3b and 3c), 

contrary to what is predicted by Gimenez-Curto and Corniero Lera (1996). 

Manes et al. (2007) relate this increase rather to the development of different 

flow patterns around the roughness elements which induce higher FI stress 

for lower D/Hs. It should be noted that the data on 2-D dunes presented by 

McLean and Nikora (2006) partly substantiate this argument. In fact, for the 

λ/Hd = 20  case FI stress increases significantly below the dunes crest (i.e., 

for  z/Hd ≤ 0.3)  by lowering  D/Hd  from  13.65 to 3.95.  Furthermore,  as  in 

Fig. 2.  Location of the measurement sections in Manes et al. (2007). 
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Fig. 3. Dependence of form-induced stress on relative submergence. Lines with cir-

cles stand for experiment with  D/Hs = 3.5, whereas lines with asterisks for the expe-

riments having  D/Hs = 1.8 (data from Manes et al. 2007); τ0 is the shear stress 

measured at the roughness tops and  * 0 /u τ ρ= ;  z/Hs = 1  at the sphere tops. 

Manes et al. (2007), this increase is not accompanied with an increase in 

spatial variations of the flow, i.e., 2

*u u< >   and  2

*w u< > . In contrast to 

this, for the steeper dunes, i.e.,  λ/Hd = 10, the relative magnitude of FI stress 

does not vary with flow conditions. This suggests that the dependence of FI 

stress on flow conditions should be verified by more experimental or numer-

ical tests since the available data and theoretical considerations lead to con-

tradictory results. Indeed, FI stress is generally difficult to estimate and noisy 

data might give a wrong perspective. Furthermore, it is not clear, from the 

physical point of view, why the relative submergence should be the non-

dimensional parameter most influencing the relative magnitude of FI stress.  

It is rather more intuitive to infer just that the relative magnitude of FI 

stress, i.e., 2

0 */f uw uτ τ = −  varies with flow conditions if these can signifi-

cantly influence the time-averaged flow patterns developing around the 

roughness elements. Due to the complicated nature of the flow within the 

roughness layer it is difficult to predict how this can happen and what are the 

nondimensional flow parameters controlling such process. To shed some 

light into this issue, we make use of the spatial quadrant analysis technique 

developed by Pokrajac et al. (2007), to analyze the data from Manes et al. 

(2007) and explore possible causes responsible for variations in the time-

averaged flow structures associated with changes in flow conditions.  
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We restrict our analysis to the measurements taken at the height were the 

maximum in the FI stress profile occurs for the two flow conditions, i.e., 

/ 0.87sz H ∼  and (Fig. 3). Quadrant analysis for */u u  and */w u  show that 

spatial perturbations pertaining to top and valley sections reside in two well 

separated groups (Fig. 4).  

Fig. 4. Quadrant analysis at  / 0.87sz H ≈  for the experiments of Manes et al. 

(2007). Symbols are like in Fig. 3. 

Valley points are all placed in quadrant 4 and they all contribute to a 

negative spatial correlation and therefore to a positive FI stress. In contrast, 

top points are spread in quadrant 2 and 3 which have, respectively, a nega-

tive and positive contribution to spatial correlation (i.e., a positive and nega-

tive contribution to FI stress). For the flow conditions with higher submer-

gence the contribution of quadrant 3 is larger than in the case with low 

submergence, and that weakens the overall magnitude of FI stress.  

The positioning of top points in the quadrant plot is associated to a wake-

type mean flow pattern occurring in the top section (Fig. 5). Within the wake 

region, the flow forms a stationary vortex for which, in the low submergence 

case, upward vertical velocities are larger than the downward components. 

In contrast, downward velocities are larger in the high submergence case. 

Therefore, the uneven spread of points into quadrant 2 and 3 for the top sec-

tions is due to development of an “asymmetric” vortex downstream the 

sphere tops. The different asymmetry influences the positive or negative 

contribution to FI stress and therefore its overall magnitude. In the case of a 

perfectly symmetric wake, the contribution to the total FI stress from top 

points would be zero. 

A definitive explanation to justify the development of different vortices 

for different flow conditions is difficult to provide here. However, we argue 
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that this could be the result of a shift in the separation point around the 

spheres. The following argument motivates this hypothesis. 

It has been shown by Poggi et al. (2004b) that the drag coefficient Cd of 

rods ion canopy flows, monotonically decreases with increasing local ele-

ment Reynolds number  /Re ud ν= , where u  is the local time averaged ve-

locity measured upstream from a rod of diameter d. This is in contrast to the 

classical behavior of an isolated cylinder for which Cd reaches a plateau for 

high Re (it is generally argued that such a phenomenon is caused by the shel-

tering of consecutive roughness elements, see Raupach and Thom 1981). We 

argue that a variation of Cd with Re may be related to a shift in the separation 

point around the singular roughness element. Let us assume that this argu-

ment may also apply to other roughness geometries. In the case of the 

spheres experiments, the increase in relative submergence is associated with 

an increase of the local Reynolds number at any height within the roughness 

layer (i.e., mean velocities below the sphere tops were higher for the high 

relative submergence case). Therefore, it is plausible to assume that a down-

stream shift in the separation point occurred between the low and the high 

submergence case. Figure 5 shows that, since the separation point is at the 

downstream half of the sphere, the downstream shift produces a downwards 

velocity which weakens the upward motion within the stationary vortex. 

We point out that a shift of the separation point may not be the only me-

chanism influencing the mean flow patterns among the roughness elements. 

Fig. 5. Time-averaged flow pattern in the top section for the sphere experiments of

Manes et al. (2007).  
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Therefore, it may not provide a general argument to explain the dependence 

of FI stress with flow conditions. Indeed, it is probably not appropriate to 

justify the variation of FI stress observed for the dune experiments of 

McLean and Nikora (2006). This is because a dependence of separation 

point with element Reynolds number is expected to be more significant for 

smooth roughness geometries, such as spheres, than for more irregular and 

sharp edged shapes, such as cubes or artificial dunes. This is substantiated by 

the data of Taylor (1988) who found that Reynolds number dependence of 

drag coefficients for various roughness geometries was stronger for smooth 

shaped roughness elements than for sharp edged shapes. Therefore, more de-

tailed experiments or numerical simulations are needed to reveal how the 

structure of the time-averaged flow can change by varying bulk flow condi-

tions. 

4. DISCUSSION 

The data presented in the previous section allow us to draw some conclu-

sions on the behavior of FI stress:  

 FI stress is often negligible above the roughness tops whereas it in-

creases significantly below this level.  

 Within the roughness layer of all the rough surfaces investigated, FI 

stress becomes significant but reaches at the very most the same magni-

tude as the Reynolds stress, being smaller most of the times.  

 FI stress is more significant when the roughness is more sparse. This is 

evident from the canopy flow experiments of Poggi et al. (2004a) and 

the dunes experiment of McLean and Nikora (2006).  

 FI stress scaled with the surface shear stress may depend on flow condi-

tions (Manes et al. 2007, McLean and Nikora 2006, and Fig. 3a).  

Among the conclusions listed above, the first and the second point seem 

to suggest that the FI stress is less important than Reynolds stress and that 

turbulence is generally the strongest driving force for vertical momentum 

transfer through rough wall boundary layers. However, one has to be careful 

since it is the gradient of the stress that enters the DA momentum equation 

(1), which governs the mean dynamics within the roughness layer. There-

fore, information on the roughness layer flow dynamics should be obtained 

from the analysis of the stress gradient terms rather than the stress compo-

nents. The same argument has been recently used by Wei et al. (2005) and 

Klevicki et al. (2007) who analyze the structure of smooth wall turbulent 

boundary layers by assessing the gradients of viscous and Reynolds stress. 

We now want to perform a similar analysis for the Reynolds and FI stress 

gradients. Estimating values of stress gradients requires very detailed veloci-

ty data which can only be provided by numerical simulations. In this review, 
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we take advantage of the DNS of Coceal et al. (2006) for flows over cubes 

(these data are also presented in Coceal et al. 2008 in this special issue). 

Figure 6a and 6b show the ratios between FI and Reynolds stress and the ra-

tio between their gradient. According to Pokrajac et al. (2008) care should 

be taken when assessing stress gradients at the roughness tops since at this 

level the stress might not be a continuous function of z. This implies that at 

this level τ(z) may not be differentiable and therefore its gradient may not be 

defined. In Figs. 6 and 7 we show the values of the stress gradients calcu-

lated at the roughness tops for completeness, however, we acknowledge that 

due to the aforementioned problem their values might just be a result of the 

discrete nature of the DNS data.  

Figure 6 shows that although the ratio between the stress magnitudes is 

always less than or equal to one, the ratio between the gradients of FI and 

Reynolds stress is much bigger for both roughness configurations. Indeed, 

for the aligned configuration it goes up to 20, maintaining large values for a 

significant part of the roughness height, i.e., for  0.52 < z/Hc < 0.72  and 

0.45 < z/Hc < 0.5 (the discontinuity of the gradient ratio for the aligned 

profile is caused by the fact that Reynolds stress becomes zero at  z/Hc = 0.5). 

For the staggered configuration the stress gradient ratio goes up to 5 and also 

keeps a value larger than 1 for a large part of the roughness height, i.e., 

0.05 < z/Hc < 0.35.  

Fig. 6: (a) Ratios of FI and Reynolds stresses; (b) Ratios between FI and Reynolds 

stress gradients. Circles and triangles relate to the staggered and aligned cube confi-

guration, respectively.  
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Clearly, the conclusions that one can draw from the standard stress and 

stress gradient analysis differ significantly. From the stress analysis one 

would say that FI and Reynolds stress are at the very most just comparable. 

Instead, from the stress gradient analysis one can definitely say that there are 

flow regions where FI fluxes represent the dominant mechanism. This means 

that, despite being smaller than the Reynolds stress, FI stress can have much 

steeper gradients and hence contributes more to the force exerted on the fluid 

at each elevation. Therefore, in order to gain insight into the dynamics of the 

roughness layer, this analysis shows that it might be misleading to evaluate 

the significance of FI stress just from its magnitude.  

In order to have a clear picture of the mean dynamics of the flow, we 

present the total force balance for both roughness configurations in Fig. 7. 

This includes the gradient of FI and Reynolds stress and also the total drag 

force per unit area. The data are presented normalized with the total pressure 

gradient (pressure gradient is analogous to gravity in eq. 1). Above the 

roughness tops, the force balance is between the Reynolds stress and pres-

sure gradient, in fact their ratio is equal to one. Below the roughness tops 

Fig. 7 further substantiates the arguments presented above. In particular that 

there are flow regions where the Reynolds stress gradients are almost zero 

and where therefore, it is conceivable to assume that the flow is maintained 

by a balance between the pressure gradient and the sum of drag and FI stress 

gradients.  

Fig. 7. Momentum balance for staggered and aligned cube configurations; τf stands 

for FI stress and τr for Reynolds stress. Data are normalized with the streamwise 

pressure gradient. 
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So far the effects of FI stress in numerical models have always been neg-

lected and only the Reynolds stresses were considered. The parameterization 

of the Reynolds stress is usually based on eddy viscosity theories which 

however do not work well within the roughness layer. In this flow region, 

they suffer the problem of non-local momentum exchange and the absence 

of a unique length scale influencing the turbulent motion. Eddy diffusivity 

approaches can be successfully applied only where turbulence is dominated 

by one length scale, e.g., in the log layer of turbulent boundary layers where 

the only length scale of turbulence is the distance from the wall. This implies 

that there is a large degree of tuning and uncertainty when matching turbu-

lence properties of the flow, eddy diffusivity and Reynolds stress within the 

roughness layer.  

We argue that, applying an eddy diffusivity technique for the paramete-

rization of FI stress (as suggested by Gimenez-Curto and Corniero Lera 

1996) is often impossible and where possible, not convenient. In fact, we 

have seen that FI momentum fluxes are often negative, reflecting an upward 

contribution to the momentum flux. However, the DA mean velocity gra-

dients are usually positive within the roughness layer, therefore one should 

include a rather non-intuitive negative FI eddy diffusivity to account for such 

an effect. Even in the case when counter gradient FI momentum fluxes are 

absent, dividing the effects of the two shear stress components would not be 

very beneficial. In fact, due to the pathology of eddy diffusivity techniques 

in the roughness layer, this would just add more uncertainty because it would 

imply including more tuning coefficients in the momentum equations which 

cannot be explicitly and easily linked with flow properties.  

We suggest that a separate parameterization of the two terms should be 

done only in case the perturbed time-averaged flow is dominated by a unique 

Fig. 8. DA velocity profiles and total fluid shear stress for staggered (dashed lines) 

and aligned (solid lines) cubes configuration. 
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length scale (imposed by the rough surface), which can be consistently 

linked with a “FI eddy viscosity” of the DA flow. Unless this happens it is 

definitely more desirable to consider the sum of the effects of the Reynolds 

and FI stresses in just one total shear stress term. In fact when considering 

the sum of the stresses at least one does not encounter the problem of coun-

ter gradient fluxes because the total fluid shear stress is always positive and 

hence consistent with a positive gradient of DA velocities (Fig. 8).  

From the above analysis, it is clear that the modelling of FI fluxes re-

mains an unsolved problem which probably does not have an easy solution. 

Predicting FI stress by using standard parameterization implies having a 

theoretical tool able to describe flows among obstacles which is extremely 

difficult to do. Only detailed turbulence models, such as Large Eddy Simula-

tion (LES) and DNS are capable of dealing with such tasks. However, the 

computational cost to compute environmental flows with such models still 

far exceeds the capability of available computers and a more reasonable al-

ternative has to be found.  

5. CONCLUSIONS 

DA momentum equations have been recently applied to interpret experimen-

tal and numerical data in order to investigate momentum transport mechan-

isms occurring within the roughness layer of rough wall turbulent boundary 

layers. DA momentum equations are obtained by averaging the standard 

Navier-Stokes equations first in time and then in space. Spatial averaging 

gives rise to a stress term produced by the spatial covariance of the time-

averaged velocities, i.e., the FI stress term. In the literature, the significance 

of FI stress has been investigated for various rough wall geometries and this 

paper reviews the results obtained from recent experiments and numerical 

simulations. The main outcomes from this review can be summarized in 

three points:  

 FI stress is often negligible above the roughness elements whereas it 

can increase significantly below this level. In all of the rough surfaces inves-

tigated, FI stress reached at the very most the same magnitude as the Rey-

nolds stress being smaller most of the times. This analysis might lead to the 

conclusion that turbulence is generally the strongest driving force for mo-

mentum transport in rough wall turbulent boundary layers. However, we 

point out that, it is the gradient of stress which enters the DA equations 

which governs the mean flow dynamics in a turbulent boundary layer. 

Therefore, information on the dominant momentum transport mechanisms 

should be obtained by analyzing stress gradients rather than stress compo-

nents. By selecting a special data set obtained from DNS of turbulent boun-

dary layers over cubes, we show how in flow regions below the roughness 

tops, the vertical gradient of FI stress can be much larger than the gradient of 
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Reynolds stress (up to 20 times larger). This clearly gives a different pers-

pective on the role of FI stress and shows how an analysis based on stress 

components could be misleading for assessing the dominant momentum 

transfer mechanisms. This also suggests that further experimental studies on 

FI stress should involve flow measurements with a very high spatial resolu-

tion in order to be able to properly estimate stress gradients. In this context 

the use of PIV may be helpfull.  

 The magnitude of FI stress clearly depends on roughness arrange-

ment. Recent experiments on open channel flows over rods and artificial 

dunes indicates that the magnitude of FI stress increases significantly with 

increasing roughness spacing.  

 The relative magnitude of FI stress might depend on flow conditions. 

Once again we stress that this hypothesis should be confirmed by more expe-

riments or numerical simulations since available data lead to contradictory 

results. Indeed, dependence on flow conditions does not occur consistently 

for all roughness geometries investigated. Despite these inconsistencies, we 

attempt to identify a potential cause which can justify such dependence. We 

suggest that a change in the position of the separation point around rough-

ness elements could be responsible for a significant variation of the time-

averaged flow pattern, which in turn causes the change in the relative magni-

tude of FI stress.  
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