ON THE SIMILARITY TRANSFORMATION BETWEEN
A MATRIX AND ITS TRANSPOSE

OLGA TAUSSKY AND HANS ZASSENHAUS

It was observed by one of the authors that a matrix transforming
a companion matrix into its transpose is symmetric. The following two
questions arise:

I. Does there exist for every square matrix with coefficients in
a field a non-singular symmetric matrix transforming it into its transpose ?

II. Under which conditions is every matrix transforming a square
matrix into its transpose symmetric ?

The answer is provided by

THEOREM 1. For every n x n matriz A = («a,,) with coefficients in
a field F there 1s a non-singular symmetric matrix transforming A
wnto its transpose A’.

THEOREM 2. Every non-singular matriz transforming A into its
transpose is symmetric if and only if the minimal polynomial of A is
equal to its characteristic polynomial i.e. if A is similar to a com-
panion matrix.

Proof. Let T = (t;;) be a solution matrix of the system 3)(A4) of
the linear homogeneous equations.

(1) TA— A"T=0
(2) T—-T"=0.
The system >)(A) is equivalent to the system
(3) TA— A"T"=0
(4) T—-T"=0

which states that 7 and TA are symmetric. This system involves #® — n
equations and hence is of rank n* — n at most. Thus there are at least
n linearly independent solutions of > (A).!

On the other hand it is well known that there is a non-singular
matrix 7T, satisfying

TAT' = A",
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From (1) we derive
(1a) Ti'TA = AT'T
and conversely, (1a) implies (1) so that therc is the linear isomorphism
T— T, T

of the solution space of (1) onto the centralizer ring of the matrix A.

If the minimal polynomial of A is equal to the characteristic poly-
nomial then the centralizer of A consists only of the polynomials in A
with coefficients in F. In this case the solution space of (1) is of di-
mension n. A fortiori the solution space of >\(A4) is at most of dimen-
sion n since the corresponding system involves more equations. Together
with the inequality in the other direction it follows that the dimension
of the solution space of >\(A) is exactly wm. This implies that every
solution matrix of (1) is symmetric.

If the square matrix A is arbitrary then we apply first a similarity
(in the field F') which transforms it to the form

where A, is a square matrix of the form

LA
L ,A
L,A

L,A

Here ,A is the companion matrix of the irreducible polynomial p
which is a factor of the characteristic polynomial of A and L is the
matrix with 1 in the bottom left corner and 0 elsewhere, of appropriate
size (Reference 1, p. 94). The matrix A is derogatory if two blocks A,
corresponding to the same p appear in B. Let A, and A, be two such
blocks.

There is a non-singular matrix Y satisfying

Y,A=,A"Y.

The matrix of matrices V that has Y in the top left corner and 0 else-
where, of appropriate size, satisfies
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VA, = AV .

Consider then the matrix

S,

where S, is a non-singular matrix transforming A4, into A?. It is a non-
singular non-symmetric matrix which transform B into its transpose.
Thus Theorem 2 is proved.

REMARK. M. Newman pointed out to us that the product of two
non-singular skew symmetric matrices B, C can always be transformed
into its transpose by a non-symmtric matrix, namely

B-'BCB = (BC)* = CB..

Theorem 2 shows that such a product BC must be derogatory.> This can
also be shown directly in the following way:

Let N be a characteristic root of BC and « a corresponding charac-
teristic vector, then

BCx = Mz .
Since B is non-singular this implies

Cx = \B™'x
or

(C—AB)2=0.

Since B is a non-singular skew symmetric matrix, it follows that the
degree of B and hence the degree of C—A\B~! is even. Moreover, the
skew symmetric matrix C — AB~! has even rank.

2 Although Newman’s comment is only significant for fields of characteristic % 2 the
remainder of this section holds generally if skew symmetric is understood to mean 7T'=
— TT and vanishing of the diagonal elements. We observe that this definition is invariant
under the transformation 7'-> X7T'X. This is the transformation 7' undergoes when the
matrix A in (1), (2) undergoes the similarity transformation 4 - X-14X. Since this trans-
formation preserves linear independence, we are permitted to apply it for the purpose of
finding a non ‘skew symmetric’ solution of (1), (2). We now extend the field of reference
to include the eigenvalues of A (from the theory of homogeneous linear equations it fol-
lows that the maximal number of linear independent solutions will remain the same). It
can then be observed that for a block of the Jordan canonical form of a matrix any matrix
with all coefficients zero excepting the first diagonal coefficient satisfies (1), (2). Therefore
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It follows that another vector y exists such that also
(C—XBYHYy =0
and hence also
BCy = \y .

This implies that ) is a characteristic root of multiplicity at least two
and with at least two corresponding vectors. The product of two gener-
al non-singular skew symmetric matrices B, C has every characteristic
root of multiplicity exactly 2. For, specialize to the case B = C. Then
BC is a symmetric matrix whose characteristic roots are the squares
of the roots of B, hence all exactly double for a general B. This shows
that the general BC has all its characteristic roots double with two in-
dependent characteristic vectors. Such a matrix is derogatory and its
characteristic polynomial is the square of its minimum polynomial.
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for any matrix A we can find solutions of (1), (2) that are non ‘skew-symmetric’.
3 This paper which is related to our investigation was pointed out to us by the referee
to whom we are indebted for other useful comments,



