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ON THE SINGULARITIES

OF THE CURVED n-BODY PROBLEM

FLORIN DIACU

Abstract. We study singularities of the n-body problem in spaces of con-
stant curvature and generalize certain results due to Painlevé, Weierstrass, and
Sundman. For positive curvature, some of our proofs use the correspondence
between total collision solutions of the original system and their orthogonal
projection—a property that offers a new method of approaching the problem
in this particular case.

1. Introduction

We consider the n-body problem in spaces of constant curvature, which we will
henceforth call the curved n-body problem to distinguish it from its classical Eu-
clidean analogue. Our goal is to study solutions that experience total collisions and,
to some extent, solutions that end in some kind of hybrid singularities, i.e. both
collisional and noncollisional.

1.1. Results. We generalize in Section 3 a criterion proved by Paul Painlevé in
1897, which shows that a solution of the Euclidean n-body problem has a singularity
if and only if the limit of the minimum distance between particles tends to zero, [12].
Our generalization takes into account some singularities with no correspondent in
the Euclidean case. But if we disregard them, a step we show to be natural from
the physical point of view, our generalization reflects Painlevé’s original result.
This property, as well as other results obtained in our previous work [4], supports
the more than a century old idea that the potential given by the cotangent of
the distance is the correct generalization of the Newtonian gravitational model to
spaces of constant curvature.

In the second part of this paper, we establish a connection between total colli-
sion solutions and the integrals of the angular momentum in the case of positive
curvature. Two classical results of the Euclidean case, the first already known to
Karl Weierstrass in the 1880s, were proved by Karl Frithiof Sundman in an article1

published in 1912: (i) if a solution of the n-body problem experiences a simulta-
neous total collision, all three angular momentum constants are zero, and (ii) if a
triple collision occurs in the 3-body problem, the motion is planar. We will show in
Sections 5 and 6 that, in a suitable setting and under some reasonable assumptions,
these properties have analogues in spaces of positive constant curvature. The proofs

Received by the editors July 22, 2009 and, in revised form, November 10, 2009.
2010 Mathematics Subject Classification. Primary 70F15.
1This famous 1912 paper, [17], was in fact an invited exposition to Acta Mathematica of two

previous research articles Sundman had published in 1907, [15], and 1909, [16], in an obscure
Finish journal called Acta Societatis Scientiarum Fennicae.
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2250 FLORIN DIACU

use a lemma (developed in Section 4), which establishes, under certain restrictions,
the equivalence between the equations of motion and their orthogonal projection
in the Euclidean space of the same dimension as the original phase space.

1.2. Some historical remarks. The study of gravitation outside the Euclidean
context started in the 1830s, when János Bolyai and Nikolai Lobachevsky extended
the Newtonian 2-body problem to the hyperbolic space. These co-discoverers of
hyperbolic geometry independently proposed a gravitational force proportional to
the inverse area of a 2-dimensional sphere having the same radius as the distance
between bodies. Ernest Schering showed in 1870 that the terms of the potential
involve the hyperbolic cotangent of the hyperbolic distance, [13]. Some years later,
Wilhelm Killing adopted the cotangent potential in the positive curvature case too,
[6]. Subsequent studies of the 2-body problem proved that Kepler’s laws admit
natural generalizations, [7], as does Bertrand’s theorem, according to which there
exist only two analytic central potentials for which all bounded orbits are closed,
[8]. Other attempts (such as those of Rudolph Lipschitz, [9]) at generalizing the
problem using potentials that do not involve the cotangent of the distance failed to
recover the classical properties of the Euclidean case. A more detailed history of
these developments is given in [4], the first piece of work that derives and studies
the equations of motion for any number of bodies and proves Saari’s conjecture2

in the geodesic case. Paper [4] is also a prerequisite for appreciating the results we
prove in this article.

2. Equations of motion

We first describe the equations of motion on 2-dimensional manifolds of constant
curvature, namely spheres embedded in R

3 for κ > 0 and hyperboloids3 embed-
ded in the Minkowski space M

3 for κ < 0, and will discuss in Section 5.2 the
generalization to three dimensions for k > 0.

Consider the masses m1, . . . ,mn > 0 in R
3 for κ > 0 and M

3 for κ < 0, whose
positions are given by the vectors qi = (xi, yi, zi), i = 1, . . . , n, and let q =
(q1, . . . ,qn) be the configuration of the system. We define the gradient operator
with respect to the vector qi as

∇̄qi
= (∂xi

, ∂yi
, σ∂zi),

where

σ =

{
+1, for κ > 0,

−1, for κ < 0,

and let ∇̄ denote the operator (∇̄q1
, . . . , ∇̄qn

). For the 3-dimensional vectors a =
(ax, ay, az) and b = (bx, by, bz), we define the inner product

(1) a� b := (axbx + ayby + σazbz)

and the cross product

(2) a⊗ b := (aybz − azby, azbx − axbz, σ(axby − aybx)).

2Details about Saari’s conjecture can be found in [2] and [3].
3The hyperboloid corresponds to Weierstrass’s model of hyperbolic geometry (see the Appendix

in [4]).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE SINGULARITIES OF THE CURVED n-BODY PROBLEM 2251

The Hamiltonian function of the system describing the motion of the n-body
problem in spaces of constant curvature is

Hκ(q,p) = Tκ(q,p)− Uκ(q),

where

Tκ(q,p) =
1

2

n∑
i=1

m−1
i (pi � pi)(κqi � qi)

is the kinetic energy and

(3) Uκ(q) =
1

2

n∑
i=1

n∑
j=1,j �=i

mimj(σκ)
1/2κqi � qj

[σ(κqi � qi)(κqj � qj)− σ(κqi � qj)2]1/2

is the force function, −Uκ representing the potential energy.4 Then the Hamiltonian
form of the equations of motion is given by the system

(4)

{
q̇i = m−1

i pi,

ṗi = ∇̄qi
Uκ(q)−m−1

i κ(pi � pi)qi, i = 1, . . . , n, κ �= 0,

the gradient of the force function having the expression

(5) ∇̄qi
Uκ(q) =

n∑
j=1
j �=i

mimj(σκ)
3/2(κqj � qj)[(κqi � qi)qj − (κqi � qj)qi]

[σ(κqi � qi)(κqj � qj)− σ(κqi � qj)2]3/2
.

The motion of the bodies is confined to the surface of nonzero constant curvature
κ, i.e. (q,p) ∈ T∗(M2

κ)
n, where

M2
κ = {(x, y, z) ∈ R

3 | κ(x2 + y2 + σz2) = 1}

(in particular, M2
1 = S2 and M2

−1 = H2) and T∗(M2
κ)

n is the cotangent bundle of
the configuration space (M2

κ)
n. For κ > 0 we will also denote M2

κ by S2
κ, while for

κ < 0 we will denote it by H2
κ.

Notice that the n constraints given by κqi�qi = 1 imply that qi�pi = 0, so the
6n-dimensional system (4) has 2n constraints. The Hamiltonian function provides
the integral of energy,

Hκ(q,p) = h,

where h is the energy constant. Equations (4) also have the integrals of the angular
momentum,

(6)

n∑
i=1

qi ⊗ pi = c,

where c = (α, β, γ) is a constant vector. Unlike in the Euclidean case, there are no
integrals of the center of mass and linear momentum. Their absence complicates
the study of the equations because many of the standard methods don’t apply
anymore. The curved n-body problem is thus a fresh source for new mathematical
developments.

4In [4], we showed how this expression of Uκ follows from the cotangent potential for κ �= 0,
and that U0 is the Newtonian potential of the Euclidean problem, obtained as κ → 0.
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3. Singularities

Equations (4) are undefined in the set Δ :=
⋃

1≤i<j≤nΔij , with

Δij := {q ∈ (M2
κ)

n | (κqi � qj)
2 = 1},

where the force function and its gradient have zero denominators. Thus Δ contains
all the singularities of the equations of motion. The singularity condition, (κqi �
qj)

2 = 1, suggests that we consider two cases, so we write Δij = Δ+
ij ∪Δ−

ij , where

Δ+
ij := {q ∈ (M2

κ)
n | κqi � qj = 1} and Δ−

ij := {q ∈ (M2
κ)

n | κqi � qj = −1}.
Accordingly, we define

Δ+ :=
⋃

1≤i<j≤n

Δ+
ij and Δ− :=

⋃
1≤i<j≤n

Δ−
ij .

Then Δ = Δ+ ∪Δ−. The elements of Δ+ correspond to collisions for any κ �= 0,
whereas the elements of Δ− correspond to antipodal singularities for κ > 0. The
latter occur when two bodies are at the opposite ends of the same diameter of a
sphere. For κ < 0, antipodal singularities do not exist.

The set Δ is related to singularities which arise from the question of existence
and uniqueness of initial value problems. For initial conditions (q,p)(0) ∈ T∗(M2

κ)
n

with q(0) /∈ Δ, standard results of the theory of differential equations ensure local
existence and uniqueness of an analytic solution (q,p) defined on some interval
[0, t+). Since the surfaces M2

κ are connected, this solution can be analytically
extended to an interval [0, t∗), with 0 < t+ ≤ t∗ ≤ ∞. If t∗ = ∞, the solution is
globally defined. But if t∗ < ∞, the solution is called singular, and we say that it
has a singularity at time t∗.

We have seen in [4] that, for κ > 0, no solutions encounter antipodal singularities
alone. But there are solutions that encounter collision singularities and solutions
that encounter collision-antipodal singularities, as for instance when two bodies
collide at the north pole while a third body is at the south pole.

3.1. Generalization of Painlevé’s theorem. A classical result due to Paul
Painlevé, in the Euclidean case, shows that an analytic solution defined on [0, t∗)
has a singularity at t∗ if and only if the inferior limit of the minimum of the mu-
tual distances vanishes when t → t∗, [12], a detailed presentation of which can be
found in [1]. Under a certain assumption, we can translate this property to spaces
of constant curvature. To prove these results, we start with a couple of lemmas,
which generalize some properties known in the traditional literature, [18].

Lemma 1. If (q,p) is an analytic solution of equations (4), defined on [0, t∗), with
t∗ a singularity, then

lim inf
t→t∗

min
1<i≤j<n

|(κqi � qj)
2 − 1| = 0.

Proof. Notice first that using the constraints κqi�qi = 1, i = 1, . . . , n, the integral
of energy becomes

(7)

n∑
i=1

m−1
i (pi � pi)−

n∑
i=1

n∑
j=1,j �=i

mimj(σκ)
1/2κqi � qj

[σ − σ(κqi � qj)2]1/2
= 2h.
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ON THE SINGULARITIES OF THE CURVED n-BODY PROBLEM 2253

Also, from the equations of motion (4) we can conclude that

(8) ṗi =

n∑
j=1,j �=i

mimj(σκ)
3/2[qj − (κqi � qj)qi]

[σ − σ(κqi � qj)2]3/2
−m−1

i κ(pi � pi)qi.

We can now prove the necessity of the condition in Lemma 1. For this, assume that
there is a constant c > 0 such that

lim inf
t→t∗

min
1<i≤j<n

|(κqi � qj)
2 − 1| ≥ c.

Then there is a time t0 in [0, t∗) and constants bij > c, with 1 ≤ i < j ≤ n, for

which [σ − σ(κqi � qj)
2]1/2 ≥ bij for all t in [t0, t

∗). Consequently equation (7)

implies that
∑n

i=1 m
−1
i (pi � pi) is bounded, so every term of this sum is bounded

as well. Then equations (8) guarantee the existence of n constants δi > 0 such that
|ṗi| ≤ δi, i = 1, . . . , n, and therefore all q̈i are bounded.

Writing the configuration vector q as a Taylor series about t0 with integral
remainder,

q(t) = q(t0) + (t− t0)q̇(t0) +

∫ t

t0

(t− τ )q̈(τ )dτ,

and using the fact that q̈ is bounded, we can conclude that there is a vector (q∗,p∗)
in phase space such that limt→t∗(q,p)(t) = (q∗,p∗), i.e. the position vectors qi

and momentum vectors pi have limiting positions q∗
i and p∗

i , respectively. So [σ−
σ(κq∗

i�q∗
j )

2]1/2 ≥ bij , therefore |(κq∗
i�q∗

j )
2−1| > 0, which means that the distance

between particles is not zero nor are they at a collision-antipodal singularity if
κ > 0. But then the particles can keep moving. This physical conclusion suggests
a contradiction with the hypothesis by showing that the solution is analytic at t∗.
To prove this fact rigorously, notice that the domain of the solution (q,p) depends
on the constants δi, therefore on bij , and finally on c, but is independent of the
initial conditions. So by choosing the initial data, along the same solution, close
enough to t∗ and (q∗,p∗), the solution remains analytic at t∗, a conclusion which
contradicts the existence of the constant c as described above, and thus completes
the proof. �

Lemma 2. Assume that (q,p) is an analytic solution of equations (4), defined on
[0, t∗), that is bounded away from collision-antipodal configurations if κ > 0. Then,
if

lim inf
t→t∗

min
1<i≤j<n

|κqi � qj − 1| = 0,

t∗ is a singularity of the solution.

Proof. Assume that lim inft→t∗ min1<i≤j<n |κqi � qj − 1| = 0. Obviously, if q̈
becomes unbounded as t → t∗, then t∗ is a singularity, and Lemma 2 is proved.
We consequently assume q̈ to be bounded. Then ṗ is bounded as t → t∗, so the
momentum p is bounded as well. Therefore we can conclude from equation (7) that
Uκ(q) is bounded as t → t∗.

Recall, however, that the terms defining Uκ have denominators of the form
[σ − σ(κqi � qj)

2]1/2, so when the quantities σ − σ(κqi � qj)
2 are small, the cor-

responding terms of the force function become large in absolute value. But these
terms have one sign if κqi � qj is near 1 and the opposite sign if it is near −1. As
we excluded from our hypothesis solutions that come close to collision-antipodal
configurations, the quantities κqi�qj are bounded away from −1. Consequently, as
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2254 FLORIN DIACU

lim inft→t∗ min1<i≤j<n |κqi�qj−1| = 0, lim supt→t∗ Uκ(q(t)) = ∞, a contradiction
with the conclusion drawn at the end of the previous paragraph. So the condition
assumed in Lemma 2 makes t∗ a singularity. This completes the proof. �

Remark 1. The reason for having to exclude collision-antipodal configurations from
the hypothesis of Lemma 2 is connected to a property proved in Theorem 1 (iii)
of [4]. We showed there that there are choices of masses and initial conditions for
which a 3-body problem taking place in S2

1 can have finite forces and velocities at a
collision-antipodal configuration; in other words, the solution remains analytic at t∗.
For instance, this is the case when two bodies of mass 4m and a third body of mass
m move on a great circle of S2

1, forming at each moment an isosceles triangle, and
such that the larger bodies collide in finite time while the smaller body reaches the
diametrically opposed side of the circle. So there are orbits that do not experience
a singularity at t∗ but for which lim inft→t∗ min1<i≤j<n |κqi � qj − 1| = 0.

We can now state and prove a generalization of Painlevé’s theorem to spaces
of constant curvature. As for the above two lemmas, we split the result into two
statements, one proving necessity and the other sufficiency.

Theorem 1. If (q,p) is an analytic solution of equations (4) defined on [0, t∗),
with t∗ a singularity, then

lim
t→t∗

min
1<i≤j<n

|(κqi � qj)
2 − 1| = 0.

Proof. To prove the necessity of the condition, assume that there is a constant c > 0
such that

lim sup
t→t∗

min
1≤i<j≤n

|(κqi � qj)
2 − 1| ≥ c.

Then there exists a sequence of times, (tl)l∈N (where N represents the set of positive
integers), with tl → t∗ such that |[κqi(tl) � qj(tl)]

2 − 1| > c > 0 for all i, j with
1 ≤ i < j ≤ n. This means that there is a positive constant b for which U(q(tl)) ≤ b
for all l ∈ N. Equation (7) leads therefore to the conclusion that

∑n
i=1 m

−1
i (pi(tl)�

pi(tl)) ≤ 2(b + h) for all l ∈ N. Therefore there is a constant α > 0 for which
|p(tl)| ≤ α for all l ∈ N. But as we already showed in the proof of Lemma
1, the domain of the solution is independent of the choice of initial conditions.
Consequently we can select some initial data tl0 ,q(tl0),p(tl0) with tl0 close enough
to t∗ to make the solution analytic at t∗, which means that t∗ is not a singularity.
This contradiction proves the necessity of the condition and completes the proof.

�

Theorem 2. Assume that (q,p) is an analytic solution of equations (4), defined
on [0, t∗), that is bounded away from collision-antipodal configurations if κ > 0.
Then, if

lim
t→t∗

min
1<i≤j<n

|κqi � qj − 1| = 0,

t∗ is a singularity of the solution.

Proof. This result is an obvious consequence of Lemma 2. �

Remark 2. As long as, for κ > 0, solutions stay away from collision-antipodal
singularities, the condition in Theorem 1 can be reduced to

lim
t→t∗

min
1<i≤j<n

|κqi � qj − 1| = 0,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE SINGULARITIES OF THE CURVED n-BODY PROBLEM 2255

and Theorems 1 and 2 become accurate translations of Painlevé’s original result
to spaces of constant curvature. For κ < 0, the accurate translation is satisfied
without restrictions.

3.2. Remarks on the nature of singularities. In the classical n-body problem
solutions can experience two kinds of singularities: collisions and pseudocollisions.
The latter, which occur when the motion becomes unbounded in finite time, were
conjectured by Painlevé for n > 3, [12], and proved to exist for four or more bodies,
[10], [19], [5]. We do not know whether such singularities show up in the curved
n-body problem. The compactness of S2

κ seems to exclude them for κ > 0, but
they may exist for κ < 0. The difficulty of solving this problem is compounded by
the lack of integrals of the center of mass, which played a crucial role in proving
the existence of pseudocollisions in the classical case.

The collision-antipodal singularities of the curved problem raise another ques-
tion. Are they due to the coordinates or the potential? The physical remarks below
point at the potential. Moreover, shifting the center of the coordinate system away
from the center of the sphere does not remove these singularities. But, of course,
this doesn’t exclude the possibility of finding singularity-free coordinates in the
future.

3.3. Some physical remarks. The antipodal and the collision-antipodal singu-
larities seem to obstruct the natural translation of the dynamical properties of the
n-body problem from κ = 0 to κ > 0. To better understand this issue, let us first
compare how the force function and its gradient vary in the Euclidean and in the
curved case.

Let us start with the 2-body problem. The Euclidean force function, U0(q) =
m1m2/|q1 − q2|, is infinite at collision and tends to zero when the distance between
bodies tends to infinity. The norm of the gradient, |∇U0(q)|, has a similar behavior,
which agrees with our perception that the gravitational force decreases when the
distance increases.

The behavior of the curved force function (3) and the norm of its gradient (5),
however, depend on the sign of κ. For κ < 0, things are as in the Euclidean case.
For κ > 0 let’s assume that one body is fixed at the north pole. Then Uκ ranges
from +∞ at collision to −∞ at the antipodal configuration, with 0 when the second
body is on the equator. The norm of the gradient is +∞ at collision, and is smaller
the farther the second body lies from collision in the northern hemisphere; it takes
a positive minimum value on the equator; it is larger the farther the second body
stays from the north pole while lying in the southern hemisphere; finally, the norm
of the gradient becomes +∞ when the two bodies are at antipodes.

This behavior of the gradient seems to agree with our understanding of gravi-
tation only when the second body doesn’t leave the northern hemisphere, but not
after it passes the equator. In a hypothetical spherical universe with billions of ob-
jects ejected from a Big-Bang that took place at the north pole, and at the current
state of evolution, all the bodies are still in the northern hemisphere. But when
the boundary of the expanding system approaches the equator, many bodies come
close to antipodal singularities, so the potential energy becomes positive, thus hav-
ing the same sign as the kinetic energy. Then, by the energy integral, the potential
energy cannot grow beyond the value of the energy constant, which, when reached,
makes the kinetic energy zero. Consequently the system stops moving. The motion
then reverses from expansion to contraction, in agreement with the cosmological
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scenario of general relativity. So in a highly populated spherical universe, the mo-
tion is contained in the northern hemisphere, away from the equator. Therefore we
can restrict the study of the case κ > 0 to an open hemisphere (i.e. without the
equator) and thus eliminate solutions that reach collision-antipodal singularities.

4. The orthogonal system

The above physical remarks show that while the natural setting of the case κ < 0
is the entire upper sheet of the hyperboloid, we can restrict the study of the case
κ > 0 to the northern hemisphere. The rest of this paper is dedicated to this
positive-curvature case.

We further introduce the equations of the orthogonal projection,5 which we will
henceforth call the orthogonal system, and will show that, under certain circum-
stances, there is a one-to-one correspondence between the set of its total-collision
solutions and the set of total collision orbits of the original equations of motion.
The orthogonal system, which will help us understand certain properties of the
original equations, has the advantage of being defined in a Euclidean disk, though
not endowed with the standard Euclidean distance.

Let us also mention that the Principal Axis Theorem (see [4]) allows us to use
the orthogonal transformations of the sphere to keep, in some suitable basis, the
original form of the equations of motion. Therefore, without loss of generality, we
can always apply the orthogonal projection on the xy plane. Similarly, we introduce
no restrictions by assuming that the total collision we study in the next sections
takes place at the north pole, (0, 0, κ−1/2), of S2

κ.
Let q̄i = (xi, yi) be the orthogonal projection of qi = (xi, yi, zi) with the con-

straint κqi · qi = 1, i = 1, . . . , n, on the xy plane. The vectors q̄i are restricted to
the disk of radius κ−1, i.e. κq̄i · q̄i ≤ 1. The momenta of the projected variables
are p̄i = mi ˙̄qi. Then we obtain the orthogonal system associated to equations (4)
by dropping the zi variables from these equations. In other words, the orthogonal
system has the form

(9)

{
˙̄qi = m−1

i p̄i,

˙̄pi = ∇q̄i
Uκ(q̄)−m−1

i κ(p̄i · p̄i)q̄i, i = 1, . . . , n, κ > 0.

The orthogonal transformation, however, introduces new (artificial) singularities
in system (9). They occur when two or more bodies reach the same diameter of the
disk, a position for which at least one denominator in ∇q̄i

Uκ(q̄) vanishes. We call
this a diameter singularity of system (9). In terms of (4), diameter singularities
correspond to nonsingular configurations for which two or more bodies reach one of
the geodesics that pass through the north pole (0, 0, κ−1/2). We call these positions
pole-geodesic configurations of system (4). At the advantage of providing a useful
tool for treating total-collision orbits, the new coordinates force us to exclude from
our treatment a negligible set of solutions, as we will further see.

Consider now the set C of solutions of system (4) that encounter a total collision
at time t∗ at the north pole and are free of pole-geodesic configurations in some
interval [t0, t

∗), where t0 is solution dependent. Then C contains all total-collision
orbits of system (4), except for a lower-dimensional set. Indeed, each solution is
analytic in [t0, t

∗). So should the set of pole-geodesic configurations of a solution

5In cartography, this projection is called orthographic and was already mentioned by Hip-
parchus in the 2nd century B.C.
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ON THE SINGULARITIES OF THE CURVED n-BODY PROBLEM 2257

of system (4) have an accumulation point, then by the identity theorem of analytic
functions the entire solution must be pole-geodesic, i.e. two or more bodies move all
the time such that, at every instant, they lie on the same geodesic passing through
the north pole. These constraints define the lower-dimensional set we must exclude
from C.

Similarly, we consider the set C̄ of solutions of system (9) that encounter a total
collision at time t∗ at the origin of the disk and are defined on some interval [t0, t

∗),
with t0 being solution dependent. In other words, the orbits of C̄ do not encounter
diameter singularities in [t0, t

∗).
We can now state the following result, which proves the equivalence between the

sets C and C̄.

Equivalence Lemma. Consider the set C of solutions (q,p) of system (4) that
encounter a total collision at time t∗ and are free of pole-geodesic configurations in
some interval [t0, t

∗). Also consider the set C̄ of solutions (q̄, p̄) of the orthogonal
system (9) that encounter a total collision at time t∗ and are free of diameter
singularities in the interval [t0, t

∗). Then there is a one-to-one correspondence
between C and C̄ such that, for corresponding orbits, (q̄, p̄)(t) is the orthogonal
projection of (q,p)(t) for every t in [t0, t

∗).

Proof. This equivalence follows from the fact that the orthogonal projection is a
real analytic diffeomorphism between the hemisphere z > 0 of S2

κ and the disk of
radius κ−1/2. The form of the projection proves the last statement of this lemma.
Notice that the identification of a solution (q,p) of system (4) with a solution (q̄, p̄)
of system (9) takes place in the interval [t0, t

∗), assumed to have no pole-geodesic
configurations for (q,p) and, consequently, no diameter singularities for (q̄, p̄). �

Corollary 1. Consider a solution (q,p) of the equations of motion (4) as in the
Equivalence Lemma and the corresponding solution (q̄, p̄) of the orthogonal system
(9). Then if c = (α, β, γ) is the constant vector of the total angular momentum for
(q,p), the constant vector of the total angular momentum corresponding to (q̄, p̄)
has the form c̄ = (0, 0, γ).

Proof. The integrals of the total angular momentum for the solution (q,p) of equa-
tions (4) are

( n∑
i=1

mi(yiżi − ziẏi),

n∑
i=1

mi(ziẋi − xiżi),

n∑
i=1

mi(xiẏi − yiẋi)
)
= (α, β, γ).

We can write the vectors q̄i and p̄i of the solution (q̄, p̄) as

q̄i = (xi, yi, 0) and p̄i = (miẋi,miẏi, 0),

so the integrals of the total angular momentum for the solution (q̄, p̄) of the or-
thogonal system (9) have the form

(
0, 0, σ

n∑
i=1

mi(xiẏi − yiẋi)
)
= (0, 0, γ) =: c̄,

a fact which completes the proof. �
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5. Total collisions

In this section, we will use the Equivalence Lemma to generalize a theorem by
Weierstrass and Sundman to spaces of positive constant curvature, first in two
dimensions and then in three dimensions.

5.1. The 2-dimensional case. We can now generalize a result known to Weier-
strass, as communicated in a letter to Gösta Mittag-Leffler in 1889 ([11], p. 58). Its
proof was independently obtained and published by Sundman about two decades
later, [17]. The difference between this classical result and our generalization is that
while in the classical case all three components of the constant vector of the total
angular momentum are zero, in the curved n-body problem only one component
must vanish. This happens because in the latter case there are no integrals of the
center of mass, so the entire system may drift in S2

κ before the total collapse, thus
making two of the components nonzero.

Theorem 3. If (q,p) is a total-collision analytic solution of equations (4) as in
the Equivalence Lemma, the constant total angular momentum vector, c = (α, β, γ),
has γ = 0.

Proof. We will use the orthogonal projection discussed in Section 4. Since the
orthogonal system describes a planar motion, the constant of the total angular
momentum is a 3-vector with two zero components. The third component is exactly
the constant γ of the original system, as shown in Corollary 1. By the Equivalence
Lemma it is enough to prove that, for total collision solutions of the orthogonal
system, γ = 0.

Recall that q̄i := (xi, yi) and p̄i = mi ˙̄qi, i = 1, . . . , n. Then the orthogonal
projection of the equations of motion, the energy integral, and the integrals of the
angular momentum are obtained by replacing qi and pi with q̄i and p̄i, respectively.
The last term of the inner product a · b = axbx + ayby + azbz vanishes, so this
operation becomes the standard 2-dimensional inner product a · b = axbx + ayby,

which is well defined in the closed disk of radius κ−1/2. The gradient operator is
now the standard ∇ with ∇q̄i

= (∂xi
, ∂yi

). Also, Uκ(q̄) remains a homogeneous
function of degree zero, where q̄ = (q̄1, . . . , q̄n). Consequently, Euler’s theorem for
homogenous functions leads us to the identity (a proof of which can be found in
[4]):

(10) q̄i · ∇q̄i
Uκ(q̄) = 0, i = 1, . . . , n.

Consider now the moment of inertia I(q) =
∑n

i=1 mi(x
2
i + y2i ) of system (4),

as defined in [4]. Notice that I(q̄) = I(q), where I(q̄) represents the moment of
inertia after the orthogonal projection. Then

Ï = 2
n∑

i=1

mi(ẋ
2
i + ẏ2i ) + 2

n∑
i=1

(xi∂xi
Uκ(q̄) + yi∂yi

Uκ(q̄))

− 2
n∑

i=1

miκ(ẋ
2
i + ẏ2i )(x

2
i + y2i ).

But from (10), xi∂xi
Uκ(q̄) + yi∂yi

Uκ(q̄) = q̄i · ∇q̄i
Uκ(q̄) = 0, so

(11) Ï = 2

n∑
i=1

mi(ẋ
2
i + ẏ2i )[1− κ(x2

i + y2i )].
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This relationship implies that Ï > 0 for all t in some interval [t0, t
∗) before the total

collision, where t0 is sufficiently close to t∗, therefore İ is increasing in this interval.
We can also assume that İ is either positive or negative, for if it changed sign at
some point t1, we could restrict our analysis to an interval [t2, t

∗) with t2 > t1 in

which the sign stays the same. But if İ were positive, I would increase as t → t∗,
so the limit of I could not be zero at t∗, and the total singularity would not take
place. Therefore İ < 0 for all t in [t0, t

∗).
On the right hand side of the identity of Lagrange,

(12)
( m∑

k=1

a2k

)( m∑
k=1

b2k

)
=

( m∑
k=1

akbk

)2

+
∑

1≤k<j≤m

(akbj − ajbk)
2,

we ignore the first squared term, take m = 2n, a2k−1 = m
1/2
k xk, a2k = m

1/2
k yk,

b2k−1 = m
1/2
k ẋk, and a2k = m

1/2
k ẏk for k = 1, . . . , n, and choose in the last sum

only the terms that have the same index. Then the identity becomes the inequality

(13)
[ n∑

i=1

mi(x
2
i + y2i )

][ n∑
i=1

mi(ẋ
2
i + ẏ2i )

]
≥

n∑
i=1

m2
i (xiẏi − ẋiyi)

2.

But notice that

ρ :=
1

n

[ n∑
i=1

mi(xiẏi − ẋiyi)
]2

≤
n∑

i=1

m2
i (xiẏi − ẋiyi)

2,

where, obviously, ρ = γ2/n, therefore inequality (13) implies that

(14) I

n∑
i=1

mi(ẋ
2
i + ẏ2i ) ≥ ρ.

So if we can prove that ρ = 0, then γ =
∑n

i=1 mi(xiẏi − ẋiyi) must also vanish.
Assume ρ > 0. Since, as t → t∗, a total collision takes place, κ(x2

i + y2i ) → 0
for all i = 1, . . . , n, so necessarily Uκ(q̄) → ∞. We can thus conclude from the
energy relation that there exists at least an integer i between 1 and n for which
(ẋ2

i + ẏ2i ) → ∞, therefore
∑n

i=1(ẋ
2
i + ẏ2i ) → ∞ as t → t∗. Then from identity (11),

we have

Ï ≥
n∑

i=1

mi(ẋ
2
i + ẏ2i )

in some interval [τ, t∗), with τ sufficiently close to t∗. This inequality and (14)
imply that in the same interval we can write the inequality

Ï ≥ 2ρI−1.

Multiplying this relationship by −2İ > 0 and integrating the ensuing inequality
between τ and t, with t in (τ, t∗), we obtain that

4ρ ln I(t) ≥ 4ρ ln I(τ ) + İ2(t)− İ2(τ ),

in which, for simplicity, we used the notation I(t) := I(q̄(t)). This relationship
implies that

4ρ ln I(t) ≥ 4ρ ln I(τ )− İ2(τ ).

Then

I(t) ≥ I(τ )e−İ2(τ)/4ρ,
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an inequality from which we can conclude that I is bounded from below since İ(τ )
is finite and we assumed ρ > 0. But then the total collision cannot take place.
Therefore ρ must be zero, and the conclusion of the theorem follows. �
Remark 3. Notice that in the proof of Theorem 3 we used only the fact that the
potential is a homogeneous function of degree zero and that the equations of motion
possess the integrals of the angular momentum. In fact the former condition is not
necessary as long as one can find another way to show that Ï > 0 in a neighborhood
of t∗.

Remark 4. In the Euclidean case, a stronger version of Theorem 3 is true, [14].
The proof, however, uses the integrals of the center of mass, which don’t exist in
the curved n-body problem.

5.2. The 3-dimensional case. We are now focusing on the curved n-body prob-
lem in the hemisphere z > 0 of S3

κ. With two exceptions, all the concepts introduced
in Section 2 generalize naturally to the 3-dimensional case. More precisely, the po-
sition vectors of the masses mi have the form qi = (ui, xi, yi, zi), i = 1, . . . , n, the
gradient becomes

∇qi
= (∂ui

, ∂xi
, ∂yi

, ∂zi),

and the inner product is defined as

a · b := (aubu + axbx + ayby + azbz)

for the vectors a = (au, ax, ay, az) and b = (bu, bx, by, bz). Since, in Section 2, we
expressed the kinetic energy, the force function, its gradient, the Hamiltonian, the
equations of motion, and the integral of energy in terms of q and p, their formal
expressions stay the same. The only concept we cannot naturally extend to R

4 is
the cross product and, consequently, the integrals of the angular momentum. To
bypass this difficulty, we will use the idea described in Section 4 of working with
the orthogonal system instead of the original equations of motion.

So let q̄i = (ui, xi, yi) be the orthogonal projection onto the hyperplane uxy of
the position vector qi = (ui, xi, yi, zi), i = 1, . . . , n. The vectors qi are defined in
the solid ball of radius κ−1/2 in R

3. Equations (9) then describe the motion of total-
collision solutions in terms of the orthogonal system of n bodies. The Equivalence
Lemma holds in this case too by replacing S2

κ with S3
κ, and the 2-dimensional disk

of radius κ−1/2 with the 3-dimensional ball of the same radius.
The pole-geodesic configurations excluded from the set C of total collision orbits

of system (4) occur when two or more bodies are on a geodesic passing through
the “north pole,” (0, 0, 0, κ−1/2), of S3

κ, where the 3-dimensional sphere is seen as
a manifold embedded in R

4, and the diameter singularities of the total-collision
solutions of system (9), excluded from C̄, show up when two or more bodies are on
the same diameter passing through the center of the solid ball of radius κ−1/2.

Since the orthogonal system is defined in the solid ball of radius κ−1/2 of R3, we
can use the standard cross product given by

a× b := (axby − aybx, aybu − auby, aubx − axbu)

for the 3-dimensional vectors a = (au, ax, ay) and b = (bu, bx, by). Thus, we obtain
for the orthogonal system (9) the three integrals of the total angular momentum

(15)

n∑
i=1

q̄i × p̄i = (ᾱ, β̄, γ̄).
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To prove equations (15), notice first that

n∑
i=1

∇q̄i
Uκ(q̄)× q̄i =

n∑
i=1

n∑
j=1,j �=i

Aij q̄i × q̄j +
n∑

i=1

Bij q̄i × q̄i = 0,

where Aij and Bij are symmetric in i and j, the last equality following from the
skew-symmetry of the cross product. Then, if ×-multiplying mi ¨̄qi from (9) by q̄i

and adding for all i from 1 to n, we obtain

n∑
i=1

mi ¨̄qi × q̄i =
n∑

i=1

∇q̄i
Uκ(q̄) × q̄i −

n∑
i=1

m−1
i κ(p̄i · p̄i)q̄i × q̄i = 0.

Integrals (15) follow by integrating the identity
∑n

i=1 mi ¨̄qi × q̄i = 0.
We can now generalize Theorem 3 to three dimensions. For the same reasons

mentioned in Section 4, we can assume without loss of generality that the total
collision takes place in S3

κ at (0, 0, 0, κ−1/2), the “north pole” of the 3-sphere. We
will show that for a total collision solution of the original system in S3

κ, all three
constants of the total angular momentum of the orthogonal system must vanish.

Theorem 4. Let (q,p) be a total-collision analytic solution of equations (4) as in
the Equivalence Lemma, and let (q̄, p̄) be the corresponding solution of the orthogo-
nal system (9). Then all three components ᾱ, β̄, and γ̄ of the constant total angular
momentum vector belonging to the solution (q̄, p̄) are zero.

Proof. The idea of the proof is the same as for Theorem 3. Let us start by noticing
that, according to the 3-dimensional version of the Equivalence Lemma, if (q,p)
has no collision singularities or pole-geodesic configurations in the interval [t0, t

∗),
but experiences a total collision at the point (0, 0, 0, κ−1/2) of S3

κ at time t∗, then
(q̄, p̄) ends in a total collision at time t∗ at the origin of R3, and vice versa. We
can thus define the moment of inertia Ī =

∑n
i=1 mi(u

2
i +x2

i + y2i ) and use the same
steps as in the proof of Theorem 3 to prove that

¨̄I = 2

n∑
i=1

mi(u̇
2
i + ẋ2

i + ẏ2i )[1− κ(u2
i + x2

i + y2i )],

in order to have the inequality ˙̄I < 0 in some interval [t0, t
∗), with t0 > 0. In the

identity of Lagrange, (12), we ignore the first squared sum of the right hand side,

take m = 3n, a3k−2 = m
1/2
k uk, a3k−1 = m

1/2
k xk, a3k = m

1/2
k yk, b3k−2 = m

1/2
k u̇k,

b3k−1 = m
1/2
k ẋk, and b3k = m

1/2
k ẏk for k = 1, . . . , n, and pick from the second sum

of the right hand side only the terms that have the same index. Then the identity
turns into the inequality

(16)
[ n∑

i=1

mi(u
2
i + x2

i + y2i )
][ n∑

i=1

mi(u̇
2
i + ẋ2

i + ẏ2i )
]

≥
n∑

i=1

m2
i [(xiẏi − ẋiyi)

2 + (yiu̇i − ẏiui)
2 + (uiẋi − u̇ixi)

2].
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But notice that

ρ̄ :=
1

n

[ n∑
i=1

mi(xiẏi − ẋiyi)
]2

+
1

n

[ n∑
i=1

mi(yiu̇i − ẏiui)
]2

+
1

n

[ n∑
i=1

mi(uiẋi − u̇ixi)
]2

≤
n∑

i=1

m2
i [(xiẏi − ẋiyi)

2 + (yiu̇i − ẏiui)
2 + (uiẋi − u̇ixi)

2],

where, obviously, ρ̄ = (ᾱ2 + β̄2 + γ̄2)/n. Thus inequality (16) implies that

Ī
n∑

i=1

mi(u̇
2
i + ẋ2

i + ẏ2i ) ≥ ρ̄.

To prove that ρ̄ = 0, we need to follow the same steps taken from this point on in
the proof of Theorem 3. We are thus led to the conclusion that ᾱ = β̄ = γ̄ = 0. �

We further show how Theorem 4 can be used to draw some conclusions about
the behavior of certain solutions of the original system.

6. Triple collisions

In his 1912 paper, Sundman also proved that if a solution of the Euclidean 3-
body problem ends in a triple collision, the motion must be planar. Again, his
proof rests on the integrals of the center of mass.

In the curved 3-body problem we might encounter solutions in which the triangle
having the bodies at its vertices moves in S3

κ without remaining confined to a 2-
dimensional hemisphere. But we will show that if the collision point is fixed in
a sense we will make precise, then the motion must indeed take place on a 2-
dimensional hemisphere.

Theorem 5. Let (q,p) be a total-collision analytic solution of equations (4) as in
the Equivalence Lemma, with n = 3, and such that the coordinates of the corre-
sponding solution (q̄, p̄) of the orthogonal system (9) satisfy the conditions

(17)

3∑
i=1

miui(t) =

3∑
i=1

mixi(t) =

3∑
i=1

miyi(t) = 0

for all t in [t0, t
∗). Then the configuration q is confined to a 2-dimensional hemi-

sphere of curvature κ > 0.

Proof. Let (q,p) be a solution as above, i.e. one for which the coordinates of the
vectors qi = (ui, xi, yi, zi) satisfy the constraints u2

i + x2
i + y2i + z2i = κ−1, zi > 0,

and let (q̄, p̄) be the corresponding solution of the orthogonal system, verifying
conditions (17). For system (9) we can now follow Sundman’s idea of proof, al-
though the form of this system is different from the one of the Euclidean 3-body
problem. Using (17), we can assume that at time t = t0 the three bodies of the
solution (q̄, p̄) lie in the plane y = 0 of R3. Since, by Theorem 4, the constant
vector of the angular momentum is such that ᾱ = β̄ = γ̄ = 0, we can write that∑3

i=1 miui(t0)ẏi(t0) =
∑3

i=1 mixi(t0)ẏi(t0) = 0, and from the last equation of (17),

we can also conclude that
∑3

i=1 miẏi(t0) = 0. The algebraic system of these three
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equations of unknowns ẏ1(t0), ẏ2(t0), and ẏ3(t0) leads us to two possibilities: either
ẏ1(t0) = ẏ2(t0) = ẏ3(t0) = 0 or

det

⎡
⎣u1(t0) u2(t0) u3(t0)
x1(t0) x2(t0) x3(t0)

1 1 1

⎤
⎦ = 0.

In the former case, the solution (q̄, p̄) is confined to the plane y = 0. In the latter
case, the bodies are initially on a straight line passing through the origin of the
coordinate system. But we excluded the latter situation by eliminating diameter
singularities. Thus (q̄, p̄) is a planar solution, therefore the position vectors of the
original system are of the form qi = (ui, xi, yi, zi), with yi = 0, zi > 0, and u2

i +
x2
i + z2i = κ−1, i = 1, 2, 3, so the bodies move on a 2-dimensional hemisphere. �

Remark 5. Conditions (17) are naturally satisfied by some classes of solutions of the
curved n-body problem, such as the elliptic relative equilibria, but are not satisfied
by others, the hyperbolic relative equilibria among them. The existence of these
orbits was proved in [4].

Remark 6. In the proof of Theorem 5 we used only the homogeneity of the potential,
conditions (17), and the integrals of the total angular momentum. So this result is
valid for more general potentials than the ones considered in this paper.

References

[1] F. Diacu, Singularities of the N-body problem, in Classical and Celestial Mechanics: The
Recife Lectures, H. Cabral and F. Diacu, eds., Princeton University Press, Princeton, N.J.,
2002, pp. 35-62. MR1974779 (2004d:70015)
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