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Abstract

We study the singular part of the partition monoid Pn; that is, the ideal Pn \ Sn,
where Sn is the symmetric group. Our main results are presentations in terms of
generators and relations, and we also show that Pn \Sn is idempotent generated, and
that its rank and idempotent-rank are both equal to

(
n+1

2

)
= 1

2n(n + 1). One of our
presentations uses an idempotent generating set of this minimal cardinality.
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1 Introduction

Let X be a set and TX the (full) transformation semigroup on X, which consists of all trans-
formations on X (i.e. all self-maps of X) under composition. Let S be a semigroup, and
let S1 = S is S has an identity, or otherwise S1 = S ⊔ {1} where 1 is an adjoined identity.
Cayley’s Theorem (see [15] or [17] for example) states that the map ϕ : S → TS1 : s 7→ ϕs

determined by ϕs : S1 → S1 : t 7→ ts is an embedding. If S = S1, then ϕ maps invert-
ible elements of S to invertible elements of TS, i.e. to permutations from the symmetric
group SS, the group of units of TS. On the other hand, if S 6= S1, then sϕ is not invertible
for any s ∈ S (the identity of S1 is never in the image of sϕ), so ϕ maps S into TS1\SS1 , the
“singular part” of TS1 . (Of course this is not to say that any representation of a non-unital
semigroup S by transformations uses only singular transformations; for example, the free
monogenic semigroup embeds in the symmetric group on Z.) The singular part TX \ SX

of TX is sometimes denoted by SingX , and is a subsemigroup (indeed an ideal) of TX if
and only if X is finite. (Even when X is infinite, the set of non-surjective transformations
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does form a subsemigroup, and so too does the set of all non-injective transformations.)
When X = {1, . . . , n} is finite, we write Tn = TX and Sn = SX . The semigroup Tn \Sn

was first studied in 1966 when Howie [16] showed that it is generated by its idempotents.
Howie later showed in [18] that the rank and idempotent rank of Tn \ Sn are both equal
to

(
n

2

)
= 1

2
n(n − 1), and also characterized all idempotent generating sets of this minimal

cardinality. These results were generalized in [19] to semigroups of transformations of rank
at most r, whose ranks and idempotent ranks were shown to be equal to S(n, r), the Stir-
ling number of the second kind. Defining relations for Tn \ Sn were obtained in [8] with
respect to a different generating set; this set did not consist of idempotents, and was not of
minimal cardinality, but due to the asymmetry of the generating sets from [18], the author
suspects that presentations in terms of minimal idempotent generating sets may not be
particularly “natural”. (Of course such presentations may be obtained by rewriting the
defining relations from [8].) For further studies on Tn \ Sn, see for example [1, 2, 20].

In sub-branches of semigroup theory, different semigroups play the role of TX . The Wagner-
Preston Theorem (see for example [21] or [24]) states that any inverse semigroup S embeds
in IS, the symmetric inverse semigroup on S. Again, when S does not have an identity, S

is mapped into the singular part IS \ SS. Similarly, the FitzGerald-Leech Theorem [11]
concerns embeddings of inverse semigroups in dual symmetric inverse semigroups I ∗

S , and
the singular part I ∗

S \SS arises when S has no identity. In [12] it was shown that In \Sn

has rank n + 1, which also coincides with its nilpotent rank if n is even. Defining relations
for In \ Sn — again in terms of a larger more manageable generating set — were given
in [6], where the submonoid of all order-preserving partial permutations played a central
role. To the author’s knowledge, the singular part of the dual symmetric inverse mon-
oid I ∗

n has not yet been studied. Further studies have been conducted into other singular
semigroups of transformations (and similar objects); for example, the partial transforma-
tion semigroups [9], the Brauer monoids [23], and various semigroups of order-preserving
transformations [13].

It is the purpose of the current article to consider the singular part Pn \Sn of the partition
monoid Pn. The partition monoid arises in its connection to the partition algebras which
have a role of fundamental importance in the representation theory of the symmetric
groups; see [14] for a detailed survey, and [7] for a study of presentations. Here we view Pn

from a more semigroup theoretic point of view, motivated in part by the fact that Pn

contains most of the semigroups described above as subsemigroups (see Section 3 for more
details). Our main results include presentations for Pn \ Sn in terms of generators and
relations, and we also show that the rank and idempotent rank of Pn \ Sn are both equal
to

(
n+1

2

)
= 1

2
n(n + 1). This is reminiscent of Howie’s result [18] concerning the rank

of Tn \Sn; however, in the Pn \Sn case, we are able to obtain a rather nice set of defining
relations with respect to a particularly symmetric idempotent generating set.
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2 Preliminaries

Throughout this paper we will be mainly concerned with generation and presentation
as semigroups, but we will from time to time have to deal with monoid presentations.
Let X be an alphabet (a set whose elements are called letters), and write X∗ for the
free monoid on X, with the empty word being denoted by 1. The free semigroup on X

is X+ = X∗ \ {1}. If R ⊆ X∗×X∗ [or R ⊆ X+×X+] then we denote by R♯ the congruence
on X∗ [or X+] generated by R. We say that a monoid [or semigroup] S has monoid [or
semigroup] presentation 〈X |R 〉 via a mapping φ : X∗ → S [or φ : X+ → S] if (i) φ is an
epimorphism, and (ii) ker φ = R♯. If the mapping φ is “obvious” from context, then we
will simply say S has presentation 〈X |R 〉, or just write S ∼= 〈X |R 〉. We will also call the
elements of X generators, and elements of R relations; typically a relation (w1, w2) ∈ R

will be displayed as an equation, i.e. w1 = w2.

There are a number of important conventions to note regarding lists and words. First, a
list xi, . . . , xj is assumed to be empty if either

(i) i > j and the subscripts are understood to be increasing; or

(ii) i < j and the subscripts are understood to be decreasing.

Similarly, a word xi · · ·xj is assumed to be empty if either (i) or (ii) above hold. (Such a
word will always be a subword of a larger non-empty word if we are dealing with semigroup
presentations.) This convention will also be employed in other situations, such as in the
drawing of graphs. Secondly, we will adopt a kind of “Einstein convention” regarding
subscripts, where an expression involving an unconstrained index is assumed to represent
a list of expressions, one for each admissible value of the index (or indices). For example,
if X = {x1, . . . , xk} is an alphabet, then

x2
i = xi and xixj = xjxi

represents a list of k + k2 relations which state that all elements of X commute and are
idempotents, while if Y = {yij | 1 ≤ i < j ≤ n} then, in an expression such as

y2
ij = yij,

we are implicitly assuming that i 6= j (among other things). Finally, all numbers we
consider are integers, so a statement such as “let 1 ≤ i ≤ 5” should be read as “let i be an
integer for which 1 ≤ i ≤ 5”.

3 The Partition Monoid Pn

The partition monoids have a variety of descriptions, but the geometric one is the one
that will be most convenient here. Fix a positive integer n for the remainder of the
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article, and write n for the finite set {1, . . . , n}. Also write n′ = {1′, . . . , n′} for a set
in one-one correspondence with n. Consider the equivalence relation on the set of all
(simple, unlabelled, undirected) graphs on the vertex set n∪n′ under which two graphs are
considered equivalent if and only if they have the same connected components. A partition
on n ∪ n′ (or simply a partition) is defined to be an equivalence class of graphs under the
above equivalence. In practice, we will think of a partition simply as a graph, identifying
two graphs if they belong to the same equivalence class. When picturing partitions we will
always arrange the vertices so that vertices 1, . . . , n appear in a horizontal row (increasing
from left to right) with vertices 1′, . . . , n′ directly below; see Figure 1 below for an example.
The set of all partitions on n ∪ n′ is denoted by Pn and forms a monoid – the so-called
partition monoid – under the operation we now describe. Let α, β ∈ Pn. To calculate

1 2 3 4 5 6

1
′

2
′

3
′

4
′

5
′

6
′

Figure 1: A partition from P6.

the product αβ ∈ Pn, we first stack α and β so that vertices 1′, . . . , n′ of α are identified
with vertices 1, . . . , n of β, then delete the middle row of vertices as well as any connected
components that are not joined to an upper or lower vertex, before finally smoothing out
the resulting graph on the vertex set n ∪ n′. See Figure 2 for an example calculation. It
is easy enough to check that this product is associative, and that the partition 1 =

···

···

with n vertical edges is an identity element.

α =

β =

= αβ

Figure 2: Calculating the product of two partitions α, β ∈ P5.

There is a natural anti-involution (i.e. an anti-isomorphism of order 2)

◦ : Pn → Pn : α 7→ α◦

defined by reflection in a horizontal axis. More precisely, for i, j ∈ n∪ n′, {i, j} is an edge
of α if and only if {i′, j′} is an edge of α◦. (Here we have also written ′ for the inverse
bijection n′ → n.) This map illustrates the regular structure of Pn; we have αα◦α = α
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and α◦αα◦ = α◦ for all α ∈ Pn. However, Pn is not inverse if n ≥ 2, as it is easy to find
non-commuting idempotents.

We now pause to record some definitions and terminology. With this in mind, let α ∈ Pn.
The connected components of (any graph representing) α are called its blocks and, for
i ∈ n ∪ n′, we denote by [i]α ⊆ n∪n′ the block of α that contains i. We define the domain
and codomain of α to be the sets

dom(α) =
{
i ∈ n

∣∣ [i]α ∩ n′ 6= ∅
}
,

codom(α) =
{
i ∈ n

∣∣ [i′]α ∩ n 6= ∅
}
.

We also define the kernel and cokernel of α to be the equivalences

ker(α) =
{
(i, j) ∈ n × n

∣∣ [i]α = [j]α
}
,

coker(α) =
{
(i, j) ∈ n × n

∣∣ [i′]α = [j′]α
}
.

Basic properties include formulae such as

dom(α◦) = codom(α), ker(α◦) = coker(α),
dom(αβ) ⊆ dom(α), ker(α) ⊆ ker(αβ),

codom(αβ) ⊆ codom(β), coker(β) ⊆ coker(αβ).

The equivalence classes of n with respect to ker(α) and coker(α) are called the kernel-
classes and cokernel-classes of α. A number of important semigroups of transformations
(and related objects) are submonoids of the partition monoids, and may be described in
terms of the above notions. Write ∆ =

{
(1, 1), . . . , (n, n)

}
for the trivial equivalence on n

(i.e. the equality relation). The sets

• In =
{
α ∈ Pn

∣∣ ker(α) = coker(α) = ∆
}
,

• I∗
n =

{
α ∈ Pn

∣∣ dom(α) = codom(α) = n
}
, and

• Tn =
{
α ∈ Pn

∣∣ dom(α) = n and coker(α) = ∆
}

are all submonoids of Pn, and are isomorphic to (respectively):

• In, the symmetric inverse semigroup on n,

• I ∗
n , the dual symmetric inverse semigroup on n, and

• Tn, the (full) transformation semigroup on n.

(See [11, 15, 17, 21, 22, 24] for further information on these semigroups.) The intersection
of all three submonoids (or indeed of any two of them) is the set

• Sn =
{
α ∈ Pn

∣∣ ker(α) = coker(α) = ∆ and dom(α) = codom(α) = n
}
,
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which is isomorphic to the symmetric group Sn, and is easily seen to be the group of
units of Pn. Without causing confusion, we will identify the semigroups In, Tn, etc. with
their isomorphic copies inside Pn. So for example, if α ∈ Tn and i ∈ n, we will sometimes
write iα for “the image of i under α”; that is, the unique element of n for which {i, (iα)′}
is an edge of α. Note that the definition of Tn above is not symmetric, but the submonoid

• T ◦
n =

{
α ∈ Pn

∣∣ codom(α) = n and ker(α) = ∆
}

is anti-isomorphic to Tn, and will also play an important role.

4 The singular Subsemigroup Pn \ Sn

We now turn our attention to the singular part of the partition monoid Pn; namely, the
subsemigroup Pn \ Sn. But first we review a structural result regarding Pn from [7]. This
will require the definition of another submonoid of Pn. With this in mind, let α ∈ Tn and
suppose the kernel-classes K1, . . . , Kr of α satisfy min(K1) < · · · < min(Kr). We say that
α is block-order-preserving if K1α < · · · < Krα. Put

An =
{
α ∈ Tn

∣∣ α is block-order-preserving and codom(α) = k for some k ∈ n
}
,

which was shown to be a submonoid of Tn in [8]. Also, put Bn = A◦
n, the image of An

under the anti-involution ◦. The following was shown in [7].

Proposition 1 Let α ∈ Pn. Then α = βγδ for unique β ∈ An, γ ∈ In, δ ∈ Bn, with
dom(γ) ⊆ codom(β) and codom(γ) ⊆ dom(δ). 2

The factorization of the partition from Figure 1 is given in Figure 3.

= =

Figure 3: The factorization of a partition from P6 = A6I6B6.

Of particular importance to us here is the following special case of Proposition 1.

Corollary 2 Let α ∈ Pn \ Sn. Then α = βγδ for unique β ∈ An, γ ∈ In \ Sn, δ ∈ Bn,
with dom(γ) ⊆ codom(β) and codom(γ) ⊆ dom(δ).
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Proof Let α ∈ Pn \ Sn and suppose that α = βγδ where β, γ, δ are as in Proposi-
tion 1. It suffices to show that γ ∈ In \ Sn, so suppose for the moment that γ ∈ Sn.
Then n = dom(γ) ⊆ codom(β) ⊆ n, forcing codom(β) = n, so that in fact β ∈ Sn. Simi-
larly, we see that δ ∈ Sn, so that α = βγδ ∈ Sn, a contradiction. 2

For 1 ≤ i < j ≤ n, let αij ∈ An and βij ∈ Bn denote the partitions pictured in Figure 4.
(The reason for our overline notation will become clear shortly.)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
1 i j n nji1

Figure 4: The partitions αij (left) and βij (right).

It was shown in [8] that An is generated (as a monoid) by the set A = {αij | 1 ≤ i < j ≤ n},
and it follows also that Bn is generated by B = {βij | 1 ≤ i < j ≤ n}. For 1 ≤ i ≤ n and

1 ≤ r ≤ n − 2, denote by λi, ρi, sr ∈ In \ Sn the partitions pictured in Figure 5.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
1 i n 1 r n ni1

Figure 5: The partitions λi (left), sr (middle), and ρi (right).

It was shown in [6] that In \ Sn is generated (as a semigroup) by the set L∪ S ∪R, where

L = {λ1, . . . , λn}, S = {s1, . . . , sn−2}, R = {ρ1, . . . , ρn}.

By Corollary 2, we see that Pn \ Sn = An(In \ Sn)Bn is generated (as a semigroup) by the
set A∪L∪S ∪R∪B. This set has 2

(
n

2

)
+ (2n− 1) + (n− 2) = n2 + 2n− 3 elements (note

that λn = ρn), and is not the smallest generating set. We will see later that the minimal
size of a generating set is in fact

(
n+1

2

)
= 1

2
n(n + 1). However, this larger generating set

will prove useful in deriving a system of defining relations, which can then be manipulated
to yield defining relations with respect to a more compact generating set.

5 A Presentation for Pn \ Sn

In the previous section, we exhibited a factorization Pn \Sn = An(In \Sn)Bn and obtained
a generating set for Pn \Sn by piecing together generating sets for the three subsemigroups
featuring in the factorization. We now piece together presentations for these subsemigroups
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(also necessarily adding new relations) in order to obtain defining relations for Pn \ Sn in
terms of the above-mentioned generating set. With this task in mind, we define alphabets

A = {αij | 1 ≤ i < j ≤ n}, B = {βij | 1 ≤ i < j ≤ n},

L = {λ1 . . . , λn}, S = {s1, . . . , sn−2}, R = {ρ1 . . . , ρn}.

Consider the sets of relations

λiλj = λj+1λi if i ≤ j < n (L1)

λiλn = λi for all i (L2)

ρjρi = ρiρj+1 if i ≤ j < n (R1)

ρnρi = ρi for all i; (R2)

ρiλj =






λnλj−1ρi if i < j

λn = ρn if i = j

λnλjρi−1 if j < i;
(RL1—RL3)

siλn = si for all i (S1)

s2
i = λn for all i (S2)

sisj = sjsi if |i − j| > 1 (S3)

sisjsi = sjsisj if |i − j| = 1; (S4)

siλj =





λnλjsi if i < j − 1 < n − 1
λnλj−1 if i = j − 1 < n − 1
λnλj+1 if i = j

λnλjsi−1 if j < i

(SL1—SL4)

ρjsi =





siρjρn if i < j − 1 < n − 1
ρj−1ρn if i = j − 1 < n − 1
ρj+1ρn if i = j

si−1ρjρn if j < i;

(RS1—RS4)

αklαin = αkl for all i, k, l (A1)

αjkαij = αikαij = αijαi,k−1 if i < j < k (A2)

αklαij =





αijαk−1,l−1 if i < j < k < l

αijαk,l−1 if i < k < j < l

αi,j+1αkl if i < k < l ≤ j < n;

(A3—A5)
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βinβkl = βkl for all i, k, l (B1)

βijβjk = βijβik = βi,k−1βij if i < j < k (B2)

βijβkl =






βk−1,l−1βij if i < j < k < l

βk,l−1βij if i < k < j < l

βklβi,j+1 if i < k < l ≤ j < n.

(B3—B5)

Proofs of the various parts of the following theorem may be found in [6] and [8].

Theorem 3 We have the monoid presentations

An
∼=

〈
A

∣∣ (A1—A5)
〉

and Bn
∼=

〈
B

∣∣ (B1—B5)
〉
,

and the semigroup presentation

In \ Sn
∼=

〈
L ∪ S ∪ R

∣∣∣∣
(L1—L2), (R1—R2), (RL1—RL3),

(S1—S4), (SL1—SL4), (RS1—RS4)

〉
. 2

We now define an alphabet X = A ∪ L ∪ S ∪ R ∪ B. Let R be the set of all the above
relations, together with

βklαij =






λnαi−1,j−1βkl if l < i

λnαk,j−1βkl if l = i

λnαi,j−1βkl if i < l < j

λnαkiβki if k < i < j = l

λn if k = i < j = l

λnαikβik if i < k < l = j

λnαijβk,l−1 if k < j < l

λnαijβi,l−1 if j = k

λnαijβk−1,l−1 if j < k;

(BA1—BA9)

λkαij =






λk if j = n

αi+1,j+1λk if k ≤ i < j < n

αi,j+1λk if i < k ≤ j < n

αijλk−1 if j < k;

(LA1—LA4)
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βijρk =






ρk if j = n

ρkβi+1,j+1 if k ≤ i < j < n

ρkβi,j+1 if i < k ≤ j < n

ρk−1βij if j < k;

(BR1—BR4)

srαij =





sr if j = n

λnαijsr if r < i − 1 < j − 1 < n − 1

λnαi−1,jsr if r = i − 1 < j − 1 < n − 1

λnαi+1,jsr if r = i < j − 1 < n − 1

λnαij if r = i = j − 1 < n − 1

λnαijsr if i < r < j − 1 < n − 1

λnαi,j−1 if i < r = j − 1

λnαi,j+1 if r = j

λnαijsr−1 if j < r;

(SA1—SA9)

βijsr =





sr if j = n

srβijρn if r < i − 1 < j − 1 < n − 1

srβi−1,jρn if r = i − 1 < j − 1 < n − 1

srβi+1,jρn if r = i < j − 1 < n − 1

βijρn if r = i = j − 1 < n − 1

srβijρn if i < r < j − 1 < n − 1

βi,j−1ρn if i < r = j − 1

βi,j+1ρn if r = j

sr−1βijρn if j < r;

(BS1—BS9)

αijλn = αij for all i, j (AL1)

ρnβij = βij for all i, j; (RB1)

ρkαij =





αi−1,j−1ρkρn if k < i

sj−2 · · · si if k = i < j − 1

ρn if k = i = j − 1

αi,j−1ρkρn if i < k < j

ρn if k = j

αijρk−1ρn if j < k;

(RA1—RA6)
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βijλk =






λnλkβi−1,j−1 if k < i

si · · · sj−2 if k = i < j − 1

λn if k = i = j − 1

λnλkβi,j−1 if i < k < j

λn if k = j

λnλk−1βij if j < k.

(BL1—BL6)

It is our goal in this section to show that Pn \ Sn
∼= 〈X |R 〉. With this in mind we define

Φ : X
+ → Pn \ Sn

to be the epimorphism that extends the map X → Pn \Sn which sends each letter ξ ∈ X

to its corresponding partition ξ ∈ Pn \ Sn. We will also expand our use of the overline
notation, so that for any word w ∈ X + we write w for the partition wΦ ∈ Pn. Denote
by ∼ = R♯ the congruence on X + generated by R.

Lemma 4 We have the inclusion ∼ ⊆ ker Φ.

Proof This follows by a straight-forward (but time-consuming) check that the relations
from R are all preserved under Φ. 2

The proof of the presentation Pn \ Sn
∼= 〈X |R 〉 makes crucial use of the following

proposition which concerns factorizations of words over X and mirrors the structure
of Pn \ Sn = An(In \ Sn)Bn given in Corollary 2.

Proposition 5 If w ∈ X +, then w ∼ w1w2w3 for some w1 ∈ A∗, w2 ∈ (L ∪ S ∪ R)+,
w3 ∈ B∗ with dom(w2) ⊆ codom(w1) and codom(w2) ⊆ dom(w3).

The proof will be deferred until we have collected some intermediate technical results.

Lemma 6 Let 1 ≤ i < j ≤ n and w ∈ (L ∪ S ∪ R ∪ B)∗. Then wαij ∼ w1w2 for
some w1 ∈ A∗ and w2 ∈ (L ∪ S ∪ R ∪ B)+ with ℓ(w1) ≤ 1.

Proof First, if ℓ(w) = 0, then wαij = αij ∼ αijλn by (AL1), so suppose that ℓ(w) ≥ 1.
Write w = w′ξ where ξ ∈ L ∪ S ∪ R ∪ B. If we can show that ξαij ∼ w1w2, where w1, w2

are words of the required form, then we will be done by an induction hypothesis, seeing
as ℓ(w′) = ℓ(w) − 1. Now, if ξ ∈ L ∪ R, then we are done immediately, by the relevant
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relation from (LA1—LA4) or (RA1—RA6). Suppose next that ξ = βkl ∈ B. If k = i and
l = j, then βklαij ∼ λn by (BA5). In all other cases we have

βklαij ∼ λnαpqβrs for some 1 ≤ p < q ≤ n − 1 and 1 ≤ r < s ≤ n,

by (BA1—BA4) or (BA6—BA9)

∼ αpqλn−1βrs by (LA4),

as required. Finally, the case ξ ∈ S is covered in essentially the same way, using relations
(SA1—SA9). 2

Corollary 7 If w ∈ X +, then w ∼ w1w2 for some w1 ∈ A∗ and w2 ∈ (L ∪ S ∪ R ∪ B)+.

Proof Define χ : X + → (N, +) to be the extension of the map

X → N : ξ 7→

{
1 if ξ ∈ A

0 if ξ ∈ X \ A.

The proof proceeds by induction on k = χ(w). If k = 0 then we are already done, with
w1 = 1 and w2 = w, so suppose k ≥ 1. Then w = w3αijw4 for some w3 ∈ (L∪S ∪R∪B)∗

and w4 ∈ X ∗. Then

w = w3αijw4 ∼ w5w6w4 for some w5 ∈ A∗ and w6 ∈ (L ∪ S ∪ R ∪ B)+

∼ w5w7w2 for some w7 ∈ A∗ and w2 ∈ (L ∪ S ∪ R ∪ B)+,

where the first equivalence follows by Lemma 6, and the second by an induction hypothesis
applied to w6w4. Since w1 = w5w7 ∈ A∗, the proof is complete. 2

The proofs of the next two results are almost identical to those of Lemma 6 and Corollary 7
(respectively).

Lemma 8 Let 1 ≤ i < j ≤ n and w ∈ (L ∪ S ∪ R)∗, then βijw ∼ w1w2 for some
w1 ∈ (L ∪ S ∪ R)+ and w2 ∈ B∗ with ℓ(w2) ≤ 1. 2

Corollary 9 If w ∈ (L ∪ S ∪ R ∪ B)+, then w ∼ w1w2 for some w ∈ (L ∪ S ∪ R)+ and
w2 ∈ B∗. 2

Corollary 10 If w ∈ X +, then w ∼ w1w2w3 for some w1 ∈ A∗, w2 ∈ (L ∪ S ∪ R)+,
w3 ∈ B∗.

12



Proof This follows immediately from Corollaries 7 and 9. 2

This proves part of Proposition 5. To prove the part concerning domains and codomains,
we first define words

ur = λn · · ·λr+1 ∈ L∗, vr = ρr+1 · · · ρn ∈ R∗,

ar = αn−1,n · · ·αr,r+1 ∈ A∗, br = βr,r+1 · · ·βn−1,n ∈ B∗

for each 1 ≤ r ≤ n, noting that all these words are empty in the case r = n.

Lemma 11 Let 1 ≤ r ≤ n. Then ur ∼ vr and, regarding ur as a partial permutation, we
also have ur = id

r
.

Proof This is essentially Lemma 26 of [6]. 2

Lemma 12 Let 1 ≤ r ≤ n − 1. Then

(i) arur ∼ ar; and

(ii) vrbr ∼ br.

Proof We prove (i) by (backwards) induction on r. The r = n − 1 is covered by (AL1),
so suppose r < n − 1. Then

arur = ar+1αr,r+1λnλn−1 · · ·λr+1

∼ ar+1αr,r+1λn−1 · · ·λr+1 by (AL1)

∼ ar+1λn · · ·λr+2αr,r+1 by several applications of (LA4)

= ar+1ur+1αr,r+1

∼ ar+1αr,r+1 by an induction hypothesis

= ar,

completing the proof of (i). Part (ii) is proved analogously. 2

Corollary 13 Let 1 ≤ r ≤ n − 1.

(i) If w ∈ A∗ and codom(w) = r, then w ∼ wur.

(ii) If w ∈ B∗ and dom(w) = r, then w ∼ urw.

13
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· · ·

· · ·
1 r n nr1

Figure 6: The partitions ar (left) and br (right).

Proof Diagrammatically, it is easy to see that w ar = w; see Figure 6 for an illustration
of ar (and br). It follows by Theorem 3 that war ∼ w. But then using this, and Lemma 12,
we have

w ∼ war ∼ warur ∼ wur,

showing that (i) holds. Again, (ii) is proved in a similar fashion. 2

Proof of Proposition 5 Let w ∈ X +. By Corollary 10 we have w ∼ w1w
′
2w3 for some

w1 ∈ A∗, w′
2 ∈ (L ∪ S ∪ R)+, w3 ∈ B∗. Now, codom(w1) = r and dom(w3) = s for some

1 ≤ r, s ≤ n. Put w2 = urw
′
2us ∈ (L ∪ S ∪ R)+. Then

w ∼ w1w
′
2w3 ∼ w1urw

′
2usw3 = w1w2w3,

where the second equivalence follows from (both parts of) Corollary 13 if r and/or s are
not equal to n (recall that un = 1). Further, we have

dom(w2) = dom(ur w′
2 us) ⊆ dom(ur) = r = codom(w1),

and similarly codom(w2) ⊆ dom(w3), completing the proof. 2

We are now able to prove the main result of this section.

Theorem 14 We have the presentation Pn \ Sn
∼= 〈X |R 〉.

Proof All that remains is to show that ker Φ ⊆ ∼, so suppose (w, w′) ∈ ker Φ. Now, by
Proposition 5,

w ∼ w1w2w3 and w′ ∼ w′
1w

′
2w

′
3

for appropriate wi, w
′
i (i = 1, 2, 3). We then have

w1w2w3 = wΦ = w′Φ = w′
1w

′
2w

′
3.

But then by Corollary 2, we have wi = w′
i for each i, so that each wi ∼ w′

i by the relevant
presentation from Theorem 3. It follows that w ∼ w′, and the proof is complete. 2
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Remark 15 Note that the set X contains some redundant generators. Indeed, λn and ρn

as well as all of the sr are unneeded since

ρn = λn = β12α12 by (RL2) and (BA5), and

sr = ρrαr,r+2 = βr,r+2λr for all r, by (RA2) and (BL2).

In fact, we will see in the next section that no more generators may be removed from this
set, but that the minimal size of a generating set for Pn \ Sn is

(
n+1

2

)
= 1

2
n(n + 1), as

compared with the 2
(

n

2

)
+2(n−1) = n2 +n−2 elements of this irreducible generating set.

6 The Rank of Pn \ Sn

Recall that the rank of a semigroup S, denoted rank(S), is the minimal cardinality of a
subset of S which generates it (as a semigroup). If S is generated by its idempotents, then
the idempotent rank, denoted id-rank(S), is the minimal cardinality of a set of idempotents
that generates S (as a semigroup). It is our aim in this section to show that Pn \ Sn is
idempotent generated, and that rank(S) = id-rank(S) =

(
n+1

2

)
. With this in mind, define

(idempotent) partitions εi (1 ≤ i ≤ n) and tij (1 ≤ i < j ≤ n) as in Figure 7.

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
1 i n nji1

Figure 7: The partitions εi (left) and tij (right).

Proposition 16 The semigroup Pn \ Sn is generated by the set

Σ = { εi | 1 ≤ i ≤ n} ∪ { tij | 1 ≤ i < j ≤ n}.

Proof It suffices to show that X is contained in 〈Σ〉, the subsemigroup of Pn \ Sn

generated by Σ. Now λn = εn and, as may be easily checked diagrammatically, we
have λi = (εiti,i+1)λi+1 for all 1 ≤ i ≤ n − 1. Inductively, this gives rise to the expression

λi = εiti,i+1εi+1ti+1,i+2 · · · εn−1tn−1,nεn.

By applying the anti-involution ◦ : Pn → Pn, it follows that

ρi = εntn−1,nεn−1 · · · ti+1,i+2εi+1ti,i+1εi.

One may also verify that

αij = tijλj , βij = ρjtij, sr = εntr,nεrtr,r+1εr+1tr+1,nεn,

and the proof is complete. 2
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Remark 17 In the reverse direction, the new generators can be expressed in terms of the
old as

εi = λiρi and tij = αijβij .

Remark 18 The subsets { εi | 1 ≤ i ≤ n} and { tij | 1 ≤ i < j ≤ n} respectively generate
(as monoids) E(In) and E(I∗

n), the idempotent semilattices of the symmetric and dual
symmetric inverse monoids (see [3, 4, 10]. So this proposition also shows that

(Pn \ Sn) ∪ {1} =
〈
E(Pn)

〉
=

〈
E(In) ∪ E(I∗

n)
〉
.

Theorem 19 The semigroup Pn \ Sn is generated by its idempotents, and we have

rank(Pn \ Sn) = id-rank(Pn \ Sn) =

(
n + 1

2

)
=

n(n + 1)

2
.

Proof Since every element of Σ is idempotent it suffices, by Proposition 16, to show that
rank(Pn \Sn) ≥

(
n+1

2

)
. With this in mind, let Γ be an arbitrary generating set for Pn \Sn.

We must show that |Γ| ≥
(

n+1
2

)
.

Let i ∈ n, and consider an expression εi = γ1 · · · γk where γ1, . . . , γk ∈ Γ. We wish to show
that dom(γ1) = n \ {i}, so suppose for the moment that this is not the case. Now

n \ {i} = dom(εi) = dom(γ1 · · · γk) ⊆ dom(γ1),

and it follows (by assumption) that dom(γ1) = n. We also have

∆ = ker(εi) = ker(γ1 · · ·γk) ⊇ ker(γ1),

so that ker(γ1) = ∆. Together with dom(γ1) = n, this implies that γ1 ∈ Sn, contradicting
the fact that γ1 ∈ Pn \ Sn. It follows that dom(γ1) = n \ {i}. Repeating this argument
for all i ∈ n, we see that Γ contains (at least) n distinct partitions with domain a proper
subset of n.

Now let 1 ≤ i < j ≤ n, and consider an expression tij = η1 · · ·ηk where η1, . . . , ηk ∈ Γ.
Note that

n = dom(tij) = dom(η1 · · · ηk) ⊆ dom(η1),

so that dom(η1) = n. Write Eij for the equivalence ∆ ∪
{
(i, j), (j, i)

}
. Now

Eij = ker(tij) = ker(η1 · · · ηk) ⊇ ker(η1),

so either ker(η1) = ∆ or ker(η1) = Eij. But since dom(η1) = n and η1 6∈ Sn, we cannot have
ker(η1) = ∆, so it follows that ker(η1) = Eij . Repeating this argument for all 1 ≤ i < j ≤ n,
we see that Γ contains (at least)

(
n

2

)
distinct partitions with domain equal to n.

Putting together the conclusions of the previous two paragraphs, we have

|Γ| ≥ n +

(
n

2

)
=

(
n + 1

2

)
,

and the proof is complete. 2
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Remark 20 Dual arguments to those in the above proof show that any generating set Γ
of Pn \ Sn must contain an element with codomain n \ {i} and cokernel ∆ for each i, and
an element with cokernel Eij for each i, j. This shows that the generating set

{αij | 1 ≤ i < j ≤ n} ∪ {βij | 1 ≤ i < j ≤ n} ∪ {λi | 1 ≤ i ≤ n − 1} ∪ {ρi | 1 ≤ i ≤ n − 1}

discussed in Remark 15 cannot be reduced further, although it is not of minimal cardinality.

Remark 21 The set Σ is not the only idempotent generating set of minimal rank. The
characterization of such minimal idempotent generating sets is the subject of another
work [5].

7 Refining the Presentation

We now set out to find a presentation for Pn \ Sn in terms of the idempotent generating
set Σ from Proposition 16. To do this, we start with the presentation 〈X |R 〉 from
Theorem 14, and perform a series of Tietze transformations. With this in mind, define an
alphabet

Y = {εi | 1 ≤ i ≤ n} ∪ {tij | 1 ≤ i < j ≤ n}.

Beginning with 〈X |R 〉, we add the generators from Y , along with the relations

εi = λiρi for all i (D1)

tij = αijβij for all i, j, (D2)

which define them in terms of the original generators. Writing D for the set of rela-
tions (D1—D2), the presentation becomes 〈X ∪ Y |R ∪ D 〉. In the statement of the
next lemma, and indeed for the duration of this article, we will use the symmetric nota-
tion tji = tij for all 1 ≤ i < j ≤ n (think of both expressions standing for the slightly more
clumsy t{i,j}).

Lemma 22 With i, j, k, l ranging over all possible indices, subject to the stated constraints,
the following relations are in (R ∪ D)♯:

ε2
i = εi (E1)

εiεj = εjεi (E2)

t2ij = tij (T1)

tijtkl = tkltij (T2)

tijtjk = tjktki = tkitij (T3)

tijεk = εktij if k 6∈ {i, j} (ET1)

tijεktij = tij if k ∈ {i, j} (ET2)

εktijεk = εk if k ∈ {i, j} (ET3)

εktkiεitijεjtjkεk = εktkjεjtjiεitikεk (ET4)

εktkiεitijεjtjlεltlkεk = εktklεltliεitijεjtjkεk. (ET5)
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Proof This follows from a simple diagrammatic check, and the fact that 〈X ∪ Y |R ∪ D 〉
is a presentation. 2

Denote by Q the set of relations in the statement of Lemma 22. We add these relations
to the presentation to obtain

〈X ∪ Y |R ∪ D ∪ Q 〉.

It is our ultimate goal to show that the presentation simplifies to 〈Y |Q 〉. Throughout
our pursuit of this goal, certain simple words (and longer words built up out of them) will
play a crucial role. For a pair of distinct indices i, j ∈ n, we define

Xij = εitijεj ∈ Y
+.

As always, we are using symmetric notation for the tij = tji. However, it is important to
note that Xji 6= Xij. We further define words

Li =

{
Xi,i+1Xi+1,i+2 · · ·Xn−1,n for 1 ≤ i ≤ n − 1

εn for i = n

Ri =

{
Xn,n−1 · · ·Xi+2,i+1Xi+1,i for 1 ≤ i ≤ n − 1

εn for i = n

Aij = tijLj for 1 ≤ i < j ≤ n

Bij = Rjtij for 1 ≤ i < j ≤ n

Sr = XnrXr,r+1Xr+1,n for 1 ≤ r ≤ n − 2.

As the notation suggests, these words over Y map to the generators λi, ρi, etc., of Pn \Sn,
as made precise in the statement of the next lemma.

Lemma 23 The following relations are in (R ∪ D ∪ Q)♯:

λi = Li, ρi = Ri for all i

αij = Aij, βij = Bij for all i, j

sr = Sr for all r.

Proof Again a simple diagrammatic check is sufficient, since 〈X ∪ Y |R ∪ D ∪ Q 〉 is
known to be a presentation. 2

As a result, the generators from X may be removed from the presentation, with their
every occurrence in the relations R ∪ D being replaced by the words Li, Ri, Aij , Bij, Sr as
appropriate. We denote the resulting relations by (L1)′, etc., and the entire set of modified
relations by R ′ ∪ D ′. The presentation has now become

〈Y |R ′ ∪ D
′ ∪ Q 〉,
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and our goal has become to show that relations R ′ ∪D ′ follow from Q. For the remainder
of the article, we will write ≈ = Q♯ for the congruence on Y + generated by Q.

We will be aided in our goal by a duality in the relations. Define the anti-involution

̂ : Y
+ → Y

+

to be the extension of the identity map Y → Y .

Lemma 24 Let w1, w2 ∈ Y +. Then w1 ≈ w2 if and only if ŵ1 ≈ ŵ2.

Proof This follows immediately from the fact that Q is closed under ̂. 2

Of special importance is the fact that X̂ij = Xji, from which it follows that

L̂i = Ri, R̂i = Li, Âij = Bij , B̂ij = Aij .

We will see later that Ŝr ≈ Sr also.

Before considering the relations from R ′ ∪ D ′ one-by-one, we first prove some results
concerning the words Xij = εitijεj defined above.

Lemma 25 With i, j, k, l ranging over all possible indices, subject to the stated constraints,
we have:

(25.1) X3
ij ≈ X2

ij ≈ εiεj ;

(25.2) XijXkl ≈ XklXij , if {i, j} ∩ {k, l} = ∅;

(25.3) Xij(XjkXij) ≈ Xji(XjkXij) ≈ (XjkXij)Xjk ≈ (XjkXij)Xkj ≈ XjkXij, if i 6= k;

(25.4) (XijXjk)Xji ≈ Xkj(XijXjk) ≈ εiεk, if i 6= k; and

(25.5) XijXji ≈ εi.

Proof First we have

X2
ij = εitijεjεitijεj ≈ εitijεiεjtijεj ≈ εiεj,

by (E2) and (ET3), while

X3
ij ≈ εiεjXij = εiεjεitijεj ∼ εiεiεjtijεj ∼ εiεj,

by (E1—E2), (ET3), and the previous calculation, completing the proof of (25.1).

Relation (25.2) is an immediate consequence of (E2), (T2), and (ET1).
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For (25.3), note that if i, j, k are distinct, then

XjkXij = εjtjkεkεitijεj ≈ εiεjtjktijεjεk by (E2) and (ET1)

≈ X2
ijtjktijX

2
jk by (25.1) above

≈ X2
jitjktijX

2
kj by (25.1) again.

By another application of (25.1) we see that, modulo the relations, XjkXij acts as a right-
zero for Xij and Xji, and as a left-zero for Xjk and Xkj.

Next, with i, j, k distinct again, we have

(XijXjk)Xji = εitijεjεjtjkεkεjtjiεi

≈ εitijεjtjkεjtjiεiεk by (E1) and (ET1)

≈ εitijεjtjiεiεk by (ET3)

≈ εitijεiεk by (ET2)

≈ εiεk by (ET3),

establishing the first part of (25.4). The second part follows from the first by duality (i.e. an
application of Lemma 24) and relation (E2).

Finally, (25.5) follows quickly from (E1), (ET2), and (ET3). 2

We now begin to eliminate the relations from D ′ ∪ R ′. The order in which we proceed
is determined partly by difficulty, but also by convenience in terms of using established
relations in the subsequent proofs of other relations.

Lemma 26 Relations (D1—D2)′ are in Q♯.

Proof For (D1)′ we must prove that εi ≈ LiRi. We do this by backwards induction on i.
Now if i = n, then we are done by (E1), since Ln = Rn = εn, so suppose 1 ≤ i ≤ n − 1.
Note that

Li ≈ Xi,i+1Li+1 and Ri ≈ Ri+1Xi+1,i.

(Indeed, we have equality in the case 1 ≤ i ≤ n − 2, but must apply (E1) in the case
i = n − 1.) It then follows that

LiRi ≈ Xi,i+1Li+1Ri+1Xi+1,i ≈ Xi,i+1εi+1Xi+1,i ≈ Xi,i+1Xi+1,i ≈ εi,

where we have used an induction hypothesis, as well as (E1) and (25.5).

For (D2)′, we have
AijBij = tijLjRjtij ≈ tijεjtij ≈ tij ,

where we have applied (D1)′ and (ET2). 2
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Lemma 27 Relations (L1—L2)′ and (R1—R2)′ are in Q♯.

Proof Relation (L2)′ follows immediately from (E1). For (L1)′, it will be convenient for
the moment to use the notation xi = Xi,i+1 for i = 1, . . . , n − 1. By (25.2) and (25.3) the
following (braid) relations hold:

xixj ≈ xjxi if |i − j| > 1 (27.1)

xixi+1xi ≈ xi+1xixi+1 if 1 ≤ i ≤ n − 2. (27.2)

If we further define xn = εn, then one may easily check that (27.1) and (27.2) above also
hold when the indices are allowed to be n. Now, using (27.1) and (27.2), observe that if
1 ≤ i ≤ k ≤ n − 1, then

Lixk ≈ xi · · ·xk−1xkxk+1xk+2 · · ·xn−1xk ≈ xi · · ·xk−1xkxk+1xkxk+2 · · ·xn−1

≈ xi · · ·xk−1xk+1xkxk+1xk+2 · · ·xn−1 ≈ xk+1xi · · ·xk−1xkxk+1xk+2 · · ·xn−1 = xk+1Li.

(Here, note that the first equivalence is an equality unless k = n − 1, in which case the
subword xk+2 · · ·xn−1 is assumed to be empty.) So, for 1 ≤ i ≤ j ≤ n − 1, we have

LiLj = Lixj · · ·xn−1 ≈ xj+1 · · ·xnLi ≈ Lj+1LnLi ≈ Lj+1Li,

by the above observation and (L2)′, completing the proof of (L1)′. (Again, the second
equivalence is an equality unless j = n − 1.)

Finally, relations (R1—R2)′ follow from (L1—L2)′ and duality. 2

Lemma 28 Relations (RL1—RL3)′ are in Q♯.

Proof For (RL2)′, note first that RnLn = ε2
n ≈ εn = Ln by (E1), while if 1 ≤ i ≤ n − 1,

then
RiLi ≈ Ri+1Xi+1,iXi,i+1Li+1 ≈ Ri+1εi+1Li+1 ≈ Ri+1Li+1 ≈ εn = Ln,

where we have used (25.5), (E1), and an induction hypothesis.

We now consider (RL1)′. Again it will be convenient to use the notation xi (i ∈ n) defined
in the proof of the previous lemma. We further define yi = x̂i for each i; that is, yi = Xi+1,i

for i = 1, . . . , n − 1 and yn = εn. By (24.2) and (24.4) the following (singular braid)
relations hold:

xiyj ≈ yjxi if |i − j| > 1 (28.1)

xiyi+1yi ≈ yi+1yixi+1 if 1 ≤ i ≤ n − 2. (28.2)

Using these, a similar calculation yields

Rixk ≈ xk−1Ri if 1 ≤ i < k ≤ n − 1. (28.3)
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We also calculate

xnxn−1 = εnεn−1tn−1,nεn ≈ εn−1εntn−1,nεn ≈ εn−1εn (28.4)

by (E2) and (ET3). Putting this together, for 1 ≤ i < j ≤ n − 1, we have

RiLj = Rixj · · ·xn−1 ≈ xj−1 · · ·xn−2Ri by (28.3)

≈ xj−1 · · ·xn−2εn−1εnRi by (E1)

≈ xj−1 · · ·xn−2xnxn−1Ri by (28.4)

≈ xnxj−1 · · ·xn−2xn−1Ri by (27.1)

= LnLj−1Ri.

Finally, for the j = n case of (RL1)′, note first that by (28.4) above, and duality, we have

Rn−1Rn = yn−1yn ≈ εn−1εn ≈ xnxn−1 = LnLn−1. (28.5)

By (R1—R2)′ and (28.5), if 1 ≤ i < n, then

RiLn = RiRn ≈ Rn−1Ri ≈ Rn−1RnRi ≈ LnLn−1Ri,

completing the proof of (RL1)′. For (RL3)′, suppose 1 ≤ j < i ≤ n. Then

RjLi ≈ LnLi−1Rj by (RL1)′

≈ Li−1Ln−1Rj by (L1)′

≈ Li−1LnLn−1Rj by (L2)′

≈ Li−1Rn−1RnRj by (28.5)

≈ Li−1Rn−1Rj by (R2)′

≈ Li−1RjRn by (R1)′.

By duality it follows that RiLj ≈ LnLjRi−1, and the proof is complete. 2

In order to deal with relations (A1—A5)′ and (B1—B5)′, we first need some knowledge of
how the words Xkl and Lk interact with the generators tij.

Lemma 29 Let i, j, k, l ∈ n with i 6= j and k 6= l. Then

Xkltij ≈





tijXkl if {i, j} ∩ {k, l} = ∅

tjlXkl if k = i but l 6= j

εitij if k = i and l = j.

(29.1—29.3)

(Note that not all “cases” have been considered.)
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Proof Relation (29.1) follows immediately from (ET1) and (T2). For (29.2) we have

Xkltkj = εktklεltkj ≈ εktkltkjεl ≈ εktjltklεl ≈ tjlεktklεl = tjlXkl,

using (ET1) and (T3). Finally, for (29.3) we have

Xijtij = εitijεjtij ≈ εitij

by (ET2), and the proof is complete. 2

Lemma 30 Let 1 ≤ k ≤ n and 1 ≤ i < j ≤ n − 1. Then

Lktij ≈






tijLk if j < k

ti,j+1Lk if i < k ≤ j

ti+1,j+1Lk if k ≤ i,

(30.1—30.3)

and

tijRk ≈





Rktij if j < k

Rkti,j+1 if i < k ≤ j

Rkti+1,j+1 if k ≤ i.

(30.4—30.6)

Proof Relation (30.1) follows from (29.1) if k < n, or (ET1) if k = n. For (30.2) we have

Lktij = Xk,k+1 · · ·Xj−1,jXj,j+1Xj+1,j+2 · · ·Xn−1,ntij

≈ Xk,k+1 · · ·Xj−1,jXj,j+1tijXj+1,j+2 · · ·Xn−1,n by (29.1)

≈ Xk,k+1 · · ·Xj−1,jti,j+1Xj,j+1Xj+1,j+2 · · ·Xn−1,n by (29.2)

≈ ti,j+1Xk,k+1 · · ·Xj−1,jXj,j+1Xj+1,j+2 · · ·Xn−1,n by (29.1)

= ti,j+1Lk.

Relation (30.3) follows by a similar calculation, and (30.4—30.6) follow by duality. 2

Lemma 31 Relations (A1—A5)′ and (B1—B5)′ are in Q♯.

Proof For (A1)′, we use (L2)′ and (ET3), noting that Ln = εn, to obtain

AklAij = tklLltinLn ≈ tklLlLntinLn = tklLlLn ≈ tklLl = Akl.

For (A2)′, suppose 1 ≤ i < j < k ≤ n. Then by (30.1) and (T2—T3) we have

AjkAij = tjkLktijLj ≈ tjktijLkLj ≈ tiktijLkLj ≈ tikLktijLj = AikAij .

Also, using one of the intermediate stages of the previous calculation, as well as (T2), (L1)′,
and (30.2), we calculate

AjkAij ≈ tiktijLkLj ≈ tijtikLjLk−1 ≈ tijLjti,k−1Lk−1 = AijAi,k−1.

Relations (A3—A5)′ are proved in a similar fashion. Relations (B1—B5)′ follow by dual-
ity. 2
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Lemma 32 Relations (LA1—LA4)′ and (BR1—BR4)′ are in Q♯.

Proof The proof of (LA1)′ is similar to that of (A1)′. For (LA2)′, if 1 ≤ k ≤ i < j < n,
then

LkAij = LktijLj ≈ ti+1,j+1LkLj ≈ ti+1,j+1Lj+1Lk = Ai+1,j+1Lk,

by (30.3) and (L1)′. Relations (LA3—LA4)′ are proved in an almost identical manner.
Relations (BR1—BR4)′ follow by duality. 2

Lemma 33 Relations (AL1)′ and (RB1)′ are in Q♯.

Proof By (L2)′ we have

AijLn = tijLjLn ≈ tijLj = Aij,

establishing (AL1)′. Relation (RB1)′ follows by duality. 2

Lemma 34 Relations (BA1—BA9)′ are in Q♯.

Proof For (BA1)′, suppose 1 ≤ k < l < i < j ≤ n. Then

BklAij = RltkltijLj

≈ RltijtklLj by (T2)

≈ ti−1,j−1RlLjtkl by (30.1) and (30.6)

≈ ti−1,j−1LnLj−1Rltkl by (RL1)′

≈ Lnti−1,j−1Lj−1Rltkl by (30.1)

= LnAi−1,j−1Bkl.

With the exception of (BA5)′, the remaining relations are dealt with in an essentially
identical manner. For (BA5)′ we have

BijAij = RjtijtijLj ≈ RjεjtijεjLj ≈ RjεjLj ≈ RjLj ≈ Ln

where we have used (T1), (E1), (ET3), and (RL2)′. 2

Before moving on to the relations that involve the Si, we must prove some more technical
results concerning the words Xij .

Lemma 35 Let i, j, k ∈ n be distinct. Then

XikXjk ≈ XijXik ≈ XjkXij ≈ εjXik ≈ Xikεj .
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Proof By (E2), (ET1), and (ET3), we have

XikXjk = εitikεkεjtjkεk ≈ εjεitikεktjkεk ≈ εjεitikεk = εjXik.

The other relations are established analogously. 2

It will also help to know that Ŝr ≈ Sr for all r, so that we will be able to apply duality
arguments to relations involving the Sr. This is a special case of the following lemma
which, incidentally, will necessitate our first use of relation (ET4). For distinct integers
i, j, k ∈ n, we define a word

Sij;k = XkiXijXjk.

Note in particular that Sr = Sr,r+1;n for all r. One may easily check that the word Sij;k is
mapped to the restriction of transposition (i, j) to the domain n \ {k}.

Lemma 36 Let i, j, k ∈ n be distinct. Then Sij;k ≈ Sji;k = Ŝij;k.

Proof By (E1) and (ET4), we have

Sij;k = XkiXijXjk ≈ εktkiεitijεjtjkεk ≈ εktkjεjtjiεitikεk ≈ XkjXjiXik = Sji;k. 2

Lemma 37 Relations (SL1—SL4)′ and (RS1—RS4)′ are in Q♯.

Proof For (SL1)′ suppose 1 ≤ i < j − 1 ≤ n − 2. Then

SiLj = XniXi,i+1Xi+1,nXj,j+1 · · ·Xn−2,n−1Xn−1,n

≈ Xj,j+1 · · ·Xn−2,n−1XniXi,i+1Xi+1,nXn−1,n by (25.2)

≈ Xj,j+1 · · ·Xn−2,n−1XniXi,i+1εn−1Xi+1,n by Lemma 35

≈ Xj,j+1 · · ·Xn−2,n−1εn−1XniXi,i+1Xi+1,n by (E2) and (ET1)

≈ Xj,j+1 · · ·Xn−2,n−1εn−1εnXniXi,i+1Xi+1,n by (E1)

≈ Xj,j+1 · · ·Xn−2,n−1Xn−1,nXn−1,nXniXi,i+1Xi+1,n by (25.1)

= LjLn−1Si

≈ LnLjSr by (L1)′.

For (SL2)′ and (SL3)′, we have

SiLi+1 = XniXi,i+1Xi+1,nXi+1,i+2Xi+2,i+3 · · ·Xn−1,n

≈ XniXi,i+1εnXi+1,i+2Xi+2,i+3 · · ·Xn−1,n by Lemma 35

≈ XniεnXi,i+1Xi+1,i+2Xi+2,i+3 · · ·Xn−1,n by (E2) and (ET1)

= εntniεiεnLi

≈ εntniεnεiLi by (E2)

≈ εnLi by (ET3) and (E1)

= LnLi,
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and

SiLi = XniXi,i+1Xi+1,nXi,i+1Xi+1,i+2 · · ·Xn−1,n

≈ XniXi,i+1Xinεi+1Xi+1,i+2 · · ·Xn−1,n by Lemma 35

≈ XniXinεi+1εi+1Xi+1,i+2 · · ·Xn−1,n by Lemma 35 again

≈ εnXi+1,i+2 · · ·Xn−1,n by (25.5) and (E1)

= LnLi+1.

For (SL4)′, suppose 1 ≤ j < i ≤ n−2. We first show that SiXi−1,iXi,i+1 ≈ Xi−1,iXi,i+1Si−1.
Indeed, we have

SiXi−1,iXi,i+1 = XniXi,i+1Xi+1,nXi−1,iXi,i+1

≈ XniXi,i+1Xi−1,iXi+1,nXi,i+1 by (25.2)

≈ XniεiXi−1,i+1εi+1Xin by Lemma 35

≈ XniXi−1,i+1Xin by (E1),

while a similar calculation shows that also Xi−1,iXi,i+1Si−1 ≈ XniXi−1,i+1Xin. (This ex-
pression simplifies further to Xi−1,i+1εn, although we do not need this.) Now, returning
to (SL4)′, we finally calculate

SiLj = SiXj,j+1 · · ·Xi−2,i−1Xi−1,iXi,i+1Li+1

≈ Xj,j+1 · · ·Xi−2,i−1SiXi−1,iXi,i+1Li+1 by (25.2)

≈ Xj,j+1 · · ·Xi−2,i−1Xi−1,iXi,i+1Si−1Li+1 by the previous calculation

≈ Xj,j+1 · · ·Xi−2,i−1Xi−1,iXi,i+1LnLi+1Si−1 by (SL1)′

≈ LnXj,j+1 · · ·Xi−2,i−1Xi−1,iXi,i+1Li+1Si−1 by (E2) and (ET1)

= LnLjSi−1.

Relations (RS1—RS4)′ now follow by duality (and Lemma 36). 2

The next lemma shows how the words Sr interact with the generators tij .

Lemma 38 Let 1 ≤ r ≤ n − 2 and 1 ≤ i < j ≤ n − 1. Then

Srtij ≈





tijSr if r 6∈ {i − 1, i, j − 1, j}

ti−1,jSr if r = i − 1

ti+1,jSr if r = i 6= j − 1

εntij if r = i = j − 1

ti,j−1Sr if r = j − 1 6= i

ti,j+1Sr if r = j.

(38.1—38.6)

26



Proof Relation (38.1) follows immediately by (29.1). For (38.2), we have

Si−1tij = Xn,i−1Xi−1,iXintij

≈ Xn,i−1Xi−1,itnjXin by (29.2)

≈ Xn,i−1tnjXi−1,iXin by (29.1)

≈ ti−1,jXn,i−1Xi−1,iXin by (29.2)

= ti−1,jSi−1.

With only one exception, the remaining cases are treated in an almost identical manner.
For (38.4), note that for distinct a, b, c ∈ n, we have

XbaXactab = εbtbaεaεatacεctab

≈ εbtbaεatabtacεc by (E1), (T2), and (ET1)

≈ εbtbatacεc by (ET2)

≈ εbtbctabεc by (T2—T3)

≈ εbtbcεctab by (ET1)

= Xbctab,

from which it follows that

Sab;ctab = XcaXabXbctab

≈ XcaXabXbaXactab by the observation

≈ XcaεaXactab by (25.5)

≈ XcaXactab by (E1)

≈ εctab by (25.5).

Now (38.4) follows, with (a, b, c) = (i, i + 1, n). 2

Lemma 39 Relations (SA1—SA9)′ and (BS1—BS9)′ are in Q♯.

Proof For (SA1)′ we have

SrAin = XnrXr,r+1Xr+1,ntinεn

≈ XnrXr,r+1Xr+1,nεntinεn by (E1)

≈ XnrXr,r+1Xr+1,nεn by (ET3)

≈ XnrXr,r+1Xr+1,n by (E1)

= Sr.
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For (SA2)′, if 1 ≤ r < i − 1 < j − 1 < n − 1, then

SrAij = SrtijLj

≈ tijSrLj by (38.1)

≈ tijLnLjSr by (SL1)′

≈ LntijLjSr by (30.1)

= LnAijSr.

Relations (SA3—SA9)′ are proved analogously, using the relevant part of Lemma 38 and
(SL1—SL4)′. Relations (BS1—BS9)′ follow by duality. 2

To tackle relations (S1—S4)′ we need some more technical results. The proof of the fol-
lowing lemma also involves our first use of relation (ET5).

Lemma 40 If i, j, k, l ∈ n are distinct, then

Sij;kXkl ≈ XklSij;l. (40.1)

If i, j, k ∈ n are distinct, then
Sij;kXki ≈ XkiSkj;i. (40.2)

Proof For (40.1), observe first that

XkiXijXjlXlk ≈ εktkiεitijεjtjlεltlkεk ≈ εktklεltliεitijεjtjkεk ≈ XklXliXijXjk

by (E1) and (ET5). It follows that

Sij;kXkl = XkiXijXjkXkl

≈ XkiXijXjkXklεl by (E1)

≈ XkiXijXjkXklXljXjl by (25.5)

≈ XkiXijXjlXlkXkjXjl by Lemma 36

≈ XklXliXijXjkXkjXjl by the observation

≈ XklXliXijεjXjl by (25.5)

≈ XklXliXijXjl by (E1)

= XklSij;l.

For (40.2), we have

Sij;kXki ≈ Sji;kXki by Lemma 36

= XkjXjiXikXki

≈ εkXkjXjiεi by (E1) and (25.5)

≈ XkiXikXkjXji by (E1) and (25.5) again

= XkiSkj;i.

This completes the proof. 2
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Lemma 41 Relations (S1—S4)′ are in Q♯.

Proof Relation (S1)′ follows immediately from (E1). Next, note that for distinct a, b, c ∈ n

we have

S2
ab;c ≈ Sab;cSba;c by Lemma 36

= XcaXabXbcXcbXbaXac

≈ XcaXabεbXbaXac by (25.5)

≈ XcaXabXbaXac by (E1)

≈ εc by further reductions using (25.5) and (E1).

Relation (S2)′ follows with (a, b, c) = (i, i+1, n). For (S3)′, fist suppose that a, b, c, d, e ∈ n

are distinct. Then

Sab;eScd;e = Sab;eXecXcdXde

≈ XecSab;cXcdXde by (40.1)

≈ XecXcdSab;dXde by (40.1)

≈ XecXcdXdeSab;e by (40.1)

= Scd;eSab;e,

and this time (S3)′ follows with (a, b, c, d, e) = (i, i+1, j, j +1, n). For (S4)′, note first that
for distinct a, b, c, d ∈ n, we have

Sac;dSab;d = Sac;dXdaXabXbd

≈ XdaSdc;aXabXbd by (40.2)

≈ XdaXabSdc;bXbd by (40.1)

≈ XdaXabXbdSbc;d by (40.2)

= Sab;dSbc;d.

Together with the result of the first calculation above and (E1), this implies that

Sab;dSbc;dSab;d ≈ Sac;dSab;dSab;d ≈ Sac;dεd ≈ Sac;d.

Using this, and Lemma 36, we also have

Sbc;dSab;dSbc;d ≈ Scb;dSba;dScb;d ≈ Sca;d ≈ Sac;d.

These two together imply, with (a, b, c, d) = (i, i + 1, i + 2, n), that (S4)′ holds. 2

The only relations remaining to be covered are (BL1—BL6)′ (and also (RA1—RA6)′ which
will follow by duality). The most difficult to establish is (RA2)′, for which we will need
one further technical result. If r ≥ 2, and k, i1, . . . , ir ∈ n are distinct, we define a word

Si1,...,ir;k = Xki1Xi1i2 · · ·Xir−1irXirk,

noting that this agrees with our earlier definition of Sij;k when r = 2.
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Lemma 42 If r ≥ 2 and k, i1, . . . , ir ∈ n are distinct, then

Si1,...,ir;k ≈ Si2,...,ir ,i1;k.

Proof The r = 2 case is just Lemma 36, and the r = 3 case was covered in the first
calculation of Lemma 40, while if r ≥ 4, then

Si1,...,ir ;k = Xki1Xi1i2 · · ·Xir−2ir−1
Xir−1irXirk

≈ Xki1Xi1i2 · · ·Xir−2ir−1
Xir−1irXirkεk by (E1)

≈ Xki1Xi1i2 · · ·Xir−2ir−1
Xir−1irXirkXkir−1

Xir−1k by (25.5)

≈ Xki1Xi1i2 · · ·Xir−2ir−1
Xir−1kXkirXirir−1

Xir−1k by Lemma 36

≈ Xki2Xi2i3 · · ·Xir−2ir−1
Xir−1i1Xi1kXkirXirir−1

Xir−1k by an induction hypothesis

≈ Xki2Xi2i3 · · ·Xir−2ir−1
Xir−1irXiri1Xi1kXkir−1

Xir−1k by the r = 3 case

≈ Si2,...,ir,i1;kεk by (25.5)

≈ Si2,...,ir,i1;k by (E1),

and the proof is complete. 2

Remark 43 The word Si1,...,ir ;k is mapped to the restriction of the r-cycle (i1, . . . , ir) to
the domain n\{k}, so the result of Lemma 42 is natural, given that (i2, . . . , ir, i1) represents
the same r-cycle.

Lemma 44 Let 1 ≤ i < j − 1 ≤ n − 1. Then BijLi ≈ Si · · ·Sj−2 ≈ Si,...,j−1;n.

Proof We begin by showing that Si · · ·Sj−2 ≈ Si,...,j−1;n. Now if j = i + 2, then there is
nothing to show, while if j > i + 2 then, using an induction hypothesis, we have

Si · · ·Sj−3Sj−2 ≈ Si,...,j−2;nSj−2

= XniXi,i+1 · · ·Xj−3,j−2Xj−2,nXn,j−2Xj−2,j−1Xj−1,n

≈ XniXi,i+1 · · ·Xj−3,j−2εj−2Xj−2,j−1Xj−1,n by (25.5)

≈ XniXi,i+1 · · ·Xj−3,j−2Xj−2,j−1Xj−1,n by (E1)

= Si,...,j−1;n.

Next, we show that for distinct k, l, i1, . . . , ir ∈ n we have

XlkSi1,...,ir ;kXkl ≈ Si1,...,ir;l. (44.1)
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Indeed, we see first that

Si1,...,ir;kXkl = Xki1Xi1i2 · · ·Xir−1irXirkXkl

≈ Xki1Xi1i2 · · ·Xir−1irXirkXklεl by (E1)

≈ Xki1Xi1i2 · · ·Xir−1irXirkXklXlirXirl by (25.5)

≈ Xki1Xi1i2 · · ·Xir−1irXirlXlkXkirXirl by Lemma 36

≈ XklXli1Xi1i2 · · ·Xir−1irXirkXkirXirl by Lemma 42

≈ XklXli1Xi1i2 · · ·Xir−1irεirXirl by (25.5)

≈ XklXli1Xi1i2 · · ·Xir−1irXirl by (E1)

= XklSi1,...,ir ;l,

and it follows that

XlkSi1,...,ir;kXkl ≈ XlkXklSi1,...,ir ;l

≈ εlSi1,...,ir;l by (25.5)

≈ Si1,...,ir;l by (E1).

Finally we calculate that

BijLi = RjtijLi

= Xn,n−1 · · ·Xj+1,jtijXi,i+1 · · ·Xj−2,j−1Xj−1,jXj,j+1 · · ·Xn−1,n

≈ Xn,n−1 · · ·Xj+1,jεjtijεiXi,i+1 · · ·Xj−2,j−1Xj−1,jXj,j+1 · · ·Xn−1,n by (E1)

= Xn,n−1 · · ·Xj+1,jXjiXi,i+1 · · ·Xj−2,j−1Xj−1,jXj,j+1 · · ·Xn−1,n

= Xn,n−1 · · ·Xj+1,jSi,...,j−1;jXj,j+1 · · ·Xn−1,n

≈ Si,...,j−1;n by (44.1).

This last calculation needs to be slightly modified to cover the j = n case; we simply
replace the products Xn,n−1 · · ·Xj+1,j and Xj,j+1 · · ·Xn−1,n by εj = εn, and the last line
follows by (E1) rather than (44.1). In any case, the proof is now complete. 2

Lemma 45 Relations (BL1—BL6)′ and (RA1—RA6)′ are in Q♯.

Proof For (BL1)′, if 1 ≤ k < i < j ≤ n, then by (30.3) and (RL3)′ we have

BijLk = RjtijLk ≈ RjLkti−1,j−1 ≈ LnLkRj−1ti−1,j−1 = LnLkBi−1,j−1.

Relation (BL2)′ was dealt with in the previous lemma. For (BL3)′, if 1 ≤ i ≤ n − 2, then

Bi,i+1Li = Ri+1ti,i+1Xi,i+1Li+1

≈ Ri+1εi+1ti,i+1εi+1Li+1 by (E1) and the dual of (29.3)

≈ Ri+1εi+1Li+1 by (ET3)

≈ Ri+1Li+1 by (E1)

≈ Ln by (RL2)′.
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If 1 ≤ i < k < j ≤ n, then

BijLk = RjtijLk ≈ RjLkti,j−1 ≈ LnLkRj−1ti,j−1 = LnLkBi,j−1,

so that (BL4)′ holds. For (BL5)′, we have

BijLj = RjtijLj ≈ RjεjtijεjLj ≈ RjεjLj ≈ RjLj ≈ Ln.

Finally, if 1 ≤ i < j < k ≤ n, then

BijLk = RjtijLk ≈ RjLktij ≈ LnLk−1Rjtij = LnLk−1Bij ,

showing that (BL6)′ holds. Relations (RA1—RA6)′ follow by duality. 2

We have finally dealt with all the relations from D ′∪R ′, showing that they follow from Q,
and have therefore proved the following.

Theorem 46 We have the presentation Pn \ Sn
∼= 〈Y |Q 〉. 2

Remark 47 Theorem 46 has implications for partition algebras. As in [25], we may
describe these algebras as twisted semigroup algebras of the partition monoids as follows.
Let F denote a commutative ring with identity, and let ξ ∈ F be an invertible element.
Recall that one of the steps in defining the product αβ of two partitions α, β ∈ Pn involved
the removal of any connected components that lived entirely in the middle portion of the
concatenated graph. If we denote by m(α, β) the number of connected components deleted
when forming the product αβ, then the map

τ : Pn × Pn → F : (α, β) 7→ ξm(α,β)

is a twisting from Pn to F . That is, it satisfies the identity

τ(α, β)τ(αβ, γ) = τ(α, βγ)τ(β, γ).

This enables us to construct an F -algebra F τ [Pn], with basis Pn, and multiplication ⋆

defined on basis elements by
α ⋆ β = ξm(α,β)(αβ)

and then extended by linearity to combinations of basis elements. This algebra is known
as the partition algebra and, without causing confusion, if we allow ourselves to write τ for
the restriction of the twisting to the singular part Pn \Sn, the singular part of the partition

algebra is F τ [Pn \ Sn]. By [7, Prop. 44], this algebra has (algebra) presentation
〈
Y

∣∣ Q̃
〉

where Q̃ is the set of relations obtained from Q by replacing (E1) by

ε2
i = ξεi for all i.
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