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Three-dimensional distribution of nonmenthane hydrocarbons 

and halocarbons over the northwestern Pacific during the 1991 

Pacific Exploratory Mission (PEM-West A) 

Donald R. Blake, Tai-Yih Chen, Tyrrel W. Smith Jr. 1 , Charles J.-L. Wang 2, 

Oliver W. Wingenter, Nicola J. Blake, and F. S. Rowland 
Department of Chemistry, University of California, Irvine 

Edward W. Mayer 3 
Department of Chemistry, U.S. Military Academy, West Point, New York 

Abstract. A total of 1667 whole air samples were collected onboard the NASA DC-8 aircraft 
during the 6-week Pacific Exploratory Mission over the western Pacific (PEM-West A) in 
September and October 1991. The samples were assayed for 15 C2-C7 hydrocarbons and six 
halocarbons. Latitudinal (0.5øS to 59.5øN) and longitudinal (114øE to 122øW) profiles were 
obtained from samples collected between ground level and 12.7 km. Thirteen of the 18 missions 
exhibited at least one vertical profile where the hydrocarbon mixing ratios increased with altitude. 
Longitude-latitude color patch plots at three altitude levels and three-dimensional color latitude- 
altitude and longitude-altitude contour plots exhibit a significant number of middle-upper 
tropospheric pollution events. These and several lower tropospheric pollution plumes were 
characterized by comparison with urban data from Tokyo and Hong Kong, as well as with natural 
gas and the products from incomplete combustion. Elevated levels of nonmethane hydrocarbons 
(NMHC) and other trace gases in the upper-middle free troposphere were attributed to deep 
convection over the Asian continent and to typhoon-driven convection near the western Pacific 
coast of Asia. In addition, NMHCs and CH3CC13 were found to be useful tracers with which to 
distinguish hydrocarbon and halocarbon augmented plumes emiued from coastal Asian cities into 
the northwestern Pacific. 

Introduction 

Nomethane hydrocarbons (NMHCs) and halocarbons affect 

both tropospheric and stratospheric photochemistry. The sources 

of these atmospheric trace species are predominantly land based 
and the main mechanism for the removal of those hydrocarbons 

and halocarbons with abstractable hydrogen atoms is through 

oxidative reaction with hydroxyl radicals (OH) as in (1). 

RH + HO. --> R. + H20 (1) 

Nonmethane hydrocarbon emission patterns can be used to 

characterize anthropogenic sources such as fossil fuel leakage and 

incomplete combustion [Ehhalt and Rudolph, 1984; Blake et al., 
1992, 1994, 1995; Smith, 1993]. Because all of the halocarbons 

reported here are anthropogenic and released predominantly in 
cities, their measurement can be used to estimate recent urban 

influence on an air mass. For example, an air parcel which has 

been augmented by biomass burning would be expected to 

contain elevated levels of ethane, ethene, and ethyne and many 
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Sciences, University of Colorado, Boulder. 

2Now at National Central University, Depamnent of Chemistry, 
Chung-Li, Taiwan 32054 R.O.C. 

3Now at University of Califomia, San Diego, Department of 
Chemistry and Biochemistry, La Jolla, California. 
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other hydrocarbons, while exhibiting no chlorofluorocarbon 
enhancement [Crutzen and Andreae, 1990; Blake et al., 1992, 

1994; Smith, 1993]. Industrial activity would be indicated by 

elevated concentrations of chlorofluorocarbons, as well as CC14 

(carbon tetrachloride), CH3CC13 (methyl chloroform), C2C14 

(perchloroethene), and other halocarbons [Crutzen, 1980; 
Rasmussen et al., 1982; Blake et al., 1992, Smith; 1993]. Natural 

gas emissions are associated with elevated levels of methane, 
ethane, and other light alkanes with no accompanying 
halocarbons [Blake et al., 1994]. 

We report the general results of measurements of 15 saturated 

and unsaturated C2-C7 NMHCs and six halocarbons, namely, 

CC12F 2 (CFC-12), CC13F (CFC-11), CC12FCC1F2 (CFC-113), 

CH3CC13, CC14, and C2C14, in air samples collected onboard the 
NASA DC-8 aircraft between September 7 and October 22, 1991, 

during NASA's Pacific Exploratory Mission over the western 

Pacific (PEM-West A). The mission flew from San Jose, 

California, around the North Pacific rim and back through the 

central Pacific, with many additional flights from Tokyo, Hong 

Kong, Guam, and Hawaii. Numerous vertical profiles in the 

altitude range from 0.3 km to 12.7 km were flown over the ocean, 

with additional vertical profiles near urban areas during landings. 

In addition, the meteorological consequences of several typhoon 

events were encountered during the project, including fast vertical 

transport associated with Typhoons Nat and Mireille. These 

flights provided an excellent opportunity to examine the large- 

scale transport and distribution of NMHCs and halocarbons in the 

northwestern Pacific region. 

1763 
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Experiment 

Sampling 

The whole air sampling apparatus was mounted onboard the 

NASA DC-8 jet aircraft. The stainless steel 1/4-inch OD inlet 

and outlet were installed on the port side of the aircraft, forward 

of the wing section. The gas-handling manifold and the two- 
stage metal bellows pump (Metal Bellows Company, MB-602), 

connected in series, were configured to allow the sample canisters 

to be routinely filled to 40 psig and the system to be operated at 

pressures up to 60 psig before activation of a pressure relief 

valve. The 2-L sample canisters were assembled in fixed sets of 

24, connected to a single manifold and arranged in three parallel 

columns of eight canisters. Rack mountings were available on 

the aircraft for six of these 24-canister sets, allowing a maximum 

of 144 samples to be collected per flight. These 24-canister sets 

formed the basic unit for sampling operations onboard the DC-8 

and for shipments between the various staging sites and the 

analytical laboratory, which was assembled in Japan at the 
Yokota US Air Force Base near Tokyo. Details of sample 

canister fabrication and filling procedures have been discussed 
earlier [Blake et al., 1992, 1994; Smith, 1993]. 

The operation of a field laboratory at Yokota Air Base, Japan, 

one of the main staging sites for this mission, reduced the time 
required for sample canister transportation between aircraft 

landing sites and the analytical laboratory. For staging sites other 

than Yokota the filled sample canister sets were shipped by air 
cargo on commercial flights to Tokyo and then transported to 

Yokota. On average, approximately 90 air samples were 

collected on each flight and analyzed within 7 days. The total 

number of sample canisters available for the mission was 

approximately 700, requiring multiple use of canisters to maintain 

this high sampling frequency. After the air samples from earlier 

flights had been satisfactorily assayed, the canisters were 

evacuated to a pressure of 10 -2 torr and shipped back to the DC-8 
for subsequent missions. 

Chemical Analysis 

Each sample was analyzed for NMHCs and halocarbons using 

two Hewlett-Packard 5890 series II gas chromatographs (GCs). 

One gas chromatograph (GC-1), was equipped with two flame 

ionization detectors (FIDs), while GC-2 was equipped with an 

electron capture detector (ECD). One of the FIDs monitored the 

output of a 30 m x 0.53 mm A1203/KC1 PLOT column (J & W 
Scientific) with a hydrogen carrier flow of 9.5 mL/min and 

provided data on C2-C5 NMHC compounds. A 60 m x 0.25 mm, 

0.25-1xm film thickness DB-1 column (J & W Scientific) with a 

hydrogen carrier flow of 2.0 mL/min was installed in the second 

FID for the purtmse of detecting C3-C10 NMHCs. Coupled to 
the ECD, GC-2 utilized a 50 m x 0.2 mm, 0.5-gm film thickness 

PONA column (Hewlett-Packard) with a hydrogen carrier flow of 

1.2 mL/min for halocarbon separation and detection. 

A precise volume of air (1309 mL STP) from each sample 

canister was trapped in a preconcentration loop (8 inch x 1/4-inch 

OD, stainless steel) filled with 1-mm-diameter glass beads and 

immersed in liquid nitrogen. The volatile contents of the sample 

were pumped off while the higher boiling gases remained on the 

glass beads. The contents of the loop were voporized by heating 

with warm water and flushed with the hydrogen carrier gas 

through a splitter which divided the sample into three separate 

flow streams. Precisely reproducible percentages of the total flow 
were injected onto the various columns: 75% to the PLOT 

column, 15% to the DB-1, and 10% to the PONA. It was found 

that the sample split was very reproducible if the specific 

humidity of the sample was greater than 2.0 g H20/kg air. Thus 

to raise the specific humidity of the driest samples, as much as 2.0 

tort of purified water was added to the 2119 mL STP volume of 

the analytical vacuum line prior to sample introduction. Upon 

sample injection the initial temperature of GC-2 was held at 

-60øC for 30 s, and then ramped up to 240øC at 20ø/min, while 

the initial temperature of-20øC for GC-1 was ramped up to 

200øC at 20ø/min. A complete analysis cycle, including return to 

the cooled initial conditions, required 20 min. The gas 
chromatographs were interfaced to three Spectra Physics 4400 

computing integrators and a computer, using LABNET software 

(Spectra Physics) for data capture and storage. To monitor the 

consistency and reproducibility of the analytical system, a 
secondary standard (dry ambient air collected at Niwot Ridge, 

Colorado, NOAA CMDL by Paul Steele) was analyzed after 
every eight ambient samples. Throughout the project a second 

cylinder of whole air was assayed every other day. These mixing 
ratios were compared to those obtained from the working 
standard to ascertain that the working standard mixing ratios did 
not change over the period of the experiment. Approximately 60 

air samples could be analyzed during a 24-hour period. The 
chromatographic apparatus was run continuously (24 hours/d, 7 

days/week) from September 17 to November 2, 1991. Detailed 

descriptions of the analytical setup, standards and calibrations 
have been given previously [Blake et al., 1992, 1994]. While 

data from the integrators provided preliminary concentration 

values for the reported compounds, after returning to our home 
laboratory, the chromatograms were examined to conf'mn that the 

baselines were correctly drawn and that the peaks showed no 
unusual characteristics. 

The precision of the air sample measurements, based on 10 air 
samples collected during a constant altitude leg of mission 15, 

was 3% or 3 pptv (whichever was larger) for the alkanes and 

ethyne and 5% or 5 pptv (whichever is larger) for the olef'ms. 

Measurement precision for CFC-12, CFC-11, CFC-113, 

CH3CC13, CC14, and C2C14 was 0.7%, 0.8%, 1.4%, 3.8%, 1.7%, 
and 4.2%, respectively. The precision estimates represent upper 
limit values because these successive samples may not have had 

identical mixing ratios. The limit of detection for benzene and 

toluene was 5 pptv, while that for the remaining NMHCs was 3 

pptv. The reported halocarbons were always present at 
concentrations well above their detection limits. 

Results 

The flight paths and locations of the 1667 whole air samples 

collected onboard the DC-8 during missions 4 to 21 (missions 1 

to 3 were test flights) are displayed in Figure 1. Figure 2 shows 

the grab-sampling distribution as a function of altitude and 
latitude and altitude and longitude. The figures reflect the good 

altitudinal, latitudinal, and longitudinal sampling coverage by the 

DC-8 but also show that in accord with the major goal of the 

Pacific Exploratory Mission-West the most densely sampled 

region was concentrated in the western Pacific between 12 ø and 

32øN latitude and between 120 ø and 150 ø E longitude. 

While attempts were made to sample many different types of 

air masses, the atmosphere was not randomly sampled so may 

bias the air mass descriptions discussed below. In addition, the 

very complex and diverse meteorological conditions encountered 

during the 6-week sampling period mean that the averaged data 

should not be conslxued to represent a particular ouffiow scenario. 

Rather, they are intended to present an averaged trace gas 
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Plate 1. Ethane color patch plot for three altitude ranges. 
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Figure 1. PEM-West A flight track and sample locations of Missions 4 to 21, with the mission number for each 
nearby. 

distribution for the sampled areas of the northern Pacific region 

during September and October 1991. By contrast, the week-long 

intensive missions flown out of Japan, Hong Kong, and Guam 

allow the regional data to be considered more as a "snapshot." 

The meteorological aspects of the project are described in an 

overview by Bachmeier et al. [this issue], but some general 
features are summarized here. The mean flows averaged for the 

PEM-West A time frame include a high-pressure system over the 

western North Pacific which, at lower tropospheric altitudes, 

brought marine air from the east across the Guam region and 

toward Japan from the south to southwest. High pressure at lower 
altitudes over central and eastern China tended to bring 

continental air across the Sea of Japan and over the East China 

and South China Seas. The middle and upper troposphere north 

of 25ø-30øN was dominated by westerly flow off the Asian 

continent. Long-range transport was also affected by the several 

tropical cyclones that occurred during the mission which tended 
to track northeastward close to the east coast of Asia. 

Fingerprint Characterization 

Samples collected near large accessible NMHC and 

halocarbon sources such as Tokyo, Hong Kong, and San Jose and 

in more remote regions exhibiting enhanced mixing ratios were 

characterized or "fingerprinted," as was incomplete combustion 

from vehicle exhaust [Blake and Rowland, 1995]. This 

fingerprinting was achieved by subtracting appropriate 

"background" mixing ratios from each hydrocarbon and 
halocarbon measurement. Ideally, air of the same composition as 

that which originally diluted the source material would provide 
the background mixing ratio values. Thus, the average mixing 

ratios of several samples collected in close proximity immediately 

prior to or after encountering a "plume" exhibiting relatively 

enhanced trace gas mixing ratios were usually employed. After 

background subtraction, these residual or "excess" concentrations 
were added together according to their classification as NMHC or 

halocarbon, then the percentage contribution made to the category 
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Figure 2. Sample distribution as a function of altitude between 0 and 13 km and latitude between 0 ø and 60øN, and 
as altitude and longitude between 115øE and 120øW, respectively. Each sample is designated by its corresponding 
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wtal by each trace gas was calculated. The f'mgerprint for a 

particular source was then established by averaging the 
percentage contributions of all samples collected near that source. 
Tables la and lb show the background values used for each set of 

source samples, the excess concentrations in parts per trillion by 
volume (pptv), and the average percentage contributions for each 

source type. As an example of the f'mgerprint calculation, 
samples collected over Tokyo at the end of mission 5 contained a 
wtal halocarbon excess of 648 pptv. The excess of CH3CC13 
over background was 366 pptv. Thus CH3CC13 represented 57% 
of total excess halocarbons measured in Tokyo air. Methyl 
chloroform was also found to be the dominant halocarbon 

emission from both Hong Kong and San Jose, accounting for 

34% and 43% of the halocarbon total over background, 

respectively. This suggests that CH3CC13 is likely to be an 
excellent tracer for polluted air parcels originating fxom industrial 
cities around the Pacific region. However, these results should be 

interpreted with caution as each city. f'mgerprint was calculated 

employing samples collected on single aircraft approaches, and as 
such should serve as a guide rather than as being representative of 

the typical average. For example, on the approach to San Jose 
(October 22, 1991) a very large brush/suburban fare was taking 

place in the Oakland area. In addition, no samples were available 

from cities deep in the continent of Asia. 

Table lb shows that incomplete combustion, mainly from 

vehicle exhaust, is characterized by high alkene and ethyne, and 

low ethane and propane contributions. Table 2 shows that the 
alkenes are relatively short-lived in the atmosphere (t < 2 days) 

and so are expected to persist only long enough to be observed 

close to their source regions or as indicators of rapid air mass 

transport. However, ethyne has a relatively long lifetime of 

approximately 23 days (Table 2), allowing it to persist long 

enough in the atmosphere to act as a tracer for air masses that 
have been transported over long distances. Table lb shows that 

Tokyo, Hong Kong, and San Jose also exhibit significant ethane 

and propane components, revealing the presence of additional 

hydrocarbon sources in cities, namely natural gas and propane gas 

used for cooking and heating [Blake and Rowland, 1995]. City 

emissions therefore represent the complex mix of incomplete 

combustion and natural gas and propane leakage, typical of an 
urban environmenL 

General Features 

Tables 3a and 3b give the median, average, standard deviation, 
maximum, and minimum concentrations of the measured 
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longitude-altitude 3-D contours. 



BLAKE ET AL.: NMHCs AND HALOCARBONS OVER NW PACIFIC 1769 

o o o 
• • o 

00 00 o 

• • o 
o o 

o o o 



1770 BLAKE El' AL.: NMHCs AND HALOCARBONS OVER NW PACIFIC 

• (',1 • oo ,• 0 ,• c,q ON 0 

0 0 0 0 c,q c,q 0 •' (',1 • • ,• 

0 0 0 0 0 • • ,• • 0 • 0 Uq • • 0 
• (',1 ,• ,• 

0 0 0 0 0 0 0 0 • • 0 0 ,• 0 ,• 0 



BLAKE ET AL.: NMHCs AND HALOCARBONS OVER NW PACIFIC 1771 

Table 2. Estimated Atmospheric Lifetimes of Selected 

Nonmethane Hydrocarbons (NMHCs) and Halocarbons 

OH Rate a Lifetime (Days) 
c 

CFC-11 42-66 yr 

CH3CCI3 0.01 5.7 yr 

C2C14 0.17 122 

Ethane 0.27 78 

Ethyne 0.90 23 

Propane 1.15 18 
Benzene 1.23 17 

i-Butane 2.34 9 

n-Butane 2.54 8 

i-Pentane 3.90 5 

n-Pentane 3.94 5 

n-Hexane 5.61 4 

Toluene 5.96 3 

Ethene 8.52 2 

Propene 26.3 0.8 
1- B utene 31.4 0.7 

1-Pentene 31.4 0.7 

Is oprene 101 0.2 

Rate constants for CH3CC13 and C2C14 taken from 

DeMote et al. [ 1992]. 

Rate constants for NMHCs taken from Atkinson [1990]. 

a Units, 10-12x k(298). 
b 

Lifetimes of hydrocarbons are calculated by 

comparison with the CH3CC13 lifetime of 5.7 years, 

Prinn, [1992]. 

c WMO, [1992]. 

hydrocarbons and halocarbons after the data have been separated 
into three altitude sections, 7 to 12.7 km, 2 to 7 km, and below 2 

km, which were chosen to represent the middle-upper free 
troposphere, lower free troposphere, and planetary boundary layer 

(PBL), respectively. There are 533, 713, and 421 air samples in 
each section, which constitute approximately 21%, 38%, and 22% 

of the total air column, respectively [U.S. Standard Atmosphere, 

1976]. All Compounds exhibit higher mixing ratios in the PBL 
due to the proximity of surface sources. However, the NMHCs 

(Table 3b) typically show higher median concentrations in the 

middle-upper and PBL altitude sections than in the lower free 

troposphere. This was a general feature of the NMHCs and will 

be discussed in more detail below. Several of the very short lived 

hydrocarbons (t < 1 day, see Table 2), including 1-pentene and 

isoprene, were below their detection limits in all samples except 

for those collected in the PBL very close to their continental 
SOUrCeS. 

Color patch plots showing the latitudinal and longitudinal 

variation of the concentrations of ethane and methyl chloroform 

are given in Plates 1 and 2, respectively. They show the spatial 

variation of the median trace gas mixing ratios for a latitude- 

longitude grid size of 2.5 ø by 2.5 ø . As expected, the highest 

concentrations of both ethane and CH3CC13 were observed at 
low altitude close to the continental sources such as San Jose, 

California (37.3øN, 121.9øW); Anchorage, Alaska (61.2øN, 

149.9øW); Tokyo, Japan (35.7øN, 139.75øE); Hong Kong 
(22.3øN, 114.2øE); and Guam (13.7øN, 145.0øE). Honolulu, 

Hawaii (21.3øN, 157.9øW), was not a "hot spot" because mission 

20 had been designed specifically to study downdrafting over the 

Island of Hawaii, and no samples were taken in the vicinity of 
Honolulu. Elevated ethane concentrations were also observed in 

the free troposphere near the western Pacific coast and over 
GualTI. 

The lower free tropospheric sections of Plates 1 and 2 display 
similar features to the PBL region throughout the longitude and 

latitude range covered. However, in the PBL the mixing ratios of 

ethane (Plate 1) range from 300 to 2000 pptv and from 300 to 

1500 pptv in the lower free troposphere, where smaller absolute 

values were observed for all hydrocarbons and halocarbons. In 

the middle-upper troposphere ethane ranges from 200 to 1250 
pptv, indicating that the direct effect of urban centers is still less 

Table 3a. Median, Average, Standard Deviation, Maximum, and Minimum Halocarbon 

Observations During PEM-West A 

CFC-12 CFC-11 CFC-113 CH3CC13 CC14 C2C14 

7 - 12.7 km N=533 

Median 508 274 87.9 155 121 3.0 

Average 508 274 87.7 154 120 3.3 

S.D. 5 5 3.0 13 5 1.7 

Minimum 492 243 68.6 86 94 0.1 

Maximum 520 297 111.5 205 168 25.0 

2 - 7 km N=713 

Median 509 274 88.1 155 121 3.2 

Average 509 273 88.0 156 121 3.9 

S.D. 7 5 2.4 14 3 2.5 

Minimum 479 250 79.5 122 108 0.1 

Maximum 545 295 98.3 232 131 16.8 

<2km N--421 

Median 509 274 89.0 162 122 4.6 

Average 512 274 92.5 176 122 9.0 

S.D. 19 8 24.1 75 5 21.1 

Minimum 487 252 77.8 126 96 0.9 

Maximum 696 342 464.4 994 166 250.3 

N, number of samples analyzed at each altitude range. 
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apparent. However, consistent with the high median middle- 
upper tropospheric ethane mixing ratios shown in Table 3, the 
general spread of continental influence is more extensive than in 

the lower free troposphere. 
Altitudinal mixing ratio distributions calculated over the PEM- 

West A latitude and longitude range are described in Plates 3 to 
10 for selected NMHCs (ethane, ethyne, propane, benzene, and i- 
penme) and halocarbons (CH3CC13, C2C14, and F-11) as three- 
dimensional color contour plots based on 3 ø by 635 m and 6.30 by 
635 m latitude-altitude and longitude-altitude grids, respectively. 
Interpolation of the data between grid squares is achieved 
employing an inverse-distance weighting algorithm. These 
figures have much better vertical resolution than the patch plots 
(Plates 1 and 2) and show clearly the variable vertical extent of 
the influence of surface sources and trends of the different-lived 

gases. They provide a useful perspective for characterizing the 
regional large scale trace gas distribution and transport 
encountered during PEM-West A. However, as was stated 

earlier, the atmospheric sampling was neither random nor 
uniform (see Figures 1 and 2). Therefore, Plates 3 to 10 should 

always be compared with the appropriate grab-sampling 
distribution described in Figure 2. The nonrandom nature of the 

sampling strategy was especially significant for the boundary 
layer region, where the airport landings accounted for many 
samples for those altitudes. As their inclusion would strongly 
bias the lower-altitude distribution to overrepresent urban airport 
locations, 18 low-altitude airport samples were removed from the 
3-D contour plot database. 

The NMHCs and halocarbons shown in Plates 3 to 10 were 
chosen to represent a wide range of different lifetimes and 
possible sources with which to interpret the large scale PEM- 
West A features. All the gases show relatively high 
concentrations near the urban source regions, but the longer-lived 

NMHCs such as ethane, ethyne, and propane (Plates 3, 4 and 5), 
show enhanced regions at all altitudes. Except for a high-altitude 
region between 10 and 12.5 km, relatively short-lived i-pentane 
(which has a lifetime of only about 5 days) quickly decayed to 
levels below its detection limit (Plate 7). In accord with their 
very long lifetimes and high background concentrations, the long- 

lived halocarbons, CH3CC13 and F-11 (Plates 8 and 10, 
respectively) show little mixing ratio variability away from the 
source regions. 

A feature of both the patch and the 3-D contour plots (Plates 1 
to 10) is the latitudinal gradient of trace gases, with the lowest 
mixing ratios occurring around the equator, and increasing with 
latitude. The highest levels are usually above 30øN. This reflects 
both the proximity of continental sources at higher latitudes and 
the large-scale airflow regime, which featured strong continental 
outflow north of about 25øN in the midtroposphere and about 
30øN in the upper troposphere [Bachmeier et al., this issue]. In 
addition, the mean cold frontal position near the Asian continent 
was between 20 ø and 40øN [Bachmeier et al., this issue]. The 
latitudinal trend for ethane (Plates 1 and 3) is more pronounced in 
the planetary boundary layer and the lower free troposphere than 
in the middle-upper free troposphere. This gradient was 
sharpened by the very clean air that was swept north to the Guam 
region by Typhoon Pat (mission 15) [Bachmeier et al., this issue]. 
The clean equatorial air to the south is also well described by the 
CH3CC13 contour plot shown in Plate 8. 

A longitudinal gradient is also evident, particularly for ethyne 
(see Plate 4) and benzene (Plate 6), where typically higher mixing 
ratios occur near the Asian continent, Japan, and the North 
American continent. Up to about 4 km (a few hundred meters 
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Plate 5. Propane mixing ratios in pptv as latitude-altitude and 
longitude-altitude 3-D contours. 

above the observed boundary layer height) dome-shaped isolines 
are identifiable over the urban centers such as Hong Kong, 

Tokyo, and San Jose (e.g., Plate 9). Short-lived i-pentane (Plate 
7) illustrates how the large-scale airflow transports emissions 
rapidly from these western Pacific source regions between 30 ø 
and 40øN up to about 3 km, followed by northeasterly advection 
over the Pacific. 

Because of local downdrafting conditions the lower 

tropospheric region over the Island of Hawaii had particularly 
low mixing ratios for all NMHCs, comparable to the observations 
of background Pacific levels as shown in Plates 3 to 7. Most of 
the C2C14 observations over the Island of Hawaii (see Plate 9) 
were between 3 to 5 pptv instead of levels in the region of 10 pptv 
or higher encountered in other urban areas. 

In addition to the direct vicinity of urban source regions, some 
remote PBL areas exhibited elevated mixing ratios. For example, 

elevated levels of ethane, CH3CC13 (see Plates 1 and 2), ethyne, 
and propane (Plates 4 and 5), were observed around 15øN, 180øE 
between Hawaii and Wake Island during mission 19. Trajectory 

analysis suggests these urban signature gases may have originated 
from the Hawaiian area [Merrill, this issue]. Elevated levels of 

trace gases such as ethane (see Plate 1) were observed for all 

altitude sections along the Aleutians during mission 5 and near 
the eastern Chinese coast during mission 13, both of which have 

trajectories suggesting influence of Asian continental origin 

[Merrill, this issue]. Higher levels were observed near the North 
American and the eastern Asian coasts, with lower levels in the 

mid-Pacific. 

Except when near urban sources, hydrocarbons such as ethane 

(Plate 3) have significantly more small scale structure than the 

much longer-lived gases such as CFC-11 (see Plate 10). This 

enhanced hydrocaxbon structure is in addition to source locations 

and regional scale transport features and occurs because 

photochemical removal by hydroxyl is extremely important in 
determining the distribution of the relatively short lived NMHC 

species. Contributing to the relatively small scale variability in 

the concentrations of many of the trace gases (as seen in Plates 1- 

10), tropical storm Luke (mission 6) and Typhoons Mireille 

(mission 9) and Nat (mission 10) transported clean Pacific air 

north to the Japanese region. Therefore the highly structured 

features of the data reflect the influence of both transport and 

photochemistry on the complicated mix of sources and their 
distributions. 

The ethane contours in Plate 3 show two prominent features, 

both at an altitude of 11 km, and exhibiting very low 
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Plate 7. i-Pentane mixing ratios in pptv as latitude-altitude and 
longitude-altitude 3-D contours. 

concentrations. They are centered at 55øN and 48øN for the 
altitude-latitude contour and at 155øW and 160øE for the altitude- 

longitude contour. These features represent samples that were 

collected near Anchorage, Alaska, and south of the Kamchatka 

Peninsula, Russia, during missions 4 and 5 (San lose-Anchorage- 

Tokyo). Both regions were associated with very high ozone 

concentrations due to intrusions of stratospheric air [Bachmeier 

et al., this issue]. The CH3CCI 3 and C2C14 contour plots, shown 
in Plates 8 and 9, also clearly illustrate the position of the 

intrusion encountered near Anchorage during mission 4. 

However, mixing ratio data for C2C14 and CH3CC13 were not 

available for most of mission 5 because of analytical difficulties 

encountered at the beginning of the field mission. These 

problems also meant that CFC-11 data were affected for both 

missions 4 and 5. In addition, water vapor levels were extremely 

low in the stratospherically influenced air masses of missions 4 

and 5, causing wall losses to occur for some of the assayed 

halocarbons. Subsequently, it has been found that the addition of 

small aliquots of p.urified water vapor to each sample canister 

immediately prior to its deployment in the field effectively 
eliminates such losses. 

Rapid Vertical and Long Range Transport 

The previous discussions of Table 3b and Plates 1 to 7 

revealed that a strong feature of the averaged PEM-West A data 

was a free-tropospheric mixing ratio enhancement, typically 
above 7 km. In addition, 13 out of the 18 missions show at least 

one vertical profile where the trace gas concentrations increase 
with altitude. Such observations are consistent with the earlier 

STRATOZ II and STRATOZ lIl campaigns which took place in 

the Atlantic [Ehhalt et al., 1985; Rudolph, 1988; Ehhalt, 1992] 

and with the Atmospheric Boundary Layer Expedition (ABLE) 

3A, and ABLE 3B projects in Alaska and eastern Canada [Blake 
et al., 1992, 1994]. 

A typical vertical profile of ethyne up to 8 km is shown in 

Figure 3. This vertical ascent was made approximately 1000 km 

SE of Tokyo during mission 8 and exhibits enhanced ethyne 

mixing ratios both in the PBL and above 7 km, with relatively 

low concentrations at intermediate altitudes. Trajectories show 

that two days prior to being sampled, the air at 8 km had been 
transported from northern India, over central China, then southern 

Japan, while the cleaner lower free tropospheric air exhibited 

trajectories with central Pacific origins [Merrill this issue]. An 

important tropospheric mechanism for the injection of such 

relatively high concentrations of trace gases into the middle and 

upper troposphere has been suggested previously by Ehhalt et al. 
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Plate 8. CH3CCI 3 mixing ratios in pptv as latitude-altitude and 
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this latitude (see Figure 2) the feature appears to be decoupled 

from the sources below. Also, Plate 3 includes samples from 

mission 4 which were collected only a few degrees south of the 

enhanced mission 5 samples, but were separated by more than 
40 ø in longitude from those from mission 5, and which have 

lower mixing ratios. The difference between the two missions is 

illustrated in Figure 4 which shows two vertical profiles of 

ethane. One profile, showing significantly lower ethane mixing 
ratios at all altitudes (0-8 km), was made during mission 4 in the 

Gulf of Alaska (46.8ø-51.1øN and 131.7ø-139.4øW), the other 

took place during mission 5 along the Aleutian Islands (52.6øN 

and 177.7øW-175.1øE). Thus the mission 5 enhancement is likely 
to have been a more general free tropospheric feature than it 

appears in the latitude-altitude plot of Plate 3, demonstrating the 

importance of using Figure 2 and both latitude and longitude 3-D 

contour plots in conjunction. 

The air mass exhibiting the general enhancements observed 

during mission 5 has a back trajectory originating from the region 
of northeastern Siberia and Kamchatka [Merrill, this issue]. It 

also exhibits particularly high concentrations of methane [Collins 

et al., this issue], ethane, and propane. This composition suggests 
a source resembling natural gas and/or venting from oil fields. 

However, the lack of halocarbon data for those samples makes 

the source determination less certain. In addition to natural gas, it 
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[1985] and others to be rapid vertical transport. Vertical 2 

structure, such as that shown in Figure 3, represents the free 

tropospheric enhancement as a layer that is not directly coupled to 0 
a source region, implying that the trace species do not originate 

from immediate local sources but are more likely from convective 

events in the continental interior, followed by long-range 100 
transport. The generally high levels of longer-lived ethyne (see 

Plate 4) and low levels of very short-lived NMHCs observed in 
the middle-upper troposphere (see Table 2 for lifetimes) also 12_ 
suggest that the sources had a large combustion constituent and 

may originate from deep in the Asian continent. In support of 10 

this, trajectory analysis suggests that a large number of middle- 
upper tropospheric air parcels sampled had deep continental • 8 

origins [Merrill this issue]. The general trend of relatively high E 
mixing ratios of 210pb (a good tracer for continental air) .• •- 
observed up to 10 km near the Asian continent also supports an 

Asian continental origin for much of the trace gas enhancement 4 
observed over the western Pacific at all altitudes [Talbot et al., 

this issue]. 2 

A related feature, seen in many of the latitude-altitude 0 

hydrocarbon contour plots, particularly ethane (see Plate 3), is a 

region of high concentration centered at about 56øN and 8 km 

that was sampled over the Aleutian Islands during mission 5. 

Because few samples were collected above and below 8 km at 
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Figure 3. Typical vertical profile of ethyne in pptv made over the 
Pacific SE of Japan during Mission 8. 

is possible that this air mass could have originated in the region of 
Siberia, then spent days to weeks over the Bering Sea. At that 

point most of the reactive NMHCs would have been 
photochemically oxidized by HO, leaving the observed signature 
of enhanced long-lived hydrocarbons. 

The potential for a typhoon to drive rapid vertical transport is 
illustrated for NMHCs as a large hydrocarbon-enhanced plume 
centered at about 22øN and 120øE over the Pacific at 12.5 km and 

shown for ethane, ethyne, propane, and benzene in Plates 3 to 6, 
respectively. This air mass was sampled at the end of mission 10 
east of Taiwan and southwest of Okinawa (19.0 ø to 24.0øN and 

120.9 ø to 125.7øE). Ten samples were collected in the plume and 

their halocarbon and hydrocarbon concentrations are shown in 

Tables la and lb, respectively. It can be seen that methane, 

ethane, ethyne, propane and other nonmethane hydrocarbons 
were significantly enhanced above the very low concentrations 
associated with the air surrounding it. However, the halocarbon 

and hydrocarbon composition of this high-altitude plume are very 
similar to the background boundary layer levels employed for the 
Hong Kong (mission 13) and South Korea (mission 13) plumes 
(Tables la and lb). The halocarbon concentrations associated 

with this plume were not enhanced and confh'med that the air 
mass sampled in mission 10 had not come directly from a heavily 
industrialized urban source area such as Tokyo or Hong Kong. 

This is consistent with meteorological analysis which suggests 

that fast convection associated with nearby Typhoon Nat, was 

likely to have swept surface air up to the upper troposphere 
[Bachmeier et al., this issue]. Thus the aged free tropospheric air 

at high altitude probably had a very different origin from this 

plume, precluding its use to represent appropriate plume 

background conditions. 

Further evidence of typhoon activity affecting the high-altitude 

atmospheric trace gas composition was observed during mission 9 
and can be located on the NMHC contour plots (Plates 3 to 7) as 

two enhanced regions between 10 and 12.5 km, centered at 

approximately 33 øN and 130øE. The entire high-altitude portion 
of this mission, which took place along the perimeters of Kyushu 

and Shikoku, the southernmost of the four main Japanese islands 

(32.0'-35.2'N, 129.1'-137.0'E), exhibited enhanced NMHC 
mixing ratios. Transport of these gases above 10 km is att•ibutecl 

to the fast convective transport observed near the top of Typhoon 

Mireille [Newell et al., this issue] which, during mission 9, was 

centered approximately 50 km to the southwest of Nagasaki, 
Kyushu Island, Japan (32.2'N, 129.0'E). Plate 7 shows that the 

short-lived NMHC i-pentane (lifetime about 5 days) exhibited a 
greater enhancement than for the mission 10 plume, which was 

sampled in the same altitude range approximately 10' to the 
south. Dimethyl sulfide, which is a useful marker for oceanic 
boundary layer air, was also elevated above the free tropospheric 

background levels [Newell, et al. this issue]. The presence of 

these gases suggests that the air in this mission 10 plume was 
more recently in contact with the surface. The ethane 

enhancement seen in Figure 5 for mission 9 is relatively small in 

comparison to that for mission 10 and the halocarbons were not 

significantly enhanced; however, the NMHC concentrations 
indicate the influence of some combustion from the western 

Pacific coastal regions. 

Small Scale Features 

Two plumes of interest were encountered during mission 13. 

In the first plume, six samples were collected at 390 m altitude 

about 300 km off the eastern Chinese coast. Trajectory analysis 

indicates the air parcel came from South Korea the previous day 

[Merrill, this issue]. The f'mgerprint is shown in Tables l a and 

lb (South Korea). The second plume encounter was at 650 m 
over the Taiwan Strait (between China and Taiwan) during which 

13 samples were collected (see eastern China plume in Tables la 

and lb). This air parcel had been moving south along the eastern 

Chinese coast for the previous 5 days [Merrill, this issue]. Both 

plumes had enhanced CH3CC13, and C2C14 concentrations and 

low concentrations of short-lived alkenes compared to the alkanes 

and ethyne, indicating that they were urban in origin but had 

undergone photochemical aging for at least 2 days. The eastern 

China plume had propane, n-butane, and ethyne contributions 

5 

•• M05 Aleutian Islands 

M04 Gulf of Alaska • 

0 

500 600 700 800 900 1000 1100 1200 

ETHANE (pptv) 

Figure 4. Vertical profiles of ethane in pptv made over the Guff 
of Alaska during Mission 4 and near the Aleutian Islands during 
Mission 5. 
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more similar to those of Tokyo than Hong Kong. By contrast, the 

South Korea plume had lower ethyne and the highest propane 

contribution, which may indicate greater. use of bottled propane 

for cooking and/or heating in its region of origin. However, 
further characterization of these two NMHC fingerprints is very 
difficult in the absence of source data from Korea and China. 

If the two mission 13 halocarbon fingerprints are compared 

with those for Tokyo and Hong Kong, it can be seen that 

CH3CC13 is the dominant halocarbon species, accounting for 
50% of total halocarbons over background in the first South 

Korea plume and 30% in the second eastern China plume. 

However, the CC14 contribution of 3% to the Tokyo and Hong 

Kong fingerprints is very small, whereas the CC14 contribution 

from the South Korea and eastern China plumes was much higher 

at 12% and 15%, respectively. With the exception of CC14, the 
eastern China halocarbon fmgerprint was very similar to that for 

Hong Kong, and the South Korea halocarbon fingerprint was 

more similar to that of Tokyo, probably due to the different types 

of industry and consumption in each region of origin. 
Another plume, encountered during mission 14 at an altitude of 

430 m and at a location about 500 km northeast of the 

Philippines, was quite different in character. As shown in Table 

l a, the halocarbon fingerprint, calculated from 17 plume and 2 

background samples, was, except for C2C14, almost identical to 

that of Tokyo. Methyl chloroform was again the dominant 

halocarbon constituent. Trajectory analysis shows that the air 

parcel traveled over southern Japan and had recently been in close 

proximity to South Korea [Merrill, this issue]. The NMHC 

fingerprint in Table lb shows that the percentage NMHC 
composition follows the order of atmospheric lifetime for each 
NMHC (Table 2), with the alkenes and shorter-lived allcanes 

having decayed to or near zero concentrations over background, 
suggesting that the air parcel had undergone substantial 

photochemical removal and dilution with pristine background air. 

This is a likely scenario because the encounter took place on the 

western outskirts of Typhoon Orchid. Thus, the air parcel had 

probably spent 2 to 3 days over the Pacific Ocean prior to being 
sampled [Merrill, this issue]. 

Comparison With Previous Work 

Several sets of vertical profiles have been published describing 

trace gas measurements over the Ariantic and elsewhere over the 
Pacific Ocean [Ehhalt et al., 1985; Dickerson et al., 1987; 

Rudolph, 1988; Singh et al., 1988; Greenberg et al., 1990; 

Bonsang et al., 1991; Blake et al., 1992; Ehhalt, 1992], with four 

sets from the Pacific regions of northern California, Alaska, and 

French Polynesia. The PEM-West A project provided an 

opportunity to cover a large part of the northern and western 

Pacific, collecting the largest number of whole air samples in this 
region of any project to date. No hydrocarbon vertical profiles 

were previously available for the western Pacific region. The 

STRATOZ 11 and STRATOZ 11I results were published in the 

form of latitude-altitude profiles [Ehhalt et al., 1985; Rudolph, 

1988] and took place in April - May. 1980 and June 1984 over the 

Atlantic. Singh et al. [1988] provides a NMHC vertical profile 
over northern California (38øN) for February 1985, and Bonsang 
et al. [1991] have published NMHC profiles over the Hao atoll 

(18.1øS, 141.0øW) for May to June 1987. Vertical profiles over 

Bristol Bay, Alaska (61.1øN, 162.0øW) and the Bering Sea 

(58.3øN, 168.0øW) during ABLE-3A in August, 1988 were 

published by Blake et al. [ 1992]. 

Using data from STRATOZ and other missions, Hough [1991] 

developed a latitudinally averaged two-dimensional model. 

Comparison of the PEM-West A contours to Hough's model 

prediction for July and October indicates that the PEM-West A 
ethane measurements exhibited lower surface values between 

30øN and 60øN. Ethane levels were in the range of 400 - 600 

pptv compared to the 750 to 1250 pptv predicted by Hough's 
model. Perhaps the lower values were a result the PEM-West A 

flight tracks being further away from the continent compared to 
STRATOZ II and I11 which were flown in the Atlantic. 

Convective activity over the equatorial region is suggested by the 
PEM-West A contours. Convection associated with elevated 

NMHCs over the equatorial Pacific was encountered in February 

1992 during the AASE 11 project (D. R. Blake et al., unpublished 
data, 1995). In addition to the lower ethane concentrations and 

lack of polluted equatorial convection, the observed typhoon- 

driven convection to the upper troposphere was not addressed by 

Hough's model. During PEM-West A the propane concentrations 
in the equatorial and subtropical regions were 50 pptv or less, 

while the model predicts levels of up to 250 pptv near the 

equatorial surface, decreasing to 50 pptv at 12 km. However, the 

model successfully predicts the observed enhancement in the 

middle-upper troposphere at latitudes above 40øN. The PEM- 

West A results compliment the existing data and should add 
significantly to the development and ref'mement of models. 

Conclusions 

The results presented here cover a suite of trace gases with 

lifetimes ranging from approximately 50 years to as short as a 

few hours (see Table 2), providing a valuable too1 with which to 

study transport processes and the impact of Asian pollutants on 

the Pacific region. Data from the PEM-West A mission appear to 

confirm that the occurrence of enhanced mixing ratios of NMHC 

and other trace gases in the middle-upper free troposphere is 

caused by convective processes, including convective outflow 

from the Asian continent. Cloud-driven convective activity over 

land and typhoon-driven convection over the ocean strongly 

influenced the distribution of trace gases over the northern 

Pacific. The collection of urban samples has established 

CH3CC13 as a good tracer for coastal Asian induslxial activity. 
This study also underlined the need to identify and characterize 

different pollution sources in Asia. This project established a 

three-dimensional dislxibution for a large suite of Ixace gases in a 

season with expected m'mimum continental outflow and set a 

good foundation for comparison with the maximum continental 

outflow events expected during the PEM-West B project flown in 

early 1994. 
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