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Abstract

Poisson Voronoi diagrams are useful for modeling and describing various natural patterns and for generating random

lattices. Although this particular space tessellation is intensively studied by mathematicians, in two- and three-dimensional

(3D) spaces there is no exact result known for the size distribution of Voronoi cells. Motivated by the simple form of the

distribution function in the 1D case, a simple and compact analytical formula is proposed for approximating the Voronoi

cell’s size-distribution function in the practically important 2D and 3D cases as well. Denoting the dimensionality of the

space by d (d ¼ 1; 2; 3) the f ðyÞ ¼ Const � yð3d�1Þ=2 expð�ð3d þ 1Þy=2Þ compact form is suggested for the normalized cell-

size distribution function. By using large-scale computer simulations the viability of the proposed distribution function is

studied and critically discussed.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Voronoi diagrams [1] are a particular case of space tessellation where, given a set of centers, the space is
divided according to their ‘‘spheres of influence’’. Each Voronoi cell contains those points of the space that are
closest to the same center. A Voronoi tessellation in two dimensions would look like the polygons sketched in
Fig. 1 or Fig. 2d.

Given a set of centers there are two relatively easy ways to generate the corresponding Voronoi diagram. We
sketch this methods for the two-dimensional (2D) case, and the generalization to any other dimension is
immediate. In the first method (the perpendicular bisectors method [1,2]) one starts from a given center (P0)
and detects the nearest P1 center to it. A part of the perpendicular bisector on the P0P1 line will form the first
edge of the Voronoi polygon corresponding to P0. Then the second nearest center (P2) is detected and the
perpendicular bisector on P0P2 is constructed again. This algorithm is continued with the third (P3), fourth
(P4), fifth (P5),. . . nearest center, until the perpendicular bisectors on P0P3, P0P4, P0P5.. . . will close a stable
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polygon which does not change after considering any more distant points. Repeating the above algorithm for
all centers the Voronoi tessellation of the whole space (Fig. 1) can be obtained.

The second method (called the Avrami–Johnson–Mehl method [3]) is especially useful for computer
simulations. In this algorithm each center is identified as a nucleation point from where a virtual disc with
uniform radial velocity is growing (Fig. 2). When two discs touch each other the growth in the contact
direction is stopped for both of them and the contact point becomes a point on the corresponding Voronoi
diagram. The growth in all other directions is continued until a nearby disc is reached. In this way the same
space tessellation as in the perpendicular bisector algorithm is achieved. In computer simulations it is handy to
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Fig. 1. The ‘‘perpendicular bisector method’’ for constructing Voronoi diagrams in 2D.

Fig. 2. The Avrami–Johnson–Mehl method for constructing Voronoi diagrams in 2D: (a)–(d) presents snapshots from a small graphical

simulation.
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implement this algorithm not on continuous space but on large lattices since the contact points are easier to
identify.

In the 2D case the Voronoi diagram can be obtained also from Delaunay triangulation. The Delaunay
triangulation of a point set is a collection of edges satisfying an empty-circle criteria, which means that for
each edge we can find a circle containing the edge’s endpoints but not containing any other point from the
initial set. In two dimensions the Delaunay triangulation is the dual structure of the Voronoi diagram [2].

Particular cases of Voronoi diagrams, where the centers are randomly and uncorrelated distributed, are
called Poisson Voronoi diagrams. Poisson Voronoi diagrams (PVDs) are especially important for modeling
and describing a wide variety of natural and social phenomena. PVD has been used to construct random
lattices in quantum field theory [4] or in the studies of conductivity and percolation in granular composites [5].
PVD was also used in modeling growth of metal clusters on amorphous substrates [6], in studying conduction
and percolation in continuous media [7], in modeling microemulsions [8], in interpreting small angle X-ray
scattering for heterogeneous catalyst [9], in evaluating the actual galaxy distribution [10], in describing sections
through various geological materials [11], in biology [12], in animal ecology [13], in sociology [14], etc. . . . The
above list is far from being complete and suggests just a few possible applications for this particular space
tessellation. For a more complete discussion of the use of Voronoi diagrams many good review works are
available [15–17].

Despite their importance in science, our knowledge on the geometrical and statistical properties of PVD is
far from being complete [1,2]. One of the most debated and less clarified aspect is the gðSÞ size-distribution
function of Voronoi cells gðSÞ ¼ PðS;S þ dSÞ=dS, where PðS;S þ dSÞ is the probability that the size of a
Voronoi cell is between S and S þ dS. Instead of gðSÞ it is more convenient to use the more general f ðyÞ

distribution function for the y ¼ S=hSi normalized cell sizes, which is independent of the center’s density and
it is universal for all PVD in a given dimension. Alternatively, one could determine the F ðyÞ cumulative
distribution function defined as F ðyÞ ¼

R y

0 f ðxÞdx.
Apart of the simple one-dimensional case, presently there is no exact result or handy analytical

approximation for the form of f ðyÞ. Since f ðyÞ in 2D and 3D is of primary interest in many practical
applications, there is a growing need for a simple and analytically usable formula. This would help in
characterizing and classifying several experimental patterns, and would give an important starting point also
for modeling these structures. In contrast with mathematicians experimental scientists need a simple
expression that could give a first hint about the nature of the measured cell-size distribution, which is usually
determined with poor statistics.

There are many conjectures on the analytical form of f ðyÞ and many computer simulations were done to
prove the suggested forms. Up to our knowledge in 2D the largest computer simulations were done by
Tanemura [18,19] with 107 Voronoi cells and Hinde and Miles [20] with 2� 106 cells. In 3D the largest
ensembles were studied again by Tanemura [18,19] (3� 106 cells) and Kumar et al. [21] (3:6� 106 cells).

As a generally accepted result emerges a three parameter (a, b and c) generalized gamma function fit

f ðyÞ ¼ c
ba=c

Gða=cÞ
ya�1 expð�byc

Þ (1)

describes the computer simulation data reasonable well. Some authors [6,22] suggested, however, that a
simpler two-parameter (a and b) gamma function fit

f ðyÞ ¼
ba

GðaÞ
ya�1 expð�byÞ, (2)

works also well.
In 2D for the three parameter fit (1) Tanemura [18,19] found a ¼ 3:315, b ¼ 3:04011 and c ¼ 1:078, in good

agreement with the results of Hinde and Miles [20] a ¼ 3:3095, b ¼ 3:0328 and c ¼ 1:0787. For the two
parameter fit (2) the values a ¼ b ¼ 3:61 [22] or a ¼ 3:61 and b ¼ 3:57 [6] were reported.

In the 3D case Tanemura found [19] a ¼ 4:8065, b ¼ 4:06342 and c ¼ 1:16391 for (1), while Kiang [23]
suggested a fit of the form (2) with a ¼ b ¼ 6. We have to mention, however, that the simulations of Tanemura
[18,19] did not support Kiang’s results [23] at all.
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For the sake of completeness it also has to be mentioned that there is an exact analytical result for the
second moment (hy2i) of the PVD’s both in the 2D and 3D cases [24]. According to this hy2

2Di ¼ 1:280 and
hy2

3Di ¼ 1:180 [15], offering an excellent possibility for testing the computer simulation results and the
correctness of the proposed fit. It was the enormous discrepancy between Gilbert’s and Kiang’s results for this
second moment that condemned Kiang’s simulation results.

The aim of the present work is not to give a better and more complicated fit for f ðyÞ. We would rather
intend to prove that a simple two parameter fit of form (2) used by Kiang can be still a fair approximation for
all practical applications. Experimental scientists instead of focusing on a more accurate but difficult fit for the
presumed PVD type patterns can use with confidence a simple approximation of form (2). In the present work
large-scale computer simulations are also considered for the problem, generating more Voronoi cells than in
all previous studies we are aware of. The statistics of 3� 107 and 1:8� 107 cells are studied in 2D and 3D,
respectively. Using this improved statistics Kiang’s conjecture will be followed and a first approximation for
f ðyÞ in form (2) will be given with simple and handy values of a ¼ b. Solving the problem exactly in 1D will
give us further motivation for this simpler form of f ðyÞ.

2. The 1D case

Let us first study theoretically the simple problem in 1D and prove the validity of (2) with a ¼ b. One has to
mention however that several other methods are known to obtain the exact form of the f 1DðyÞ distribution
function in this simple case [3,15].

A line with length L is considered on which N centers are randomly and independently distributed. The
density of centers is given thus as n ¼ N=L ¼ 1=hdi, where hdi stands for the average distance between centers.
We will study the limit L!1, N !1, but n is finite. It is necessary to construct the Voronoi diagrams for
these centers (Fig. 3). If a center P is considered, first its neighbor in the left (Pl) and right (Pr) directions will
be detected. Then the PPl and PPr lines are divided into two equal parts, by the Dl and Dr points, respectively.
The segment DlDr is then the Voronoi cell corresponding to the center P. It is obvious that for the considered
limit the average length of Voronoi cells is hdi ¼ 1=n.

In order to get the distribution function gðdÞ of the Voronoi cell’s length, first the distribution function hðsÞ

for the lengths between centers will be determined. Let us start from the well-known Poisson distribution
PðN; tÞ, giving the probability that inside a length t there are N centers:

PðN; tÞ ¼
1

N!
hNiNt expðhNitÞ. (3)

In the above equation hNit ¼ nt stands for the expected (average) number of centers on a length t. The
probability that in an interval of length t situated on the immediate right of P there are no other centers is

Pð0; tÞ ¼ expð�ntÞ. (4)

The cumulative distribution Prðdr4tÞ that the first neighbor at the right is at a distance dr bigger than t is
Prðdr4tÞ ¼ Pð0; tÞ. The distribution function grðdrÞ for the lengths dr can be thus calculated as

grðdÞ ¼ �
@Prðdr4dÞ

@d
¼ n expð�ndÞ. (5)

Due to symmetry constraints, the same distribution function should apply for the dl lengths relative to the first
neighbor in the left direction. The distribution function for the half of these intervals (z ¼ dr=2 or z ¼ dl=2) is
given as

wðzÞ ¼ 2n expð�2nzÞ. (6)

ARTICLE IN PRESS

PDlPl
Dr Pr

Fig. 3. Construction of Voronoi cells in 1D.
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The length d of the Voronoi cell is d ¼ dl=2þ dr=2, and its distribution gðdÞ can be calculated as the
convolution of two distributions of form (6):

gðdÞ ¼

Z d

0

wðzÞwðd � zÞdz ¼ 4n expð�2ndÞ. (7)

It is necessary to realize that this distribution function is normalized for L!1. The distribution function
for the adimensional quantity y ¼ d=hdi is given then as

f 1DðyÞ ¼ 4y expð�2yÞ, (8)

which has the general form (2) with a ¼ b ¼ 2. The cumulative distribution function F1DðyÞ is given by

F1DðyÞ ¼ 1� ð2yþ 1Þe�2y, (9)

and the moments of f 1DðyÞ are immediately calculable: hyi1D ¼ 1; hy2i1D ¼
3
2; hy

3i1D ¼ 3: The most probable
normalized length obtained from (8) is y1D ¼

1
2
.

A simple computer simulation exercise can easily convince us about the validity of our calculations. Results
in this sense are presented on Fig. 4. As an interesting observation one can realize that the distribution
function for the lengths between randomly displaced centers (given by (5)) is qualitatively different from the
(7) distribution function for the length of Voronoi cells (see also Ref. [25]).

3. The 2D case

Theoretical attempts to get analytical result for f 2DðyÞ (y ¼ S=hSi, with S the area of Voronoi cells) in 2D
failed. We thus considered Monte Carlo-type computer simulations and fitted our simulation data in different
forms. In particular, we focused on a three-parameter fit in the generally accepted (1) form and tried also a
simple two-parameter approximation (2) with handy a ¼ b values. It was found that the simple choice a ¼

b ¼ 7
2
gives a visually good fit. For the normalized distribution function of Voronoi cell areas in 2D we thus

proposed the

f 2DðyÞ ¼
343

15

ffiffiffiffiffiffi
7

2p

r
y5=2 exp �

7

2
y

� �
(10)

simple approximation. In Fig. 5 we plotted with a continuous line the curve (10) in comparison with
simulation data obtained on 29:889� 106 Voronoi cells (almost three times more than the number of cells used
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Fig. 4. Simulation results (empty circles) in 1D in comparison with the (8) exact result (solid line). Results for the cumulative distribution

function are also plotted. Filled circles are simulation data and the dashed line is given by Eq. (9).
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by Tanemura). On the same graph the best gamma function (1) fit is drawn with a dashed line. The F2DðyÞ

cumulative distribution function is also plotted with a dash-dotted line.
At a first glance there is no detectable difference between computer simulation results, the curve suggested

by (10) and the gamma-function fit. Magnifying however the initial part and tail of the distribution function
and plotting it on log–log and log-normal scales (insets in Fig. 5), respectively, one can observe slight
differences. As expected, the three-parameter gamma-function fit is better, but the improvement relative to
(10) is not spectacular. The best-fit parameters obtained by us for (1) are a ¼ 2:2975; b ¼ 3:01116 and
c ¼ 1:0825, in comparison with the values a ¼ 3:315, b ¼ 3:04011 and c ¼ 1:078 obtained by Tanemura
[18,19]. For the analytically known second moment of the distribution (hy2

theor2Di ¼ 1:280) our simulation data
gives hy2

sim2Di ¼ 1:28231, and the three-parameter gamma-fit yields hy2
gamma2Di ¼ 1:27947. The error relative to

the exactly known result is of the same order (0:04%) as in the case of the fit given by Tanemura to his own
computer simulation results.

Using (10) all the important moments can be analytically calculated: hyi2D ¼ 1; hy2i2D ¼
9
7
; hy3i2D ¼

99
49
. The

second moment has of course a much bigger relative error (0:4%) respective to the exactly known value than
the one obtained with the more sophisticated three-parameter gamma-function fit. This relative error is,
however, still quite small and usual experimental data on Poisson Voronoi type patterns give deviations of the
order of a few percents. The most probable normalized area is yprob2D ¼

5
7
.

4. The 3D case

Due to the complex geometry involved, the possibility to analytically calculate f 3DðyÞ (y ¼ V=hVi, V the
volume of Voronoi cells) in 3D is even more gloomy. Thus we again performed large-scale computer
simulations, studying the statistics of 18:27� 106 Voronoi cells (six times more than the statistics considered
by Tanemura). The three-parameter gamma-function gives a good fit for the simulation data, but again as in
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respectively. On the scale of the figure there is no detectable difference between the cumulative distribution function calculated from

simulation and the analytical expression given by (1) and (10).
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the 2D case a simple fit of form (2) works also reasonably well and handy a ¼ b ¼ 5 values can be considered.
We suggest thus that in 3D the Voronoi cell’s normalized volume distribution can be approximated as

f 3DðyÞ ¼
3125

24
y4 expð�5yÞ. (11)

In Fig. 6 simulation results (empty circles) are compared with the (11) approximation (continuous line) and the
three-parameter gamma-function fit (dashed line). In a first visual approximation one will realize that both
curves describe the simulation data well. Magnifying, however, the initial part and tail of the distribution
function and plotting it on log–log and log-normal scales (insets in Fig. 6), respectively, one can observe the
differences. As expected, the (1) gamma-function fit is better, and follows the trend of the simulation results
more. The best-fit parameters obtained in this study are a ¼ 3:24174, b ¼ 3:24269 and c ¼ 1:26861 (in contrast
with a ¼ 4:8065, b ¼ 4:06342 and c ¼ 1:16391 found by Tanemura [18,19]). The improvement relative to the
simple (11) approximation is, however, again not spectacular, and is relevant only in the limit of very large or
very small Voronoi cells. These limits do not appear usually in real experimental data, due to the fact that
much weaker statistics are achieved (patterns with less than 104 cells are studied). In the figure the form
of the cumulative distribution function F3DðyÞ is also plotted (point-dashed line). In the scale of the image
there is no detectable difference in the cumulative distribution function determined from simulation and
forms (11) or (1).

By using (11) the important moments are analytically calculable: hyi3D ¼ 1; hy2i3D ¼
6
5
; hy3i3D ¼

42
25
. The

most probable normalized volume is yprob3D ¼
4
5
. For the second moment the relative error respective to the

analytical exact results (hy2
theor3D ¼ 1:18) is � ¼ 1:7%. The gamma fit for the simulation data yields

hy2
3Dgammai ¼ 1:18683 (� ¼ 0:57%) while Tanemura’s fit seems better yielding 1:17830 (� ¼ 0:14%). The second

moment computed directly from simulation data is hy2
sim3Di ¼ 1:19, giving the � ¼ 0:85% relative error.

In agreement with the simulations of Tanemura [18,19] we have also found that the values a ¼ b ¼ 6
suggested by Kiang [23] are not appropriate and give no good fit to our simulation data.
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5. Conclusions

Motivated by the simple form of the exact result (8) for the size-distribution function of Poisson Voronoi
cells in 1D we proposed simple expressions for approximating the distribution in 2D and 3D where no exact
results are available. Exceeding the statistics considered in all previous studies computer simulations were used
to investigate numerically the distribution function. It was shown that a simple form (2) with a ¼ b is
appropriate for all practical applications to approximate the size distribution of the Poisson Voronoi cells. In
1D the exact results gives a ¼ 2. In 2D and 3D we found that a ¼ 7=2 and a ¼ 5, respectively, gives fair
approximation. The simple values suggested for a ¼ b allow also to write approximations (10) and (11) in a
compact form. If we denote by d the dimensionality of the problem (d ¼ 1; 2; 3), the value of a can be given as
a ¼ ð3d þ 1Þ=2. Eqs. (8),(10) and (11) can be written then in a compact form as

f d ðyÞ ¼
ðð3d þ 1Þ=2Þð3dþ1Þ=2

Gðð3d þ 1Þ=2Þ
yð3d�1Þ=2 exp �

3d þ 1

2
y

� �
. (12)

This distribution function is not an exact one and it is less accurate than a more complicated three-parameter
fit given by the generalized gamma function. Mathematicians will probably not appreciate it. . . but due to its
simplicity it will definitely be of importance for experimental scientists studying and characterizing complex
Voronoi diagram-like patterns.
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