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Abstract

We analyze copulas with a nontrivial singular component by using their Markov kernel

representation. In particular, we provide existence results for copulas with a prescribed

singular component. The constructions not only help to deal with problems related to

multivariate stochastic systems of lifetimes when joint defaults can occur with a nonzero

probability, but even provide a copula maximizing the probability of joint default.
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1. Introduction

Copula models have become popular in different applications in view of their ability to

describe a variety of different relationships among random variables [7], [8]. Such a growing

interest also motivates the introduction of methodologies that go beyond classical statistical

assumptions, such as absolute continuity or smoothness of derivatives (i.e. conditional distribu­

tion functions), that sometimes may impose undesirable constraints on the underlying stochastic

model.

In order to clarify the concepts, consider the case when copulas are employed to describe the

dependence among two (or more) lifetimes, i.e. positive random variables. Such models arise,

at least, in two different domains. In engineering applications, joint models of lifetimes may

be related to a system composed of several components that operate until only some of their

components work while the others have already failed [4], [15], [16]. In portfolio credit risk

modeling, however, the lifetimes have the interpretation of default times (of firms, or obligors),

while their copula serves to model the possible effect of one asset default on the probability of

default of the other assets, which would require special care to avoid underestimation of the

risk of the portfolio; see, e.g. [13]. In both cases, it is important to estimate the probability of

the occurrence of a joint default, which means, in the case of a bivariate random vector (X, Y),

the probability of the event {X = Y}. Now, as stressed, for instance, in [14], if one requires that

the event {X = Y} has nonzero probability, then it would be important to select a copula for

(X, Y) that has a singular component (i.e. it cannot be described via a single density function)

and, in addition, its singular component spreads at least a part of its probability mass along a
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set determined by the marginals Fx and Fv given by {(u, v) E [0,1]2: Fi 1(u) = Fy1(v) },

when Fx and Fy are strictly increasing.

Motivated by these applications, it is hence desirable to provide a theoretical background

for the study of copulas with singular components. In fact, as stressed, for instance, in [3],

the related literature presents several statements that are not sound unless further assumptions

are required. Here, we aim at clarifying several aspects concerning copulas with singular

components. We provide examples and counterexamples that are of pathological nature, but

may serve to warn against any simplistic thinking about the dependence structure. Finally, we

present some existence results showing how to obtain copulas assigning positive mass to the

graph of a function.

2. Basic definitions and properties of singular copulas

First of all, we recall some basic definitions about copulas. Any two-dimensional copula C is

a multivariate distribution function on [0, 1]2whose univariate margins are uniformly distributed

on [0, 1]. As such, it induces a probability measure J-lc on the Borel sets ~([O, 1]2) of [0, 1]2.

Moreover, since uc cannot have atoms, in view of the Lebesgue decomposition theorem (see,

e.g. [1, Theorem 2.2.6]), we have

where:

• JL~ is a measure on 2([0, 1]2) that is absolutely continuous with respect to the

d-dimensional Lebesgue measure A2;

• J-lc is a measure on 2([0, 1]2) that is singular with respect to the Lebesgue measure on

[0, 1]2, i.e. the probability measure is concentrated on a set B such that A2(B) = 0.

If J-lc([O, 1]2) = 1 - a > 0, then C has a singular component of total mass equal to 1 - a.

The support of the singular component of a copula C is the complement of the union of

all open subsets of [0, l]d with JLc-measure 0. In other words, it is the smallest closed set

on which u.c is concentrated. It is worth noting that this support needs not be concentrated

on graphs of functions (as in the case of Marshall-Olkin copulas) or segments (as for shuffles

of Min-[5,19]). In fact, using the results in [2] and [6], for any s E [1,2], there exists a

singular copula whose support has Hausdorff dimension s, as well as singular copulas with

full support whose conditional distribution functions are continuous, strictly increasing, and

have derivative °almost everywhere (a.e.); see [19]. Therefore, up to simple cases, the mass

of the singular component cannot be identified by looking at regions where the conditional

distribution functions related to the copula (i.e. the derivatives) have jumps (cf. [9, pp. 14-16]

and [10, Theorem 8.1]). In the following section, we clarify these aspects by using the notion

of a Markov kernel.

3. Singular copulas versus singular Markov kernels

The symbol ~([o, 1]2) will denote the family of all probability measures on [0,1]2. If

p(X,y) E ~([o, 1]2), thenPX (respectively.P") denotes the marginal law defined on every Borel

set E C [0,1] by pX (E) = p(X,y)(E x [0,1]) (respectively, Py (E) = p(X,y)([O, 1] x E)).

Let e denote the family of all two-dimensional copulas. For regular conditional distributions,

Markov kernels and disintegration theorems, we refer the reader to [11]. Moreover, a mapping

K: [0, 1] x 2([0, 1]) --+ [0, 1] will be called substochastic kernel if x ~ K (x, E) is Borel

https://doi.org/10.1239/jap/1450802760 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1450802760


On the singular components ofa copula 1177

measurable in x for every E E 2([0,1]) and E ~ K(x, E) is a measure of total mass less

than or equal to 1 for every x E [0, 1]. If K (x, .) is a probability measure on [0, 1], then K

will be called a Markov kernel; see, for example, [12].

Given A E C with (X, Y) rv A, we denote (a version of) the regular conditional distribution

of Y given X by K A(., .) and refer to it as a Markov kernel ofA. It follows that, for every Borel

set F E 2([0, 1]), we have (with F; = {y E [0,1]: (x, y) E F})

( KA(X, Fx)dA(x) = JLA(F).
J[0,1]

We start with the following simple observation.

Lemma 1. Suppose that a copula C has a singular component, i.e. JL~([O, 1]2) = 1 - a > 0.

If (X, Y) rv JP>(X,Y) = (1/(1 - a))JLc E ~([O, 1]2), then the marginal laws JP>x and JP>Y

are absolutely continuous. If gx denotes the density of JP>x and KG the Markov kernel of

(1/(1 - a))JLc' then

_l_f.L~(E x F) = JP>(X E E, Y E F) = [ Kc(x, F)gx(x) d)"(x)
1 - a J[0,1]

as well as (I - a)KG(x, [0, I])gx(x) ~ 1 for A-almost every x E [0,1].

Proof. Let E E 93([0, 1]), then we have

111
JP>x (E) = --JL~(E x [0, 1]) ~ --JLc(E x [0,1]) = --A(E)

I-a I-a I-a

so X is absolutely continuous (analogously, Y is absolutely continuous). The remaining part

of the proof is a direct consequence of the disintegration theorem.

Thanks to the previous lemma, we can prove that the singularity of a copula depends on the

singularity of the related Markov kernels, as stated in the following result.

Theorem 1. Suppose that C E C. Then the following two conditions are equivalent:

(i) C is singular;

(ii) there exists a set A E 2([0, 1]) withA(A) = 1 such that the measure Kc(x,·) is singular

with respect to Afor every x E A.

Proof. Note that (i) implies (ii). If C is singular then, by definition, there exists a set

N E 2([0,1]2) with JLc(N) = 1 and A2(N) = 0. Applying disintegration to JLc and A2

directly yields the existence of A E 93([0,1]) such that A(Nx) = °and Kc(x, Nx) = 1 for

every x E A whereby N, = {y E [0,1]: (x, y) E N} denotes the x-cut of N.

Note that (ii) implies (i). SupposethatCisnotfullysingular, i.e. JLc([O, 1]2) =: a > 0. Letk

denote the density of JLe. Without loss of generality, we may assume that J[O, 1] k(x, y) dA(Y) :::

1 for every x E [0, 1]. If a = 1, then the result follows immediately; so we examine the case

when a E (0, 1). Letting KG denote the Markov kernel of (1/(1 - a))JL~ and using Lemma 1,

it follows that

f.LdE) = (1 - a) [ Kc(x, Ex)g(x) d)"(x) + [ [ k(x, y) d)"(y) d)"(x) (1)
J[O,1] J[0,1] J Ex
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for every E E 2([0, 1]2). Define

K(x, F) = (l - a)K~(x, F)g(x) +l k(x, y) dA(Y)

F. DURANTE ET AL.

for every x E [0,1] and F E 2([0,1]), then K(x, .) is a finite measure on 2([0, 1]) and a

measurable function in x for fixed F. Using (1) it is straightforward to verify that K (x, [0, 1]) =

1 for A-a.e. x E [0,1] so redefining K(x, .) (at most) on a set of measure °yields a Markov

kernel Kc of C. Since .f[o,l]2k dA2 = a > °we cannot have (1 - a)Kc(x, [0, 1])g(x) = 1 for

A-a.e. x E [0, 1].

As a direct application of the results in [12] the Markov kernel Kc of an arbitrary copula

C E e can be decomposed into the sum of three substochastic kernels K~, K c'Kg, i.e.

Kc(x, E) = Kc(x, E) + Kc(x, E) + K~(x, E) (2)

foreveryx E [0, l]andE E 2([0, 1]). Thereby, the measure Kc(x, ·)isabsolutelycontinuous

with respect to A, the measure Kc(x, .) is singular with respect to Aand has no point masses,

and Kg(x, .) is discrete for every x E [0,1].

Examples of copulas whose Markov kernels show all three characteristics above are easily

constructed. Consider the copula A = t(n2 +S+T), whereby n2 is the independence copula,

S is one of the very singular copulas with full support from [19], and T is the singular copula

with full support from [3]. Note that all three copulas that appear in the expression of A have

full support [0, 1]2.

4. The singular mass of a copula and copulas whose singular mass is concentrated on

the graphs of functions

In the previous section we investigated the main properties of the copulas with singular

component with respect to the Markov kernel representation. Now, we would like to raise

the question as to whether we may use such a representation in order to provide examples of

copulas with a prescribed distribution of the singular component.

First, suppose that C is a copula, Kc is its Markov kernel, and that Kc is decomposed

according to (2). Set

ac(x) := Kg(x, [0,1]) (3)

for every x E [0, 1] (note that ac depends on the concrete choice of the kernel and is therefore

only defined uniquely A-a.e.). Then ac is measurable and we can (without unnecessary

additional assumptions) calculate .f[O,I] ac dx, i.e. the way in which the discrete component

spreads its mass. It turns out that, in general, the function ac can be very irregular, as the

following result shows (cf. [9, p. 15]).

Theorem 2. For every measurable function I: [0, 1] ~ [0, 1] there exists a copula C such

that ar = [,

Proof. Let 1 be a measurable function such that II 1 III = i. If l E {O, I}, then the result easily

follows by considering the independence copula and the comonotonicity copula, respectively.

Hence, assume that 11/111 E (0,1). We will construct a copula C with ac = 1 such that

the singular component of C is concentrated on the diagonal ti. = {(x, x): x E [0, I]} of the

unit square. The procedure is as follows. Let JL denote the measure on 2([0, 1]2) fulfilling
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JL(~) = JL([O, 1]2) as well as JL([O, x]2) = 1[o,x]f dA for every x E [0, 1]. Let Sex, y) :=

JL([O, x] x [0, y]) the corresponding measure-generating function. Then S is symmetric and its

marginal F: [0, 1] ~ [0,1], given by F(x) = Sex, 1) = f[o,x]f dx, is Lipschitz continuous

(with Lipschitz constant 1), and fulfills F(I) = IIflll E (0,1). Setting G: [0, 1] ~ [0,1]

by G(x) = x - F(x), we have therefore another Lipschitz continuous measure-generating

function fulfilling G(O) = °and G(l) E (0, 1). Define T and f} by

1
T(x, y) := ~ ( [ O , xl x [0, y]) := G(l) G(x)G(y)

for all x, y E [0, 1]. Note that such a T is obtained as a product of its univariate marginals (so, it

is constructed via the independence copula); however, any other absolutely continuous copula

can be used as well. It follows that f} is absolutely continuous with respect to A2. Finally,

considering

C(x, y) = Sex, y) + T(x, y)

it follows immediately that C is a copula whose singular component is JL. Applying disinte­

gration we directly obtain ac = f A-a.e. Since the Markov kernel of a copula is only defined

uniquely a.e., the proof is completed.

Using essentially the same idea of the previous proof, we can show that for every trans­

formation T: [0, 1] ~ [0, 1] being nonsingular (i.e. the push-forward AT is absolutely con­

tinuous with respect to A), we find a copula A such that the corresponding kernel K A fulfills

KA(x, {Tx}) > °for every x E [0, 1]. In other words, the singular components of copulas can

be concentrated on the graphs of arbitrary nonsingular transformations.

Theorem 3. For every nonsingular transformation T: [0, 1] ~ [0, 1] there exists a copula A

such that the singular component of A is concentrated on the graph I'(?') of T. Moreover,

KA(X, {Tx}) > Oforeveryx E [0,1].

Proof. Suppose that T: [0, 1] ~ [0, 1] is nonsingular and let f denote the density of AT

with respect to A. Define a: [0, 1] ~ [0, 1] by

(4)

if f 0 T (x) ::s 1,

if f 0 T (x) > 1.
a(x) = {I I

f 0 T(x)

Using the Cauchy-Schwarz inequality it is straightforward to verify that 1[0, l]a dA = 1 if and

only if T isx-preserving. Since for A-preserving T the (completely dependent) copula A with

the kernel KA(X, F) = IF(Tx) has the properties stated in the theorem, we can focus on the

f[o l]a dA < 1 case. Let Oz denote the Dirac measure in z for every z E [0, 1]. Obviously,

KG: [0, 1] x 93([0, 1]) ~ [0, 1], defined by

Kd(x, F) := a(x)oTx(F) = a(x)lF(Tx),

is a substochastic kernel. Its induced measure JL, given by

f.L(E x F) =1a(x)oTx(F) dA(X),

fulfills JL([O, 1]2) = 1[o,l]a dA E (0, 1). Let S denote the corresponding measure-generating

function and F, G the measure-generating functions of the marginals JL Jrl and JLJr2 • It is
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straightforward to verify that F(I) = G(I). Moreover, F has density a and G has density g

given by

g(x) = f(x)l[o,I](f(x» + l(l,oo)(f(x»,

i.e. both densities only take values in [0, 1]. As a direct consequence t: G: [0, 1] ~ [0, 1],

defined by
" x - F(x)
F(x) = -1---F-(I-) '

" y - G(y)

G(y) = 1 - G(l)

are absolutely continuous distribution functions. Hence,

1
R(x, y) := (x - F(x»(y - G(y»

1 - F(I)

defines a two-dimensional measure-generating function. (Note that such an R is obtained as

a product of its univariate marginals; however, any other absolutely continuous copula can be

used as well to construct it). Finally, it easily follows that AT := S + R is a copula with the

desired properties.

If we replace function a in (4) by any other measurable function b with °< b(x) :::: a(x)

A-a.e. on [0, 1], we may obtain other copulas that concentrate mass on I'(Z'). Remarkably, the

copula AT constructed in the proof of Theorem 3 does not only fulfill K A (x, {Tx}) for every

x > 0, but it even assigns a maximum possible mass to the graph I'(T).

Theorem 4. Let T: [0, 1] ~ [0, 1] be a nonsingular transformation and let AT denote the

copula constructed in the proofofTheorem 3. Then we have sUPBEe J-LB(r(T» = J-LAr (F'(Z')).

Proof. As above, let f denote the density of AT, let a be defined according to (4), and set

F := r' «1, (0». Suppose that BEe fulfills J-LB(r(T» > J-LAr (I'(Z') and set b(x) :=

KB(X, {Tx}) for every x E [0,1]. Since b cannot be strictly greater than a on T- 1(FC
) , it

follows that fT-l(p)bdA > fT-l(p)a dA, from which we obtain

)"(F) = ( KB(X, F) d)"(x)
J[O,I]

~ ( b(x)8Tx(F) dA(x)
J[O,I]

= ( bdA
JT-l(P)

> ( adA
JT-l(P)

= ( a(x)8Tx(F) dA(x)
J[O,I]

= ( 1 IF(T(x)) d)"(x)
J[O,I] f 0 T(x)

= ( f(l) Ip(y)f(y) dA(Y)
J[O,I] Y

= A(F).

Hence, we cannot have J-LB(r(T» > J-LAr (T'(Z').
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FIGURE 1: Scatterplot of a bivariate sample of size 20000 generated by the copula AT from Theorem 4

with T(x) = x 2 (lower left) , including the marginal histograms as well as the support of the copula (upper

right) .

Theorem 3 implies the following result.

Corollary 1. Suppose that T" T2, T3 , . .. : [0, 1] ~ [0, I] are nonsingular transformations.

Then there exists a copula A E e such that KA (x, (TiX}) > 0 for every x E [0, 1] and every

i EN.

Proof For every i E N let Ai := ATj denote the copula according to Theorem 3. Then the

copula B := L ~ ' f;Ai has the stated property.

Finally, we discuss an interesting application. Following [14], suppose that X, Y are two

lifetimes with continuous and strictly increasing distribution functions Fx and Fy . Set T (x) :=

Fy 0 Fi
1
(x). Then Theorem 4 ensures that the copula AT is such that1P'(X = Y) is maximal. In

other words, a joint default is most likely to occur under this dependence structure. In Figure 1

we show a random sample from the copula AT when T(x) = x 2. Note that such problems are

popular in the coupling literature , although they usually require additional assumptions such as

the existence of marginal densities for X and Y; see [17].

5. Conclusions

We have analyzed the class of copulas with a nontrivial singular component by using their

Markov kernel representation. In particular, we provide existence results about copulas with

prescribed singular component in a very general setting . We argue that such investigations may

help to deal with copulas in many problems related to stochastic systems of lifetimes .
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