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ON THE SIZE OF A MINIMAL VERTEX

COVER IN A RANDOM SUBGRAPH OF THE

n-CUBE

EDUARD TOMAN AND MARTIN STANEK

Abstract

We describe and analyze a construction of a vertex cover (consisting of subcubes) in a random

subgraph of the n-cube. The main idea of the construction is to select subcubes with minimal
intersection into the vertex cover. We estimate the upper bound of such a vertex cover. Our

analysis gives a theoretical justification for a heuristic that minimizes the disjunctive normal form
of a random Boolean function by selecting conjunctions according to the strategy of minimal

intersections.
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1. INTRODUCTION

We study randomly induced subgraphs of the n-cube Qn. The model of random
subgraphs is the following one: each edge is present in a subgraph with probability p
(0 < p < 1), independently on the presence of other edges. Connectedness of these
graphs for p �= 1

2 was studied in [4]. Components of random subgraphs for p = 1
2

were analyzed in [5; 11], and for p = 1+ε
n in [1]. The radius of a random subgraph

of an n-cube for p ≥ 1
2 was estimated in [12]. Perfect matchings for p ≥ 1

2 were
analyzed in [2; 6]. Structural properties of such random graphs were studied in [9].
An approach to vertex cover was presented in [10]. Randomly induced subgraphs
of cubes are related to minimization of Boolean functions in the class of disjunctive
normal forms. For detailed study of these aspects, see [7].

In the paper we build on the results obtained in [9] where we studied the num-
ber and distribution of maximal subcubes in the random subgraph of Qn. We
proved that the largest number of maximal subcubes has order approximately
λ ∼ log log1/p n = log log n− log log 1

p (where log denotes the binary logarithm, and

p is the edge probability), or alternatively that the number of maximal subcubes of
order less than λ1 = log log1/p n−log log log1/p n or greater than λ2 = log log1/p n+2
is negligible comparing with the overall number of maximal subcubes. Based on
values of these parameters we showed the lower bound for the vertex cover of a
random graph by cubes is 2n(1 − o(1))/(4 log1/p n).

This paper describes the construction of the vertex cover of random subgraph of
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Qn. We introduce the notion of subcube with given direction, and using this notion
we define standard subcubes. The construction uses the fact that the intersection
of standard subcubes contains at most one vertex. Simply said, we minimize the
size of vertex cover by using subcubes with minimal overlap. Our analysis, together
with results from [9] give a theoretical justification for a heuristic that minimizes
the disjunctive normal form of a random Boolean function by selecting conjunctions
according to the strategy described above. Similar ideas were used in [8].

2. PRELIMINARIES

Let G be a graph. The vertex set of G will be denoted by V (G), and the edge set
by H(G).

Let Qn be an n-cube graph consisting of 2n vertices labeled by binary vectors
of length n, and n2n−1 edges joining vertices differing in exactly one coordinate.
We denote by Gn the set of all subgraphs of Qn with the complete set of vertices.
Thus, every G ∈ Gn has 2n vertices.

A random graph is a graph obtained from Qn by independent removal of edges.
The probability that the edge is not removed is denoted by p, where p is a constant
(0 < p < 1). We shall consider a probabilistic space (model) (Gn, P ), where
P : Gn → 〈0, 1〉 is a probabilistic function defined

P (G) = p|H(G)|(1 − p)|H(Qn)|−|H(G)|.

The probabilistic function P can be naturally extended to arbitrary subset M of
Gn:

P (M) =
∑

G∈M

P (G).

We call a subset M ⊆ Gn a property of graphs. We shall say that the random
graph has a property M , if limn→∞ P (M) = 1.

A graph K is a subgraph of G, denoted by K ⊆ G, if V (K) ⊆ V (G) and
H(K) ⊆ H(G). For a graph G ∈ Gn, we shall say that K is contained in G, if
K ⊆ G.

A real-valued random variable X is a measurable real-valued function on a pro-
bability space, X : (Gn, P ) → R. All random variables in this paper are non-
negative integer random variables. Let X be a random variable. The expectation,
and the variance of the random variable X will be denoted by E(X) and Var(X),
respectively. The variance of a random variable X can be expressed as follows:
Var(X) = E(X2) − E(X)2.

Let X be a non-negative random variable with the expected value E(X) and let
t > 0. Then we have (Markov’s inequality):

Pr[X ≥ t · E(X)] ≤
1

t
.

Now, let X be a real-valued random variable with the expected value E(X) and
the variance Var(X), and let d > 0. Then we have (Chebyshev’s inequality):

Pr[|X − E(X)| ≥ d] ≤
Var(X)

d2
.
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We say that an is asymptotically equal to bn, notation an ∼ bn, if limn→∞
an

bn
=

1. The symbol log x denotes the binary logarithm of x. We shall often use the
logarithm to the base 1

p . To simplify the notation, we put b = 1
p and write logb x

instead of log1/p x.
Finally, we denote by ⌊x⌋ and ⌈x⌉ the floor and the ceiling of x, respectively.

3. VERTEX COVER

We analyze the size of the minimal vertex cover in the probabilistic space (Gn, P ).
Let pv(G) be a random variable denoting the size of the minimal vertex cover of
G ∈ Gn. The main result of this section is the upper bound of pv(G). First, let us
define the notions of subcube and vertex cover formally.

Definition 3.1. A subcube of order k, or k-subcube (for 0 ≤ k ≤ n), is a k-cube
subgraph of Qn.

Every k-subcube K is uniquely determined by some set l = {l1, l2, . . . , ln−k} ⊆
{1, 2, . . . , n} of fixed coordinates together with some vertex α ∈ Qn. The subcube
K contains those vertices which coordinates differ from α at indices contained in l.
We say that the subcube K has direction l.

Trivially, for every l there exist exactly 2n−k subcubes of order k with direction
l, and the set of all k-subcubes can be partitioned into

(

n
k

)

subsets consisting from

subcubes of given direction. Trivially, there exist exactly
(

n
k

)

2n−k subcubes of order
k in Qn.

Definition 3.2. The set of graphs G = {G1, . . . , Gm} is a vertex cover of a graph
G ∈ Gn, if

⋃m
i=1 V (Gi) = V (G) and each Gi is a subcube contained in G. The

number m is called the size of the vertex cover. The smallest possible m is the size
of minimal vertex cover.

In order to estimate the size of the vertex cover later, it is necessary to estimate
the number of subcubes of a given direction contained in G ∈ Gn. Let in,l(G) be
a random variable denoting the number of subcubes with direction l contained in
G ∈ Gn.

We start by computing the value E(in,l(G)) in Lemma 3.3, and estimating the
value Var(in,l(G)) in Lemma 3.4. These results allow us to estimate in,l in Lemma
3.5.

Lemma 3.3. E(in,l(G)) = 2n−kpk2k−1

.

Proof. We define random variable ηK for each k-subcube K of Qn with direction
l (for 0 ≤ k ≤ n) in the following way:

ηK(G) =

{

1, if K ⊆ G;

0, otherwise.

Then in,l(G) =
∑

K ηK(G), where the sum is evaluated for all k-subcubes of Qn
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with direction l – the number of these subcubes is 2n−k. Thus, we get:

E(in,l(G)) = E(
∑

K

ηK(G)) =
∑

K

E(ηK)

= 2n−k Pr[K ⊆ G] = pk2k−1

= 2n−kpk2k−1

.

Lemma 3.4. Var(in,l(G)) ≤ 2n−kpk2k−1

.

Proof. The first step is to compute E(i2n,l(G)). Let ηK be the random variable

defined in the proof of Lemma 3.3. Then E(i2n,l(G) =
∑

K,L E(ηK · ηL), where the
sum is evaluated for all ordered pairs (K, L) – k-subcubes of Qn with direction l.
Thus, we get:

E(i2n,l(G)) =
∑

K,L

Pr[K ⊆ G ∧ L ⊆ G] =
∑

K,L

Pr[K ∪ L ⊆ G] = p|H(K∪L)|.

Since two subcubes of equal order are either equal or have empty intersection, we
distinguish two cases:

(1) if K = L, then there is exactly 2n−k such ordered pairs, and |H(K ∪ L)| =
|H(K)| = k · 2k−1;

(2) if K �= L (i.e. K ∩ L = ∅), then there is exactly 2n−k(2n−k − 1) such ordered
pairs, and |H(K ∪ L)| = |H(K)| + |H(L)| = 2k · 2k−1.

Putting this together we have:

E(i2n,l(G)) = 2n−k · pk2k−1

+ 2n−k(2n−k − 1) · pk2k

.

The estimation of Var(in,l(G)) is then straightforward:

Var(in,l(G)) = E(i2n,l(G)) − E2(in,l(G))

= 2n−k · pk2k−1

+ 2n−k(2n−k − 1) · pk2k

−
(

2n−kpk2k−1
)2

= 2n−k · pk2k−1

· (1 − pk2k−1

)

≤ 2n−k · pk2k−1

Lemma 3.5 Number of subcubes with given direction. Let ψ(n) be an ar-

bitrary increasing function. Then, with probability converging to 1 as n → ∞, the

following inequality holds for any G ∈ Gn:

2n−kpk2k−1

− ε < in,l(G) < 2n−kpk2k−1

+ ε,

where ε = ψ(n)
√

2n−kpk2k−1
.

Proof. We substitute the results of Lemma 3.3 and Lemma 3.4 into Chebyshev

inequality for random variable in,l. Moreover, we set ε = ψ(n)
√

2n−kpk2k−1 . Since
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limn→∞ 1/ψ(n) = 0 we get

lim
n→∞

Pr[|in,l(G) − E(in,l(G))| ≥ ε] ≤ lim
n→∞

Var(in,l)

ε2
= 0.

Hence

lim
n→∞

Pr[|in,l(G) − E(in,l(G))| < ε] = 1.

We will construct our vertex cover by employing only so-called “standard” sub-
cubes (with carefully chosen directions).

Definition 3.6. The following sets are the standard directions for k-subcubes in
Qn:

l1 = {k + 1, k + 2, . . . , n}

l2 = {1, 2, . . . , k, 2k + 1, 2k + 2, . . . , n}

l3 = {1, 2, . . . , 2k, 3k + 1, 3k + 2, . . . , n}

. . .

lm = {1, 2, . . . , (m − 1)k, mk + 1, mk + 2, . . . , n},

where mk ≤ n. We will refer to a k-subcube with direction li (1 ≤ i ≤ n) as a
standard subcube.

It can be easily seen that the intersection of any two standard k-subcubes is either
an empty set or a single vertex. To construct as small vertex cover as possible our
idea is to choose subcubes with minimal overlaps. Hence, we use the standard
k-subcubes (the exact value of k will be determined later). Certainly, once k is
fixed there can be vertices in G ∈ Gn that cannot be covered by k-subcubes. We
cover these vertices by 0-subcubes. In order to assess the quality of such a vertex
cover, i.e. estimate its size, we have to estimate the number of G’s vertices covered
by standard k-subcubes, as well as the number of vertices not covered by these
subcubes. Let zn(G) be a random variable denoting the number of vertices not
covered by any standard k-subcube contained in G ∈ Gn.

Lemma 3.7. E(zn(G)) = 2n(1 − pk2k−1

)m.

Proof. Let ηα(G) be a random variable (an indicator) denoting whether a vertex
α ∈ V (G) is covered by some standard subcube contained in G:

ηα(G) =

{

1, if α is not covered by any standard subcube contained in G

0, otherwise.

Since zn(G) =
∑

α∈V (G) ηα(G), we get:

E(zn(G)) = E

(

∑

α∈V (G)

ηα(G)

)

=
∑

α∈V (G)

E(ηα(G)) =
∑

α∈V (G)

Pr[ηα(G) = 1].

We compute the probability Pr[ηα(G) = 1]. Let us denote by Kli(α), for 1 ≤ i ≤ m,
a standard k-subcube containing vertex α. For a given vertex α there exist m
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distinct standard subcubes Kli(α) that are contained in G. The intersection of
every pair of distinct subcubes Kli(α) contains exactly the vertex α. Hence, the
vertex α is not covered by any standard k-subcube contained in G if and only
if none of the standard subcubes Kli(α) is contained in G (and these events are
independent). Therefore:

Pr[ηα(G) = 1] = Pr[∀i ∈ {1, . . . , m} : Kli(α) � G]

=
m
∏

i=1

Pr[Kli(α) � G]

=
m
∏

i=1

(1 − Pr[Kli(α) ⊆ G])

The last probability can be computed easily: Pr[Kli(α) ⊆ G] = p|H(KlI (α))| =

pk2k−1

, because the subcube has order k. Substituting back we get:

E(zn) =
∑

α∈V (G)

m
∏

i=1

(1 − pk2k−1

) = 2n(1 − pk2k−1

)m.

Recall, the random variable pn(G) denotes the size of a minimal vertex cover of
G ∈ Gn. The following theorem provides the main result of this section, the upper
bound of pv(G).

Theorem 3.8. With probability converging to 1 as n → ∞, the following inequ-

ality holds for any G ∈ Gn:

pv(G) ≤
2n(1 + o(1))(log logb n)2

logb n
.

Proof. The upper bound of pv(G), the size of minimal vertex cover of G ∈ Gn,
is obtained by estimating the size of the following vertex cover:

(1) The cover contains all standard k-subcubes contained in G.

(2) The remaining (not covered) vertices are covered by 0-subcubes, i.e. by isolated
vertices.

Thus, we take
∑m

j=1 in,lj (G) standard subcubes (with directions lj) in the first step,
and zn(G) 0-subcubes in the second step. We use the estimations from Lemmas
3.5 and 3.7. Let G ∈ Gn be a graph such that:

in,lj < 2n−k · pk2k−1

+ ψ(n)

√

2n−k · pk2k−1 , for j = 1, . . . , m;

zn < ϕ(n) E(zn(G)), where ϕ(n) will be determined later.

With the aid of Markov’s inequality for zn(G) (when t = ϕ(n)) we can estimate
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the size of vertex cover:

m
∑

j=1

in,lj (G) + zn(G)

< m ·

(

2n−k · pk2k−1

+ ψ(n)

√

2n−k · pk2k−1

)

+ ϕ(n) · 2n(1 − pk2k−1

)m

(1)

More precisely, the probability that (1) does not hold for the graph G is at most
m

ψ2(n) + 1
ϕ(n) . Hence, for a random graph the inequality holds if limn→∞

m
ψ2(n) +

1
ϕ(n) = 0. The estimate for pv(G) will be obtained by suitable choice of parameters

k, m, ϕ(n), ψ(n), while satisfying conditions mk ≤ n (according to the definition
of standard subcubes), and limn→∞

m
ψ2(n) + 1

ϕ(n) = 0 (according to the previous

discussion). We are “guided” by the lower bound of pv(G) from [9], and particularly
by the fact that the largest number of maximal subcubes contained in a random
graph has order approximately λ ∼ log logb n. Hence we use λ-subcubes in the first
step of our vertex cover construction. Let

k = λ;

m =

⌊

λ ·

(

1

p

)λ2λ−1⌋

;

ψ(n) = n.

Clearly, limn→∞
m

ψ2(n) = limn→∞
m
n2 = 0, and our second condition is satisfied if

we choose ϕ(n) such that limn→∞
1

ϕ(n) = 0. The first condition (mk ≤ n) can be

shown by employing the following inequalities from [9]:

(

1

p

)(λ+1)2λ−1

< n ≤

(

1

p

)(λ+2)2λ

.

We get

mk ≤ λ2 ·

(

1

p

)λ2λ−1

≤ λ2 · n
λ

λ+1 ≤ n.

The parameter m was chosen such that we can use the following bound:

(1 − pλ2λ−1

)m ≤ e−mpλ2λ−1

≤ e
−mλ
m+1 = 2

−mλ log e

m+1 .

For sufficiently large n we use m log e
m+1 ≥ 1, and obtain final bound:

(1 − pλ2λ−1

)m ≤ 2−λ.

Similarly, for sufficiently large n we get:

ψ(n)

√

2n−k · pk2k−1 = o(2n−k · pk2k−1

).

Let us put all these bounds and estimates together. If ϕ(n) is chosen in such a way
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that limn→∞
1

ϕ(n) = 0, then for a random graph G:

pv(G) < m ·

(

2n−k · pk2k−1

+ ψ(n)

√

2n−k · pk2k−1

)

+ ϕ(n) · 2n(1 − pk2k−1

)m

≤ m ·
(

2n−k · pk2k−1

(1 + o(1))
)

+ ϕ(n) · 2n(1 − pk2k−1

)m

≤

(

1

p

)λ2λ−1

· λ ·
(

2n−k · pk2k−1

(1 + o(1))
)

+ +ϕ(n) · 2n(1 − pk2k−1

)m

≤ 2n−λλ(1 + o(1)) + ϕ(n) · 2n · 2λ

≤ 2n(1 + o(1)) ·

(

λ + ϕ(n)

2λ

)

Using the following estimate from [9]:

log logb n − log log logb n < λ ≤ ⌈log logb n − log log logb n + 1⌉,

and putting ϕ(n) = log logb n(log log logb n− 2) (trivially limn→∞
1

ϕ(n) = 0) we are

able to finish the proof:

pv(G) ≤ 2n(1 + o(1)) ·

(

λ + ϕ(n)

2λ

)

≤ 2n(1 + o(1)) ·

(

log logb n(log logb n − log log logb n + 2) + ϕ(n)

logb n

)

≤
2n(1 + o(1))(log logb n)2

logb n
.

Similar idea, used here for obtaining lower and upper bound of the size of minimal
vertex cover, can be applied for estimating the size of a minimal edge cover.
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