
Ann. Rev. Phys. Chem. 1986.37 ." 401-24

Copyright © 1986 by Annual Reviews Inc. All rights reserved

ON THE SIMULATION OF

QUANTUM SYSTEMS"

PATH INTEGRAL METHODS

Bruce J. Berne

Department of Chemistry, Columbia University, New York, New York
10027

D. Thirumalai

Institute of Physical Science & Technology, and Department of Chemistry
and Biochemistry, University of Maryland, College Park, Maryland 20742

INTRODUCTION

Feynman’s path integral formulation of quantum statistical mechanics (1)
makes possible the computer simulation of quantum many-body systems
of chemical and physical interest [(2a,b) ; for a review of recent progress
in this field see (3)]. According to this formulation1 the canonical partition
function is

Q(fl, v) = dX l " Dx(z)e- stx(~)~

where

f0flhS[x(z)] = dz,Ct~(x(z))

is the Euclidian action corresponding to the path x(z) in Euclidean (or

~ For simplicity we discuss particle motion in one dimension. These expressions are easily

generalized. Because many questions still remain about finite temperature simulation of

Fermions, we omit discussion of this here.
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402 BERNE & THIRUMALAI

imaginary) time z ; ~(x(v)) is the path dependence of the Hamiltonian;

ff Dx( ) [...1

¯ represents an integration over all paths starting at x(0) = x l and ending
at x(flh) = x~. In the discrete path representation, the Euclidean time ¯ is
discretized in units e = flh/P where P is an integer and the continuous path
x(z) is approximated by straight-line paths between neighboring Euclidean
times. This allows Eq. 1 to be expressed as

( rnP’~e/2f fQv = \2nflh:,l J"" dXl...dx, e-P%(x’ ~, ;p) 3.

where x, = x(tflh/P), xe+ 1 = xt, and

mr
(x,-x,+l)2+ Y,V(x,).(I)p(Xl...Xp;~) -- 2f12h 2 t=l

t=l

4.

Since Eq. 3 is equivalent to the classical configurational partition function
of P classical particles with potential @p, the quantum system is said to be
isomorphic (46) to a .classical P particle cyclic chain polymer in which
each particle t interacts with its neighbors t-1 and t+ 1 through a
harmonic potential with force constant mP/h2fl2, and each particle t experi-

ences the potential V(xt)/P. Clearly Qp is an approximation to the true Q.
It is easy to prove (7) that

0, > Q and Q =

The classical isomorphism embodied in Eq. 4 has several features worth

noting. For a free chain the rms bond length is proportional to (~h2/mP) 1/2.

The classical isomorphism will be a good approximation only if the poten-
tial, V(x), does not vary much over the rms bond length. If a is a charac-
teristic distance specifying the length scale on which V(x) changes, then

<< P,
mo-2

¯ "-and we see that the lower the temperature (fl-1), the larger P must be. 

path integral simulations one empirically determines and uses that P
beyond which the thermodynamic properties do not effectively change.

The isomorphic classical system can be simulated by Monte Carlo tech-
niques (8). 2 An alternative approach is to use molecular dynamics to

2 For an earlier application of path integral Monte Carlo techniques to quantum problems,

see (9).
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PATH INTEGRAL METHODS 403

evaluate path integrals (see below) as was done by Parinello & Rahman
(10).

To use the classical isomorphism, configurations can be sampled from
exp [--fl(~p(Xl... Xp;fl)] by using Monte Carlo techniques, thus generating
a trajectory in configuration space. This is called path integral Monte

Carlo (PIMC). Estimators for various quantum observables can then 
averaged over this trajectory. Although this appears to be straightforward,
complications can arise, and it is often necessary to devise more accurate
estimators. The question of convergence of the properties of the quantum
systems as a function of P must be addressed. It is important to realize
that different properties converge differently as P is varied. For example,
for a harmonic oscillator, the Helmholtz free energy converges much more
rapidly with P than does the internal energy.

Eq. 3 can also be cast in the form

Qr= f dpl...dpp f dxl...dxpexp[-~a~o.] 5.

where

Ho~= ~m, +Op(xl...x,;fl). 6.
t~l

Integration over (p~ ..... pp) shows that with the proper choice of m’ we
recover Eq. 3. In fact, rn’ can be adjusted for convenience. This offers a

different method for simulating quantum systems. The effective Hamil-
tonian, M%, gives rise to classical equations of motion

t= 1 ..... P. 7.
P, = - O~odOX,

This suggests that classical MD methods can be used to simulate the
equilibrium properties of quantum systems (10). Starting with a given state

(xt... xp, p~...pp), one integrates the equations of motion numerically. If
the system is ergodic, averages of estimators over these ergodic trajectories
give corresponding thermodynamic properties. The Hamiltonian flow con-
serves energy. Thus one ages the system as in classical MD by scaling the
velocities until the average kinetic energy is (p/2)kT. Such molecular
dynamics simulations are called path integral molecular dynamics (PIMD).

There is one major problem with this approach. Hall & Berne (11) have
shown that for large P the Hamiltonian system will be in the KAM regime
(Kolmogoroff-Arnold-Moser) and the dynamical system will very likely 
nonergodic. These authors suggest the following method for circumventing
this problem. A classical trajectory is generated for a number of classical
time steps, upon which new momenta are sampled from the Maxwell
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404 BERNE & THIRUMALAI

distribution. This ensures the sampling of all important regions of phase

space. Variations of this scheme have recently been used by Kogut [for a
brief review see (12)] in lattice gauge simulations involving fermionic
degrees of freedom.

It is important to recognize that the classical trajectories have nothing

to do with the real dynamics of a quantum system. The dynamics in this
isomorphic system simply provides a simple algorithm for simulating the
equilibrium properties of the system. How then can one simulate the real
time dynamics of a quantum system? This is a very difficult problem. Some

progress has been made toward the goal of determining two point time-
correlation functions using PIMC and PIMD. This is outlined in the

section below.
In the foregoing we discussed the problem of evaluating the partition

function of quantum systems--the fundamental object in equilibrium

statistical mechanics. The canonical density matrix in the position rep-
resentation is

#(x, x" ; 8) = (xle-anlx’>

and the partition function is

Q = Trp = f dx(xle-~"lx).

One method for deriving the Feynman path integral is to write p as a
matrix product,

p(Xl,Xp+l;fl)= dx2...dx p H p(xt, Xt+l;e) 10.

where e = flip.

Now in the limit P-~ oo, e--, 0 and one can use the semiclassical
approximation (13)

p(x,, x,+ 1 ; ~) °%

(m/2~h2e)l/2exp_[m,) ( ~V 2~ £X, __ Xt + lh 2 .q_ ~ V(x,) (x,+ 1) 11.

Substitution of this into Eqs. 10 and 9 gives Eq. 3. Let #(~) denote the
matrix of e-‘I~ in the position representation. Matrix products then give

~(~)~(~) = ~(2e)

t3(2~)t3(2e) = ~b(4e) 12.

/3(4e)/3(4e) =/~(8e), 
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PATH INTEGRAL METHODS 405

Clearly if we start with t~(e) (cf Eq. 11), n matrix multiplications 
iterations) give p(2%). If we choose P = 2", then 2"e =/3, and this set 
iterations gives the same answer as the full path integral and provides a
simple method for determining the density matrix in a small-dimensional
problem. For example, consider a one-dimensional system. If the particle
moves in a localizing potential, then the space axis can be divided into N
equal intervals and by using Eq. 12 p(x,x’;e) can be calculated at the
points of the NXN square lattice. This space latticization yields an NXN

matrix for ~(~). Then one can perform n matrix multiplications to get
p(x, x’ ;/~) (14a,b). This numerical matrix multiplication scheme (NMM)
provides a very rapid and "exact" method for determining the density
matrix. It can be used to determine a two-body quantum effective potential.
Since p(x, x;/3) = p(x) gives the spatial dependence of the density, we
define the quantum effective potential W(x),

p(x) = #°)(x)e 13.

where p~°)(x) is the free particle density. NMM can be used to evaluate
W(x;/3), which turns out to be sorer and shallower than the potential
energy V(x). Following a suggestion of Barker (2a), Pollock & Ceperley
(15) proposed that a short time approximation that might converge more
rapidly as a function of P than Eq. 12 is one which uses W(x ;/3) in the
form

~(x,x" ;~) = (m/2rchZ~)l/Ze- (x--x’)2+ [W(x;8)+ W(x" ;~)1 .

14.

fi differs from Eq. 12 in that V(x)+ V(x’) is replaced by the quantum
potential W(x; ~) + W(x"; ~). The hope is that with t~ the simulation will
converge for much smaller P. This approach has been adopted without
any published tests. If t~(x, x’ ; ~) is used in NMM for a harmonic oscillator

it turns out that the primitive algorithm converges more rapidly than this
effective potential algorithm.

At a given temperature, T, P must be taken large enough such that the
results do not change significantly for larger P. If P is very large the force
constants in Eq. 4 become so large that only very small particle moves are
accepted. One is then dealing with a very stiff polymer chain that relaxes
very slowly. Several strategies have been adopted to handle this problem.

1. By transforming the kinetic energy part of the action to normal
modes, all modes can be sampled efficiently and, moreover, the zero
frequency mode (corresponding to the translation of the whole polymer)

www.annualreviews.org/aronline
Annual Reviews

A
n
n
u
. 
R

ev
. 
P

h
y
s.

 C
h
em

. 
1
9
8
6
.3

7
:4

0
1
-4

2
4
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 C

o
lu

m
b
ia

 U
n
iv

er
si

ty
 o

n
 0

5
/0

1
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

http://www.annualreviews.org/aronline


406 BERNE & THIRUMALAI

can be sampled such that convergence is much more rapid (15, 16). Even
without using normal modes it is advisable to alternate single bead moves

with translational moves of the whole polymer. This insures sampling of
many more solvent environments.

2. Fourier path integral techniques can be exploited (17). If one trun-
cates the number of Fourier modes, this method is equivalent to the normal
mode approach. Recently an algorithm (18) has been discussed that treats
the low frequency modes exactly but treats the high frequency modes in a
kind of mean field theory. This method looks promising.

3. P can be reduced by using a higher order short time approximation

(19, 20) or by using renormalization group techniques to generate 
effective potential at the polymer beads (4a,b, 19, 21).

4. Staging algorithms have proven useful (22). In a staging algorithm
one moves a primary polymer chain with relatively small P as though it
represents a free quantum particle and accepts or rejects the move by
introducing secondary chains between each Euclidean-time adjacent pair
of beads.

5. Umbrella sampling techniques can be used to reduce P. If V(°)(x) is
a reference potential for which the exact density matrix p(°)(x, x’, e) 
known, since V(x) = V~°)(x) + A one can write the sh ort time a pproxi-

mation as

p(x, x’, e) = p(0)(x, x’ ; e) exp { -- e/2 V(x) + AV(x’)]} 15.

and configurations are sampled from the distribution

p(°)(x,,x,+l;e e-’ ~ AV(x,).
t=l

Friesner & Levy (23) have used a harmonic reference system with con-
siderable success. Clearly, this general approach can be quite useful.

All of these methods have proven useful in different systems. For ex-
ample, staging (22) is particularly .useful in the study of strong short-range
repulsive potentials. Nevertheless, it should not be assumed that because

it is particularly effective in treating one kind of system it is naturally
superior to other methods when applied to another system, as is sometimes
claimed in the literature: For example, tests show that staging (method 4)
is no better than method 1 for soft potentials like harmonic oscillators (D.
F. Coker, B. J. Berne, work in progress). In fact, if one alternates single
particle moves and center of mass (COM) moves, one can achieve con-
vergence times comparable to those found.by using staging. It is clear that
much remains to be learned about the simulation of equilibrium systems.
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PATH INTEGRAL METHODS 407

TIME CORRELATION FUNCTIONS IN QUANTUM

SYSTEMS

Time correlation functions play a central role in the theory of dynamic
processes in many-body systems (25-27). Transport properties, chemical
reaction rate constants, spectroscopic lineshapes, and neutron and light
scattering spectra can all be related to well-defined time correlation func-
tions. In classical many-body systems, Hamiltonian dynamics or stochastic

dynamics provide a basis for simulating time correlation functions. Unfor-
tunately, the calculation of these functions in quantum systems is a for-
midable problem. Here we review a method for calculating time correlation
functions in quantum and mixed quantum-classical systems based on path
integral techniques.

Equilibrium properties of the quantum system can bc obtained by solv-
ing the equivalent classical problem by using standard numerical tech-
niques (e.g. Monte Carlo and MD), as reviewed above. This formulation
of the density matrix has now been successfully applied to the calculation

of the equilibrium properties of several systems. Extending this procedure
to calculate time correlation functions necessitates inclusion of paths with
weights that are nonpositive in character. This arises because in the
expression for time correlation functions, both imaginary (thermal) times
and real times are simultaneously present. Direct application of Monte
Carlo leads to large phase fluctuations and thereby to very inaccurate
results. We have suggested two methods for circumventing this problem
(28-30a,b). In addition to these approaches, Hirsch & Schrieffer (31)
have proposed a method to evaluate dynamic correlation functions in the
ground state of the system. This method has been generalized to finite
temperatures as well (32). Behrman et a| (33) have attempted to evaluate
time correlation functions by direct application of importance sampling
techniques. Application of this method to the calculation of spin-spin
correlation function for a two-level system coupled linearly to a single
oscillator revealed that the method is reliable only at short times. In
one of the methods we have suggested, one defines a symmetrized time

correlation that lends itself to direct PIMC or PIMD simulation (29,
30a,b). In the second method, we simulate the system by using imaginary
time propagators only, and the real time behavior can then be inferred by
analytic continuation (28). This is very similar to the analytic continuation
used to determine properties of real time Green’s functions in N body
quantum systems from the knowledge of the corresponding imaginary
time (finite temperature) Green’s functions (34).

It is well known from linear response theory that the response of a
,system to a weak external field can be expressed in terms of a time cor-
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408 BERNE & THIRUMALAI

relation function of a dynamical property of the system (D. F. Coker, B.
J. Berne, work in progress). For example, the infrared absorption spectrum
is explicable in terms of the dipole-dipole correlation function, and the
translational diffusion coefficient is related to the velocity autocorrelation
function, etc. In this section we provide a general method to calculate the
autocorrelation function (A(OA(O)) where A can, in principle, be any
quantum mechanical operator representing the N body system. For
simplicity, let us consider the motion of a particle in a potential. The
generalization to N body systems is conceptually straightforward. The
Hamiltonian for the system is taken to be

2

H
= ~m + U(r),

16.

where p is the momentum, U(r) is the potential, and r is the coordinate of
the particle.

Consider the two functions,

Cas(t) = Q- 1Tr[e-#tt /leiHt/hBe-iHt/h] 17.

and

G,~B(t) = Q- ~ TrAe-mBe-H~’, 18.

where t is the Minkowski (real) time and z = (/~/2- it~h) is a complex time.
It is easily shown (29) that dAB(~O) = exp (-/~h~o/2)~m(~o) so that 
can be obtained from Gas(t) by Fourier inversion. If A and B are position

dependent operators, then in the coordinate representation

Gas(t)=Q-’fdxfdx’A(x)B(x’)l<xie-n*lx’>[ 2 19.

so that we need only determine the Green’s operator (x]e-m]x’). Only

for autocorrelation functions is Gas(t) an even real function of time.
These operators can be evaluated by using numerical matrix multiplication
together with the short time approximations (cf Eq. 12). This has been

applied to a tunneling oscillator ; Guu converges rapidly whereas a similar
evaluation of Cu~(t) (cf Eq. 17) leads to numerical instabilities even 
short times. This study shows that it would be inadvisable to use Monte

Carlo methods to evaluate Cuv(t). However, such methods should be stable
in the direct evaluation of G,,(t). This can be appreciated by studying the
explicit path integral form of Gas(t) 

(dxl ... dx2eA(xOB(xe+ 1)P(xI ... X2p) W(xI ... x2e)

Gas(t) = ’ 20.

fdXl.., dx2eP(x~... X2p
) 

W(xI... Xzp
)
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where P(xl... x2v) is the Monte Carlo sampling function (and the denomi-

nator insures normalization),

~
m~p2

P(x~ ...x~e) = knh~(~h~ +4t~)/ exp [-~(x~ ...x2e)] 21a.

Ze{mP

~ 1

}
¯ (x~...x~v) = ~ h~(#~h~+4t~) (xj-xj+~) + ~ 2lb.

j=l

and where Wis

W[XI... X2p] = exp (-- it~(x~... X2p)) 22a.

n = ~ [(~+4t~ ) [(x~-x~+ O~-(x~+e-x~+e+ ~)]~

1

}
p [~(x~)- V(x~+~)] ~b.

The basic approach is to sample the co~rations (x ~... x~) from Eqs.
21a,b, evaluate A(xOB(xe+ ~), and weight its cont~bution by ~(x~... x~).
Values of W must also be evaluated so that the denominator in Eq. 20 can
be calculated. Because ~ involves a phase factor that depends on the
differences between functions of the sampled configurations, it is expected
that cancellation will result and that the average will be much more stable

than would be the case for a direct attack on C~(t). This is borne out in
an NMM study of the tunneling of a particle in a double well potential
(29). Nevertheless, as t ~ m, the ha~onic force constant (cf Eq. 21b)
decreases, the polymer becomes delocalized, and the cancellation is less,
with concomitant large phase fluctuations. When there is rapid damping
by a bath or only short time info~ation is required, the phase fluctuations
do not cause problems. For nondissipative systems that must be followed
for short times, more accurate high temperature approximations for the
~reen’s operator in Eq. 19 must be employed. Re~ntly, it has been found
that by using a ha~oNc oscillator reference system with the exact density
matrix it is possible to use tNs method for nondissi~ative systems (32).
Beh~an & Wolynes have successfully used this method to study real time
correlation functions in a two-level tunneling system coupled to a ha~onic
bath with an Oh~c density of states (35). Their calculation indicates that
the simulation of the time correlation function from using ~(t) enables
one to investigate the dynamics of quantum systems over times longer
than in their earlier study. This enabled them to test the validity of va~ous
approximate theories as well.

TNs direct method can also be used to dete~ine electronic abso~tion
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410 BERNE & THIRUMALAI

and emission spectra at finite temperatures (30a,b). It offers a simple and

more accurate alternative to wavepacket dynamics (36). Another method
for calculating quantum mechanical time correlation functions appears to
be promising (28). In this method the time correlation function is calculated
by Monte Carlo techniques at several values along the pure imaginary axis
of the complex time plane. Using the periodicity of the Euclidean time
correlation function, the real time behavior is inferred by analytic con-
tinuation. This technique has been used to calculate the dipole-dipole
autocorrelation function for a particle moving in a Morse potential (28).

Recently, Miller et al have been applying path integral techniques to

calculate canonical rate constants for bimolecular reactions (37-39). The
purpose of this study is to explore the possibility of obtaining quantum

mechanical rate constants without having to obtain state-to-state rate
constants and then perform the usual Boltzman averaging. The necessary
formalism, which exploits the time correlation formalism for rate constants

for bimolecular reactions, is outlined by Miller et al (37). In a subsequent
application, Yamashita & Miller (39) have used the reaction path Hamil-

tonian formalism to calculate the flux-flux correlation function for the
three-dimensional H +H2 reaction at 300 K. They have found that the
ratio of the rate constant over the transition state result is in good agree-
ment with the calculation of Schatz & Kuppermann (40). In another
example, Jacquet & Miller (38) have calculated the quantum mechanical
rate constant for the diffusion of a hydrogen atom on a model W[100]
surface. The model assumes that the reaction coordinate is coupled to a
single surface phonon mode, and the coupling is assumed to be linear in
the phonon coordinate and nonlinear in the reaction coordinate. For this
model it was found that the coupling to the phonon coordinate tends to
increase the rate constant and thus the diffusion rate. The reason for this
is that the coupling to the phonon coordinate induces a shift in the effective
potential seen by the reaction coordinate (see also 41).

One of the important achievements in bimolecular reaction dynamics
has been the investigation of state-to-state reaction cross sections (42-44).
The calculation of microcanonical rate constants as a function of energy
for a given Born-Oppenheimer potential energy surface is a well-posed
problem in reactive scattering theory, and the solution can be reduced to
a set of Ncoupled channel Schrrdinger equations (see e.g. 45). The solution

of the N-channel problem yields the S matrix from which the state-to-state
reaction cross section can be obtained. This procedure was followed by
Schatz & Kuppermann (46, 47) for the reaction H+H2; however, this
approach is impractical for more complicated reactions. The micro-
canonical rate constant, k(E), can also be expressed as the flux-flux
autocorrelation function evaluated on the energy shell. Recently, Thiru-
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malai et al (48) have shown how to evaluate k(E) by using path integral
techniques. The success of this procedure was demonstrated by calculating
the tunneling probability as a function of energy for a particle tunneling
through an Eckart barrier. This basic methodology can be combined
with the reaction path Hamiltonian in the hope of calculating k(E) for
elementary bimolecular reactions (49). These methods provide an alternate
approach to the N-coupled channel technique.

SIMULATION OF QUANTUM MANY BODY
SYSTEMS

Structure of Liquid Neon

Argon, krypton, and xenon all obey the law of corresponding states
whereas helium and neon do not (50a,b). The reason is that helium and
neon display quantum effects at liquid state temperatures, whereas the
other inert gases are essentially classical at their liquid state temperatures.
The quantum properties of liquid helium give rise to superfluidity, while
neon does not display such dramatic effects, although quantum effects
cannot be ignored. Thirumalai, Hall & Berne (51) undertook the path
integral Monte Carlo simulation of liquid neon at T = 40 K. The potential

of interaction between the neon atoms was taken to be the Lennard-Jones
potential with e = 35.8 K and tr = 2.75/~. In this calculation the number

of quantum particles used was 108 and the number of beads on each neon
ring polymer was taken to be 40. It was shown that this was sufficient to
achieve convergence. This simulation also neglected exchange of identical
particles, because it was argued that the exchange contribution to the
partition function was negligible. The calculated radial distribution func-
tion indicates that at T = 40 K quantum effects are important. The notable
feature is the appearance of tunneling into the classically forbidden region.
In addition, the height of the first peak was lowered by a few percent. It
was noted that for r > 1.56 tr, the quantum g(r) is in good agreement with
the classical g(r). This indicates that quantum effects are negligible 
large distances, a conclusion that was independently reached by Powles &

Abascal (52), based on a semiclassical calculation. This represents the first
finite temperature simulation of quantum effects in liquids by using path
integral techniques. Thirumalai et al determined a quantum effective pair
potential by using NMM (cf Eq. 13) for neon and showed that classical
MD in this effective potential agrees well with the quantum simulation.

Low Temperature Properties of Liquid 4He

As reported in a recent paper, Ceperley & Pollock (100) have successfully
carried out simulations of liquid 4He in the temperature range 1-4 K. Their

www.annualreviews.org/aronline
Annual Reviews

A
n
n
u
. 
R

ev
. 
P

h
y
s.

 C
h
em

. 
1
9
8
6
.3

7
:4

0
1
-4

2
4
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 C

o
lu

m
b
ia

 U
n
iv

er
si

ty
 o

n
 0

5
/0

1
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

http://www.annualreviews.org/aronline


412 BERNE & TH1RUMALAI

calculations correctly incorporate the Bose statistics, and they were able

to devise numerical techniques to sample both the direct paths and paths
due to the permutation of the particles. The details of the simulations,

¯ which involve the construction of the trial paths for multiparticle moves,
have not yet been provided. The simulations were carried out for a periodic
system of 64 atoms. Ceperley & Pollock found that the pair distribution
function at 2 K was in excellent agreement with the neutron scattering
data (101) and that the exchange paths contribute very little to y(r) 
this temperature. The calculated values of the specific heat as a function
of T were also in good agreement with the experimental measurements.

However, the simulations of the condensate fraction, i.e. the fraction of
particles in the zero momentum state, were found to be higher than that
seen in experiments. This is probably due to finite size effects and is
expected to be quite an issue near the 2 transition. This study is nevertheless
impressive and marks the first attempt in the proper treatment of exchange
effects for Bose particles at finite temperatures.

Simulation of Pure Water

The thermal de Broglie wavelength, 2T = (h2/mkT) 1/2, of a proton at room
temperature is about 0.4/~. Consequently, it is of interest to examine the
importance of quantum effects on the structure of liquid water. This project
was undertaken by Kuharski & Rossky (53) for the ST2 model of water
(54) and by Wallqvist & Berne (55) for the central force potential for water
with the internal vibrations modeled by a set of Morse potentials (56a,b,
57). In the ST2 model, the water molecule is treated as a rigid body, and
consequently the location of the ith water molecule is specified by the

coordinates of the center of mass and that of the orientation. Thus, in
the short time approximation formula to obtain the primitive algorithm
one should include the term due to free rotation. This contribution,

P 0 (f~0, fl~t÷ 1) ; e), where ° denotes the orientation vector oftheith water
molecule at time t, is generally difficult to obtain for the asymmetric top
molecules. Kuharski & Rossky (53) obtained an approximate value for

P0 (f~!0, f~,+ 1) ; e) by calculating the action for rotation at constant angular
velocity around a fixed axis. With the appropriate short time approxi-
mation, they were able to obtain the primitive algorithm and calculate the
structural properties by using the standard Metropolis technique. For
details of the methodology the reader is encouraged to refer to the original
articles.

It is interesting that both these studies indicated that only small changes
in the radial distribution functions [#OH(r),gHH(r),goo(r)] were observed.

Rossky has pointed out that to produce such changes in classical ST2
water, one would have to change the temperature by 40 K. There is the
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usual softening of the structure with diminished peaks and raised valleys
due to tunneling effects. The maximum difference between these studies
occurs in the oxygen-oxygen radial distribution function. Wallqvist &
Berne (55) found that the first peak is slightly lowered and shifted outward,

and no effect is seen in the second solvation shell. In contrast, in the
simulation of Kuharski & Rossky, quantum effects seem to markedly
move the second peak outward, and the peak is much less structured
compared to its classical counterpart. This difference is perhaps due to the
difference in the model used.

Wallqvist & Berne (55) also simulated the structure of clusters of water
molecules, (H20)n with n = 1, 2, 3 at T = 100 K. This simulation can 
used to interpret the expected structure seen in molecular beam experi-
ments. [For a recent experimental study of the IR spectra of water clusters
generated in molecular beam experiments see (58).] The clusters were

simulated for the central force model of water. Quantum effects have a
profound influence on the structure of the moiety as inferred from the
radial distribution functions. Examination of the oxygen-hydrogen and
hydrogen-hydrogen radial distribution functions for the monomer indi-

cate that quantum widths are much larger than the classical widths. The
difference between the classical and the quantum 9HH(r) are more dramatic.
In the classical dimer there are two distinct structures; one corresponds

to the energy minima of the water dimer and the other corresponds to a
slightly tilted dimer, in which the hydrogen in the hydrogen bond is
displaced from the O-O axis. It has been shown by Wallqvist et al
(59) that when the temperature is lowered to 5 K, the classical dimer
can actually freeze into these distinct conformers. The quantum PCFS,
however, are much more diffuse, and the 9nn(r) does not show any non-
equivalent configurations. These differences are even more exaggerated
at 5 K. Two conformers of the water trimer were simulated. Following
Reimers & Watts, they are labeled the single dimer linear (SDL) and single

donor cyclic (SDC) conformers. The binding energy for the quantum SDC
and SDL trimers is higher than the corresponding classical trimers. The
most dramatic quantum effects are seen in the HH radial distribution
function. The classically ordered HH peaks are dramatically smoothed
out by quantum effects; the hydrogens tunnel into the classically forbidden
regions of configuration. A study of these effects at lower temperatures is
presented elsewhere (59).

MIXED QUANTUM CLASSICAL SYSTEMS

In many physical situations a single quantum particle will interact strongly
with a classical bath. Several interesting examples of this include electron
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and proton transfer reactions, electron transport, spectroscopy of mol-
ecules, and isomerization reactions. In all of these examples one can
usually treat the environment (be it a liquid, solid, glass, or cluster of

heavier atoms and molecules) classically and only a few of the degrees of
freedom quantum mechanically. To a large extent the path integral method
has been used to treat problems that can be viewed as mixed quantum-
classical systems. In this section we discuss such applications.

Electron Localization in Molten KCl

The properties of solutions of" alkali metals in molten alkali halides vary
significantly as a function of the concentrati.on of the dissolved metal (60,
61). The behavior of these solutions at a high concentration of the metal
is quite complicated, and the simulations of such systems involve the study

of strongly interacting fermions. However, in very dilute solutions it has
been noted that the dissolved metal ionizes to yield an electron and a

corresponding cation. The generally accepted physical picture is that the
electron substitutionally occupies the position of an anion, and these
electrons are thus analogous to F centers in crystalline alkali halides (62).
Parrinello & Rahman (10) simulated the behavior of a single electron in 
molten KCI. Using path integral molecular dynamics (cf Eqs. 15-17), they
calculated various equilibrium properties of this system, including the
binding energy of the electron, its diamagnetic susceptibility, the structure

of the molten KC1 around the electron, and the extent of localization of
the electron in KC1. The calculations were performed at 1000 K and 10.4
kb pressure with 150 K÷ ions, 149 C1- ions, and a single electron. The
ions were treated classically and the electron was treated as a cyclic chain
polymer with P beads. P was varied until convergence was obtained. One
of the advantages of this system is that the intermolecular potentials are
well known. The ions K÷ and C1- were allowed to interact through a
Born-Mayer potential,

Vii(r) = aije-’/°’~ + Z’ZJe~, 23.

where the parameters Po and AO are documented by Fumi & Tosi (63).
The interaction potential between the electron and C1- was taken to be
purely Coulombic,

Vec~(r) = e2/r, 24.

while the potential between the electron and K÷ was modeled by

-e2/R r < R
VeK÷(R) -- e2/r r > R

25.

www.annualreviews.org/aronline
Annual Reviews

A
n
n
u
. 
R

ev
. 
P

h
y
s.

 C
h
em

. 
1
9
8
6
.3

7
:4

0
1
-4

2
4
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 C

o
lu

m
b
ia

 U
n
iv

er
si

ty
 o

n
 0

5
/0

1
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

http://www.annualreviews.org/aronline


PATH INTEGRAL METHODS 415

where R = 1.96/~. As is customary, periodic boundary conditions were

used. Because the Coulomb potentials involved are long ranged, Ewald
summation was used [for a clear exposition see (64)].

The results of this simulation indicated that the binding energy of the
electron, which was taken to be the sum of the kinetic energy and the
potential energy, lies between - 3.74 eV and -4.27 eV as P is varied from
25 to 201. The variation in the binding energy with P for P > 25 is within
the statistical uncertainty of the simulation. It was also noted that the

variance in the kinetic energy is smaller when the virial estimator is used.
In order to test the hypothesis that the electron in the molten salt occupies
the position of a C1- ion with a solvation shell of the K + ions surrounding

it, Parrinello & Rahman performed a simulation with an electron ring
polymer with 201 beads dispersed over the entire system. They constrained
the electron ring polymer in this dispersed state for several thousand time
steps while the ions were allowed to execute the classical equations of
motion. After this they released the constraint on the electron ring poly-
mer; they noticed that in about 1000 time steps the electron ring polymer
took a compact localized structure. The electron K+ pair correlation
function clearly indicates that the coordination number of the electron

is close to 4. Thus, unlike the F center in a solid, where the electron is
surrounded by 6 K+ ions arranged in an octahedral configuration, it
appears that the geometrical configuration of K +ions around the localized
electron in molten KC1 is a tetrahedron. Finally, the radius of the electron
cloud was estimated to be (r 2) ~-- 4/~2, a value that is in accord with the
size of the hole seen in the F center in solid alkali halides.

Excess Electron in Alkali Halide Clusters

In light of these simulations of an electron in molten KC1, it is quite natural
to ask about the nature of electron localization in alkali halide clusters.
Landman et al (65) undertook a study of this problem. The parameters
in the interaction potentials [the forms of which are precisely the same
as those used by Parrinello & Rahman (10)] were adjusted to mimic
an electron in sodium chloride clusters. The clusters investigated were
e--CNa~4Clt3)+, e--(Na~4Clt2) 2+, and (e--[NasC14]) +. The electron was
found to be localized by both (Na14Cl~3)+ and (Nal4Clt2) 2+ clusters.
However, the nature of the localized states in these systems were markedly
different. In the case of the doubly charged cluster the electron was
internally localized by the cluster and the electron was surrounded by six
Na+ ions arranged in an octahedral configuration. This is exactly like
the F center in solids. However, in the case of the singly charged cluster,
the electron is essentially localized by a single Na+ atom and the electron
cloud is quite diffuse. Landman et al refer to this as a cluster-surface

localized state.
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Muonium in Water

Muonium (Mu), which contains a positive muon, has one ninth the mass
of hydrogen. Since Mu is an easily observable species, the study of the
reaction of Mu in solution has become a tool for understanding the

dynamics of light atoms in solution (66). Despite the mass difference
between H and Mu, for a large class of diffusion controlled reactions the

rate is determined by the solvent properties (66). In addition, the diffusion
constant of both these solutes are essentially the same in water. Using MD
techniques and empirical potentials for the hydrogen-water interaction,
Tse & Klein (67) discovered that the classical hydrogen does not occupy
the interstitial site of the hydrogen bounded network. They observed that

the H atom is clathrated in water, with a coordination number of around
18. In order to estimate quantum effects on the structure of Mu and H in
water, De Raedt et al (68) performed a path integral MD simulation. They
used 63 water molecules (whose motion was treated classically) and one

Mu with P -- 20 and 40, or one H with P - 5 to 10. The SPC model for
water was used. The results of their study indicated that there was little
difference between the classical H and quantum H and that Mu is also
clathrated in water but with a coordination number of 23. The difference
in solvation between H and Mu is attributed to quantum effects. Based on
this simulation they speculate that diffusion of Mu or H in water may
involve the motion of the elathrated species as a whole and hence will
involve the breaking and formation of the solvent hydrogen bonds. If this
is the mechanism, it may explain the lack of isotope effects seen in both
the self-diffusion and in the kinetics of the diffusion controlled reactions.

Behavior of an Electron in Helium Gas

The transport properties of an electron in dense gas have been the subject

of a great deal of experimental and theoretical investigation. In hefium, as
the gas density increases beyond a certain point, the electron mobility is
observed to drop, faster than the classical rate. Although a pure locali-
zation phase transition does not occur, a change in the dominant character
of the system seems clear.

R. P. Feynman (unpublished, reported in Ref. 25), Ferrell (70), 
Kuper (71) have suggested that at high He density the electron is trapped
inside a bubble. Hiroike et al (72a,b) have calculated the radius and energy
of this bubble by using a soft electron-He pseudopotential. The radius of

the bubble is determined by a compromise between the kinetic energy,
which delocalizes the electron, the repulsive electron-He potential, which
localizes the electron, and the free energy required to form the He-bubble
interface.

www.annualreviews.org/aronline
Annual Reviews

A
n
n
u
. 
R

ev
. 
P

h
y
s.

 C
h
em

. 
1
9
8
6
.3

7
:4

0
1
-4

2
4
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 C

o
lu

m
b
ia

 U
n
iv

er
si

ty
 o

n
 0

5
/0

1
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

http://www.annualreviews.org/aronline


PATH INTEGRAL METHODS 417

Recently, Bartholomew et al (73) reported the results of a path-integral
Monte Carlo simulation of an electron in dense He gas as a function of
He density that used a realistic, "soft" electron-He interaction (74). The
study was done at 77.6 K to make contact with the electric-mobility data

of Bartels (77). The results seem to be consistent with bubble formation.
In the simulation, VHo.Hc(r) is taken to be a Lennard-Jones 12-6 potential

with a = 2.576 ,~ and e = 10.22 K. Vc.H~(Jrj--xtl) is given by the pseudo-

potential of Kestner et al (74). The potential is maximum (0.32 a.u.) 
distance r = 0.61 ,~ and drops by one half at r = 1.1 A.

The radial distribution function of He atoms around the electron bary-
center is determined; this quantity is chosen because it can reflect whether
or not an electron bubble exists. The nonbarycentric, true distribution
function, less suited to signaling bubble formation (where there is no
translational invariance) was found not to be as sensitive to changes in
density.

The bubble radius, ~ 4_ 1 A at high density, is in excellent agreement
with the value R ~ 4.2 A given by Jahnke & Silver (78) for He gas at 

temperature T = 77.3 K, nearly the temperature used in the simulation.
It is interesting to compare these results to the hard sphere models (75,

76) simulated by Sprik et al (79). Their simulations were done for an excess
electron in a hard sphere solvent. The electron-solvent interaction was also
taken to be a hard sphere with the distance of closest approach being
d = a/2 where a is the hard sphere diameter. The simulations were done
using the staging algorithm for a temperature corresponding to ~, = 65.
They performed their simulations at five densities ranging from pa3 = 0.05
to pa3 = 0.37. The transition from an extended state of the electron to a
relatively compact state was found to occur in the density range 0.1-0.2.
Even in the density regime where the states are predominantly delocalized,
evidence for localized states induced by infrequent fluctuations in the
solvent was found. This, of course, is reminiscent of the Lifshitz traps
observed in quenched disordered systems. The results of this simulation
are in qualitative accord with the simulations of Bartholomew et al (73).

Electron in a Quenched Disordered System

Sprik et al (79) have attempted to characterize geometrically the localized
states of an electron in a topologically disordered system. These states
are similar to the Lifshitz tails (80a, b) seen in the density of states 
electronically disordered systems at sufficiently low energies. The localized
states do exist in a system where the electron interacts with random
scatterers through a short-range repulsive potential. According to Lifshitz,
the electron would like to reside in a region largely free of scatterers.
Thus the probability of observing localized states is proportional to the

www.annualreviews.org/aronline
Annual Reviews

A
n
n
u
. 
R

ev
. 
P

h
y
s.

 C
h
em

. 
1
9
8
6
.3

7
:4

0
1
-4

2
4
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 C

o
lu

m
b
ia

 U
n
iv

er
si

ty
 o

n
 0

5
/0

1
/0

7
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

http://www.annualreviews.org/aronline


418 BERNE & THIRUMALAI

probability of observing a region of an appropriate size that is free of
scatterers. These regions exist due to fluctuations. A simulation to find

evidence of the Lifshitz traps is extremely difficult. Using the staging
algorithm introduced earlier, Sprik et al (79) were able to simulate the
structure of a quantum particle in a quenched disordered system. They
used a disordered array of 2197 hard spheres and effectively generated

around 1037 configurations. For pa3 = 0.2 they were able to identify the
paths of the electron in regions independent of the scatterer--the so-called
Lifshitz trap. The geometry of the trap is like a cavity surrounded by hard

spheres.

Electron in Water Clusters

In a series of molecular beam experiments, Haberland et al (81) have
examined the stability of e--(H20)n clusters as a function of n. These
experiments are performed by injecting low energy electrons into a beam
of water molecules. The species formed, e--(H20)n, is then detected 
using standard mass spectrometric methods. In the initial experiment they
established that e--(H20)n is stable when n _> 11. It was subsequently shown
that when the beam is seeded with Ar atoms to effectively lower the beam
temperature, two water molecules can localize an electron (82). The major
numbers for which e--(H20)n may be stable thus turn out to 
n ~- 2, 6, 7, 11. Motivated by these experiments, Wallqvist et al (59, 83)
have undertaken the simulation of electron binding in finite sized systems
by using path integral techniques. These simulations are based on pseudo-
potentials to characterize the interaction potential between the electron
and the water molecules. The central force model was used for the water

molecules. For details of the calculations, the reader is advised to consult
the original articles.

The simulations were performed at 5 K, with the number of beads in
the electron ring polymer equal to 1000 and the number of pseudoparticles
in the ring polymers representing each H atom and each O atom set to
100. The major conclusions of this study were as follows :

|. A single water molecule in its equilibrium geometry does not bind an
excess electron.

2. Two water molecules can bind an electron with the electron trapped in
a spatially diffuse state. The binding energy of the electron is between
3-6 meV. The attached electron does not induce any major structural
changes in the water dimer.

3. A trimer molecule in the single donor cyclic conformer does not localize
an excess electron. However, the single donor linear conformer localizes
the excess electron, and the binding energy is estimated to between 4-
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9 meV. As in the case of the electron-dimer system, the electron is in a
diffuse surface state. These results are consistent with a simple dipolar
model of the water oligomers.

Electron in Bulk Water

The study of the structural and spectral characteristics of the solvated

electron continues to be considerable interest (84-86). Because the structure
of the solvated electron is totally determined by the solvent, it is necessary

to model the electron-solvent interaction accurately. The difficulty in
obtaining such pseudopotentials has forced many to adopt purely phenom-

enological models. Recently, several groups (79) have attempted to shed
light on the structural aspects of the hydrated electron by using path
integral simulations. All of these simulations employ a model potential for
the electron-water interaction. They differ considerably in detail, and thus
the results of these simulations may collectively provide a detailed micro-
scopic picture of the solvated electron. For the interaction between the
solvent molecules, both Jonah et al and Schnitker & Rossky use the SPC
model (90)3 whereas Wallqvist et al employ the central force model (56a,b,
57). Jonah et al (87) used a purely Coulombic interaction between 
excess electron and the partial charges on the water molecule (90). In order
to avoid the capture of the electron by the hydrogen atom, they used a
switching function based on the distance from the electron and the hydro-
gen atom. For this model they performed path integral molecular dynamics

by treating the solvent classically. The number of beads for the electron
ring polymer was taken to be 600. They found no significant difference
between P = 200 and P = 600. The results of this simulation indicated the
following :

1. The electron is localized in a spherical cavity; the radius of the cavity

was estimated to be 2.18/~.
2. The electron tends to align the O-H bond of the water molecule and

not the permanent dipole moment of the water molecule. This is in
accord with the experimental observation and is in contrast to what is

seen in alcohols (85).
3. Oxygen atoms and consequently water molecules were not arranged

evenly around the electron. There was no discernable solvent shell
around the excess electron.

4. The calculations done at 50 K, however, showed a well-defined shell
structure with four water molecules equidistant from the electron. The

3 Jonah et al used a modified version of the SPC model. The intramolecular molecular

harmonic potentials were modeled following (91).-
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O-H bonds were perfectly aligned with the line connecting the center
of mass of the ring polymer and the oxygen atom. This contradicts the
expectation that six water molecules are arranged in an octahedral

fashion around the electron (85).

The model for the electron-water interaction proposed by Rossky et al

(88) consists of the purely electrostatic interaction between the electron
and the partial charge distribution of the SPC model and a polarization
potential term referred to the oxygen nucleus. Finally, a purely repulsive
potential, accounting for the orthogonality of the excess electron state to
the water molecular wavefunction, was constructed. The path integral
molecular dynamics studies were done using 300 water molecules enclosed

in an octahedral box. Rossky et al chose P = 1000. The results of their
study differ from that of Jonah et al in the following ways : (a) the pair
correlation functions show a well-defined solvent shell structure; (b) six
water molecules appear to be arranged at distances in accord with the
geometry of the hydrated electron inferred from electron spin echo
measurements done at 50 K.

The path integral Monte Carlo study of Wallqvist et al (89), which used
a potential similar in construction to that of Schnitker & Rossky, suggests
that the electron is localized in a spherical cavity of 3.1 /~ radius. The
coordination number seems to be between five and six. The solvent shell
around the electron is not distinct, as that seen by Schnitker & Rossky,
but it is not as diffuse as that obtained by Jonah et al. The details of these
simulations are presented elsewhere (89).

Excess Electron in NH3

Sprik et al (92) have recently reported a PIMC simulation of an excess
electron in liquid NH3. They used a simple model for the solvent-solvent
interaction, the details of which are given by Impey & Klein (93). The
interaction between the electron and the ammonia molecule was taken to
be purely Coulombic. The Monte Carlo calculations were done with the
staging algorithm. One additional feature of their calculation was that
they used a quantum effective potential for the short time approximation
involving the Coulomb potential (94). In this simulation the solvent mol-
ecules were moved more often than the electron. The results of this simu-
lation, done at 269 K and at V = 26.5 cm3/mole, indicate that the electron
is in a spherical cavity and that the cavity radius is around 4 ,~. This is jn
accord with the experimental observation (95). The electron, center-of-
mass, Nitrogen pair correlation function shows some structure, thus indi-
cating the possibility of the formation of weak solvent shell around the
electron. The coordination number was estimated to be about eight.
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SOLVENT EFFECTS ON THE ELECTRONIC
STRUCTURE OF MOLECULES

One of the outstanding problems in theoretical chemistry is the study of
the effects of ,condensed phase systems on the electronic structure of atoms
and molecules. In the last two years Wolynes & co-workers (96, 97) have
attempted to devise techniques based on path integral methods to address
this question. As has been pointed out by Chiles et al (96), the solvent can
have a variety of effects on the electronic structure, depending on the kind
of bonding and the nature of the solvent. These authors considered the
interaction of the hydrogen molecules with a bath. The bath was modeled
as a Drude oscillator to mimic the internal excitation of the solvent mol-
ecules. The interaction between the H2 molecule and the solvent was taken
to be attributable to the fluctuating dipole of the molecule interacting with
the electric field caused by the solvent molecules. In evaluating the parti-
tion function for this model, the trace over the bath modes can be evaluated
analytically. This results in an effective action for the molecular system
that contains the response (influence functional) of the bath. The trace
over the molecular system was evaluated in the representation of the
wavefunction of the H2 molecule, which was constructed in terms of
the single particle states. In particular, these were built out of Slater
determinants involving both single and double excitations. Wolynes et al
(96, 97) used the standard double zeta set for constructing the single
particle states. With this algorithm they were mainly concerned with the

effects of this specialized heat bath on the singlet state of the H2 molecule.
The major conclusion of the study was that when the coupling to the heat
bath is strong enough, the Ha molecule essentially dissociates to ionic
species at relatively short distances. This of course is a direct consequence
of the dipolar model. At a smaller value of the coupling, the potential
energy curve is slightly shifted outward. The purpose of this initial study

was to demonstrate the utility of the path integral method in dealing
with the important problem of the changes in the electronic structure of

molecules due to interactions with the solvent.

CONCLUSIONS

Enormous strides have been achieved in the last several years in the
simulation of quantum systems. The examples that we have discussed
indicate the versatile way in which path integral methods can be used to
study interesting and difficult problems. One major advantage of path
integral simulations of quantum systems is the insight gained by examining
the details of the quantum paths. It is hoped that examination of the
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details will provide a sound basis for analytical treatment of some of

these problems. Despite the explosion in activity, much remains to be

accomplished, even in the simulations of the equilibrium properties of

quantum systems. For example, efficient ways to reduce systematically the

number of beads for highly quanttLrn mechanical systems are needed. More

importantly, reliable and practical methods are needed to treat systems in

which the exchange contribution to the partition function is significant.

The needed tools include methods for treating systems with fermionic

degrees of freedom, thereby providing a natural framework to treat chemi-

cal bonding (98). Finally, a practical way to obtain real time dynamics for

interacting quantum systems is still lacking. Despite some signs of hope,

this is still an open problem, and progress in this area is sorely needed.

Some of the problems outlined here and the review of applications should

give the reader a perspective on how path integral methods can be used to

address problems in fields ranging from particle physics (see 99 for 

review) to biological sciences (A. Kuki, P. G. Wolynes, work in progress).
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