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Abstract

We investigate two di�erent notions of \size" which appear naturally in Statistical Learning

Theory. We present quantitative estimates on the fat-shattering dimension and on the

covering numbers of convex hulls of sets of functions, given the necessary data on the

original sets. The proofs we present are relatively simple since they do not require extensive

background in convex geometry.

Keywords: Convex hulls, fat-shattering dimension, covering numbers

1. Introduction

Convexity plays an important role in Machine Learning. Its signi�cance can be seen in
both sides of Learning Theory. Firstly, from the practitioner's point of view, minimizing
empirical risks is much easier when the class is convex. Secondly, from the theoretical
standpoint, the sample complexity needed for agnostic learning is considerably smaller for
convex classes (Lee et al., 1998, Mendelson, 2001b). On the other hand, if the original class
one is interested in happens to be non-convex, taking the convex hull increases the size of
the class and it is not clear whether this is worth the e�ort, since the bene�ts of learning
from a convex class might be negligible compared to the price one has to pay for using the
much larger class. Thus, it is natural to ask \how large" can a convex hull of a given class
be? We shall present an answer with respect to two important parameters which measure
the size of a class: the covering numbers and the fat-shattering dimension. The estimates
on the covering numbers we present are not new and have recently appeared in Carl et al.
(1999). The main reason we chose to present an alternative proof is because the one in
Carl et al. (1999) uses very deep results in the local theory of Banach spaces, hence it is
less accessible to the non expert reader. The proof we present here is self contained and
(almost) does not assume any prior knowledge.

The upper bound on the fat-shattering dimension of the convex hull of a class uses
a notion originating from Banach spaces theory called type. This is a property of some
Banach spaces which appears naturally when trying to compute the fat-shattering dimension
of linear functionals (Gurvits, 2001, Mendelson, 2001a). The path we take is as follows:
we begin by improving the known upper bounds on the fat-shattering dimension of the
functionals fx�j kx�k � 1g (de�ned below) when considered as functions on the unit ball of
the space. It turns out that this linear fat-shattering dimension is determined by the type
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of the Banach space. We use this fact to prove the results concerning the fat-shattering
dimension of a convex hull of a general class. To that end, we embed both the class and the
shattered set into two �nite dimensional Banach spaces, where the dimension of the spaces
is the size of the shattered set. The unit ball of the �rst space is the symmetric convex hull
of the n-tuples

�
f(!i)

�n
i=1

where f 2 F and (!i)
n
i=1 is the shattered set. The second Banach

space is the dual space to the �rst. It is possible to show that the fat-shattering dimension
of a given class may be controlled by the fat-shattering dimension of the embedded class,
only now, its members are considered as linear functionals on the images of (!i)

n
i=1. Thus,

it is possible to bound the fat-shattering dimension using \linear" methods.

The article is divided into two main sections. In section 2 we prove the covering numbers
estimate. Section 3 is devoted to the investigation of the linear fat-shattering dimension
and the fat-shattering of convex hulls.

1.1 Basic results, de�nitions and notation

Given a Banach space X, the dual of X, denoted by X�, consists of all the bounded linear
functionals on X, endowed with the norm

kx�kX� = sup
kxkX=1

jx�(x)j :

We denote the unit ball of X by B(X) and the dual unit ball by B(X�). If 1 � p <1, let

`np be Rn equipped with the norm kxkp =
�Pn

i=1 jxijp
�1=p

and set `n1 to be Rn with respect
to the sup norm.

Given a set A, let Ac be its complement, set jAj to be its cardinality and denote its
characteristic function by �A. Thus, �A(x) = 1 if x 2 A and 0 otherwise. If A and B are
sets, let A+B = fa+ bja 2 A; b 2 Bg.

For any probability measure � on a measurable space (
;�), let E� denote the expec-
tation with respect to �. Lp(�) is the set of functions which satisfy E� jf jp < 1 and set
kfkLp(�) = (E� jf jp)1=p. Given I � 
, L1(I) is the space of bounded functions on I, with

respect to the norm kfk1 = sup!2I jf(!)j. For every ! 2 
 let Æ! be the point evaluation
functional, that is, for every function f on 
, Æ!(f) = f(!). We denote by �n an empirical
measure supported on a set of n points, hence, �n = 1

n

Pn
i=1 Æ!i . If jIj = n and �n is the

empirical measure supported on I, we denote L1(I) by L1(�n).

Throughout this paper, all absolute constants are denoted by C or c. Their values may
change from line to line or even within the same line.

The following are the de�nitions of well known combinatorial parameters which are often
used in Learning Theory.

De�nition 1.1 Let F be a class of f0; 1g-valued functions on a space 
. We say that F
shatters f!1; :::; !ng � 
, if for every I � f1; :::; ng there is a function fI 2 F for which

fI(!i) = 1 if i 2 I and fI(!i) = 0 if i 62 I. Let

V C(F;
) = sup
n
jAj

���A � 
; A is shattered by F
o
:

V C(F;
) is called the VC dimension of F .
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There is a parametric version of the VC dimension, called the fat-shattering dimension:

De�nition 1.2 For every " > 0, a set A = f!1; :::; !ng � 
 is said to be "{shattered by F
if there is some function s : A! R, such that for every I � f1; :::; ng there is some fI 2 F
for which fI(!i) � s(!i) + " if i 2 I, and fI(!i) � s(!i)� " if i 62 I. Let

fat"(F;
) = sup
n
jAj

���A � 
; A is "�shattered by F
o
:

The set
�
si
�
=
�
s(!i)

�
is called a witness to the shattering and for every I � f1; :::; ng we

call fI the shattering function of the set I. In cases where the set 
 is clear, we will denote

the fat-shattering dimension by fat"(F ).

If (X; d) is a metric space and if F � X, let N("; F; d) be the minimal number of open
balls with radius " > 0 (with respect to the metric d) needed to cover F . The numbers
N("; F; d) are called the covering numbers of F . A set A � X is said to be an "-cover of F if
the union of open balls

S
a2AB(a; ") contains F . In cases where the subset F is obvious, we

denote the covering numbers by N("; d). In cases where the metric is clear we denote the
covering numbers by N("; F ). The logarithm of the covering numbers of a set is sometimes
called the entropy of the set.

A set is called "-separated if the distance between any two elements of the set is larger
than ". Set D("; F ) to be the maximal cardinality of an "-separated set in F . It is easy to
see that N("; F ) � D("; F ) � N("=2; F ).

The following result, which is due to Alon, Ben-David, Cesa-Bianchi, and Haussler
(1997), enables one to estimate the L1(�n) covering numbers of classes in terms of the
fat-shattering dimension.

Theorem 1.3 Let F be a class of functions from 
 into [0; 1] and set d = fat"=4(F ). Then,
for every empirical measure �n on 
,

D
�
"; F; L1(�n)

� � 2
�4n
"2

�d log �en=(d")�
:

1.2 The main results

We end this introduction with a summary of the main results presented in the sequel which
are relevant in the context of Machine Learning.

In the next section, we present a general estimate on the L2 covering numbers of convex
hulls of a class, given the covering numbers of the class. As a corollary of that result we
obtain the following:

Theorem 1.4 Let F be a class of functions on 
.

1. There is an absolute constant C such that for every VC class of functions F , every
probability measure � on 
 and every " > 0,

logN
�
"; conv(F ); L2(�)

� � Cd
�1
"

� 2d
d+1

;

where VC(F ) = d.
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2. If F maps 
 into [0; 1] and fat"(F ) � "�p for some p < 2 and  > 0, then for every
p < p0 < 2 there is a constant C = C(p; p0; ), such that for every probability measure

on 
 and every " > 0,

logN
�
"; conv(F ); L2(�)

� � C

"2
log

1� 2
p0
1

"
:

In the �nal section we investigate the fat-shattering dimension of convex hulls. In
particular, we prove the following:

Theorem 1.5 There is an absolute constant C, such that for every class F which consists

of functions which map 
 into [0; 1] and every " > 0,

fat"
�
conv(F )

� � C
fat "

4
(F )

"2
log2

�2fat "
4
(F )

"

�
:

2. Entropy of convex hulls of classes

In this section we provide estimates on the entropy of convex hulls of classes when considered
as subsets of L2 spaces. We divide our discussion into two parts. First, we deal with classes
of f0; 1g-valued functions which have a �nite VC dimension. Then, we investigate classes
of functions with a uniformly bounded range for which the fat-shattering dimension is
polynomial in "�1.

The path we take is rather general. We estimate the covering numbers of a convex hull
of a set, given that the covering numbers of the set itself are polynomial in "�1. We combine
this general result with well known bounds on the covering numbers of classes using the
fat-shattering dimension, thus obtaining the desired entropy estimate.

2.1 General Estimates

We shall investigate two generic cases. The �rst is when N
�
"; F; L2(�)

�
= O("�p) for some

p > 0, and the second, (which is more diÆcult), when logN
�
"; F; L2(�)

�
= O("�p) for

0 < p < 2. The �rst case was investigated by Dudley (1987). He showed that for every
Æ > 0, the log-covering numbers of the convex hull of F are polynomial in "�1 with exponent
Æ + 2p(p + 2)�1 . This result was improved independently by van der Vaart and Wellner
(1996) and by Carl (1997) who removed the superuous Æ. Those results indicate that if
N
�
"; F; L2(�)

� � "�p for some  > 0 and p > 0, and ifK is the symmetric convex hull of F ,

then the entropy integral
R 1
0 log1=2N

�
";K;L2(�)

�
d" converges. This fact is very signi�cant,

since this integral measures in some sense how \large" the class is. For example, classes with
bounded entropy integrals satisfy the uniform central limit theorem (see Dudley, 1999).

On the other hand, from the quantitative point of view, there were no estimates on the
constant C = C(; p) for which

logN
�
";K;L2(�)

� � C
�1
"

� 2p
p+2

:

Note that from the Machine Learning point of view, the constant is signi�cant, since for
VC classes the exponent p is half the VC dimension of the class. Hence, it is only natural to

4
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try and �nd the way in which the constant depends on p. Another natural question which
Dudley's assertion raises is whether similar results may be obtained even when the covering
numbers are considerably larger. For example, does the entropy integral of the symmetric
convex hull of F converge if logN

�
"; F; L2(�)

�
= O("�p) for some 0 < p < 2. We present

partial answers to both questions.

Theorem 2.1 Let � be a probability measure on 
. Assume that F is a subset of the unit

ball of L2(�) and set K to be the symmetric convex hull of F .

1. If there are ; p > 0 such that N
�
"; F; L2(�)

� � "�p for every " > 0, then there is an

absolute constant C such that for every " > 0,

logN
�
";K;L2(�)

� � C
2
p p
�1
"

� 2p
2+p

:

2. If there are  > 0 and 0 < p < 2 such that logN
�
"; F; L2(�)

� � "�p for every " > 0,
then there is some constant C(p; ) (which depends only on p and ), such that

logN
�
";K;L2(�)

� � C(p; )
1

"2
log1�

2
p
1

"
:

In particular, the entropy integral of K converges for p < 2=3.

An estimate on the growth rate of the entropy numbers recently appeared in Carl et al.
(1999), using very deep results in the local theory of Banach spaces. The signi�cance of
the proof we present here is the fact that it does not use the powerful machinery of convex
geometry, hence, it is more accessible.

We present a complete proof of the second claim. The proof of the �rst assertion follows
the same path and some of the details are omitted. Both proofs are based on an idea which
was used in van der Vaart and Wellner (1996, pg. 142), and in fact, the �rst claim follows
from a careful analysis of the proof in van der Vaart and Wellner (1996).

We shall require three preliminary results. The �rst result is due to B. Maurey, appeared
in (Pisier, 1981), and is interesting by itself.

Lemma 2.2 Let F � L2(�) be a set of n functions and denote its diameter by diam(F ).
Then, for every " > 0,

N
�
"diam(F ); conv(F ); L2(�)

� � (e+ en"2)
2
"2 :

Let (Æi)
1
i=1 be a positive sequence decreasing to 0 and set Fi to be an increasing family of

sets, such that for every i, Fi is a Æi-separated set in F which is maximal with respect to
inclusion (that is, each Fi is Æi-separated and if Fi � A � F then A is not Æi-separated).
Note that in our case, each one of the sets Fi is �nite.

For every i > j and every x 2 Fi, let Pjx be a member of Fj which is nearest to x and
put Gij = fx� Pjx j x 2 Fig.

Lemma 2.3 For every i > j � 1 and every "; "0 > 0,

conv(Fi) � conv(Fj) + conv(Gij [ f0g);
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and

N("; conv(Fi)) �
�
1 +

4"0

"

�jFj j
N
�
"0; conv(Fj)

��
e+ e jFij "2

16Æ2j

�32Æ2j ="2
:

Proof: Clearly, the cardinality jGij [ f0gj � jFij � jFj j + 1 and, since Fj is a maximal
Æj-separated set in F , then for every x 2 F , kx� Pjxk � Æj .

Set Fi = fx1; :::; xjFijg and Fj = fx1; :::; xjFj jg � Fi. If z 2 conv(Fi), then there are

�i � 0 such that
PjFij

i=1 �k = 1 and

z =

jFijX
k=1

�kxk =

jFj jX
k=1

�kxk +

jFijX
k=jFj j+1

�kPjxk +

jFijX
k=jFj j+1

�k(xj � Pjxk) = z1 + z2

where z1 2 conv(Fj) and z2 2 conv(Gij [ f0g). Hence,

conv(Fi) � conv(Fj) + conv(Gij [ f0g)

and the �rst assertion is veri�ed.
It is routine to see that if A;B;C � L2(�) are such that A � B + C, then for every

"1; "2 > 0,
N("1 + "2; A) � N("1; B) �N("2; C):

Thus, by the �rst claim it follows that

N("; conv(Fi)) � N
�"
2
; conv(Fj)

� �N�"
2
; conv(Gij [ f0g)

�
: (2.1)

To estimate the �rst term, note that span(Fj) can be isometrically embedded in `
jFj j
2 .

Therefore, the covering numbers of Fj in L2(�) and in `
jFj j
2 are the same. Let B be the unit

ball in `
jFj j
2 . Using a standard volume estimate (see Pisier, 1989), one can show that for

every "; "0,

N(
"

2
; "0B) �

�
1 +

4"0

"

�jFj j
:

Hence,

N
�"
2
; conv(Fj)

� � N
�"
2
; "0B

��N�"0; conv(Fj)�

�
�
1 +

4"0

"

�jFj j �N�"0; conv(Fj)�:
As for the second term in (2.1), since diam(Gij [f0g) � 2Æj and jGij [ f0gj � jFij, then by
Lemma 2.2

N
�"
2
; conv

�
Gij [ f0g

��
= N

� "

4Æj
2Æj ; conv

�
Gij [ f0g

��

�
�
e+ e jFij "2

16Æ2j

�32Æ2j ="2
:

�
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Lemma 2.3 reveals our strategy which is similar in nature to chaining. Here, we create
an increasing family of sets which form an increasingly �ner approximation of F . It is
possible to estimate the covering numbers of the convex hulls of the \�ner" sets using an
estimate on the \coarser" sets. The rates by which the mesh of the classes Fi decreases will
be dictated by the growth rates of the covering numbers in the class F . In the next two
technical results we select an appropriate rate of decay for the \mesh" sequence (Æn).

Lemma 2.4 Let F be a subset of the unit ball in L2(�) and assume that there are constants

; p > 0, such that for every " > 0,

N
�
"; F; L2(�)

� � 
�1
"

�p
:

Let Æn = 1=pn�1=p and set Fn to be as in Lemma 2.3. Then, there are bounded sequences

(Ak) and (Bk) such that for every n and k,

logN
�
Akn

1
2 Æn; conv(Fnk3p)

� � Bkn: (2.2)

Moreover, there are absolute constants A and B such that for every k, Ak � 1=pA and

Bk � Bp.

Lemma 2.5 Let F be a subset of the unit ball of L2(�) and assume that there are  > 0
and 0 < p < 2 such that for every " > 0,

logN
�
"; F; L2(�)

� � "�p:

Set Æn = 21=p log�1=p n, "n = n�1 log1=p n and let Fn be as in Lemma 2.3. Then, there are

sequences (Ak) and (Bk) which depend on p, such that for all integers n � 2 and k � 1

logN
�
Ak"n; conv(F[nk� ])

� � Bk
n2

log
4
p
�1

n
;

where � = 4p=(2 � p) and [x] denotes the integer value of x. Moreover, supAk � A0
p and

supBk � B0
p for some constants A0

p and B0
p which depend only on p.

We present a complete proof of Lemma 2.5. The proof of Lemma 2.4 follows from a
similar argument. The idea behind the proof of Lemma 2.4 is due to van der Vaart and
Wellner (1996). The quantitative estimate on the constants does not appear in that text,
but may be derived by a close analysis of the proof the authors present.

Proof of Lemma 2.5: We use a nested induction argument. First, we prove our claim for
k = 1 using induction on n. We then prove the claim for a general k for every �xed n.

Recall that for every integer n, Fn is maximal Æn separated in F . Thus

jFnj � N(
Æn
2
; F ) � e(2=Æn)

p

= n:

Let n0 � 4 be an integer such that for every n � n0,

dn2 e2

log
4
p
�1dn2 e

� 3

4

n2

log
4
p
�1 n

:
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Let k = 1 and 2 � n � 2n0 and set A1 = 2n0 log
�1=p 2n0. Since for such a value of n,

A1"n � 1, only a single ball is required to cover F and our claim follows.
Next, let n > 2n0 and assume that for every 2 � m < n,

logN(A1"m; Fm) � B1m
2 log1�4=pm;

where B1 is to be speci�ed later. We can apply Lemma 2.2 with i = n, j = dn=2e, " = A1"n
and "0 = A1"dn=2e. It follows that

N
�
A1"; conv Fn

�
(2.3)

�
�
1 +

4"dn
2
e

"n

�dn
2
e
�N�A1"dn

2
e; conv Fdn

2
e

� � �e+ e jFnj "2

16Æ2j

�32Æ2j ="2 :
A straightforward calculation shows that there is an absolute constant C such that for every
integer n,

"dn=2e

"n
� C;

Æj
"n

� C
1
p

n

log
2
p n

:

Applying the induction hypothesis and (2.3) there is a constant C = C(p) such that

logN
�
A1"n; convFn

� � Cn+B1
dn2 e2

log
4
p
�1dn2 e

+ C


2
pn2

log
4
p n

:

By the selection of n0,

B1dn
2
e2 log1� 4

p dn
2
e � 3

4
B1n

2 log
1� 4

p n;

and thus, there is a constant C(p; ) such that if B1 = C(p; ) then

N(A1"n; convFn) � B1n
2 log

1� 4
p n

as claimed.
Now, we �x some n � 2 and use induction with respect to k. Let i = [nk

�
] and

j = [n(k�1)� ]. Note that jGij [ f0gj � [nk
�
] and that

diam(Gij [ f0g) � 2Æj = 41=p log�1=p[n(k�1)� ]:

By Lemma 2.2,

N
�"n
k2
; conv(Gij [ f0g)

�
� N

� "n
2Æjk2

diam(Gij [ f0g); conv(Gij [ f0g)
�
�

�
�
e+ e jGij [ f0gj "2n

4k2Æ2j

�8k2Æ2j ="2n
:

It is straightforward to see that there is some constant C = C(p) such that

k2Æ2j
"2n

=


2
p k2

log
2
p [n(k�1)� ]

� n2

log
2
p n

� C


2
pk2

(k � 1)
2�
p

� n2

log
4
p n

:
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Also,

jGij [ f0gj "2n
k2Æ2j

� C
nk

�

k2�
2�
p

� log
4
p n

n2
� C

nk
�

k2�
2�
p

:

Using the above estimates and the de�nition of � it follows that

logN
�"n
k2
; conv(Gij [ f0g)

�

�C(p; ) n2

log
4
p
�1 n

� k
2+� log k

(k � 1)
2�
p

= C(p; )
n2 log k

k2 log
4
p
�1 n

:

On the other hand, by the induction hypothesis,

log
�
Ak�1"n; convF[n(k�1)� ]

�
� Bk�1

n2

log
4
p
�1

n
:

Applying Lemma 2.3 and combining the two covers, we obtain an Ak"n = (Ak�1 +1=k2)"n
cover of convF[nk� ]. Hence,

log
�
Ak"n; conv F[nk� ]

� � �
Bk�1 + C(p; )

log k

k2

� n2

log
4
p
�1 n

:

And our claim follows. It is important to note that the sequences (Ak) and (Bk) are bounded
by some constant C = C(p; ).

�

Proof of Theorem 2.1: We begin with the proof of the �rst part of our theorem. Fix
some integer n � 2 and let "n = 1=pn�1=2�1=p. By Lemma 2.4 it follows that for every
integer k,

logN
�
Ak"n; conv(Fnk3p)

� � Bkn � Bpn = Bp
� 1

"n

� 2p
2+p

:

Since for every k, A � Ak, then

logN
�
A"n; conv(Fnk3p)

� � logN
�
Ak"n; conv(Fnk3p)

� � Bp
� 1

"n

� 2p
2+p

:

Taking k to in�nity,

logN
�
A"n; conv(F )

� � Bp
� 1

"n

� 2p
2+p

:

The claim for a general " follows since "n="n+1 is a bounded sequence.
Turning to the second assertion, according to Lemma 2.5 and by the same argument as

above for every n � 2,

logN
�
A
0

p"n; conv(F )
� � B

0

p

n2

log
4
p
�1 n

:

Since "n = n�1 log1=p n then n = "�1
n log

1
p n and n � C

"n
log

1
p 1
"n
. Hence,

logN
�
A
0

p"n; conv(F )
� � B

0

p

1

"2n
log1�

2
p
1

"n
:

Again, the claim follows since "n="n+1 is a bounded sequence.
�
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2.2 Applications

We shall present several examples which are interesting from the Machine Learning per-
spective.

One of the basic results regarding VC classes is that the covering numbers of such classes
in any L2(�) are polynomial in 1=" (Haussler, 1995, van der Vaart and Wellner, 1996):

Theorem 2.6 Let F be a class of f0; 1g-valued functions such that V C(F ) = d. Then, there
is an absolute constant C such that for every probability measure � on 
, N("; F; L2(�)) �
Cd(4e)d"�2d.

Corollary 2.7 Assume that F is a f0; 1g-class such that V C(F ) = d. By Theorem 2.1

and Theorem 2.6 for p = 2d and  = Cd(4e)d, and since 2=p is bounded by some absolute

constant, it follows that

logN
�
"; conv(F ); L2(�)

� � Cd
�1
"

� 2d
1+d

;

where C is an absolute constant.

Next, we establish a similar estimate in the case where the fat-shattering dimension
satis�es fat"(F ) = O("�p) for some 0 < p < 2. It is possible to connect the fat-shattering
dimension and the L2(�) covering numbers (Mendelson, 2001c).

Theorem 2.8 Let F be a class of functions into [0; 1]. Then, there is an absolute constant

C such that for every probability measure �,

logN
�
"; F; L2(�)

� � Cfat "
32
(F ) log2

�2fat "
32
(F )

"

�
:

Corollary 2.9 Let F be a class of functions from 
 into [0; 1] and assume that there are

 > 0 and 0 < p < 2 such that fat"(F ) � "�p. Then, for every p0 > p there is some

constant C = C(p; p0; ) such that for every probability measure �,

logN
�
"; conv(F ); L2(�)

� � C
1

"2
log

1� 2
p0
1

"
:

3. Type and the fat-shattering dimension

In this section, we tackle the problem of estimating the fat-shattering dimension of convex
hulls of classes. To that end, we �rst deal with \linear" fat-shattering dimension. By this
we mean the fat-shattering dimension of a set of linear functionals, for example, the unit
ball of the dual space of some Banach space, when considered to be a class of functions
on the unit ball of the space. As it turns out, given a Banach space X, the fat-shattering
dimension of the set B(X�) when considered as functions on B(X) is completely determined
by a property of X called type (de�ned below).

The results we present aid our goal since one can apply an embedding argument to show
that, in some sense, the fat-shattering dimension of a given class may be controlled by the
fat-shattering dimension of a class of linear functionals.

10



On the size of convex hulls of small sets

In order to bound the fat-shattering dimension of convex hulls we take the following
course of action: �rst, we apply the embedding argument, which reduces the problem to a
\linear" one. Then, we show that the symmetric convex hull of the embedded class can be
approximated by a class which has \almost" the same fat-shattering dimension, but also a
well behaved type structure. This is done by using an estimate on the covering numbers of
the class with respect to the L1 norm. The fat-shattering of the approximating class may
be bounded via the bound on fat"

�
B(X�); B(X)

�
mentioned above.

Before we continue, we require additional de�nitions, originating in the theory of Ba-
nach spaces. For the basic de�nitions we refer the reader to (Pisier, 1989) or (Tomczak-
Jaegermann, 1989).

Let K be a bounded, convex symmetric subset of Rn which has a nonempty interior.
One can de�ne a norm on R

n whose unit ball is K. This is done using the Minkowski
functional on K, which is denoted by k kK , and given by

kxkK = infft > 0jt�1x 2 Kg:

It is possible to show that if K � `n2 is convex and symmetric with a nonempty interior
then k kK is indeed a norm and K is its unit ball. Set k kK� to be the dual norm to k kK .
De�nition 3.1 If F is a bounded subset of `n2 , let

F o = fx 2 `n2 j sup
f2F

��
f; x��� � 1g;

where

�;�� is the inner product in `n2 . The set F o is called the polar of F .

For any set F , let absconv(F ) be its symmetric convex hull. Formally,

absconv(F ) =
n nX
i=1

aifijn 2 N; fi 2 F;
nX
i=1

jaij = 1
o
:

It is easy to see that F o =
�
absconv(F )

�o
and that if G � F then F o � Go. Note that

F o is the unit ball of the norm k kK� , where K = absconv(F ). Hence, for every x 2 `n2 ,

kxkF o = sup
y2absconv(F)



y; x

�
= sup

y2F

��
y; x��� :

In particular, if F = ff1; :::; fmg then kxkF o = max1�i�m
��
fi; x���.

Given a class F and an empirical measure �n supported on f!1; :::; !ng, we endow R
n

with the Euclidean structure of L2(�n), which is isometric to `n2 . Therefore, for every
f 2 L2(�n),

kfkL2(�n) =
� 1
n

nX
i=1

f2(!i)
� 1

2
:

Let F=�n be the image of F in L2(�n) under the inclusion operator, that is,

F=�n =
n nX
i=1

f(!i)�f!igjf 2 F
o
:

11
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Since (n1=2�f!ig)
n
i=1 is an orthonormal basis of L2(�n), then

F=�n =
n
n�

1
2

nX
i=1

f(!i)eijf 2 F
o
:

Throughout this section, given an empirical measure �n, we denote by (ei)
n
i=1 the or-

thonormal basis of L2(�n) given by (n1=2�f!ig)
n
i=1.

The next lemma is straightforward and its proof is omitted.

Lemma 3.2 Let S = f!1; :::; !ng be a sample and let �n be the empirical measure supported

on S.

1. If S is shattered by F then the set fpne1; :::;
p
neng � (F=�n)

o is shattered by F=�n.

2. If S is "-shattered by F then fpne1; :::;
p
neng � (F=�n)

o is "-shattered by F=�n.

3.1 The fat-shattering dimension of linear functionals

Recall the de�nition of the Rademacher type of a Banach space:

De�nition 3.3 A Banach space X has Rademacher type p if there is some C such that for
every integer n and every x1; :::; xn 2 X,

E


nX
i=1

"ixi

 � C
� nX
i=1

kxikp
�1=p

; (3.1)

where ("i) are independent Rademacher random variables (i.e., symmetric f�1; 1g-valued).
The best constant for which (3.1) holds is called the Rademacher p-type constant of X and
is denoted by Tp(X).

Theorem 3.4 Let X be a Banach space which has type p for some 1 < p � 2 with a type

constant Tp(X). Then

fat"
�
B(X�); B(X)

� � �Tp(X)

"

� p
p�1

:

Note that a similar result to this was demonstrated by Gurvits (2001), though in his re-
sult the bound is on the level fat-shattering dimension (that is, the witness (si)

n
i=1 to the

shattering is a constant set: there is some a such that si = a for every 1 � i � n).

Proof: Assume that the set fx1; :::; xng � B(X) is "-shattered by B(X�) and set fs1; :::; sng
to be a witness to the shattering. Let I � f1; :::; ng and put x�I to be the functional
shattering the set I. Note that if i 2 I then

x�I(xi)� x�Ic(xi) � si + "� (si � ") = 2";

and if i 2 Ic,

x�Ic(xi)� x�I(xi) � si + "� (si � ") = 2":

12



On the size of convex hulls of small sets

Thus,

�X
i2I

xi �
X
i2Ic

xi

� = sup
x�2B(X�)

�����x�
�X
i2I

xi �
X
i2Ic

xi

������
� 1

2
sup

x�;~x�2B(X)

�����x�
�X
i2I

xi �
X
i2Ic

xi

�
� ~x�

�X
i2I

xi �
X
i2Ic

xi

������ = (�)

Selecting x� = x�I and ~x� = x�Ic ,

(�) � 1

2

�����x�I
�X
i2I

xi �
X
i2Ic

xi

�
� x�Ic

�X
i2I

xi �
X
i2Ic

xi

������
=

1

2

�����
X
i2I

�
x�I(xi)� x�Ic(xi)

�
+
X
i2Ic

�
x�Ic(xi)� x�I(xi)

������
� 1

2

�
2" jIj+ 2" jIcj� = "n:

Now, we can use the type property to establish an upper bound for an appropriate subset
I which will be selected randomly. Indeed, since X has type p and since kxik � 1 then

E


nX
i=1

"ixi

 � Tp(X)
� nX
i=1

kxikp)
1
p � Tp(X)n

1
p :

Thus, there is a realization of the random variables ("i) for which this inequality holds. Let
I = fij"i = 1g. Then, 

X
i2I

xi �
X
i2Ic

xi

 � Tp(X)n
1
p :

Thus, n" � Tp(X)n1=p and our claim follows.
�

Remark 3.5 It is possible to show that this bound is tight (see Mendelson, 2001a). Indeed,

one can show that if p� = supfpjX has type pg then for every " > 0,

�1
"

� p�

p��1 � 1 � fat"
�
B(X�); B(X)

�
:

This implies that if X is a Hilbert space then for every " > 0,

� 1

"2

�
� 1 � fat"

�
B(X�); B(X)

� � � 1

"2

�
:

3.2 Covering numbers and type constants

Here, we show that if the class F is well behaved, (either a VC class or a class with a �nite
fat-shattering dimension for every "), then the Rademacher type-2 constant of (F=�n)

o does
not grow too rapidly as a function of n.

13
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In order to bound the type-2 constant of (F=�n)
o, we use a combination of two facts.

The �rst, which is the only non elementary fact we require, is an estimate on T2(`
n
1). It

is possible to show (Tomczak-Jaegermann, 1989) that there are absolute constants c and C
such that for every integer n,

c(1 + logn)1=2 � T2(`
n
1) � C(1 + logn)1=2: (3.2)

The second fact we use is that if the cardinality of F is small then F o can be isometrically
embedded into `n1 for a relatively small n.

Lemma 3.6 Let F � `n2 be a �nite set. Then F o can be isometrically embedded into `
jF j
1 .

Proof: Let F = ff1; :::; fmg and de�ne T : (Rn ; k kF o)! `
jF j
1 by Tx� =

�
x�(fi)

�m
i=1

. Then,
for every x� 2 R

n

kTx�k
`
jF j
1

= sup
1�i�m

jx�(fi)j = kx�kF o ;

implying that T is an isometry.
�

This fact is very useful from our point of view, since F=�n are relatively small sets. In
the real valued case, the L1(�n) covering numbers of F may be bounded using fat"(F )
(Theorem 1.3), whereas for VC classes, one may use the following version of Sauer's Lemma
(van der Vaart and Wellner, 1996):

Lemma 3.7 There is an absolute constant C such that if F is a class of f0; 1g-valued
functions on 
 with V C(F ) = d, then for every empirical measure �n, jF=�nj � Cnd.

Now, we can bound T2
�
(F=�n)

o
�
for VC classes. In fact, we prove the following:

Theorem 3.8 Let F be a class of f0; 1g-valued functions. Then, F is a VC class if and

only if there is some constant C > 0 such that for every integer n and every empirical

measure �n, T2
�
(F=�n)

o
� � C(1 + logn)1=2.

Proof: Note that if V C(F ) = d then by Sauer's Lemma there is an absolute constant C

such that jF=�nj � Cnd. Hence, (F=�n)
o can be isometrically embedded in `Cn

d

1 . It follows
that T2(F

o) � C(1 + d log n)1=2 � Cd1=2(1 + log n)1=2 as claimed.

Conversely, assume that there is a constant C such that for every integer n and every
empirical measure �n, T2((F=�n)

o) � C(1 + log n)1=2. Let S = f!1; :::; !ng be shattered by
F and set �n to be the empirical measure supported on S. By the �rst part of Lemma 3.2
and Theorem 3.4,

n � fat 1
2
((F=�n)

o; F=�n) � 4T 2
2

�
(F=�n)

o
� � C(1 + logn);

implying that n can not be arbitrarily large, and thus V C(F;
) <1.
�

Remark 3.9 The proof of theorem 3.8 implies that if F is a f0; 1g-valued class such that

sup�n T2
�
(F=�n)

o
�
= o(n) then F is a VC class.

14



On the size of convex hulls of small sets

Note that the upper bound on T2
�
(F=�n)

o
�
can not be improved. Indeed, let F be the set

of characteristic functions of intervals [�1; a] for a 2 (�1; 1]. Thus, V C(F ) = 1 and for
every non degenerate empirical measure �n of [�1; 1],

F=�n =
n
(1; 0; :::; 0); (1; 1; 0; :::; 0); :::; (1; 1; :::; 1)

o
:

Therefore, (F=�n)
o is isometric to `n1 and T2

�
(F=�n)

o
� � C(1 + log n)1=2.

Also, Theorem 3.8 does not apply to classes which are not f0; 1g-valued classes. For
example, let 
 = B(`p) for some 1 < p < 2 and F = B(`q) where p

�1 + q�1 = 1. For every
i denote by ei the i-th unit vector in `p, and given an integer n, let �n be the empirical
measure supported on fe1; :::; eng � B(`p). Since F=�n = n�1=2B(`nq ) then (F=�n)

o is

isometric to `np and T2
�
(F=�n)

o
� � n

1
p
� 1

2 (see Tomczak-Jaegermann, 1989). Hence, it is
impossible to obtain an analogous result to Theorem 3.8 in the general case. We bypass
this obstacle by replacing the set F=�n (which may be in�nite) by an L1(�n) cover of F .

The following lemma indicates that an "-cover of a set in L1(�n) has essentially the
same fat-shattering dimension as the original set.

Lemma 3.10 Let F be a class of functions into [0; 1] which Æ-shatters A = f!1; :::; !ng,
and let �n be the empirical measure on A. Assume that Æ > " and that H is an "-cover of
F=�n in L1(�n). Then, A

0 = fpne1; :::;
p
neng � (F=�n)

o is (Æ� ")-shattered by H, where

the elements of H are viewed as linear functionals on (F=�n)
o.

Proof: By Lemma 3.2, A0 is Æ-shattered by F=�n and set (si) to be a witness to the
shattering. Fix I � f1; :::; ng and let fI 2 F=�n be the Æ-shattering functional on I. Put
hI 2 H such that kfI � hIkL1(�n)

< ". Since kpneikL1(�n) = 1 then for every i 2 I



hI ;

p
nei

�
=


fI ;

p
nei

�
+


hI � fI ;

p
nei

�
� si + Æ � khI � fIkL1(�n)

pneiL1(�n)
� si + Æ � ";

and in a similar fashion, if j 2 Ic then


hI ;

p
nei

� � si � Æ + ", and our claim follows.
�

3.3 The fat-shattering dimension of convex hulls

We begin by formulating the main result, which enables one to estimate the fat-shattering
dimension of the convex hull of a class F using the L1(�n) covering numbers of F .

We introduce the following notation. Given a class F , an integer n and " > 0, let

N1(n; ") = sup
�n

N
�
"; F; L1(�n)

�
:

Thus, N1(n; ") is the supremum of the "-covering numbers of F in empirical L1 spaces,
where the empirical measure is supported on at most n elements of 
.

Theorem 3.11 Let F be a class of functions whose range is a subset of [0; 1] and set K to

be its symmetric convex hull. Then, for every "; � > 0,

fat"+�
�
K;


� � max
n
njn � C

�
1 + logN1(n; 2")

� 1
�2

o
;
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where C is an absolute constant.

Proof: Fix "; � > 0, assume that A = f!1; :::; !ng is ("+ �)-shattered by K = absconv(F )
and let �n be an empirical measure supported on A. Let H � F=�n be an "-cover
to F=�n in L1(�n) and set G to be the symmetric convex hull of H. Clearly, jHj �
N
�
2"; F=�n; L1(�n)

�
.

Since H is an "-cover of F=�n in L1(�n) then G is an "-cover to K in L1(�n). By
Lemma 3.10, if the set A is " + � shattered by K then the set A0 = fpne1; :::;

p
neng is

� -shattered by G, when members of G are viewed as linear functionals on (F=�n)
o. Also,

note that A0 � (F=�n)
o. Thus,

n � fat�
�
G; (

p
nei)

n
i=1

� � fat�
�
G; (F=�n)

o
�
:

Since H � F=�n, then by taking convex hulls G � K. Using the properties of the
polar, (F=�n)

o = Ko � Go, thus fat�
�
G; (F=�n)

o
� � fat� (G;G

o). By Lemma 3.6 there is
an absolute constant C such that

T2(G
o) � C(1 + log jHj) 12 � C

�
1 + logN

�
2"; F=�n; L1(�n)

�� 1
2
:

Hence, by Theorem 3.4,

fat� (G;G
o) � C

�
1 + logN

�
"; F=�n; L1(�n)

�� 1

�2
:

Therefore,

n � C
�
1 + logN

�
2"; F=�n; L1(�n)

�� 1

�2
:

�

Applying the known bounds on the L1(�n) covering numbers in terms of the VC or
the fat-shattering dimension we can establish the following estimate on the fat-shattering
dimension of convex hulls.

Corollary 3.12 There is an absolute constant C such that for every f0; 1g-class of func-

tions and every "; � > 0,

fat"+� (K;
) � C
d

�2
log

2d

�
;

where K is the symmetric convex hull of F and V C(F ) = d.
In particular, there is an absolute constant C such that for every � > 0,

fat� (K;
) � C
d

�2
log

2d

�
:

Proof: By Sauer's Lemma, there is an absolute constant C such that for every integer
n, logN1(n; ") � Cd logn. Fix "; � > 0 and let fat"+� (K;
) = n. By Theorem 3.11,
n � Cd��2(1 + logn) and our claim follows.

�

The best known estimate on the fat-shattering dimension of the convex hull of a VC class
is fat"

�
conv(F )

�
= O(d="2). This bound is due to Gurvits (2001) and was obtained using a
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similar geometric approach to the one presented here. The one key di�erence between the
two approaches is that Gurvits uses a di�erent notion of type. His result is based on an
estimate on the type-2 constant of a certain operator, which is due to Ledoux and Talagrand
(1991, Theorem 14.15). It turns out that their bound depends on the fact that the class F
has a converging entropy integral, which is the case for VC classes.

This approach is not suitable for arbitrary classes of functions, when one does not have
a-priori \global" data (for example, the fat-shattering dimension or covering numbers at
every scale), but rather, the fat-shattering dimension at a given scale. It is possible to
extend Corollary 3.12 and estimate the fat-shattering dimension of the convex hull of a
class using the fat-shattering dimension of the class itself, without resorting to \global"
data.

Theorem 3.13 There is an absolute constant C such that for any class F of functions into

[0; 1] and every "; � 2 (0; 1),

fat"+� (K;
) � C
fat "

2
(F;
)

�2
log2

2fat "
2
(F;
)

�2"

where K is the symmetric convex hull of F .

In particular, there is an absolute constant C such that for every � > 0,

fat� (K;
) � C
fat �

4
(F;
)

�2
log2

2fat �
4
(F;
)

�
:

Proof: Set "; Æ 2 (0; 1) and let n = fat2"+� (K;
). By Theorem 1.3,

logN1(n; 2") � Cfat "
2
(F;
) log2

n

"
:

Applying Theorem 3.11 and since n > 1 and " 2 (0; 1), there is an absolute constant C such
that

n � C
fat "

2
(F;
)

�2
log2

n

"
:

Hence,

n � C
fat "

2
(F;
)

�2
log2

�
2fat "

2
(F;
)

�2"

�
;

and the claim follows.
�

Remark 3.14 Using a di�erent approach it is possible to improve Theorem 3.13 when one

has \global" data on the fat-shattering dimension of the class. For example, it is possible to

recover Gurvits' estimate for the convex hull of VC classes, with a much simpler proof. This

approach may be extended to a more general setup. Indeed, if fat"(F ) = O("�p) for p 6= 2
then fat"

�
conv(F )

�
= O

�
"�maxf2;pg

�
. If p = 2 then fat"

�
conv(F )

�
= O("�2 log4 1

" ). This

result is demonstrated by analyzing the growth rate of the Rademacher averages associated
with the class (see Mendelson, 2001c) for further details).
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