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ABSTRACT. McTigue and others (i 985) identified a 

possible problem in the type of constitutive equation usually 

used for modeling the creep behaviour of polycrystalline ice. 
They pointed out that Glen's flow law necessarily excludes 

the consideration of normal stress effects, which are of 
great significance in other disciplines that consider non

Newtonian fluids. Using the second-order fluid (with 

material parameters evaluated from laboratory data) as a 
tentative model for ice, they reached the conclusion that 

normal stress effects may be discernible in natural glacier 

flow. But, as noted by McTigue and others, the second
order fluid "fails to represent the non-linear rate 

dependence of ice in shear"; therefore it is in fact not a 
suitable constitutive model for glacier ice in shearing flow. 

In this note, parallel to what McTigue and others did for 
the second-order fluid, we present a similar analysis for (I) 

the modified second-order fluid and (II) the power-law 

fluid of grade 2, both of which are constitutive models 

recently proposed by Man as a tentative generalization of 

Glen's flow law. Both models (I) and (11) can represent 

normal stress effects, and both agree with Glen's flow law 
in the prediction of the depth profile of velocity in the 

steady laminar flow of glaciers. For ease of comparison, the 

same creep data of McTigue and others are used in 

quantifying the material parameters in these two models. 

Both models (I) and (11) predict far less pronounced normal 

stress effects in glaciers than those estimated by McTigue 

and others (whose data analysis in fact suffered from 

inconsistencies and over-parameterization). 

INTRODUCTION 

McTigue and others (i 985) studied the possibility of 

normal stress effects in the creep of polycrystalline ice. 

Normal stress effects are phenomena that follow from non
zero and unequal normal stress differences in shearing flow; 

they are among the first manifestations of non-linearity in 
many fluids. McTigue and others criticized Glen's flow law, 

because it necessarily excludes consideration of normal stress 

effects. They adopted as a tentative model for ice the 
second-order fluid (i.e. one of the simplest models that can 

represent normal stress effects) and estimated the three 

material parameters in the model from data of four triaxial 
creep tests. (Their creep tests were performed at the same 

temperature and the same deviatoric stress, but at different 

confining pressures. Here we follow common usage and call 

those creep tests "triaxial". McTigue and others used the 
adjective "biaxial".) McTigue and others reported that the 

resulting model gave an excellent representation of their 

data for both primary and secondary creep. Using the same 
model, they reached the conclusion that normal stress effects 

could influence the development of crevasses and could lead 

to measurable depression of the surface of glaciers on 

sufficiently steep slopes. 
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As noted by McTigue and others, the second-order 

fluid is in no way a replacement for, nor a generalization 
of, Glen's (1952, 1955) flow law. Indeed, the second-order 

fluid "fails to represent the non-linear rate dependence of 

ice in shear"; as such, it is in fact not a suitable 

constitutive model for glacier ice in shearing flow. Take, 
for instance, Nye's first model of a glacier as an infinite 

slab of ice of uniform thickness flowing down a rough 

inclined plane (Nye, 1952, 1957). Consider steady laminar 
flow. For a slab of second-order fluid, the velocity field 

will be identical to that of an incompressible linearly 

viscous fluid. Such an implication is certainly undesirable. 
Since McTigue and others used the second-order fluid to 

model ice when they discussed the possible significance of 

normal stress effects in the flow of glaciers, the conclusion 

they reached, namely that normal stress effects may be dis

cernible in natural glacier flow, is questionable. 

Glen's flow law, as extended to cover multi-axial states 

of stress by Nye (1953, 1957), in effect models poly

crystalline ice as an incompressible power-law fluid (cf. 

Bird and others, 1977, p. 208). It is the most widely used 
empirical flow law for polycrystalline ice under stress. While 

its successes are well documented (Hooke, 1981), it has its 

shortcomings, namely: it can only describe secondary creep, 

and it does not predict any normal stress effect in shearing 

flow of ice (cL McTigue and others (1985) for a more 

detailed criticism). 

Motivated by a preliminary version of the paper of 

McTigue and others, Man and others (i 985) initiated a 

research program in 1984, the purpose of which has been 

to seek a simple modification of Glen's flow law that 
obviates the aforementioned shortcomings. Based on results 

of pressuremeter creep tests performed by Kjartanson and 

Shields at the University of Manitoba (Kjartanson, unpub
lished) and with the help of Sun in numerical work, Man 

has proposed two tentative modifications of Glen's flow law. 

The purpose of the present note is to re-examine the issues 

discussed by McTigue and others (1985) when the second
order fluid in their paper is replaced by the two new 

tentative models (I) and (II). For ease of comparison, 

material parameters in models (I) and (11) will be estimated 
by fitting data of the four triaxial creep tests of McTigue 

and others. 

The specific choice of tentative models (I) and (II) was 

mainly guided by empmClsm and the requirement of 
simplicity. We want to seek a simple model which will 

combine the merits of the partially successful power-law 

and second-order fluid models. Compared with the second

order fluid, which follows from the rational approximation 

scheme of Coleman and Noli (1960), some readers will find 
models (I) and (II) much less appealing to their intellect. All 

mathematical theorems, however, are logical deductions from 

specific assumptions. The assumptions upon which the 

approximation scheme of Coleman and Noll is based need 

not apply to the creep of polycrystalline ice. And 
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apparently they do not, as we can gather from what is 

known about the creep behavior of ice. In the history of 

physics, it is more common than otherwise that empirical 

laws were discovered long before any rationale could be 

found to justify their existence. 

In this note, by Glen's flow law we shall mean either 

the formulation in terms of "octahedral strain-rate" and 

octahedral shear stress (see Equation (5) below) or the 

generalization due to Nye (1953, 1957), i.e. the power-law 

fluid model, which is sometimes known as "the generalized 

flow law" in the literature (e.g. Paterson, 1981, p. 30). It 

should be clear from the context which of the two versions 

we really mean when we refer to Glen's flow law below. 

TWO MODIFICA nONS OF NYE'S GENERALIZA nON OF 

GLEN'S FLOW LAW 

In what follows we shall, with few exceptions, adopt 

the notation of McTigue and others (1985). Tensors will be 

denoted by Cartesian indicial notation. To conserve space, 

we shall not reproduce definitions of terms such as normal 

stress differences and Rivlin-Ericksen tensors, which are 

given in the paper of McTigue and others and in texts of 

non-Newtonian fluid mechanics (e.g . Schowalter, 1978). 

Man has proposed the following two constitutive 

equations as tentative modifications of "the generalized flow 
law": 

(I) 

(11) 

here Tij is the Cauchy stress tensor; p is the indetermin

ate pressure due to incompressibility; Ai)' and AIj) are the 

first and the second Rivlin-Ericksen tensor, respectively; 

AU) + AW + AW ;: 0 because of incompressibility; 

n ;: lA (1) A (1). jJ. C(, C(, and m are material parameters, 
1" jk kj' , 1 " 

which are constants for polycrystalline ice of given 

temperature and given structural features such as texture 

and fabric; the parameter m is related to the exponent 11 in 
Glen's flow law by n = I / (m + I) (thence 11 = 3 

corresponds to m = -2/ 3). When a
1 

= C(2 = 0, both models 

(I) and (H) reduce to the power-law fluid, i.e . Glen's flow 

law. When m = 0, both models (I) and (Il) become the 

second-order fluid . Both models (I) and (11) belong to a 

class of fluids introduced by Rivlin and Ericksen (1955); 

they are special instances of (incompressible) Rivlin-Ericksen 

fluids of complexity 2 and are formally included in a 

class of fluids studied by Dunn (1982). They are also 

special instances of a class of fluids proposed by Morland 

and Spring (1981) for modeling the deformation of ice. 

Both models satisfy the principle of material 

frame-indifference (Truesdell and Noli, 1965, section 19). 

Both models are meant for the description of primary and 

secondary creep, but not tertiary creep. 

The specific choice of models (I) and (11) is mainly 

guided by empiricism and the requirement of simplicity. 

Model (Il), however, can be viewed as the second in a 

hierarchy of more and more complex models, the first or 

simplest of which is the usual power-law fluid. We shall 

call it the power-law fluid of grade 2. In general, by the 

power-law fluid of grade k we mean the constitutive 

equation that results when the terms between parentheses in 

Equation (2) are replaced by terms appropriate to the fluid 

of grade k in the approximation scheme of Coleman and 

Noli (1960). The usual power-law fluid is then of grade I. 

We call model (I) the modified second-order fluid. 

Both models (I) and (I1) gave good fits to data of 

single-stage and multi-stage pressuremeter creep tests (Man 

and others, 1985; Kjartanson, unpublished), which were 

performed at -2°C with cavity pressure ranging from 1.0 to 

2.5 MPa. Between them, model (11) consistently gave better 

fits. Complete details of fitting have been given by Sun 

(unpublished). 

For steady laminar flow in Nye's (1952, 1957) first 

model of a glacier, both models (I) and (Il) deliver a 

velocity field identical to that which pertains to Glen's flow 

law. The stress distribution, however, is different for all of 

the three models. 

Mall alld SUIl : Normal stress effects ill the flow of glaciers 

DETERMINATION OF MATERIAL PARAMETERS 

The material parameters m, jJ., and a
1 

in both models 

(I) and (11) can be determined unambiguously from data of 

pressuremeter creep tests (Man and others, 1985; Kjartanson, 

unpublished; Sun, unpublished); the parameter C(2 does not 

appear in the differential equation that governs pressure

meter creep tests. The purpose of the present note, 

however, is to re-examine the conclusions of McTigue and 

others (1985) in the light of models (I) and (I1). For com

parison purposes, we should determine the material 

parameters in models (I) and (11) by fitting data of the tri

axial creep tests of McTigue and others. 

For triaxial creep tests, we shall adopt the same kine

matical assumptions as McTigue and others, namely: during 

the test the cylindrical specimen undergoes a homogeneous, 

isochoric, uniaxial elongational flow so that its shape always 

remains cylindrical. We shall neglect body forces and adopt 

the creeping-flow approximation. 

Under the above assumptions it is straightforward to 

deduce the differential equations that govern triaxial creep 

tests for models (I) and (11), respectively. Since the 

derivation is similar to that presented by McTigue and 

others for the second-order fluid , here we are content to 

write down the end equations only. For model (I) , the 

differential equation in question is 

here a superposed dot denotes differentiation with respect to 

time; a = i l l, where I(t) is the length of the cylindrical 

specimen at the instant t; a is the axial stress in excess of 

the confining pressure. For model (11) or the power-law 

fluid of grade 2, the creep equation is 

When m = 0, both Equations (3) and (4) reduce to equation 

(13) of McTigue and others, i.e. the creep equation for the 

second-order fluid. 

Let € = 3-1(D. D·l be the "octahedral strain-rate"; 
- I) I) 

here Dij = 1AJY is the stretching tensor or "strain-rate" 

tensor. Let T;: r 1(r .r l be the octahedral shear 
I) I) 

stress; here Tij denotes the deviatoric stress tensor. Glen's 

flow law is often expressed in terms of E and T in the 

form 

It = (T / B)1l (5) 

where Band 11 are material constants (Hooke, 1981). For 

compression tests, the quantity a in Equations (3) and (4) is 

related to € by a = -21 €, whereas a is related to T by 

a = -(3 / 21)T. When the absolute value of a is at its mini

mum I a I . , b. = O. In order that Equations (3) and (4) 

should deTt~er Glen's flow law in secondary creep, the 

estimates below must be valid for models (I) and (11), 

respectively: 

(I) 

(11) 

« 3m/2jJ.lalm - 1 
mm 

(6) 

(7) 

Models (I) and (11) are meant to be modifications of 

Nye's generalization of Glen's flow law. They should be 

consistent with laboratory data and field measurements 

which support Glen's flow law. Henceforth we shall assume 

that estimates (6) and (7) be valid for triaxial creep tests 

with octahedral shear stresses between 0 . 1 and I MPa 

(Hooke, 1981). After setting b. = 0 and ignoring the term 

3(a
1 

+ C(2)a
2

, both Equations (3) and (4) reduce to the 

equation 

(8) 

Equation (8) will agree with Equation (5) if and only if 

n = I / (m + I). (9) 
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Joumal of Claciology 

All four creep tests of McTigue and others (1985) were 

done at 0 = -<l.47 MPa and at essentially the same tempera

ture (-9.5°C to -9.8°C), but at different confining 

pressures . Within the framework of either of our models, 

which assume incompressibility of ice, the four tests would 

ideally produce the same creep curve should the initial 

conditions of the tests be identical. With 0 fixed, tests 

under different confining pressures will certainly tell us 

something about the assumption of incompressibility. Besides 
that, the four tests will have no more information content 

than repeating one single test four times. 
Indeed, we immediately face the problem of over

parameterization when we attempt to estimate the material 

parameters in Equations (3) and (4) by fitting the data of 

McTigue and others. The parameters are ill-determined 
because of insufficient data.* Fortunately, we can still 

proceed after making some reasonable assumptions. 

In fitting the data of McTigue and others, our first 
assumption was that the value of the parameter m was close 

to -2/ 3 (i .e. I! ~ 3). This assumption is in line with 

Hooke's (1981) conclusion in his review on Glen's flow 
law. 

Only those data (day to day 17) pertaining to 

primary and secondary creep were used in the fitting . In 

each test, the initial value of 1 a 1 on day I was less than 

31 a 1 min' By Equation (8) the value of 1 a 1 min which 
corresponds to 0 = -<l.47 MPa will be only about 0.0 I times 
that which corresponds to T = I MPa. Since estimates (6) 

and (7) should still be valid when T = I MPa, it follows 

that the term 3(cx
1 

+ cx2 )a
2 in Equations (3) and (4) can be 

ignored in the present data-fitting. That was exactly what 

we did; as a result, only three parameters, namely 

m (~-2 / 3), jI., and cx
1

' were left to be determined. 
We can easily recast the data of McTigue and others in 

terms of the stretch ratio ,(I) == 1(1)/ L; here L is the 
original length of the specimen and 1(1) is its length at the 

instant I. By substituting a = ~ / , and ignoring the term 

3(cx
1 

+ cx2)a2 in Equations (3) and (4), we obtain for models 

(I) and (H) the following second-order differential 
equations: 

(I) 3cx
1 
(V, _(~ / ,)2) + 3j1.(3(~ / ,)2)m/2(~ / ,) - a = 0, 

(10) 

(Il) 3cx/~ / ,_(~ / ,)2)+3j1.i / '-(3(~ / ,)2rm/2o = O. 

(11 ) 

The data-fitting problem for model (I) is as follows: 

for each test we are given a set of data points (Ii' 'i)' 
where li = 1, 2, ... , 17 day, and 'i is the measured value 
of , at li' From the data we can determine the rate of 
stretching ~i at 11 by polynomial interpolation. For a given 

set of parameters (m, jI., cx
1
), let ,(I; m, jI., cx

1
) be the 

solution to Equation (10) with initial conditions ,(I' m, jI., 

cx1) = 'I and ~(l; m, jI., cx1) = ).1' We want to d;termine 
values of the parameters, m, jI., and cx

1 
which minimize the 

function 

The data-fitting problem for model (Il) is similar. 

We solved the data-fitting problem for model (I) 
iteratively by using IMSL (International Mathematical and 
Statistical Library) sub-routine ZXSSQ (a finite-difference 

analogue of the Levenberg-Marquardt method). We arrived 

at a set of initial guesses for (m, jI., cx
1

) by the following 

procedure: first we chose a value of m close to -2/ 3. Using 

*McTigue and others, who adopted the second-order fluid 

model, also encountered the problem of over-parameteriza

tion. We noticed that the estimated values of material 

parameters reported by McTigue and others for test I and 

test 4 as well as the reported means of the estimates for 
tests 2, 3, and 4 are inconsistent with their assumption that 

~ 2 > 0 (see their equation (20) for the definition of ~ 2), 

which they use when they develop their theoretical solution 

equation (22)). There may be something wrong in their 

data-fitting. 
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this value of m, we calculated the corresponding value of jI. 

from Equation (8) and the measured value of amin° Br 
polynomial interpolation of the given data, we estimated , 

and .~ at I = 2. From these estimates, '2 and the first 

estimates of m and Il, we obtained a rough first estimate of 

cx
1 

from Equation (10). To evaluate the function F at each 

iteration, the corresponding values ,(Ii; m, jI., cx1) are 
required. We obtain these values through numerical 
integration of Equation (10) by using the fifth-order 

Runge-Kutta-Nystrom method (cf. Lambert, 1973, p. 122). 

Similarly, we solved the data-fitting problem for model (H) . 

Complete details of the data-fitting with computer programs 

have been given by Sun (unpublished). 

The problem of over-parameterization persists in the 

data-fitting even after the parameter ~ is dropped from 

the picture . For both models and for each test there are 
many combinations of m (~-2 / 3), jI., and cx

1 
which give 

essentially the same value to the sum of squared residuals 
F. For a given test and for a fixed value of m, however, 

the estimates of jI. and cx
1 

are sharp for both models . More
over, when m ranges over values close to -2/ 3, the scatter 

in the numerical estimates of jI. and cx
1 

is rather narrow. 

For instance, for test I, as m ranges from -{).65 to -<l.68 , 

we found that for model (I) jI. ranges from 2.82 x 103 to 

2.31 x 103 kPa d 1+m, and cxl increases from 1.26 x 105 to 

1.40 x 105 kPa d2; for model (n) jI. decreases from 2.84 x 

103 to 2.32 x 103 kPa dl+m, and cx
1 

decreases from 2.75 x 

103 to 2.03 x 103 kPa d 2+m . 

In this note we shall be content to obtain for models 

(I) and (Il) an order-of -magnitude estimate of the normal 

stress effects discussed by McTigue and others. Moreover, 

we shall be interested only in situations where the normal 

stress effects have a sufficiently large magnitude to be 
practically significant. Since the data of McTigue and others 

all pertain to the same 0 and are not sufficient to give a 

sharp estimate of m, in what follows we shall take 

m = -2/ 3 (i.e. 11 = 3) and estimate jI. and <Xl on that basis. 
While this specific choice of m is somewhat arbitrary, it is 

our best choice and is certainly good enough for our 
present purpose; our conclusions below are insensitive to 

variations of m near -2/3. For instance, as the reader can 

easily do the calculations himself, taking m = -<l.65 or 

m = -{).68 and the corresponding values of jI. and cx1 
(estimated from test I) given above will not affect the 

qualitative conclusions to be drawn below where we take 
m = -2/ 3. Indeed, a sampling of other choices of m in the 

range -{).65 to -<l.71 all leads to the same qualitative 

conclusions; cf. Sun (unpublished). 
The least-squares estimates of jI. and <Xl when m is 

fixed at -2/3 are listed in Tables I and Il. The scatter in 

the estimated values of the parameters is much narrower 

than that reported by McTigue and others. Under the 
estimated values of the material parameters, the fits are 

excellent for all four tests and for both models. The per

centage errors in the fitted values of , as compared with 

the measured values are mostly under ±0.02%; the highest 

percentage errors are about ±0.04%. 
Having obtained the value of jI. for models (I) and (\I), 

respectively, we can now look at estimates (6) and (7) in 

detail. Let us consider estimate (6) first. Within the range 

of octahedral shear stresses under which Glen's flow law is 
presumed to be valid (i.e. 0.1 MPa ~ T ~ I MPa), the 

maximum value of 1 a 1 min corresponds to T = I MPa. Sub
stituting 0 = -3/ 2t MPa and jI. = 2.41 x 103 kPa d l/3

, we 

calculate from Equation (8) that 1 a 1 min = 0.0758 d-1
, for 

which the right-hand side of estimate (6) is equal to 1.23 x 

105 kPa d 2. Since cxl is estimated to be equal to 1.61 x 105 

kPa d2, estimate (6) dictates that for model (I) 1 cxl + cx2 1 

should be at least an order of magnitude smaller than cxl ' 
Similarly, for model (Il), corresponding to T = I MPa and 
jI. = 2.43 x 103 kPa d l/ 3

, the right-hand side of estimate (7) 

is equal to 3.29 x 104 kPa d 4
/

3
. Thence, we infer that for 

model (JI) 1 cx
1 

+ cx21 should be at most of the same order 

of magnitude as CXl' 

NORMAL STRESS DIFFERENCES IN SHEARING FLOW 

Both models (l) and (Il) can exhibit non-zero and un

equal normal stress differences in shearing flow (cf. 
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Schowalter (1978, p. 71) for the definition of normal stress 

differences). For models (I) and (11), respectively, the 

normal stress differences are given by 

here K is the shear rate . The formulae for model (I) will be 

identical to those for the second-order fluid (McTigue and 

others, 1985) if we replace a
l 

and a 2 in Equation (13) by 

the parameters 1L2 and 1L3 of McTigue and others. It is thus 

possible to compare directly the magnitudes of NI and N2 

according to our model (I) with those reported by McTigue 

and others for the second-order fluid model. 

For model (I) , by using the mean value of a
l 

in Table 

I and by changing units, we obtain 

-2.40 x 1018 K 2 Pa (15) 

where the shear rate K is in units of S-l. Since all that we 

know about the parameter a 2 is the estimate (6), we can at 

best give an order-of -magnitude estimate of N
2

. Since 

I a
l 

+ a 21 is estimated to be at least an order of magnitude 

smaller than ai' IN 21 will have the same order of 

magnitude as IN11. 

For the second-order fluid model, McTigue and others 

found that NI = 2.1 x 1019 K2 Pa and N2 = 3.4 x 1021 K2Pa 

(cf. their equations (23a) and (23b» . Their value of N 1 is 

one order of magnitude bigger than the first normal stress 

difference in our model (I); moreover, it has a different 

sign . Their value of N 2 is three orders of magnitude bigger 

than that in our model (I). 

The tremendous discrepancy in the estimates of normal 

stress differences , we believe, is due in part to the problem 

of over-parameterization in the data-fitting. As noted by 

McTigue and others , "good fits ... to the creep data can be 

found for broad ranges of [the] parameters [1L2 and 1L
3

J". We 

overcame the problem of over-parameterization by fixing 

the value of m at -2/ 3 (i.e. 11 = 3) and by ignoring in 

Equations (3) and (4) the term 3(a
1 

+ a
2
)a2

, which should 

be negligible for consistency with Glen's flow law. Working 

with the second-order fluid model is like setting m = 0 in 

our models at the outset, but there is no longer Glen's flow 

law to lean on , for the second-order fluid model is incon

sistent with Glen's flow law. There does not seem to be any 

convincing way to evade the problem of over-parameteriza

tion when one attempts to fit the data of McTigue and 

others to the second-order fluid model. 

Over-parameterization was not a problem in the 

pressuremeter study of Man and the Manitoba team on 

polycrystalline ice at -2 °C (Man and others, 1985; 

Kjartanson, unpublished; Sun, unpublished). For both models 

(I) and (11), the parameter a 2 simply does not appear in the 

respective differential equation that governs pressure meter 

creep tests. With data of single-stage and multi-stage creep 

tests in which the cavity pressure ranged from 1.0 to 2.5 

MPa and the early time responses were recorded in detail, 

the parameters m, jI., and a
1 

could be determined 

unambiguously for both models. For the specimens of ice 

they studied , they found that m was indeed close to -2/ 3 

and a
1 

was positive for both models . For model (I), the 

value of a
1 

was estimated to be 9.17 x IOHPas2, for 

which NI = -1.83 x 1015 K2 Pa. The discrepancy between 

Equation (15) and this estimate of NI results from the 

corresponding difference between the value of a
1 

given 

earlier in Table I and the value estimated from the 

pressuremeter tests. For a discussion on the possible 

implications of the latter difference, cf. the remark at the 

end of the next section. 

FREE-SURFACE DEPRESSION (OR HEAVE) IN OPEN

CHANNEL FLOW 

McTigue and others made use of an approximation 

scheme (due to Wineman and Pipkin (1966), and Tanner 

(1970); cr. also Schowalter (1978, p. 255-57» to calculate 

the free-surface depression or heave of a second-order fluid 

Mall and SUIl : Normal stress effects in the flow of glaciers 

when it flows steadily down an inclined open semi-circular 

channel. Using the values of material parameters which 

they estimated from their creep tests, they applied their 

surface-depression formula to the flow of glaciers. 

The free-surface depression or heave studied by 

McTigue and others is due to a non-vanishing second 

normal-stress difference N
2

. Both models (I) and (11) can 

also exhibit the same phenomenon . Indeed, by following the 

same approximation procedure, it is straightforward to work 

out the corresponding formulae for these two models. In 

our derivation, the usual power-law fluid assumes a role 

parallel to that of the Newtonian fluid in the derivation of 

McTigue and others. 

Let p be the density of ice, g be the acceleration due 

to gravity, h be the central (maximum) rise or fall, /3 be 

the channel slope, and R be the channel radius (see figure 

3 of McTigue and others). The formulae in question are 

found for models (I) and (11), respectively, to be as follows: 

(3 + m) [Rpgsin /3] 2/(1+m) 
(I) h = -{2a

1 
+ a

2
) ; 

2pgcos /3 2j1. 
(16) 

(I1) h 
a) (3 + 2m) r-pgSin /3 ](2+m)/(1+m) 

-4(2a1 + 2 (2 + m)pgcos /3 4j1. 

(17) 

When m = 0, both Equations (16) and (17) reduce to the 

formula for the second-order fluid, i.e . equation (26) of 

McTigue and others. For the usual power-law fluid, which 

is the special instance of our models with a
1 

= ~ = 0, 

both Equations (16) and (17) give h = O. 

Earlier we have argued that for model (I) I a
1 

+ a 2 1 

should be at least an order of magnitude smaller than a
l

; 

for model (11) I a
l 

+ a 2 1 should at most have the same 

order of magnitude as al' For a given Rand 13, we can 

eas ily obtain an order-of -magnitude estimate of I h I for 

models (I) and (11). Let us consider model (I). First, we set 

a
1 

+ a 2 = O. The right-hand side of Equation (16) can then 

be evaluated. Let us denote the resulting value by ho' Since 

I a
l 

+ a 2 1 is at least an order of magnitude smaller than 

at' I ho I and I h I should have the same order of magnitude. 

Similarly, for a given Rand 13, we infer that for model (11) 

I h I can at most have the same order of magnitude as I ho I. 
Let us evaluate I ho I for some sample channel slopes 

and channel radii . We take p = 9 x 10
2 

kg/ m
3

, 

g = 9 .8 m / s2, m = -2/ 3, and give jI. and a
1 

the mean 

values given in Tables I and H. For 13 = 10 ° and 

R = 500 m, we obtain the following values for models (I) 

TABLE l. LEAST-SQUARES ESTIMATES OF IL AND a
l 

FOR MODEL (I) WHEN m IS FIXED AT -2/ 3 

Test jI. a
1 

103 kPa d 1
/ 3 105 kPa d 2 

I 2.52 1.33 
2 2 .54 2.01 
3 2.33 1.13 
4 2.26 1.98 

Mean 2.41 1.61 

TABLE 1I . LEAST-SQUARES ESTIMATES OF IL AND a
l 

FOR MODEL (11) WHEN m IS FIXED AT -2/ 3 

Test jI. a
1 

103 kPa d 1/ 3 103 kPa d 4
/

3 

I 2.53 2.21 

2 2.58 3.68 

3 2.34 1.96 

4 2.29 4.16 

Mean 2.43 3.00 
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and (Il), respectively: (I) 'ha '. = 0.35 m; (Il) 'ha' = 0.07 m. 
For the same 8 an od R, McTIgue and others estimated h = 

-42 ?I. For 8 = 5 and R = 250 m, McTigue and others 

0, bta,llled h = -2.6 m; for models (I) and (11) we get (I) 

ha = 0.08 mm, and (11) 'ha' = 0.26 mm. 
For a given Rand 8, let h* be the value of h 

estimated by McTigue and others. In general 'h* , is 

related to 'ha' of models (I) and (Il) by what follows: 

(I) 'ha' / ' h*' = 1.4 x lO- lO(Rsin 8)4; (18) 

(Il) 'ha' / 'h*' = 2.1 x 1O-7(Rsin W; (19) 

here R is in units of meters. For the usual ranges of R 

and 8 of glaciers on Earth, the free-surface depression or 
heave according to both of our models is much smaller in 
magnitude than the prediction of McTigue and others. 

Indeed, according to either model (I) or (Il) (with va:ues of 
material parameters given in Tables I and Il) the free

surface depression or heave induced by the sec~nd normal

stress difference will usually be negligible for glaciers. 

For both models (I) and (Il), the velocity field in the 

flow under consideration is, to the order of approximation 

~doPt.ed in the derivation of Equations (16) and (17), 
IdentIcal to that which pertains to Glen's flow law. For 

both models, the stress distribution is different from that of 

the usual power-law fluid. With the values of material 
parameters adopted above, however, the difference in stress 

distribution is found to be negligible for the usual ranges 

of Rand 8 for glaciers. Thus, we cannot accept the argu

~en.t . of McTigue and others as regards the possible 
SIgnIfIcance of normal stress effects in the formation of 
crevasses. 

Remark. The values of 'ha' are even smaller if we use 
values of rn, /L, and a l estimated by Man and the Manitoba 

team from pressuremeter creep tests on polycrystalline ice 

at -2 C. The estimates were as follows (cf. Sun, 
unpublished): m = -0.711, /L = 2.97 x 107 Pa sl+m; for 

model (I), a L = 9.17 x 1014 Pa S2. for model (11) a = 246 
1010 P 2+m 0' '1· 

x as. For 8 = 10 and R = 500 m, it follows that 

for model (I) 'ha' = 9.8 mm and for model (11) 'h' = 

2.3 mm. For 8 = 5° and R = 250 m, 'ha' = 0.7 x IO-:Jlmm 
for model (I), and 'ha' = 4.8 x 10-3 mm for model (11). 

These values of 'ha' are about 30 to 100 times smaller 
than those calculated above. Do these discrepancies in pre

d~ction indicate a basic flaw in the modeling, namely, that 
dIfferent tests would deliver different values of the 

coefficients rn, /L, and a l ? Probably not. In fact, there 

are encouraging signs. Recall that for both models (I) and 

(11) rn and /L should be related to the coefficients It and B 

in Glen's law through Equation (9). Many researchers have 
performed uniaxial compression tests on ice specimens at 

various temperatures. A range of values of It and B (and 

thus also of rn and /L) has been reported in the literature. 

The values of m and /L estimated from the pressuremeter 

tests are in good agreement with what other researchers 
have found from uniaxial compression tests (cf. Kjartanson 

and others, in press). The values of /L given in Tables I 

and 11 also fall in the range of values reported in the 
literature (cf. Hooke, J 981, fig. 2). Of course, since Band 

thence also /L vary appreciably with temperature, when we 

compare the values of /L, comparison is made only among 

those values that pertain to the same temperature. A 
problem remains with the coefficient al. The discrepancy is 

enormous between the values of a l reported earlier in this 

paragraph and those given in Tables I and 11 (i.e. a l = 

1.20 x 1018 Pa S2 for model (I); a l = 1.15 x 1013 Pa S4/3 for 

model (11». To clarify this point, more tests are necessary. 

Before results of new tests are available, allow us to do 

some speculation. Of all factors that could possibly account 

for this discrepancy (for instance, the specimens of the 

pressuremeter tests would have structural features different 

from those of the triaxial tests), temperature would be the 

most interesting. If temperature should be the main source 
of the discrepancy, then the significant difference in the 

estimated values of 'ha' could be attributed to the differ
ence in temperature between the pressuremeter tests (-2°C) 

and the triaxial tests (--9.5 to --9.8°C). In other words 

lowering of temperature might greatly enhance normal stres~ 
effects in the creep of ice. 
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CONCLUSION AND DISCUSSION 

McTigue and others (1985) identified a possible 
problem in the type of constitutive equation usually used 

fo~ modeling the creep behavior of polycrystalline ice. They 

pomted out that Glen's flow law necessarily excludes the 

consideration of normal stress effects, which are of great 

significance in other disciplines that consider non-Newtonian 

fluids. Using the second-order fluid (with material 
parameters evaluated from triaxial creep tests) as a tentative 

model for ice, they reached the conclusion that normal 

stress effects may be discernible in natural glacier flow. The 

argument which led them to the preceding conclusion, 

however, can be challenged on the following grounds: (i) As 

noted by McTigue and others themselves, the second-order 

fluid "fails to represent the non-linear rate dependence of ice 

in shear"; therefore, it is in fact not a suitable constitutive 

model for glacier ice in shearing flow. The creep tests with 

which they quantified the material parameters in the 

second- order fluid were performed at the same deviatoric 
stress. Had they used data of creep tests which pertained to 

a range of deviatoric stresses, they would have had a hard 

time in finding a single set of parameters that could fit the 

data. (ii) The conclusion of McTigue and others naturally 

depends very much on the numerical values of material 

parameters which they put in the second-order fluid model. 
They obtained those numerical values by fitting data of 

their creep tests. Their data analysis, however, seemingly 

had inconsistencies (cf. footnote above). Moreover, they 
did not indicate how they handled the problem of over

parameterization in their data -fi tting . 

The preceding criticism is not meant to play down the 

contribution of McTigue and others. They have identified 
and asked an important question , which, as they fully 

realize, has no simple immediate answer. They concluded 

their paper by envisaging that their results should "serve as 

a point of departure for further investigation", to which our 
present note bears witness. 

In this note we have re-examined the issues discussed 
by McTigue and others in the light of two new tentative 
models, namely (I) the modified second-order fluid and (I1) 

the power-law fluid of grade 2, both of which can be 

taken as simple modifications of Glen's flow law. For ease 

of comparison with the work of McTigue and others, we 

have used the same creep data in quantifying the material 
parameters in models (I) and (IT). As indicated above, there 

is a problem of over-parameterization in the data-fitting, 

and we have shown how we can circumvent that problem 

to obtain order-of -magnitude estimates for the normal stress 
effects discussed by McTigue and others. For both models 

(I) and (11), the normal stress effects are found to be far 

less pronounced than the estimates of McTigue and others. 
Indeed, should glacier ice have creep properties similar to 

the specimens of McTigue and others, models (I) and (I1) 

indicate that, except for extremely thick ice and steep 

slopes, normal stress effects of the type discussed by 

McTigue and others would Ita/ play a significant role in 
glacier flow. 

The preceding conclusion remains valid, should we use 

values of material parameters estimated by Man and the 

Manitoba team from data of pressuremeter creep tests on 

polycrystalline ice at -2 ° C (Man and others, 1985; 

Kjartanson, unpublished; Sun, unpublished); cf. the remark 

at the end of the preceding section. The problem of over

parameterization did not appear in their pressuremeter work. 

Pressuremeter creep tests, however, can only deliver 

estimates for the parameters rn, /L, and al . As indicated 

above, by appealing to Glen's law, we do not need to know 

the value of a
2 

to obtain an order-of -magnitude estimate of 

the normal stress effects discussed in this note. On the 

other hand, procurement of experimental data that suffice 

for the estimation of all the material parameters will not 

only tighten our argument; it will also provide a more 

stringent test for the models. For a given ice specimen, it 

should be possible to obtain the values of rn, jL, <Xl' and ~ 
for models (I) and (Il) by performing both pressuremeter 

and triaxial creep tests which record early time response in 

detail. 

A correct assessment of the significance of normal 
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stress effects in glacier flow can be made only after a 
sufficiently accurate flow law is established and values of 

material parameters in the flow law are ascertained for 
various ice forms and temperatures. At present it is 

premature on both counts to give a sweeping conclusion. 

Models (I) and (11) are still tentative. A lot more theoretical 

and experimental work remains to be done before we can 

clarify their status. Even if one of them turns out to be a 

good model for ice in creep, our analysis above still does 
not necessarily imply that normal stress effects can be 

ignored when we consider the creep behavior of poly
crystalline ice. For instance, as pointed out in the preceding 

section, lowering of temperature might greatly enhance 

normal stress effects in the creep of ice. 
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