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Phenomenological arguments on the critical slowing down is presented and "similarity 
law" is proposed on the indices of the critical slowing down. The similarity law is confirm­
ed in linear spin chains near the critical field and in the kinetic Ising model near the critical 
temperature. It is exactly shown in the linear spin chains that the critical index of slowing 
down is different from that of the static susceptibility and that the dynamical susceptibility 
has a logarithmic singularity with respect to the frequency at the critical field and at zero 
temperature. 

§I. Introduction 

Although many investigations have been made on singularities of several 

kinds of dynamical phenomena near the critical point, there are very few that 

go essentially beyond a dynamical molecular field theory and afford a unified 

point of view on anomalies of dynamical responses in the vicinity of the criti­
cal point. 

The purpose of this paper is to discuss the critical slowing down charac­

teristic of dynamical critical phenomena from a unified point of view. In § 2, 

the main results of the Kubo linear response theory1
) are summarized for con­

venience to discuss the singularity of dynamical response and critical slowing 

down in the subsequent sections. In § 3, the formulation of relaxation time and 

its relation with dynamical susceptibility are given for the purpose of phenomeno­

logical arguments on the critical slowing down. "Similarity law" on the criti­

cal slowing down is proposed as a working assumption. In § 4, as an example, 

the dynamics of linear spin chains is investigated in detail near the critical field. 

The rigorous analysis yields that the critical index of slowing down is different 

from that of the corresponding susceptibility and that the "similarity law" holds 

with respect to the magnetization and partial energy. In § 5, we discuss the 

results obtained by our previous perturbational calculation2
) and those obtained 

by a computer simulation3
) from our point of view. 

§ 2. The Ku.ho linear response theory 

In the present paper, we discuss the singularity of dynamical response and 

critical slowing down, starting from the Kubo formula. 1
> Thus, it is convenient 
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On the Singularity of Dynamical Response and Critical Slowing Down 883 

to summarize the main results (relevant to our problems) or simple versions of 

the Kubo linear response theory. 

The response LiB (t) to an external periodic force F (t) = F 0 cos (wt) conjugate 

to a physical quantity A is written as 

(2·1) 

where the admittance XBA (w) is given by 

XBA (w) =lim roo r/JBA (t) e-(iw+B)dt. 
e-->+0 Jo 

(2·2) 

In the following, h will be replaced by 1; consequently, the response function 

¢BA(w) is expressed as 

¢BA (t) = i Tr [A, p]B(t) =- i Tr p[A, B(t)] 

rf3 . 
= Jo Tr pA (- iJ.) B (t) dt 

r/3 . 
= - Jo Tr pA (- iJ.) B (t) dJ. , (2·3) 

where p 1s the canonical density matrix: 

p = exp (- {3 (${- ?Jf)), 

exp (- {3?Jf) = Tr exp (- {3${), (2·4) 

$( is the Hamiltonian of the system, and A (z) is the Heisenberg representation 

of A: 

A (z) = eiz5C Ae-iz.1C. 

It 1s frequently convenient to use the relaxation function defined by 

(/JBA (t) =lim roo r/JBA (t') e-IW dt' 
e-->+0 Jt 

=i iCX) <[B(t'), A])dt' 

= - iCX) dt' 1{3 dJ.<A (iJ.) B (t')) 

= 1P d). (<A (- iJ.) B (t))- ~~r:: <A (- iJ.) B (t))) 

= iP dJ.<A (- iJ.) B (t))- {3 ~~r:: <AB (t)) 

= ip dJ.<A(-iJ.)B(t))-f3<A 0B 0
) 

(2· 5) 

(2 · 6a) 

(2· 6b) 

(2 · 6c) 

(2. 6d) 

(2 · 6e) 

(2. 6£) 
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884 M. Suzuki 

where [n) is an eigenstate of the Hamiltonian with an eigenvalue En, A 0 and 

B 0 
are the diagonal parts of A and B with respect to 3-C, and the average < · · ·) 

means the canonical average defined by 

<A)=Tr pA. (2· 7) 

In terms of the relaxation function, the response function XnA (w) can be writ­

ten as 

(2 ·Sa) 

(2. 8b) 

(2 · 8c) 

= i lim f"" e-<iw-+nt ( <AB (t + i{3))- <AB (t))) dt 
s->+O Jo (2. 8d) 

=i lim f""e-Ciw-t8)t<[B(t), A])dt 
s->+O Jo (2 · 8e) 

(2. Sf) 

with Amn=<mfA[n)j(.L:e-lfEiY12 • In particular, the static response XnA(O) is given 

by 

XBA (O) = ([)BA (0) 

= l
11 

dlL{<AB(iJ,))-lim<AB(t+ilL))} Jo t~ro 

=i !~~o i""e-st(<AB(t+i{3))-<AB(t)))dt 

=i lim f""e-st<[B(t), A])dt, 
s-->+O Jo 

which should be compared with the isothermal response defined by 

The difference of the two response functions is expressed as 

X~A- XnA (0) = ~~!~ .[s dlL<AB (t +ilL))- f3<A)<B) 

= {3 {lim <AB (t))- <A)<B)} 
t~ro 

(2 · 9a) 

(2. 9b) 

(2 · 9c) 

(2. 9d) 

(2 ·10) 

(2 ·11) 

m terms of Eqs. (2 · 9b) and (2 ·10). Thus, the two response functions are equal 

if the system is "ergodic" in the sense that 
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On the Singularity of Dynamical Re:,jJonse and Critical Slowing Down 885 

lim <AB (t)) = <A)<B) . (2 ·12) 
t-?CO 

Some rigorous examples will be shown to illustrate these situations in § 4. 

§ 3. Phenomenological arguments on the critical slowing down 

3. 1 Relaxation Tinze 

In general, the critical slowing down of a physical quantity A is manifested 

by the anomalously long relaxation time rA of the quantity A. As the relaxa­

tion time rA is defined by the time integral of the corresponding relaxation func­

tion (/) AA (t) with some weight, it is useful to study the properties of the relax­

ation function, particularly various kinds of its time integrals. 

1. If A and B are both Hermitian, then 

(j)BA (t) =real and loo (]) AA (t) dt >o . (3·1) 

A simple proof for the first equation was given by Kubo. 1
) It IS also easily 

found from the following matrix-element representation: 

(j)BA (t) = 2.= {Rmn cos (Wmnt) - Imn sin (Wmnt)} 
nL,n 

+ i 2.= {Rm1~ sin (Wmnt) + Imn cos (Wmnt)}' (3· 2) 
rn,n 

where 

(3· 3) 

Amn=<miAin)/ {2.::: e-.SEi}
112 

i 

and 

(3· 4) 

which is easily derived from Eq. (2 · 6g). Obviously the imaginary part of Eq. 

(3 · 2) vanishes owing to the odd symmetry of the above matrix-element repre­

sentation. Thus, the time integral of the relaxation function is given by 

roo (j)BA (t) dt == _!C_{j__ 2.= (AmnBrnn + BnmAmn) e-.SEn(J (w?ILn). 
Jo 2 rn, n 

(3· 5) 

In particular, for A= B, we obtain 

(3· 6) 

That Is, the time integral of the relaxation function (/) AA (t) IS usually positive 
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886 M. Suzuki 

and it vanishes only when all the secular parts of the quantity A are zero (i.e. 

Anm=O for Em=En), as is the case of A=B=i[3C, B]. 

2. It is shown in the same way as in 1 that the time integral of the relaxation 

function with a weight function t is given by 

reo (/)BA (t) tdt = ~ AwrnBmn (e-/3Em- e-f3En) (cumn + ic.)- 3
• Jo m,n 

(3· 7) 

In particular, for A= B= Hermitian, we find that the time integral IS negative: 

(3 ·8) 

On the other hand, the initial value of the relaxation function Is positive: 

(3. 9) 
n,m 

for A= Hermitian. This means that the value of the relaxation function becomes 

negative in some ranges of the time variable t. 

3. The above results can be easily extended to the following form: 

roo (/)BA (t) tk-ldt = ik ~ AnmBrnn (e-/3En- e-/3Ern) (cumn + ie)-k-l. Jo n,m 

In particular, we find that 

roo(/) AA (t) t2kdt = ( -1fn/1 (2k)! ~ I Amn[ 2 e-!3Encu~;~ko (CUmn) Jo ~m 

and 

for an Hermitian operator A. 

4. If A and B are both bounded, we find that 

(3 ·10) 

(3 ·11) 

(3 ·12) 

(3 ·13) 

because the integral of the relaxation function in terms of Eq. (2 · 6b) is ex­

pressed as 

100 

(/)BA (t) dt = i 100 

dt ioo ( [B (t'), A] )dt' 

= -i 100 

([B(t), A])dt 

=i([A, B]). (3 ·14) 

Instead of the above derivation, we may use the matrix-element representa­

tion (2 · 6g); i.e. 
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On the Singularity of Dynamical Response and Critical Slowing .Down 887 

(3 ·15) 

For A=B, we obtain 

(3 ·16) 

This yields a theorem due to Kubo :4
) 

1
00 

dt 113 

dtl<A(-itl)A(t))=O (3 ·17) 

by noting the following property: 

lim <AB(t))=O, (3 ·18) 
t-->oo 

if A and B are both bounded. This is proved as follows: 

lim <AB (t) >=lim l rr <AB (t) )dt 
t-->oo T-->oo T Jo 

1 . . 
=lim- {<AB(T) )-<AB)} 

T->00 T 

=0, (3 ·19) 

or Is proved from the expressiOn 

<AB (t)) = .'E e-!3EnAnmBmnW~neitromn. (3. 20) 
n,rn 

5. The above results are extended in the following. If A and Bare both bounded, 

then 

roo ([)<m)(n) (t) tm+n- 2dt = ( -1)m+l (m + n- 2)! i< [A, B]) 
Jo B A 

(3. 21) 

and 

A= ~A(t) (n) [dn J 
dtn t=O 

for m + n>2, which are easily proved by mathematical induction or by substitut­

ing B instead of B in Eq. (3 · 23). In particular, when A and B commute, the 

above integral (3 · 21) vanishes. 

6. It is also easily shown in the same way as m the above derivation that 

roo (/)(n)(n) (t) dt = roo (/)(n)(n) (t) t 2dt = ... = roo (/)(n)(n) (t) t 2n- 2dt = 0 . 
Jo A A Jo A A Jo A A 

(3. 22) 

7. On the other hand, it should be noted that the following time integral does 

not vanish: 
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888 M. Suzuld 

joo (jj<ml(nl (t) tntn--
1dt = ( -J.Yn (m + n -1)! (jjBA (0) · Jo n A 

(3. 23) 

Now, we are ready to define the relaxation time rA.. For simplicity, here­

after, we treat only Hermitian operators. Then, the simplest definition of rA 
may be 

met) :=(jj(t)/(jj(o), (3. 24) 

which is non-negative from the previous discussion given m 1. It should be 

noted that this might vanish completely as shown in Eq. (3 · 16). Thus, it Is 

convenient to extend the definition of the relaxation time in the following: 

where 

-1+1 Cn-
-1 

for 

for 

n=41~ 

n=4k+2 

or 4!? + 1, 

or 41~ + 3. 

Equations (3 ·11) and (3 ·12) yield 

r A <
2
k+ll = {n{3 .z= I A~bm.l 2 e 13 E"cu~;/co (w'rnn) I (jj AA ( 0) }11

<
2
k+ll 

n,?n 

and 

(2k)- {'--1 I A 12 D' -2kl(jj (0) }lf(2k) rA - L.....J nm, .L' ?nnOJ.mn AA , 
n, rn 

respectively. 

As simple examples, Eqs. (3 · 22) and (3 · 23) lead to the results 

r<.l). = 0 
AA ' 

(1) __ (3) _ _ (Zn-1) _ 0 
r(n)(n)- r(n)(n)- .•. -- r(n)(n)-

A A A A A A 

and 

(2n) ____ {"J (()) I"J (0) }1f2n r (n)(n) -- W AA W(n)(n) , 
A A A A 

if A is bounded. 

(3. 25) 

(:3. 26) 

(3. 27) 

(3. 28) 

(3. 29) 

From Eq. (3·8) or (3·28), the relaxation time rA<2
l does not vanish. Thus, 

it is sufficient for our purpose to make use of only r } 1
l or r A <

2
). It is to be ex­

pected that if both relaxation times r} 1
l and rA<

2
l are physically significant they 

show a common singularity near the critical point. An example in which we 

must use the definition of the relaxation time r } 2
l will be shown in the next 

section. 

There is a simple relation between the relaxation time rA<nl and the corre­

sponding dynamical susceptibility XAA (w) as follows. 

1. r } 1
) = i lim {XA (w) - XA (0)} I {wXA (0)}, (3. 30) 

<0->0 
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On the Singularity of Dynamical Response and Critical Slowing Down 889 

because the susceptibility is expressed as 

XA (w) =(/)A (0) - iw i"" (/)A (t) dt- iw I""(/) A (t) (e-i'"t -1) dt 

m terms of Eq. (2·8b). 

2. When rA<1)=0, we find the relation 

rA<2
) =[lim {XA (w)- XA (0)} / {w2

XA (0)} ]
112

, 

W->0 

(3. 31) 

(3. 32) 

which will be used in § 4. Thus, the anomaly of the relaxation time is con­

nected with the singularity of the frequency expansion in the susceptibility. 

Finally, we remark that in stochastic models, the relaxation time rA(=rA<
1
)) 

is formally written as 

(3. 33) 

where L is an operator to describe the temporal development of the relevant 

system. The operator L is usually semi-positive definite as is illustrated in § 5, 

so that r A is always positive and does not vanish. Thus, the simplest definition 

of the relaxation time rA<I) is sufficient in stochastic models. 

3. 2 Critical slowing down 

The relaxation time r A of the relevant quantity A m terms of Eqs. (2 · 6e) 

and (3 · 24), is given by 

@ (t) = (/) (t) j(f) (0) 

and 

(/)AA(t) =,B{(A, A(t)) -lim(A, A(t))}, 
t->00 

where the canonical correlation (B, A) is defined by 

(B, A)=}_ r/3 <eA3{Be--A..'!CA)d"A. 
,8 Jo 

In ergodic systems, the following relation holds: 

lim (A, A (t)) = <A)2
• 

t->00 

(3. 34) 

(3. 35) 

(3. 36) 

(3. 37) 

Thus, the relaxation function is expressed by the corresponding canonical cor­

relation itself in ergodic systems: I.e. 

(/) AA (t) = .e Co A, a A (t)) (3. 38) 

with oA =A- <A). Hereafter, we consider only ergodic systems and use the 

symbol A instead of oA, that is, <A)= 0. The reduced relaxation function @ (t) 

can be written as 
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890 M. Suzuki 

@AA (t) =exp [¢ (t)] = (A, eit_[ A) I (A, A), (3. 39) 

where L 1s the Liouville operator for the relevant system, and it Is defined by 

LA=[${, A] --Hx A. (3. 40) 

The moment expansiOn of Eq. (3 · 39) yields 

(3 ·41) 

The use of the well-known cumulant expansion 5
> gives the expressiOn 

cjJ (t) = £ _(jt)n A?~(~) ' 
n=1 n! /1-o 

(3. 42) 

where 

A1 en = /1-1, 

A2 (~) = /lo/1-2- /1-1
2
, 

A3 ( ~) = /1-o
2 

f.J-3 - 3 /1-o/1-1/1-2 + 2/1-1
3
, 

A4 ( ~) =flo 
3 
f.J-4- 4f.J-o

2 
/1-1/1-3- 3f.J-o 

2 
f.J-2 

2 + 12/1-o/1-1
2 
/1-2- 6 f.J-1

4
, etc. (3. 43) 

and ~ indicates temperature T, a magnetic field H, or any other external par­

ameter. Thus, the relaxation time rA is expressed as 

l oo [ oo inAn(n ( t )n] r A= exp ~ -------- - dt = /1-ol RA (~), 
o n=l n! flo 

(3. 44) 

where 

(3·45) 

Under the conditions that 

all An(~)= finite at the critical point ~c, (3. 46) 

and moreover that 

RA = RA (~c) =finite (not zero), (3. 4 7) 

the relaxation time shows the singularity 

(3. 48) 

with s = (~-~c) I~ c near the critical point. That is, the index of the critical 

slowing down for the quantity A is equal to that of the corresponding suscep­

tibility in the above severe conditions. It is easily found from Eqs. (3 · 43) that 

the condition (3 · 46) is equivalent to the relation 

(A, LnA) (A, A)n- 1 =finite at ~c for all n, (3·49) 

which IS satisfied in the dynamical molecular field theory. 6
> Here the following 
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On the Singularity of Dynamical Response and Critical Slowing Down 891 

decoupling method is valid: 

«O»= (A, OA)/(A, A). (3. 50) 

The condition (3 · 49) is also satisfied in the situation where the quantity A hap­

pens to be a critical dynamical variable/) namely an asymptotic eigenvector of 

the Liouville operator L with an eigenvalue ). vanishing at ~ c: 

(3. 51) 

A stochastic model with long-range interaction (where the molecular field approxi­

mation holds) is a nice example for the above situation. 

However, the above conditions (3 · 49) and (3 · 40) are so much severe that 

it is unreasonable in general to expect that the relaxation time should be pro­

portional to the static susceptibility in the vicinity of the critical point. That 

is, it should be remarked that in many cases the critical index of slowing down 

may be different from that of the static susceptibility. Such examples will be 

given in §§ 4 and 5. 

Here, we note that all the odd moments in Eq. (3 · 41) do always vanish in 

the usual dynamical models described by the Liouville operator L: 

(3. 52) 

The second equality in the above equation is due to the property that the Liou­

ville operator L is Hermitian in the sense that8
l 

(A*, LB) =((LA)*, B). (3. 53) 

As the operator A and B are Hermitian (A*= A) m our problem, the above 

equation can be written as 

(A, LB) =-(LA, B). (3·54) 

The third equality m Eq. (3 ·52) is proved as follows. For a general operator 

A, we find that 

{3 (A, A3{) = 111 

<e>..3cAe->..3cA3C)d). 

= 111 

<e>...9C 3CAe->..3cA)d). 

= 111 <e<fi->..).9C!J(Ae-<fi->..).9CA)d). 

= 111 
<efi.9C 3{Ae-fi.9Ce>...9C Ae->...9C)d). 

= 111 

<e>..3cAe->...9C 3{A)d). 

= {3 (A, 3CA). (3. 55) 
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892 M. Suzuki 

That Is, 

(A, .LA) = (A, JtCA) - (A, A'-9() = 0 . (3. 56) 

This is also derived from differentiating the following symmetry relation9
) and 

putting t = 0, 

(A, A(t)) =(A, A( -t)). (3. 57) 

Thus, in dynamical systems, the expression RA (f) in Eq. (3 · 45) IS seen to be 

real as arises necessarily from Eq. (3 ·1): 

i w [ ro ( l)n J -1 • --~ -- 2n 
RA (f) = exp L..J -----)2n (f) x dx . 

o n=1 (2n)! 
(3. 58) 

In stochastic models, a semi-positive definite operator L should be used in­

stead of the operator (- i.L) in the above discussions. That is, the coefficient 

RA (f) in the expression (3 · 44) of the relaxation time is given by 

(3. 59) 

In the stochastic kinetic Ising model, Abe10
) argued that a relaxation time asso­

ciated with the initial decay is proportional to the susceptibility. Although the 

formal results are similar to each other, Abe's argument is quite different from 

ours in that the present relaxation time defined by Eq. (3 · 24) is associated with 

the long time behavior. 0£ course, they agree each other in the case when they 

show a single-exponential decay of a Lorentzian form essentially in the whole 

region of the time in stochastic models: fb (t) "-'exp (- t/r). 

In the kinetic Ising model/),G), 1 o)~ 12 ) all the moments remain finite2
)'

12
) and 

never vanish at t c, and consequently the condition (3 · 46) does not hold. In 

fact, as is discussed in § 4, it is found from a perturbational calculation that 

the critical index of slowing clown is different from that of the static suscepti­

bility. 

Finally, it should be remarked that the above argument is quite the same 

even if we use the other definitions of the relaxation time. 

3. 3 Similarity law on the critical slowing down 

In the previous subsection, we argued that the relaxation time should be pro­

portional to the susceptibility in some severe conditions. Here, we discuss the 

general case on the critical slowing down in which the coefficient R (f) is sin­

gular at t c and consequently the critical index of slowing down may be different 

from that of the static susceptibility. Let us call the slowing down clue to the 

static susceptibility XAA the "direct critical slo-vving down" or the "critical slow­

ing down due to direct :fluctuation", (which is called the thermodynamic critical 

slowing down in the case of temperature variable (t = T)), and call the remain­

ing part the "indirect critical slowing down (or speeding up)" or the "kinetic 
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On the Singularity of Dynamical Response and Critical Slowing Down 893 

slowing down (or speeding up)". 

As will be confirmed in some examples given m the subsequent sections, 

the conjecture (or a working assumption) of the following similarity law is the 

motive of our investigation on the critical slowing down. 

Similarity law: The indirect critical slowing down (or the kinetic slowing 

down) shows a common singularity near the critical point with respect to some 

physical variables in one "regular" system: 

¢A=¢B=···=¢ (common). (3. 60) 

This is easily expected from the consideration that the indirect critical slow­

ing down is due to a kinetic effect characteristic of Liouville operator (or Ha­

miltonian) for the relevant system. In fact, the similarity law always holds in 

the results obtained by the simple theory discussed in the previous subsection 

in the sense that all ¢a=¢= 0. 

A system in which the above similarity law holds with respect to more than 

two variables may be called "regular" or "regular with respect to critical slow­

ing down", and such variables satisfying the similarity law may be called 

"similar variables" or "variables similar with respect to critical slowing down". 

The relevant problem is to investigate in what condition similar variables 

appear and consequently the system becomes regular. This is a very difficult 

problem. At present, we are to be satisfied with illustrating the similarity law 

in some examples. 

§ 4. Example I-Linear spin chains 

4. 1 Dynamical susceptibility 

In this section, a rigorous example is given to show the critical slowing 

down different from the singularity of the response function with respect to the 

magnetic field (i.e. near the critical field at T = 0). It is also shown that the 

dynamical susceptibility X (w) has a logarithmic divergence with respect to the 

frequency (J) at the critical field He. 

The Hamiltonian 13 )~l?) we consider here is 

N 

!}{ = -I: Jjksmj s:;_+l- !LBH I: Srr/, (4·1) 
m=l 

where Smi is the j-component of the spin operator at the m-th lattice site (the 

spin is equal to 1/2): Jik is the symmetric tensor of the interaction constants 

associated with the transverse components (j, k = x, y), H the magnetic field and 

f1B the Bohr magneton. 

The Hamiltonian ( 4 · 1) is easily diagonalized by using the following trans­

formation 

S -- s X ·s y- t II (1 2 t ) n - n - l n -an - am am 
m<n 
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894 M. Suzuki 

and 

S + - s x ·s y- II (1 - 2 t ) n - n + z n - am am an ' 
m<n 

(4·2) 

where ant and an are respectively, the Fermi creation and annihilation operators. 

It is convenient to go over to the Fourier transforms of the Fermi operators an 

and ant: 

Thus, the canonical u, v-transformation, 

yields the final diagonalization of the Ha~iltonian as 14
) 

!f{ = ~ (cTGtck- t) ck, 

where 

lc 

Ck= (ATG
2 + IB!GI 2Y12

, 

Ak = t (JxJJ + Jyy) cos k- !1BH, 

Bk = i[t (Jxx- Jyy) + iJJJy] sink, 

and the coefficients uk and vk in Eq. ( 4 · 4) are given by 

(4·3) 

(4·4) 

(4·5) 

(4· 6) 

(4· 7) 

In general, the dynamical susceptibility X (q, ())) is given by the Kubo for­

mula (2 ·Sa): 

(4·8) 

where the relaxation function (})q(t) is 

(})q (t) = 113 

dJ..<MqM-q (t + iJ..))- {3 ~~~ <MqM-q (t)) . (4· 9) 

In the present model, noting that the magnetization Mq is expressed as 

(4 ·10) 

and that 

aLq (z) a1.: (z) = ukuLqcL-qck exp [iz ( 81.:-q- 81.:)] 

+ VJ.;-qVJ.; *c-k+qc!._~c exp [iz Cc-1.:- 8-k+q)] 
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On the Singularity of Dynamical Response and Critical Slowing Down 895 

+ uLqvJG * cl-qc!_k exp [iz (BJG-q + B-JG)] 

+ UJGVJG-qC-k+qCJG exp [- iz (8-!G+q + CJG)] 

with z = t + iJ...., we find easily that for q=/=0, 

~ (al+qaJGat,-q(z)aJG,(z)) 
k, k' 

+nJG(1-nk+q)exp( -iz(sJG-BJG+q)) X (!vJG+q! 2!v'"l 2 -¢(q, J.~)) 

+ nJGnJG+q exp (- iz (sJG+ BJG+q)) X (! u!G+ql
2

1 vJGI 2 + ¢ (q, k)) 

( 4 ·11) 

+ (1-n'") (1-nJG+q)exp(iz(sJG+BJG+q)) X (iuJGI
2 IvJG+ql

2 + ¢(q, k))}, 

(4·12) 

where 

(4·13) 

and we have used Wick's theorem at finite temperatures and the symmetry pro­

perties such as 

(4 ·14) 

Therefore, we obtain the dynamical susceptibility in the form 

x(q, (J)) = -f1B
2 lim f""at rp dJ....e-(iw+S)t__j}__ ~ <at+qa!G(at,_qa!G') (t+iJ....)) 

e--->+0 Jo Jo dt k, k' 

+ {T(k + q) + T(k)} { l~!G+qfi_~'"I
2 

+___2_ (k,_q) + ~_lt:J~~±J
2 

+ ¢ (!~, il}] 
CJG+q + BIG+ (J) CJG+q + CJG- (J) 

(4·15) 

with T (k) =tanh ({1s'"/2). In the case J:c:c = Jyy and J:cy = 0, this agrees with the 

results obtained previously.16
> It is easily shown from direct calculation of x(O, (J)) 

for (J)=/=0 that 

lim x(q, (J)) =x(O, (J)) =- f"" riJo(t)e-i"'tdt, 
q-o Jo 

( 4 ·16) 

where 

(4·17) 

In particular, the static susceptibility X (q, 0) is given by 
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896 M. Suzuki 

Consequently, we find that 

where 

and 

That 1s, 

lim X ( q, 0) = X ( 0) + X', 
q-->0 

x' = it_ I: (!!__sk.) 
2

/cosh
2 (/3ek./2). 

4 1c fJH 

( 4 ·18) 

( 4. 19) 

(4. 20) 

( 4. 21) 

lim X(q, 0) =xT, (4·22) 
q->0 

where XT is the isothermal susceptibility calculated by Pikin et al. 14
) This is a 

special case of the following relation 

for q=/=0, which is easily shown from the ergodicity 

lim (MqM-q (t)) = fln
2 

lim I: (al+qaka1'-q (t) ak' (t)) 
t-,oo t___,.oo lc, k/ 

for q=/=0, (4· 24) 

where we have used the theorem of Riemann and Lebesgue. In the case of 

q = 0, we find easily that 

lim ( (MM(t))- (M)2
) 

t->00 

= ,U.n2 lim I: {(aktak(akt (t) a1c(t) + a!_k (t) a_k(t)))- 2(aktak)2
} 

t->00 k 

(4· 25) 

which yields the relation (4·22). From Eqs. (4·19), (4·21) and (4·22), the 

following inequality between the isothermal susceptibility and the isolated suscep­

tibility holds: 

(4. 26) 
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On the Singularity of Dynamical Response and Critical Slowing Down 897 

which has been proved in general by Falk18
) and Wilcox. 19

) Thus, the ergodicity 

holds in our system only when T ~o, in the sense that 

lim <MM(t))=<M)\ (4·27) 
f->CO 

and for T> 0 the ergodicity does not hold in the present system, though the 

total magnetization is not a constant of motion. This is because such a part 

of the Hamiltonian as does not commute with the total magnetization is of a 

special form; i.e. it connects only the two modes akt and a!..k. 

4. 2 Singularity of dynamical susceptibility 

The real part of the dynamical susceptibility for q = 0 Is given by 

(4. 28) 

where 

T ( cp) = tanh (fi 8 ( cp) ), 
2 J 

and 

(4· 29) 

The imaginary part of the susceptibility is 

Im x (w) = !J!·JJJrY f" dcp sin
2

cp T (cp) {a (28 (cp) - w) +a (28 (cp) + w)}. ( 4 · 30) 
nw Jo 8(cp) 

The above susceptibility is easily found to satisfy the symmetry relations 

Re x(w, H) =Rex( -w, H) =Re x(w, -H) 

and 

Im x(w, H)= -Im x( -w, H) =Im x(w, -H), ( 4. 31) 

which are generally proved by Kubo. 1
) The case of high temperature limit in 

the above expressions has been investigated in detail by Niemeijer.H•) Here, we 

are interested in the low temperature limit and the neighborhood of the critical 

field. In particular, we investigate the singularity of the real part of the dyna­

mical susceptibility, in order to clarify the character of the critical slowing down. 

It is easily shown that the real part of the dynamical susceptibility has the 

singularity in the form 

2 

Re x(w, h, T=O)~ 
2
I!YJ--f(wj2Jr, h) 
n r 

for small w and h, where 

( 4. 32) 
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898 M. Suzuki 

(4· 33) 

for lwl>lhl, 

(4· 34) 

In particular, the real part of the dynamical susceptibility shows the logarithmic 

singularity 

ReX (w, He, T = 0) r-.J -log I w I (4· 35) 

at the critical field He in the case of r=f=O. The static susceptibility X (0) has 

a logarithmic singularity with respect to the reduced field h: 

X (0) r-.J -log I hI for r=FO and for T = 0 . (4. 36) 

As the difference R of the isothermal susceptibility from the isolated suscep­

tibility is finite at the critical field He, the isothermal susceptibility has the same 

singularity: 

(4. 37) 

for r=f=O, as was pointed out by Pikin et al.14
) It is also easily shown from 

Eq. ( 4 ·18) that the wave-number dependent static susceptibility shows a logarithmic 

singularity 

X(q, w=O, H=He, T=O)r-.J-log q 

at the critical field and at T = 0 for r=f=O. 

4. 3 On the critical slowing down 

(4. 38) 

In the present model, the system is "ergodic" with respect to the magneti­

zation at the absolute zero temperature in the sense that 

lim(M, M(t)) =<M)2
• (4· 39) 

t-->00 

Thus, the relaxation time of the magnetization is defined by 
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On the Singularity of Dynamical Response and Critical Slowing Down 899 

=lim {x (w) - x (O)} I {w2X (0)}, (4. 40) 
l0--->0 

which reduces to 

( 4. 41) 

near the critical field at T = 0, where the logarithmic singularity has been neg­

lected at the above final expression. On the other hand, the exponent r M of the 

singularity of the fluctuation (M, M) is equal to zero (rM= 0); X: (0) rvh-rMrv 

-log lhl. Thus, the index of the kinetic critical slowing down becomes 

(4. 42) 

It should be noted that for the first time we have found a ngorous example in 

which the index of the critical slowing down LIM is different from that of the 

susceptibility (LIM>YM). The existence of such an example is favorable to the 

previous results on the critical slowing down in the kinetic Ising model. 2
) 

4. 4 Relaxation of partial energy 

In order to study whether the similarity law on the critical slowing down 

holds in the present system or not, we investigate the relaxation of a partial 

energy defined by 

E - 4 '' S JJSJJ - L..J i i+l' (4. 43) 
i 

which 1s written as 

E =I: (antan+l + at+lan + antat+l + an+lan) (4· 44) 
n 

m terms of Eq. (4·2). The Fourier transform of the above equation (4·44) 

yields 

With the use of u, v-transformation ( 4 · 4), we find that 

where 

and 

E (t) =I: (A,/ cA/ck + B/ c_Jcc!_Jc + F,/e 2 i8Jctc!Gtc·~lc + Fke- 2i8Jctc_kck), 
lc 

Fk = 2uh:vk cos k + i (u1c2 + V7c
2

) sink . 

The response function of the partial energy is given by 

XEE(w) =-lim f"" dt re dJ.e-(iru+C)t_!}_<EE(t + iA) > 
e--->+0 Jo Jo dt 

(4· 45) 

(4. 46) 

(4· 47) 
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900 M. Suzuki 

For simplicity, considering the case Jxy=O, we obtain 

8J
2 ln sin

2
k XEE(w) =-- ---{(1-r)cos k-H/Hc}2dk 

n o s~ ( 4s~ 2
- w2

) 

(4·48) 

( 4. 49) 

at T = 0. In the same way as in the previous subsections, we find that 

XEE (0) /"'J -log I hI , (4. 50) 

and 

( 4. 51) 

That is, the indices of the critical slowing down are equal to those of the mag­

netization: 

and (4·52) 

for r::f=O. Thus, the similarity law holds at least with respect to the variables 

M and E: i.e. they are "variables similar with respect to the critical slowing 

down" in this system. 

§ 5. Example II-Kinetic Ising model 

As an example of the critical slowing down with respect to temperature 

variable, a stochastic kinetic Ising model is discussed. vV e argue the difference 

between the singularity of the relaxation time for the magnetization of the sys­

tem and that of the static susceptibility, on the basis of our previous perturba­

tional calculation2
> of the dynamical susceptibility, and also discuss the similarity 

law with respect to variables such as the magnetization, energy and energy-spin 

correlation with the use of the results obtained by a computer simulation.
3
> 

(i) As is well known, in this model each spin is assumed to flip spontaneously 

with a transition probability which depends on the temperature and the configu­

ration of surrounding spins, but the functional form of the transition probability 

is assumed to be the simplest. The master equation is given by 

si ~= :±~ 1 , (5 ·1) 

where P(S1, ···SN; t) is the transition probability to find the spins m the con­

figuration (Sl, ... SN)' and the operator r is defined by 

TP(S) =- ~ W 1 (S1)P(S) + 2.::: W1 ( -S1)P(-··, -S1, ···). (5. 2) 
j j 
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On the Singularity of Dynmnical Response and Critical Slowing .Down 901 

The transition probability Wj (Sj) is assumed to be2
),a) 

(5. 3) 

It IS convenient to use the following operator L: 

(5·4) 

where ?1.; IS an operator to flip the spin k, namely 

(5· 5) 

The following relation between the operators T and L is easily derived: 

T[f(S)Po(S)] = -Po(S)Lf(S), TP0 =0. (5· 6) 

(ii) The critical slowing down of the relevant quantity ljq with wave number 

q IS manifested by the following formula: 

-r = sw_(fj_rr_((L_fJ/) dt = soo <YJ/e-LtYJq) dt =\'11 *2_ '11 )/'<'11 *-!)). 
q <- - *) <- * ) .,q L .,q .,q .,q 

0 ljqljq 0 ljq ljq 

(5·7) 

ii-1) Magnetization: the relaxation time for the magnitization ilvf== f-LB ~jSj IS 

given by 

(5. 8) 

If the index of the kinetic slowing down Is expressed by ¢M, then we may put 

(5· 9) 

ii-2) Energy correlation: the relaxation time for the energy oE == E- (E) IS 

giVen by 

(5 ·10) 

and 

(5. 11) 

where ¢E indicates the index of the kinetic slowing down for the energy. 

ii-3) Energy-spin correlation below the Curie point Tc: the relaxation time for 

the energy-spin correlation is given by 

- - I A' L~ 1 M)/< 71 ffA'E >"'-./I" ~--AME 
!..J1JE- \Ul.!....t L 1V1U -~ c. ' (5 ·12) 

where 

(5. 13) 
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902 M. Suzuki 

and 

(5·14 

It IS easy to derive the inequality 

(5 ·15) 

with the use of the following identity valid for a real parameter A: 

\CAM+oE) l (AM+oE))>o. (5 ·16) 

(L: semi-positive definite) 

If we accept the similarity assertion. ¢M= ¢E =¢ME=¢ in Eqs. (5 · 9), (5 · 11) and 

(5 ·13), we find the inequality2a> 

a+2~+r>2. (5 ·17) 

Conversely, if we make use of the equality a+ 2~ + r = 2, which IS derived by 

the scaling law,21) we obtain 

(5 ·18) 

(iii) In order to examme the nature of the kinetic slowing down, we studied 

high temperature expansions2) 

L=La-L', 

(5 ·19) 

and 

/ Ml_M\=(M 1 ,M)=/ Ml_M)' +/ Ml_L,l_M)+ .... 
\ L I La-L \ La \ La La 

(5. 20) 

By applying the ratio method to the results obtained by high temperature ex­

pansiOns up to the ninth order in the two-dimensional Ising model, we have 

found thae> 

(5. 21) 

Therefore, the index of the kinetic slowing down, ¢M, IS given by 

(5. 22) 

where we have used the value of the index r = 7/4 in the two-dimensional sys­

tem.22> Incidentally, we note that in the two-dimensional system the value of the 

index ¢M is the same as that of the index r; (or r;v) defined in the asymptotic 

equation 

(5·23) 
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On the Singularity of Dynamical Response and Critical Slowing Down 903 

Now, if we assume that the similarity law 

(5. 24) 

IS valid m the present system, the following relations should hold: 

J ME= 1 - ~ + ¢ = f 

and (5· 25) 

.dE=a+¢=t. 

(it contains a logarithmic divergence; namely rE"'-./- e114 log e) 

There are two ways to verify this assertion. One is to execute high tempera­

ture expansions for the energy correlation and energy-spin correlation in the 

same way as is shown in Eq. (5 · 20). The other is to make use of the results 

obtained by a computer simulation.3
) Figure 1 shows the relaxation time rM in 

the two-dimensional systems. The straight line in Fig. 1 gives an approximate 

value JM=::::.2. As was pointed out by Ogita et al. far from the Curie point, 

however, the relaxation time becomes to be proportional to the susceptibility. This 

may imply that the kinetic slowing down becomes more and more conspicuous 

as the temperature approaches the critical point. On the other hand, the relaxa­

tion time of the energy, rE, is shown in Fig. 2, which seems to yield the con­

jectured value 

0 

0 

Fig. 1. The log-log plots of relaxation time 

of polarization versus (T- Tc) /Tc which 

was obtained by a computer simulation.3) 

The straight line with gradient -2 is ap­

proximately fitted by the three points near 

T c rather than near 2T c· 

(5. 26) 

from the data close to the critical 

point. The results obtained by the 

computer simulation does not seem 

to be so accurate. At present, we 

200 

100 

50 

10 

0.01 

0 

0.1 

0 

1.0 T -Tc 

T 

Fig. 2. The log-log plots of relaxation time 

of energy versus (T-Tc.)/Tc which was 

also obtained by a computer simulation. a) 

The straight line with gradient -t is 

approximately fitted by three points 

near Tc. 
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904 M. Suzuki 

can say only that these results are not inconsistent with those obtained by the 

high temperature expansion and with the similarity law. 

§ 6. Summary and discussion 

Starting from the Kubo linear response theory, we have formulated the re­

laxation time and connected it with the dynamical susceptibility in ergodic sys­

tems. It has been shown that the relaxation time is proportinal to the corre­

sponding susceptibility (or the canonical correlation function) in some severe 

conditions. It was argued with the use of an exactly soluble model on linear 

spin chains that the critical index of slowing down is different from that of the 

static susceptibility and that there is a possibility that the similarity law holds 

in this system. 

According to Tomita's formulation, 23
) the Fourier transform XAA (q, 0) of 

the canonical correlation (A/, Aq (t)) is expressed by 

XAA(q, 0)/x(q,O) =1/{i0+r(q, 0)}, (6 ·1) 

where 

r(q, 0) =XA.A.(q, 0)/x(q, O), (6·2) 

and X11 (q, 0) is the force correlation for the quantity A. In particular, if we 

put rv=O in Eq. (6·2), the relaxation time rA is given by 

1 
r A=-------- . (6 · 3) · r (q, o) 

That 1s, the force correlation is equal to 

_.YA.A. (q, 0) = (3RA (T). (6·4) 

Although the function XA.A. (q, 0) is of the same type as Eq. (3 ·13), usually the 

Hermitian conjugate Aq * does not commute with Aq for q=/=0, and consequently, 

the time integral of the canonical correlation function, XA.A. (q, 0) never vanishes 

for q=/=0. In the isotropic Heisenberg model, the anomalous behavior of XA.A. or 

RA (T) has been pointed out by Tomita. 23
) His results show that the part XA.A. 

or RA (T) causes kinetic speeding UjJ. 

According to our expression (3 · 44) for the relaxation time r A, the kinetic 

speeding up (or the divergence of RA (f) at fc) is brought about, for example, 

in the case when all the coefficients },n (f) vanish as the parameter f approaches 

the critical value f c· In stochastic models, the first moment A1 ( = j..t1), at least, 

does not vanish even at the critical point. In fact, the non-divergence of R (~) 
at ~c can be proved generally in the same \vay as in a previous paper2

) or on 

the basis of variational principle. 12
)'

24
) That is, in contrast with the isotropic 

Heisenberg model, not kinetic speeding up but kinetic slowing down occurs in 

stochastic models. 

According to Mori's theory, 8
> the relaxation time rA 1s given by 
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(6· 5) 

where the variable fA is a random force defined by 

fA(t) =u(t)fA, fA= (1-P)A, 

u (t) = exp [t (1- P) iJ:'] (6. 6) 

and 

PG= (G, A)· (A, A)- 1A. (6. 7) 

That Is, we find that 

(6. 8) 

One of the merits m Mori's theory is the use of a continued-fraction expansion 

of the time correlation function ( f(t), f). It is, in general, expected that the 

convergence25
) of the continued fraction expansion is better than that of moment 

expansiOn. The investigation on the convergence and on the sing-ularity of the 

continued-fraction, however, is a very difficult problem, and it will be instruc­

tive to study the continued-fraction expansion in such an exactly soluble model 

as discussed in the present paper. 

The study on the wave-number dependent relaxation time r (q) near the 

critical point will be an important problem in the future in connection with the 

dynamical scaling law. 26
) 
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Note added in Proof: 
Quite recently, I. Hatta has found experimental data on dielectric relaxation time near the 

transition points in NaN02 (to be published in J. Phys. Soc. Japan), which seem to support our 

theoretical prediction that the critical index of the relaxation time is larger than that of the static 

susceptibility in the stochastic Ising model. 
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