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ABSTRACT

Motivation: For samples of unrelated individuals, we propose a

general analysis framework in which hundred thousands of genetic

loci can be tested simultaneously for association with complex pheno-

types. The approach is built on spatial-clustering methodology,

assuming that genetic loci that are associated with the target

phenotype cluster in certain genomic regions. In contrast to standard

methodology for multilocus analysis, which has focused on the

dimension reduction of the data, our multilocus association-clustering

test profits from the availability of large numbers of genetic loci by

detecting clusters of loci that are associated with the phenotype.

Results: The approach is computationally fast and powerful, enabling

the simultaneous association testing of large genomic regions. Even

the entire genome or certain chromosomes can be tested simultan-

eously. Using simulation studies, the properties of the approach

are evaluated. In an application to a genome-wide association study

for chronic obstructive pulmonary disease, we illustrate the practical

relevance of the proposed method by simultaneously testing all

genotyped loci of the genome-wide association study and by testing

each chromosome individually. Our findings suggest that statistical

methodology that incorporates spatial-clustering information will be

especially useful in whole-genome sequencing studies in which

millions or billions of base pairs are recorded and grouped by genomic

regions or genes, and are tested jointly for association.

Availability and implementation: Implementation of the approach is

available upon request.

Contact: daq412@mail.harvard.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

In the search for disease susceptibility loci (DSLs), genome-wide

association studies (GWAS) have been a successful instrument

for the identification of replicable genetic associations (Hardy

and Singleton, 2009; Manolio et al., 2008). For most complex

diseases and phenotypes, they discovered numerous genetic

associations that can be validated in independent populations,

although the genetic effect sizes of the loci are relatively small.

Despite the large number of detected loci, GWAS association

signals are only able to explain a small fraction of the overall

predicted heritability (Visscher et al., 2008), i.e. the phenomenon

of ‘missing heritability’. One possible explanation for this phe-

nomenon is ‘synthetic associations’(Dickson et al., 2010).

Simulation studies, theoretical considerations and empirical evi-

dence (Adzhubei et al., 2010; Cohen et al., 2006; Fearnhead

et al., 2004; Kryukov et al., 2007; Nejentsev et al., 2009;

Pritchard and Cox, 2002) suggest that genetic associations, as

they are detected by GWAS, can be caused by multiple rare

variants (RVs). Because common variants are poor proxies for

RVs or are not in linkage disequilibrium (LD) with rare disease-

causing variants, it may be difficult to identify or characterize

rare DSLs in GWAS data.

Another plausible explanation for the phenomenon of ‘missing

heritability’ is insufficient statistical power due to the multiple-

testing problem. In a GWAS, millions of genetic loci are tested

individually for association with the target phenotype, and the

test results have to be adjusted for multiple comparisons, leading

to extremely small P-value thresholds for overall statistical sig-

nificance. The standard approach has been aimed to increase the

sample size of GWAS as much as possible. For example, several

meta-analyses of GWASs (Allen et al., 2010) have contained the

data of 4100000 study subjects. However, such large sample

sizes hold the danger of increased study heterogeneity and do

not necessarily lead to increased statistical power.
The fundamental issue with the standard analysis approach to

GWAS (single locus association testing and adjustment for mul-

tiple comparisons) is that an increase in genomic resolution, i.e.

adding more and more genetic loci to the analysis, does not in-

crease the probability to detectDSLs, but diminishes the statistical

power of the approach. To address this issue, multilocus tests have

been suggested. For example, gene-based analysis has been advo-

cated (Neale and Sham, 2004) to complement allelic association

analysis of single locus. This is motivated by the idea that causal

variants for one disease tend to reside in proximity to each other

and variants in adjacent regulatory regions aremore likely to have

functional relevance (Huang et al., 2011). PLINK (Purcell et al.,*To whom correspondence should be addressed.
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2007) provides ‘set-based’ tests using the average single nucleotide

polymorphism (SNP) statistic across the set of SNPs to implement

this idea. Moreover, other tests such as the minSNP test, the

Bayesian imputation-based association mapping (BIMBAM)

test (Servin and Stephens, 2007), the versatile gene-based test

(VEGAS) test (Liu et al., 2010) and the LASSO regression

method for GWAS (Wu et al., 2009) have been proposed. Later

on, Huang et al. (2011) proposed a gene-wide significance (GWiS)

test, which estimates the number of independent effects within a

gene. For next-generation sequencing data, methods that aggre-

gate over a set of RVs to search for associated genomic regions

with the disease status are shown to be more powerful than single

locus approaches, e.g. the cohort allelic sums test (CAST)

(Morgenthaler and Thilly, 2007), the combined multivariate and

collapsing (CMC) method (Li and Leal, 2008), the weighted sum

statistic byMadsen andBrowning (Madsen and Browning, 2009),

the kernel-based adaptive-clustering (KBAC) test (Liu and Leal,

2010), the sequence kernel association test (SKAT) (Wu et al.,

2011), replication-based test (RBT) (Ionita-Laza et al., 2011)

and so forth. There are several advantages of such gene-based

tests over single loci tests. First, collapsing the small effects

across the variants within a gene could give larger effect size to

detect the association. Second, due to the smaller number of genes

to be tested, the multiple-testing problem is reduced. Moreover,

the associations of genes across different populations can be dir-

ectly compared even though there could be different LD patterns

within the genes across the populations (Huang et al., 2011).

However, most of the approaches can handle only a limited

number of genetic loci, i.e. typically5100. None of them is able

to incorporate the information about the physical location of the

loci and their clustering. In this article, we are proposing a novel

approach called the Bin test that can test a large genomic region

for association with the target phenotype by taking into account

the physical location of the variants that show evidence for as-

sociation and their physical clustering. The genomic region can

refer to one gene, a specified segment of the genome, a pathway,

an entire chromosome or the complete genome. The approach is

computationally fast and applicable to binary and complex

phenotypes. The methodology is evaluated in simulation studies

using a GWAS dataset from the COPDGene study and is

applied to several collaborating chronic obstructive pulmonary

disease (COPD) genetic studies. The simulation studies and the

application results suggest that the approach has sufficient power

to test simultaneously all genotyped loci on the entire genome or

a specific chromosome.

2 METHODS

The proposed test assesses whether there is significant clustering of causal

variants within a specified region. We consider both the level of associ-

ations between the variants and the trait, and the location of the variants.

The degree of association between a variant and the phenotype is repre-

sented by the association P-values, which is easy to obtain from any

dataset and allows the application of our method to both quantitative

traits and dichotomous traits. To put this into a one-dimensional cluster-

ing problem, we need to consider four aspects of the test:

(1) What distance measure to use: the physical distance between two

variants or a newly defined distance measure.

(2) Which single nucleotide variants (SNVs) to look at: a P-value

cutoff to select the variants. Note that we use SNV to refer to all

the variants, including variants with allele frequency 51%, and

use SNP to refer to variants with allele frequency 41%.

(3) Whether to look at the distance to the nearest neighbor or the

distances to the neighboring variants, and how many neighboring

variants should be considered in the calculation of distances.

(4) How to quantify the difference between the distribution of the

observed distances and the distribution of distances under the

null, i.e. what test to use.

2.1 Distance measure

The first three aforementioned questions refer to the choice of distance

distribution. Considering the absolute size of the physical distances be-

tween the variants and the P-values obtained from the association tests,

our goal is to have a distance measure such that the distance between two

variants is small if the ‘average’ P-value of the two variants is small, and if

the physical distance between the two variants is small, relative to the

other variants. Thus, we consider the multiplication of the physical dis-

tance with the association information rather than the addition of the two

values to avoid the situation where the ‘average P-value’ is overwhelmed

by the physical distance. To obtain the ‘average’ degree of association of

the two variants, multiplication of the two P-values is also more suitable

than addition, as one large P-value would dominate a much smaller

P-value. We define a new distance measure D between two variants that

combines the P-value with the physical distance between the variants:

Di, j ¼ disti, j �
ffiffiffiffiffiffiffiffiffi
SiSj

p

where the subscript i and j refer to any two variants in the region of

interest. The distance measure is motivated by the fact that this distance

equals the area below the geometric average of the P-values of the two

variants. We use the square root here to have the absolute value of Di, j to

lie in a reasonable range.

2.2 Cutoff values

There are two parameters that can be varied in the test: a cutoff value

for the P-values—P, such that only variants with P-values below P are

considered in the test of clustering; and the number of neighboring vari-

ants around each variant for calculating the distances—R. We could use a

P-value of 1 to include all the variants and consider the distances from

one variant to all the other variants in the region, but simulations suggest

that this is computationally costly and has relatively low power compar-

ing with including only variants with P-values below a threshold. Thus,

a threshold on the P-value for selecting variants is used. The nearest-

neighbor method is commonly used in clustering analysis, and it requires

less computational cost. However, it does not give much information

on the second, third or higher-level neighbors. Thus we consider both

the distance to the nearest neighbor and the distances to a predefined

R number of neighboring variants in the region.

In our analysis, this threshold of neighboring variants R and the cutoff

value of P-values P are set to be the values that correspond to specified

quantiles of all the variants in the region of interest. For example, we may

specify the cutoff quantile for theP-values to be 0.1%,whichmeans the top

0.1% variants with the smallest P-values are included in the analysis. If we

specify the quantile threshold of neighboring variantsR to be 1%, it means

that the number of neighboring variants used to calculate the distances

from each variant is 1% times N, where N is the total number of variants.

2.3 Test on the distance distribution

To test whether there is clustering of small P-values, the distribution

of the distances between the variants needs to be compared with the
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distribution of the distances under the null hypothesis in some way.

The most popular non-parametric method to compare the empirical dis-

tribution of one sample with a specified distribution, or to compare the

empirical distributions of two samples, is the Kolmogorov–Smirnov (KS)

statistic, defined as follows:

Dn1, n2 ¼ sup
x
jF1, nðxÞ � F2, nðxÞj

where F1, nðxÞ ¼
1
n

Pn
i¼1 IXi�x is the observed cumulative distribution func-

tion of the first sample, and similarly F2, nðxÞ is the observed cumulative

distribution function of the second sample. The first sample, in our case,

refers to the observed distances between the variants. The second sample

refers to the distances between the variants obtained under the null hy-

pothesis using permutations.

We also considered an alternative approach, called the Bin test statistic

that extends the idea in Kowalski et al. (2002) and Olson et al. (2005). The

Bin test is a permutation test that compares the observed proportions of

distances in 10 given intervals to the expected proportions of distances

using the M statistic (referred to as the Bin test):

M ¼ ðProp� EðPropÞÞTSð�1ÞðProp� EðPropÞÞ

The distances between the variants obtained using permutations under

the null are ordered and put into 10 bins with equal size, therefore there

are 10% of all the distances in each of the 10 bins. Thus, E(Prop) is set to

be a 10� 1 vector of 10% in this statistic, i.e. (0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

0.1, 0.1, 0.1, 0.1). Then, the minimum and maximum of the distances in

each bin give the interval of distance of each bin. Prop is then the 10� 1

vector of the proportions of the observed distances in these 10 intervals.

S ð�1Þ is the 10� 10 Moore–Penrose generalized inverse of the variance

covariance matrix of the proportions of distances in the 10 intervals from

each permutation under the null. The number of equally spaced bins

could be varied, and unequally spaced bins could be used, as discussed

in White et al. (2009). We chose 10 equally spaced bins here to simplify

the problem, but further investigation is needed to evaluate the perform-

ance of the statistic with other choices.

For both the KS and the Bin tests, the null distribution of distances is

obtained by permuting the case and control status among the subjects,

which conserves the LD between the variants.

Other distribution tests could also be used here, such as the Ansari–

Bradley test. From a limited number of simulations, the Ansari–Bradley

test gives a moderate power that is higher than the KS test, but does not

perform as good as the Bin test (data not shown here).

2.4 Summary of the method

Here is a summary of the procedure of the method:

(1) Choose a P-value cutoff P and a cutoff R for the number of

neighboring variants to be included in the calculation.

(2) Calculate the single-variant association P-values and include only

variants with single-variant association P-value that is smaller than

the cutoff P.

(3) Calculate the new distance measure for each variant with their

neighboring variants within the cutoff number R. The distance

measures form a distribution of observed distances.

(4) By permuting the case and control status, using the same cutoffs,

we get a different distribution of the distances under the null for

each permutation.

(5) By putting all the distances obtained under the null together to

form the null distribution, the Bin statistic (or the KS statistic) can

be calculated for the observed distance distribution.

(6) Similarly, for each permutation, the Bin statistic (or the KS statis-

tic) can be calculated.

(7) Compute the P-value of the test by comparing the Bin statistic

(or the KS statistic) of the observed distance distribution to the

distribution of the Bin statistics (or the KS statistic) obtained from

permutations under the null.

3 RESULTS

We assessed the performance of the KS test and the Bin test using
simulations based on the genotypes of theAfricanAmerican (AA)

samples in the GWAS dataset of the COPDGene study (Regan
et al., 2011). Also, the Bin test was applied to the COPD status of
several collaborating COPD genetic studies to look for COPD

susceptibility loci in the application section.

3.1 Simulation results

3.1.1 Simulation results on entire chromosome Simulations were
done using the genotypes of theAA samples from the COPDGene

study. There are approximately 700k SNPs included for the 2570
AA samples after the quality control (QC) steps for this study.
Variants with minor allele frequency (MAF)50:01, high missing

rate (45% for SNPs with MAF � 5%, and42% for SNVs with
MAF � 5%), Hardy-Weinberg equilibrium (HWE) P 510e� 3
and concordance rate 599% using 205 duplicated samples were

removed. Samples with call rate 598:5%, and mismatched
gender and race were also excluded. Autosomal SNPs with
HWE P 40:01, MAF40:05 and markers represented in

Hapmap III were used for principal component analysis.
EIGENSOFT 3.0 was used to obtain the PCs to adjust for popu-
lation substructure for the AA samples. We used 2569 samples in

our simulations due to missing information for one case.
In our simulations, we used the genetic data on chromosome 7

from the COPDGene study, but generated the case and control

status according to our disease model. There are in total 36 726
SNPs on chromosome 7. Two different scenarios were con-
sidered. First, we selected nine SNPs on chromosome 7 as the

causal variants that reside close to each other, and considered
both protective and deleterious effects of the variants and differ-
ent effect size. The MAF of the nine SNVs are (0.1740, 0.4914,

0.1734, 0.1244, 0.4673, 0.2552, 0.1098, 0.0309, 0.0728). The phys-
ical distances between the adjacent variants are 530, 1564, 1011,
813, 1087, 249, 685 and 707. The LDs between the nine causal

variants in the dataset are shown in Figure 1. Two sets of effect
sizes are simulated for this scenario. For scenario 1, the odds
ratio of the nine SNVs are (0.8, 1.1, 0.9, 1.2, 0.9, 1.2, 1.2, 1.5,

1.5) and the average disease rate of our disease model for this
population is 0.145; for scenario 2, the odds ratio of the nine
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Fig. 1. The LD plot of the nine causal SNVs used in the simulation
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SNVs are (0.8, 1.1, 0.8, 1.3, 0.9, 1.3, 1.2, 1.5, 1.5) and the average

disease rate of our disease model for this population is 0.150.

Then given the effect size and the genotypes of the samples in the

COPDGene study, we generated the case and control status ac-

cordingly. Second, we considered the possibility of having a lot

of causal variants with small effect size. Thus, 100 causal variants

were chosen in proximity to each other on the chromosome by

randomly selecting 100 variants in a randomly selected region on

the chromosome. The effect sizes (odds ratio) were generated

using a normal distribution with mean 1 and SD¼ 0.05.
Sensitivity analysis was done to assess the effects of the

P-value cutoff P, and the number of neighboring variants R,

on the power and type I error of the Bin test for different disease

models and sample size. The results and discussions are in the

Supplementary Material. According to the analysis, the optimal

cutoff values are similar with different disease models and sample

sizes we considered, and the power is mostly robust to the cutoff

values in general, as long as extreme cutoff values are not used.

Here to achieve a good power, SNVs with P-value in the top

0.5% percentile were included in the analysis, and 0:1% �N

neighboring SNVs next to each SNV were used in the tests,

where N is the total number of SNVs in the dataset. Owing to

the computational limitation, 2000 permutations were used in

each permutation set to maintain the type I error, as explained

in our sensitivity analysis (Supplementary Material). For each

scenario, 200 simulations were generated to obtain the estimated

power and the type I error rate. The power of the test is the

percentage of simulations in which the permutation P-value is

50.05. The results of the Bin test are shown in Table 1, as well as

the power of the KS test, as a comparison. We observed a higher

power of the Bin test comparing with the KS test in all the

scenarios. Therefore, the Bin test is recommended and is used

in the calculation of the association P-values of the chromosomes

in the application section.

We also computed the type I error rate of the Bin test on three

different autosomal chromosomes by randomly generating the

probability of having the disease for each individual using a uni-

form distribution Unifð0, 0:5Þ, and then randomly generated the

disease status for each sample using a Bernoulli distribution with

these probabilities. It is shown in Table 2 that the type I error

rate is well maintained with different LD patterns on different

chromosomes.

3.2 Application results

3.2.1 Results on each chromosome The test was applied to a

case-control cohort from Bergen, Norway with 863 cases and

808 controls (Cho et al., 2012) from the GenKOLS study

(Pillai et al., 2009) to see if there is any chromosome that is

significantly clustered with variants associated with COPD

status. Based on the dataset that passed the QC steps from

Cho et al. (2012), any SNVs with MAF 50:01, call rate

598% and HWE P 50:000001 were also removed, and we

were left with 495 829 SNVs for the autosomal chromosomes.

Population outliers were further removed, and we were left with

854 cases and 805 controls. We also applied the test to the first

1000 subjects from the COPDGene study (Cho et al., 2012).

Based on the dataset that passed the QC steps from Cho et al.

(2012) and after additional QC steps as for the GenKOLS data-

set, 797218 SNVs were left and 496 cases and 498 controls were

used for the association tests. Similarly to the simulations, the

cutoff value for the association P-value percentiles was set to be

0.5%, and the quantile of neighboring SNVs around each SNV

to be included in the analysis was set to be 0.1%. The P-values

for the test of clustering on each chromosome were obtained

using 2000 permutation set.
Association P-values of the Armitage trend test for the SNVs,

adjusted for ancestry, were computed for the samples and are

plotted in Figures 2 and 3 later in the text for the two cohorts.

We included age, sex and pack-years of smoking as the covari-

ates in our analyses. For the GenKOLS cohort, the order of

the SNVs according to their significance magnitude is mostly

the same as in the original article (Pillai et al., 2009), and the

Manhattan plot is shown in Figure 2 later in the text. No SNV

reached the genome-wide significance level (5� 10�8) in our ana-

lysis. The original article identified two SNVs at the a-nicotinic

acetylcholine receptor (CHRNA3/5) locus on chromosome 15

that were replicated using other datasets. Other studies have

indicated that loci near HHIP may be related to COPD (Pillai

et al., 2009; Wilk et al., 2009). It has also been found from pre-

vious studies that the FAM13A locus on chromosome 4 includes

a disease susceptibility locus for COPD (Cho et al., 2010).

The results of our clustering method applied on each chromo-

some for each dataset are shown in Table 3. The significance

level we used here is 0:05=22 ¼ 0:00227. Surprisingly, we

observed a strong signal on chromosome 10 in the GenKOLS

cohort in which there is no significant indication of causal SNVs

from the single variant association tests. From the COPDGene

dataset, there is no chromosome with significant P-value, but

chromosome 10 has a small P-value around 0.05. By looking

at only the Manhattan plot, the significant P-value in the

Table 1. The power of the tests

Power Effect size 1 Effect size 2 Effect size 3

Bin test 0.920 0.990 0.274

KS test 0.620 0.845 0.179

Note: The power of the tests for three scenarios, obtained from 200 simulations with

2000 permutations in each permutation set. The power is the number of simulations

with P50.05. The effect sizes (odds ratio) of the nine SNVs with the intercept at the

front are effect size 1: (0.135, 0.8, 1.1, 0.9, 1.2, 0.9, 1.2, 1.2, 1.5, 1.5) and effect size 2:

(0.135, 0.8, 1.1, 0.8, 1.3, 0.9, 1.3, 1.2, 1.5, 1.5) for the first two columns. For effect

size 3, 100 SNVs were chosen within a random segment on the chromosome and are

assigned with randomly generated effect sizes from a normal distribution with mean

1 and SD¼ 0.05 with an intercept odds of 1 in each simulation.

Table 2. The type I error rate of the test on chromosome 7, 10 and 22

Type I Error Chromosome 7 Chromosome 10 Chromosome 22

Bin test 0.030 0.065 0.020

KS test 0.035 0.025 0.040

Note: 2000 permutations in each permutation set were used and 200 replicates were

generated to compute the type I error rate.
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GenKOLS cohort seems to be caused by the clustering of many
nearby SNVs with P-values around 10�3 � 10�4. We also

applied the test on the combined dataset that includes subjects

from the COPDGene study, the GenKOLS COPD cohort and
subjects from Normative Aging study (NAS) and National

Emphysema Treatment Trial (NETT) (Cho et al., 2012). Note
that the GenKOLS cohort is a more homogeneous population

than the other two cohorts. As we know from previous studies
that there are causal variants residing on Chromosome 4 and 15,

the P-values from our clustering method for the two chromo-
somes are significant. Chromosome 10 also has a relatively small

P-value after combining the three cohorts.

3.2.2 More insights for chromosome 10 The distribution of the
new distances D for chromosome 10 of the GenKOLS cohort is
shown in Figure 4. Our test compares this observed distribution

with the distance distribution obtained using permutations under

the null (8000 permutations were used here). Each bin of the
histogram contains 10% of the distances obtained using permu-

tation under the null, therefore we can see that the significant
difference between the distributions comes from the first bin,

in which there is a much larger proportion of the observed dis-
tances. The 10% quantile of the distances obtained under the null

is 1447. We are interested to see which pairs of SNVs contribute
the most to this difference between the two distributions. Figure 5

shows the physical positions of the SNVs with their P-values on

the y-axis for the observed COPD status. The SNVs are colored

according to the number of distances D to the neighboring SNVs

that are less than 1447. The more contribution the SNV makes to

the difference between the observed distribution and the null dis-

tribution of distances, the deeper the red color. There is appar-

ently one cluster on chromosome 10. Most of the SNVs in this

cluster reside on C10orf11. This result is interesting as it has been

shown in a large-scale GWAS that this gene is associated with

lung function (Artigas et al., 2011). The original GWAS includes

48 201 individuals of European ancestry with an additional 46 411

individuals in the follow-up study, whereas in our dataset there

are less than 1700 subjects included. Thus this result shows that

our method could have much higher power in detecting the causal

variants by considering the physical locations of SNVs and treat-

ing it as a clustering problem.
We further applied our method on this interesting gene

C10orf11 and obtained a P 50:0001 (10000 permutations have

been done here). Note that the P-value should be compared with

the significance level after adjusting for all the genes on the

genome. For the application on genes, we used all the SNVs

on the gene to calculate the test statistic, i.e. no P-value cutoff

or threshold for the number of neighboring SNVs. The LD plot

and the association plot of this locus are shown in Figure 6. We

also applied the SKAT (Wu et al., 2011) and its optimal version

(SKAT-O) (Lee et al., 2012) to this gene, and obtained P-values

of 0.558 and 0.733, respectively. We expected to observe such

Fig. 3. The Manhattan plot of the adjusted P-values of the SNVs in the

COPDGene dataset

Fig. 2. The Manhattan plot of the adjusted P-values of the SNVs in the

GenKOLS study
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difference in the P-values, as this gene satisfies the hypothesis of

our tests; therefore our test should have more power under such

situation. This observation is also supported by the simulation

results shown in Supplementary Table S4. Some of the SNVs in
the cluster on chromosome 10 seem to lie in the gene KCNMA1,

therefore we applied our test on this gene, which is next to

C10orf11. It turns out that the P-value is 0.67732, showing no

sign of association. We also applied our test on the candidate

Table 3. The P-values of the 22 autosomal chromosomes for three

datasets

Chromosome

P-value

GenKOLS COPDGene Combined

three cohorts

1 0.37333 0.40402 0.41136

2 0.77598 0.82509 0.72507

3 0.26704 0.70237 0.51206

4 0.57603 0.45009 0.00050

5 0.47846 0.56363 0.07276

6 0.05783 0.89963 0.20125

7 0.04598 0.95485 0.44038

8 0.22121 0.70352 0.63613

9 0.25456 0.18883 0.38433

10 0.00010 0.05563 0.02539

11 0.10232 0.07616 0.43665

12 0.35209 0.40256 0.74019

13 0.73528 0.26468 0.65424

14 0.20009 0.46675 0.43448

15 0.04807 0.78198 0.00050

16 0.92608 0.12645 0.33425

17 0.85643 0.58766 0.20875

18 0.72968 0.47390 0.08625

19 0.61114 0.091421 0.62746

20 0.61280 0.59677 0.44517

21 0.90056 0.51515 0.95108

22 0.99166 0.18927 0.08608

Note: The P-values of the 22 autosomal chromosomes for the GenKOLS cohort, the

COPDGene study and the combined dataset that includes the GenKOLS subjects,

the subjects from the COPDGene study and the subjects from Normative Aging

Study and National Emphysema Treatment Trial. With Bonferroni correction, the

P-values should be compared with 0.00227. P-values50.05 are shown in bold font.

Fig. 5. The P-values of the SNVs versus their physical positions on

chromosome 10. The points are colored from yellow to red according

to the number of distances D that are less than 1447 (10% quantile of

distances under the null) between each SNV to their neighboring SNVs.

The spectrum on the right shows the corresponding counts of such neigh-

boring distances for each SNV. The region that contributes the most to

the distribution difference overlaps with C10orf11

Fig. 4. The distance distributions of the observed distances. The distance

distributions of the observed distances D between two variants, and the

distance distribution of the distances obtained using 8000 permutations

under the null. Each bin contains 10% of the distances obtained using

permutations under the null and is colored with light blue. The observed

distances are then assigned to each of the bins and are colored with red.

The last bin (largest 10% of distances) is not shown in the histogram for

clearer visualization

Fig. 6. The P-values for SNVs in C10orf11 and the LD structure.

The upper plot shows the P-values of the SNVs on C10orf11 with respect

to their index in the dataset. The lower plot shows the LD structure

of the SNVs in the GenKOLS cohort. The two plots are matched by

SNV index
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genes FAM13A and CHRNA3/5 locus, the P-values are 0.01159
and 0.07147787, respectively, for the GenKOLS cohort. For the

COPDGene cohort, C10orf11 has a P-value of 0.06943, which is

not significant, possibly due to low power.

3.2.3 Result on the entire genome We have also applied the test

to the entire genome to see if there is any region in the genome
that is clustered with the causal variants. Same P-value cutoff

and threshold for calculating the distances to the neighboring

SNV are used. With 1500 permutations set, the P-value is

0.069315 for the entire genome, showing weak significance of

association between the genome and the phenotype. This appli-

cation shows the potential of our method for testing large gen-
omic regions when no significant association is found for

univariate tests. One possible way to search for the associated

loci with the phenotype is to conduct a binary search using our

method. Interested readers could refer to the Supplementary

Material for some discussion about the procedure.

4 DISCUSSION

In summary, we proposed here an approach for the detection of

clustering of causal variants in a genomic region of any size.

Many existing methods collapse the effects of variants across a

region or a gene, however, few of them use the physical location

of these variants and many would suffer loss of power when too
many variants are included. Simulations and application results

suggest that our approach provides sufficient power to detect

associated genomic regions with complex disease, especially

when the causal variants reside relatively close to each other,

even with small effect size. Also, the increase in statistical

power allows analyses with a smaller sample size, which enables
the possibility to compare more extreme phenotypes.

The same idea of testing for clustering could be applied to

sequencing data, where thousands of variants would be available
for each gene. For variants that are extremely rare, the univariate

P-value may include only random noise, thus other measures of

the association at each variant need to be considered to apply our

method, i.e. standard analysis approaches for RV analysis.

Moreover, the genomic region could refer to the genes in the

same pathway (Wang et al., 2007), thus whether there is signifi-
cant clustering of small P-values in each pathway could be

examined.
However, there are several drawbacks we need to consider.

Because permutation is used to obtain the P-value of the test

statistic, there is extensive computational cost if the test is applied

to a large number of small regions, which requires more number

of permutations. From our experience, calculating the P-value

for a dataset containing �35k SNVs and 2570 subjects with a
quantile P-value cutoff 0.5% (which is equivalent to including

about 180 SNVs) and number of neighboring variants cutoff

0.1% (which is equivalent to 35 neighboring variants for each

SNV), and with 5000 permutations, takes �22h using a

800MHz AMD Phenom II X4 910e CPU. To obtain the

P-value for different regions, clusters can be used to parallel
the work. Second, the power may also be compromised if the

regions are extremely small, limiting the possibility of clusters

and their detection, and if the number of regions to be tested

are extremely large due to multiple-testing problem. Right now

the method is limited to population-based studies because per-

mutation of the affections status is used to evaluate the P-values,

but because the associations are represented by P-values, which

could be obtained from either population-based association tests

or family-based association tests, there is potential to extend the

approach to family-based association studies.
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