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Abstract: We show that an interaction between a harmonic oscillator and a two-level test mass
(TLTM) mediated by a local operations and classical communication (LOCC) channel produces a
signature that in (D. Carney et al., PRX Quantum 2, 030330 (2021)) is claimed to be exclusively
reserved for channels that can transmit quantum information. We provide an explicit example based
on a measurement-and-feedback channel, explain where the proof of Carney et al. fails, discuss to
what degree setups of this type can test the nature of the gravitational interaction and remark on
some fundamental implications that an LOCC model of gravity may have in black hole physics.

Keywords: theories of gravitation; black holes; Kraus representation

1. Introduction

The reconciliation of quantum mechanics and gravity is a long-standing open problem
in physics, but progress towards a satisfying solution has long been hindered by the
inaccessibility of the necessary experimental conditions. The ambition to perform tests that
target the question of whether gravity in fact needs to be quantized [1–4] goes back at least
as far as 1957 but has seen a considerable gain in momentum six decades later with the
recent remarkable progress in the control of the quantum degrees of freedom of massive
objects [5–8].

Proposed tests aim at detecting modifications to the unitary evolution predicted by
quantum mechanics [9–12] or ask whether gravity can entangle two parties as this would
falsify the assumption of a classical force carrier and thereby conclude the non-classical
nature of the gravitational interaction [4,13]. Proposals that aim to realize such tests
include [4,14–19] which add to other tests based on superpositions of source masses [20–24].
Nevertheless, with the current state of the art these proposals are still extremely challenging
to realize in practice [25,26].

In their recent work [27], Carney, Müller and Taylor propose an interesting interfero-
metric scheme for testing the ability of the gravitational interaction to act as a quantum
channel under what appear to be significantly reduced experimental constraints. Notably,
their proposal makes use of a light test mass in a double-well potential that is gravitationally
interacting with a very heavy source mass which, however, does not need to be prepared
in a pure quantum state, thus enabling the use of even larger and more massive particles.
The central claim of [27] is that under very reasonable assumptions a model of gravity, in
which the interaction is mediated by a classical channel, can not produce the collapse and
revival dynamics in the interferometric contrast of the test mass generated by a quantum
gravitational interaction. Even more remarkably, the signature of the quantum interaction
is enhanced by a finite temperature of the heavy source mass, facilitating the discrimination
of the two cases.

In this work, we explicitly construct a local operations and classical communications
(LOCC) channel between a harmonic oscillator and a particle in a double-well potential,
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that is fully compatible with the conditions of the proof in [27] and reproduces the collapse-
and-revival dynamics in the interferometric signal. This allows us to identify the error
in the proof and leads us to the conclusion that the protocol presented in [27] does not
constitute a sufficient test to determine the nature of the gravitational interaction. We then
proceed to discuss certain tests of LOCC models and analyse the consequences of such
LOCC models for the physics of black holes.

2. Revivals Due to a Coherent Interaction

The system studied in [27] consists of a large particle (A) trapped in a harmonic
potential and an atom (B) trapped in a double-well potential as shown in Figure 1. The
double-well potential localizes the atom to two positions allowing an effective description
of the spatial degree of freedom as a two-level system that we call a two-level test mass
(TLTM). We, therefore, set the position operator of the atom to the Pauli z matrix xb = lσz
with the eigenstates |L〉 and |R〉, which correspond to the atom occupying the left and right
well, respectively and the factor l denotes the separation distance between the two wells.
The two systems interact gravitationally via a linearized Newtonian potential leading to
the following Hamiltonian

H = h̄ωa†a + h̄g(a + a†)σz, (1)

with a† and a denoting the creation and annihilation operators of the harmonic oscillator.
For brevity, the energy splitting term for the TLTM has been omitted as one can always
transform into a rotating frame without affecting the interaction term. Up to a global phase,
the evolution operator for Hamiltonian (1) can be written as [27]

U(t) = D†(σzλ)e−iωa†atD(σzλ), (2)

with λ = g/ω and D(σzλ) = exp
[
(λa† − λ∗a)σz

]
denoting the standard displacement

operator.

LOCC Channel

Quantum Channel

Ufb

Ufb

MeasureTransmitApply

Measure Transmit Apply

Gravitational interaction

t

t
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L R
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Figure 1. A particle trapped in a harmonic potential (left) and initialized in a thermal state interacts
gravitationally with a lighter particle in a double-well potential (right). If the gravitational interaction
is inherently classical it must admit an effective description as a local operations and classical commu-
nications (LOCC) channel (upper half) between the two quantum systems. This in turn necessitates
the conversion of quantum information into classical information via a measurement leading to
back-action and therefore heating of the quantum systems (lightning bolt). This decoherence can be
detected in an interferometric measurement on the lighter mass (see main text for details). Contrary to
this case, if the gravitational interaction can be modeled as a quantum channel no excess decoherence
is expected in the interferometric signal (lower part).
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The aim of the protocol proposed in [27] is to create a witness for the entangling
character of the gravitational interaction. For that matter they propose to initialize the
harmonic oscillator in its ground state |0〉A and the TLTM in a superposition of the σz
eigenstates |L〉B and |R〉B. This leads to the following evolution

|ψ(t)〉 = U(t)
(
|0〉A ⊗

1√
2
(|L〉B + |R〉B)

)
=

1√
2
(|δ〉A |L〉B + |−δ〉A |R〉B), (3)

where |±δ〉 denote coherent states with amplitudes δ = ± λ
(
e−iωt − 1

)
. The interaction

term leads to opposite displacements of the oscillator depending on the TLTM state, thus
building-up entanglement. In a final step, a π/2-pulse is applied to the TLTM mapping the
signal to a population difference in the z basis and leading to the final state

|ψ f 〉 =
1
2
(|δ〉A + |−δ〉A)⊗ |L〉B +

1
2
(|δ〉A − |−δ〉A)⊗ |R〉B . (4)

The population of the |L〉B TLTM state is subsequently measured leading to the following
signal

PB(L) =
1
2

(
1 + e−8λ2 sin2(ωt/2)

)
. (5)

Furthermore, an analogous calculation with the oscillator in a thermal initial state, with
mean occupation number n̄, yields

P̃B(L) =
1
2

(
1 + e−8λ2(n̄+1) sin2(ωt/2)

)
. (6)

We observe that this function is oscillating with the frequency of the oscillator and is unity
for multiples of t = 2π/ω. At these times the oscillator returns to its initial state and
the entanglement between the two systems vanishes which can be seen in the form of
Equation (6) given above. This property is not only preserved for thermal initial states of
the oscillator but the contrast in the collapse and revival is even enhanced, significantly
relaxing the experimental conditions required to observe it.

The central result of [27] is that the oscillatory signal produced by the coherent coupling
term in Equation (1) is a signature of a quantum interaction that can not be reproduced by
a classical one, i.e., by a separable quantum channel. In the next section, we give an explicit
counterexample to this claim.

3. LOCC Model

In this section, we present a model where the position of the harmonic oscillator
(A) is continuously measured via a homodyne measurement and the results are applied
to the TLTM (B) via feedback. The phase of the TLTM is simultaneously measured via
another homodyne measurement and fed back to the oscillator creating an interaction
that can transmit classical information between both systems but is incapable of creating
entanglement.

The conditional state of a harmonic oscillator subject to a homodyne measurement is
governed by the following stochastic master equation (SME) [28]

dρA,W = − i
h̄
[H0, ρA,W ]dt + α2D[x]ρA,Wdt + αdWAH[x]ρA,W , (7)

with H0 denoting the free evolution Hamiltonian, D[x] the standard Lindbald dissipator
andH[x]

H[x]ρ = xρ + ρx† − 〈x + x†〉 ρ. (8)
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dWA denotes a Gaussian noise term with zero mean E[dWA] = 0 and variance E[dW2
A] =

dt. The position of the oscillator is encoded in the homodyne current produced by the
measurement

JA(t) = 2α〈x〉+ dWA(t)/dt. (9)

Before we discuss the feedback we derive the SME for a TLTM subjected to a ho-
modyne measurement in greater detail. The Kraus operators describing the continuous
measurement of the TLTM in the z-basis are proportional to the |1〉〈1| projector and given by

K1 =
β

2
(σz + 1)

√
dt, (10)

K0 = 1− β2

4
(σz + 1)dt. (11)

However, we study a model where the interaction induces a phase on the TLTM without
changing the population in the z-basis, hence we choose to instead measure that phase by
projecting on the |±〉 eigenstates of the σx operator. The corresponding Kraus operators are
given by the linear combinations of operators for the z-basis measurement [29]

K± =
1√
2

(
1± β(σz + 1)

√
dt− β2

4
(σz + 1)dt

)
. (12)

The corresponding POVM is

E± = K†
±K± =

1
2

(
1± β(σz + 1)

√
dt
)

. (13)

This leads to a SME that depends on the measurement outcomes

dρ± =
(
±β
√

dt− β2 〈σz + 1〉dt
)
H
[

β

2
(σz + 1)

]
ρ +D

[
β

2
(σz + 1)

]
ρdt. (14)

Note that the dissipator is equivalent to the dephasing term

D[σz]ρ =
β2

4
(σzρσz − ρ). (15)

The dependence on the measurement result only enters the first term dM(t) = ±
√

dt in
Equation (14). It is easy to show that this term obeys Gaussian statistics

E[dM(t)] = β 〈σz + 1〉dt, E[dM(t)2] = dt. (16)

Furthermore, we note that the mean corresponds to the second term in Equation (14) which
enables us to rewrite Equation (14) in terms of a zero-mean Gaussian noise term that we
label with dWB(t)

dρB,W =
β2

4
D[σz]ρB,Wdt +

β

2
dWB(t)H[σz]ρB,W . (17)

Note that we have omitted the Hamiltonian term for the TLTM as it is irrelevant for our
analysis. Finally, we identify the homodyne current as

JB(t) = β 〈σz + 1〉+ dWB(t)/dt. (18)

Having obtained a classical stream of information for each system in the form of two homo-
dyne currents we now set out to couple them via feedback. It is important to note that the
measurement results encoded in JA(t) and JB(t) are not experimentally accessible as they
model an internal process of the gravitational interaction. To determine the experimentally
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observable quantities we have to obtain the unconditional state of the system, i.e., we have
to average over the noise terms dWA,B(t).

We defer the details of this calculation to Appendix A. Here, we note that our LOCC
channel consists of two parts, each containing a measurement on one system and feedback
on the other. Each part yields the following contribution to the master equation

[ρ̇]i→j = −i
1
2
[M†F + MF, ρ] +D[M− iF]ρ. (19)

where the measurement operator M acts on system i and the feedback operator F acts on
system j. Combining these two parts yields a master equation in Lindblad form as the
terms proportional to FρM cancel

ρ̇ = − i
h̄
[H0, ρ]− iαβ[x, ρ]− 2iαβ[xσz, ρ] + 2α2D[x]ρ +

β2

2
D[σz]ρ. (20)

We recognize the linear coupling term as it also appears in the expansion of the gravitational
potential [19], showing that this model reproduces the phenomenology of the gravitational
interaction. Furthermore, we note that it is this term that leads to the appearance of
revivals in the protocol of [27] which we demonstrate with a numerical simulation in
Figure 2. The difference of this model to one with a purely quantum interaction is the
appearance of decoherence terms in very much the same way as in the LOCC coupling of
two harmonic oscillators [10]. This dynamical equation by construction corresponds to a
classical interaction channel that can not generate entanglement. Yet, it contains a term that,
according to the proof of [27], is incompatible with an LOCC channel. In the next section,
we explore the origin of this discrepancy.

0 π/2 π 3π/2 2π
Time [1/ω]

0.6

0.7

0.8

0.9

1.0

PL

n̄
10
35

Figure 2. Revivals in the population of the |L〉 state of the TLTM for different initial thermal states
of the oscillator for the model in Equation (20) and the protocol described in Section 2. For the
simulations presented here, we chose 2αβ = 2α2 = β2/2 = 0.05 ω.

4. Product Form Kraus Representation for the LOCC Model

Given a master equation in diagonal Lindblad form

ρ̇ = − i
h̄
[H, ρ] +

N

∑
i=1

(
EiρE†

i − {E†
i Ei, ρ}

)
, (21)

one can immediately determine the Kraus representation to be [28]

L0 = 1− i
h̄

Hdt− 1
2

N

∑
i=1

E†
i Eidt, Li = Ei

√
dt. (22)

This is the same form as chosen in [27]. For Equation (20) we have E1 = x, E2 = σz and
a Hamiltonian with an interaction term H = H0 + 2αβxσz. It is this term that makes this
channel seemingly non-separable by the arguments presented in [27]. However, the Kraus
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operators are not unique but can be subjected to a unitary transformation without changing
the underlying operation. Therefore, a statement about the separability of a channel can
not be made based on a specific Kraus decomposition, rather it has to be shown that no
separable decomposition exists.

To find a separable Kraus representation for the LOCC model presented in the previous
section we start with Equation (19). While it models only a uni-directional interaction the
inverse channel is completely symmetric, hence the form of its Kraus operators will be
identical but with measurement and feedback operators interchanged. These two sets of
operators can then be readily combined to yield a separable representation for Equation (20).
Note that Equation (19) does not contain the H0 term present in Equation (20) because it is
not relevant for our analysis and can be easily added to the final form of the Kraus operators
in the same way as the Hamiltonian term in Equation (22). By the above procedure, we
read off the Kraus operators for Equation (19)

L0 = 1− iMFdt− 1
2
(M2 + F2)dt,

L1 = (M− iF)
√

dt.
(23)

Here we assumed M = M†. L1 is not of product form as it is a sum of two product form
operators that are both proportional to

√
dt, furthermore the term iMFdt also prevents us

from writing L0 in product form. We now apply the unitary transformation(
L̃0
L̃1

)
=

1√
2

(
1 −1
1 1

)(
L0
L1

)
, (24)

obtaining the following Kraus operators

L̃0 =
1√
2

(
1− (M− iF)

√
dt− iMFdt− 1

2
(M2 + F2)dt

)
,

L̃1 =
1√
2

(
1+ (M− iF)

√
dt− iMFdt− 1

2
(M2 + F2)dt

)
.

(25)

These can now be written in product form

L̃0 =
1√
2

(
1−M

√
dt− 1

2
M2dt

)
⊗
(
1+ iF

√
dt− 1

2
F2dt

)
, (26)

L̃1 =
1√
2

(
1+ M

√
dt− 1

2
M2dt

)
⊗
(
1− iF

√
dt− 1

2
F2dt

)
. (27)

To obtain the action of both parts of the LOCC channel we need a second set of Kraus
operators {L̃′0, L̃′1} with operators M and F interchanged. Both sets must be combined in
the following way

Kij = L̃′i L̃j, (28)

which produces a total of four Kraus operators that by construction remain separable.
Comparing the form of the Kraus operators obtained here and those used in the proof

of [27] we realize a crucial difference: the presence of terms proportional to
√

dt in all Kraus
operators. It is the restriction to linear terms in dt for the L0 operator that leads Carney et
al. to the erroneous conclusion that a separable channel can not produce an interaction
term as it appears in Equation (20). We, therefore, conclude that the absence of revivals can
not serve as a conclusive test of the quantum nature of gravity. However, the LOCC model
does introduce additional decoherence which can in principle be experimentally measured.
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5. Experimental Tests of Gravitational Decoherence

The Newtonian interaction potential merely constrains the interaction term in
Equation (20) to [19]

g = 2αβ =
Gmamb

h̄d3 lx0, (29)

where we have denoted the separation distance of the two wells that make up the TLTM
with l and x0 =

√
h̄/(2ωma) denoting the size of the ground state wavefunction for the

harmonic oscillator. By introducing x0 here, we assume that the x operator that appears in
Equation (20) has the dimensionless form x = a + a†. This leaves substantial freedom in
the distribution of the additional noise induced by the LOCC channel. It was previously
noted in [10] that the total amount of noise is minimized for a symmetric splitting

γs = 2α2 =
β2

2
=

Gmamb
2h̄d3 lx0. (30)

Using this choice, we estimate the heating rate of an atom with the parameters stated in [27],
i.e., ma = 1 mg, mb = 133 amu, l ≈ d = 1 mm, to be γs ≈ 2π× 10−15 Hz. In an experiment
with two levitated silica spheres (density 2.65 g/cm3) with radii R = 1 µm and r = 100 nm
at a distance d = 2R, with the smaller particle in a double-well potential with separation
l = 1 µm and the larger particle in a harmonic potential with ω = 2π × 102 Hz, we would
expect a heating rate of γs ≈ 2π × 10−8 Hz. In both cases the heating rates are many
orders of magnitude lower than what is reported in current experiments [7,30], making
their detection extremely challenging. It was argued in [31] that the case of symmetric
splitting Equation (30) can be ruled out by the experiments of [32], a case that has however
faced some debate [33,34].

Another appealing choice is one for which the decoherence rate of a particle will only
depend on its own mass and a distance, d, to other gravitating masses, that is

γa = 2α2 =
GM2

2h̄d3 x2
0. (31)

Such a choice means that the noise is virtually impossible to detect with light particles
such as atoms. However, it increases the noise on the larger mass, s.t. for the parameters
in [27] we obtain γa ≈ 2π× 10−6 Hz. The detection of this heating rate can be facilitated by
entangling the heavy mass with another sensor system, as it is proposed with the boosted
protocol in [27], as well as in [19], such a heating rate could potentially be more easily
detected. We note that our proposal [19] would not only allow to measure this heating rate
via the strongly coupled TLTM, but also provide a second test by allowing direct verification
of entanglement generation. Finally, for this choice of noise coupling the heating rate on a
superposition of 1 µm of a silica sphere with a radius of 100 nm would also correspond to
γa ≈ 2π × 10−6 Hz.

The choice in Equation (31) still depends on the distance to a particular second mass.
A reasonable demand is that the heating rate should only depend on local quantities. A
suitable choice would be to set d to the particle radius, as this choice ensures that no
entanglement is generated even at the closest approach of another body. For this choice
the heating rate becomes proportional to the mass density. This of course breaks the
relationship between the decoherence rates α2, β2 and the coupling term αβ. However,
this relationship is not as strict as is suggested in Equation (20). Arguably the result of the
back-action inducing measurement can be used to set a classical potential strength which
then falls off via the typical inverse-square law, i.e., the measurement result is broadcast to
all other masses. For the analysis of this case we consider a neutron, trapped in a harmonic
potential with frequency ω = 2π× 220 Hz, as in the experiment of [35]. Using its Compton
wavelength for the value of d in Equation (31) we obtain a value γn = 2π× 2.9 kHz. In [36]
a thorough comparison between the experimental data of [35] and a model with the same
heating term as the one considered here was performed. The conclusion therein is that
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heating rates larger than γn ≈ 1 Hz are not compatible with the experimental data in [35].
Therefore our estimate is not compatible with the experimental data; however, we have
implicitly assumed that the form of the Newtonian potential is valid down to femtometer
scale, a regime which is so far experimentally unexplored.

The work in [36] further shows that the detection of an excess heating rate on only
one of the two systems is not sufficient to rule out a quantum character of the gravitational
interaction, because such a heating rate also appears if gravity is modeled as an entropic
force [37].

6. A Remark on Classical Gravity and Black Hole Radiation

In this section, we would like to explore further the choice of a heating rate that is
only dependent on the properties of the object itself. To that end we consider the most
extreme case possible, namely that of a Schwarzschild black hole. With the extreme choice
d = rS = 2GM/c2, i.e., the Schwarzschild radius, the heating rate of the black hole induced
by the LOCC channel is given by

d
dt
〈 p2

2M
〉 = GM2h̄

Mr3
S

=
h̄c6

8M2G2 . (32)

In order to achieve an equilibrium within a theory of classical gravity the black hole
will need to lose this amount of energy via black body radiation as seen by an external
observer. Remarkably, the radiative power predicted by Equation (32) is in fact propor-
tional to the power of the Hawking radiation expected from such a black hole under
the assumption of pure photon emission from the surface at the Schwarzschild radius,
P = h̄c6/(15360πM2G2). Naturally, we do not expect a perfect match, as Equation (32) does
not account for the fact that the assumption of Newtonian gravity is certainly inaccurate
close to the black hole horizon. The appearance of a certain multiple of the Schwarzschild
radius is therefore expected.

Note that the consequences of the predicted radiation appear to be very different
under Hawking’s mechanism and under the LOCC gravity model. In the former, the
emitted radiation leads to the eventual evaporation of the black hole bringing with it the
hotly debated information paradox. In the latter, the black hole would be eternal as the
emitted radiation would merely balance the heating generated through the required noise
in an LOCC model of gravity and would thus violate energy conservation. Neither seems
very palatable to physicists. In any case, it is intriguing that the LOCC-mediated gravity
leads black holes to emit thermal radiation with similar properties, integrated power and
thermality, to that predicted of Hawking radiation.

7. Conclusions

It should be noted that independent of our work the proposal of Carney, Müller and
Taylor [27] has, to the best of our knowledge, been criticised in two recent independent
works [38,39] that highlight that the signature claimed to be unique to an entangling channel
can be reproduced by semi-classical models. However, unlike our work, refs. [38,39] deviate
significantly from the assumptions of theorem 1 in [27] and are thus not conclusive. Ref. [38]
treats the trajectory of the massive particle classically. This omits any effect of measurement
back-action involved in mapping a quantum mechanical observable to a classical one as is
required in the attempt of realizing a gravitational interaction as a classically mediated force.
The resulting additional noise could potentially destroy the revival dynamics, therefore
ref. [38] does not invalidate theorem 1 of [27]. Ref. [39] provides an example which, as the
authors stress, violates the assumption of time-translation invariance that enters the proof
of theorem 1 in [27] in an essential manner. Hence, neither of these two works conclusively
falsifies the claims of [27].

In contrast, we have demonstrated that while fulfilling all assumptions of the proof
in [27] an LOCC model can reproduce revivals in the interferometric signal contradicting
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theorem 1 of [27]. Furthermore, we discussed the heating rate expected from such an LOCC
model and highlighted its connection to the Hawking radiation.
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Appendix A. Derivation of the Feedback Equation

In this appendix we derive Equation (19) of the main text. The total SME for the
combined state ρ of the harmonic oscillator and TLTM under their respective homodyne
measurements evolves according to (the H0 term acting on the oscillator is omitted)

dρ(t) =α2D[x]ρ(t)dt + αdWAH[x]ρ(t) +
β2

4
D[σz]ρ(t)dt +

β

2
dWB(t)H[σz]ρ(t). (A1)

We assume that the feedback is performed via a unitary operation of the form

[ρ̇A(t)] f b = −i JB(t)[FA, ρA(t)], (A2)

[ρ̇B(t)] f b = −i JA(t)[FB, ρB(t)]. (A3)

where FA = αx and FB = βσz/2 and the homodyne currents are given by

JA(t) = 2α〈x〉+ dWA(t)/dt, (A4)

JB(t) = β 〈σz + 1〉+ dWB(t)/dt. (A5)

It is shown in [28] that the feedback superoperator takes the following form

F (t)ρ(t) = exp(−i JA(t)[FB, ρ(t)]dt− i JB(t)[FA, ρ(t)]dt), (A6)

and enters the SME in a multiplicative way

dρ(t) =F (t)(α2D[x]ρ(t)dt + αdWAH[x]ρ(t)

+
β2

4
D[σz]ρ(t)dt +

β

2
dWB(t)H[σz]ρ(t)).

(A7)

As only terms up to linear order in dt are relevant we can expand F (t) while keeping in
mind the properties of the Gaussian noise terms. Furthermore, as already noted in the
main text, we are interested in the unconditional evolution of ρ(t), i.e., we need to perform
the average over dWA,B(t). This means that terms linear in dWA,B(t) or of mixed form
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dWA(t)dWB(t), will average to zero and can therefore already be neglected. Therefore,
we obtain

F (t)ρ(t) = 1− iαβ 〈x〉 [x, ρ(t)]dt− i
β

2
[σz, ρ(t)]dWA(t)

− β2

8
[σz, [σz, ρ(t)]]dt− iαβ 〈σz〉 [x, ρ(t)]dt

− iαβ[x, ρ(t)]dt− iαβ[x, ρ(t)]dWB(t)

− α2

2
[x, [x, ρ(t)]]dt,

(A8)

where we have used E[dWA,B(t)2] = dt which led to the double commutator terms
that translate into the dissipator terms in the final equation. Inserting this form into
Equation (A7) and averaging over the noise terms produces Equation (20) in the main text.
That equation is obtained by passing via the intermediate form

ρ̇(t) = iαβ[x, ρ(t)]− i
αβ

2
[x, σzρ(t) + ρ(t)σz] + α2D[x]ρ(t)

+
β2

4
D[σz]ρ(t)− i

αβ

2
[σz, xρ(t) + ρ(t)x] + α2D[x]ρ(t)

+
β2

4
D[σz]ρ(t),

(A9)

which itself consists of two parts each of which contributes a one directional channel where
a measurement is performed on one system and the feedback operations is applied to the
other. Each of these sub-parts can be further rearranged to yield the diagonal Lindblad
form in Equation (19).
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