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ON THE SIZE OF KAKEYA SETS IN FINITE FIELDS

ZEEV DVIR

1. Introduction

Let 𝔽 denote a finite field of 𝑞 elements. A Kakeya set (also called a Besicovitch
set) in 𝔽

𝑛 is a set 𝐾 ⊂ 𝔽
𝑛 such that 𝐾 contains a line in every direction. More

formally, 𝐾 is a Kakeya set if for every 𝑥 ∈ 𝔽
𝑛 there exists a point 𝑦 ∈ 𝔽

𝑛 such
that the line

𝐿𝑦,𝑥 ≜ {𝑦 + 𝑎 ⋅ 𝑥∣𝑎 ∈ 𝔽}
is contained in 𝐾.
The motivation for studying Kakeya sets over finite fields is to try to better

understand the more complicated questions regarding Kakeya sets in ℝ
𝑛. A Kakeya

set 𝐾 ⊂ ℝ
𝑛 is a compact set containing a line segment of unit length in every

direction. The famous Kakeya Conjecture states that such sets must have Hausdorff
(or Minkowski) dimension equal to 𝑛. The importance of this conjecture is partially
due to the connections it has to many problems in harmonic analysis, number
theory and PDE. This conjecture was proved for 𝑛 = 2 [Dav71] and is open for
larger values of 𝑛 (we refer the reader to the survey papers [Wol99, Bou00, Tao01]
for more information).
It was first suggested by Wolff [Wol99] to study finite field Kakeya sets. It was

asked in [Wol99] whether there exists a lower bound of the form 𝐶𝑛 ⋅ 𝑞𝑛 on the
size of such sets in 𝔽

𝑛. The lower bound appearing in [Wol99] was of the form
𝐶𝑛 ⋅ 𝑞(𝑛+2)/2. This bound was further improved in [Rog01, BKT04, MT04, Tao08]
both for general 𝑛 and for specific small values of 𝑛 (e.g. for 𝑛 = 3, 4). For general
𝑛, the most current best lower bound is the one obtained in [Rog01, MT04] (based
on results from [KT99]) of 𝐶𝑛 ⋅ 𝑞4𝑛/7. The main technique used to show this bound
is an additive number theoretic lemma relating the sizes of different sum sets of the
form 𝐴+𝑟 ⋅𝐵, where 𝐴 and 𝐵 are fixed sets in 𝔽

𝑛 and 𝑟 ranges over several different
values in 𝔽 (the idea to use additive number theory in the context of Kakeya sets
is due to Bourgain [Bou99]).
The next theorem, proven in Section 2, gives a near-optimal bound on the size

of Kakeya sets. Roughly speaking, the proof follows by observing that any degree
𝑞−2 homogeneous polynomial in 𝔽[𝑥1, . . . , 𝑥𝑛] can be ‘reconstructed’ from its value
on any Kakeya set 𝐾 ⊂ 𝔽

𝑛. This implies that the size of 𝐾 is at least the dimension
of the space of polynomials of degree 𝑞 − 2, which is ≈ 𝑞𝑛−1 (when 𝑞 is large).
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Theorem 1.1. Let 𝐾 ⊂ 𝔽
𝑛 be a Kakeya set. Then

∣𝐾∣ ≥ 𝐶𝑛 ⋅ 𝑞𝑛−1,

where 𝐶𝑛 depends only on 𝑛.

The result of Theorem 1.1 can be made into an even better bound using the
simple observation that a product of Kakeya sets is also a Kakeya set.

Corollary 1.2. For every integer 𝑛 and every 𝜖 > 0 there exists a constant 𝐶𝑛,𝜖,
depending only on 𝑛 and 𝜖 such that any Kakeya set 𝐾 ⊂ 𝔽

𝑛 satisfies

∣𝐾∣ ≥ 𝐶𝑛,𝜖 ⋅ 𝑞𝑛−𝜖.

Proof. Observe that, for every integer 𝑟 > 0, the Cartesian product 𝐾𝑟 ⊂ 𝔽
𝑛⋅𝑟 is

also a Kakeya set. Using Theorem 1.1 on this set gives

∣𝐾∣𝑟 ≥ 𝐶𝑛⋅𝑟 ⋅ 𝑞𝑛⋅𝑟−1,

which translates into a bound of 𝐶𝑛,𝑟 ⋅ 𝑞𝑛−1/𝑟 on the size of 𝐾. □

We derive Theorem 1.1 from a stronger theorem that gives a bound on the size
of sets that contain only ‘many’ points on ‘many’ lines. Before stating the theorem
we formally define these sets.

Definition 1.3 ((𝛿, 𝛾)-Kakeya set). a set 𝐾 ⊂ 𝔽
𝑛 is a (𝛿, 𝛾)-Kakeya set if there

exists a set ℒ ⊂ 𝔽
𝑛 of size at least 𝛿 ⋅ 𝑞𝑛 such that for every 𝑥 ∈ ℒ there is a line in

direction 𝑥 that intersects 𝐾 in at least 𝛾 ⋅ 𝑞 points.
The next theorem, proven in Section 2, gives a lower bound on the size of (𝛿, 𝛾)-

Kakeya sets. Theorem 1.1 will follow by setting 𝛿 = 𝛾 = 1.

Theorem 1.4. Let 𝐾 ⊂ 𝔽
𝑛 be a (𝛿, 𝛾)-Kakeya set. Then

∣𝐾∣ ≥
(
𝑑+ 𝑛− 1
𝑛− 1

)
,

where

𝑑 = ⌊𝑞 ⋅min{𝛿, 𝛾}⌋ − 2.
Notice that, in order to get a bound of ≈ 𝑞𝑛(1−𝜖) on the size of 𝐾, Theorem 1.4

allows 𝛿 and 𝛾 to be as small as 𝑞−𝜖.

1.1. Improving the bound to ≈ 𝑞𝑛. Following the initial publication of this
work, Noga Alon and Terence Tao [AT08] independently observed that it is possible
to turn the proof of Theorem 1.1 into a proof that gives a bound of 𝐶𝑛 ⋅ 𝑞𝑛, thus
achieving an optimal bound. A proof of the following theorem appears in Section 3

Theorem 1.5. Let 𝐾 ⊂ 𝔽
𝑛 be a Kakeya set. Then

∣𝐾∣ ≥ 𝐶𝑛 ⋅ 𝑞𝑛,
where 𝐶𝑛 depends only on 𝑛.
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2. Proof of Theorem 1.4

We will use the following bound on the number of zeros of a degree 𝑑 polynomial
proven by Schwartz and Zippel [Sch80, Zip79].

Lemma 2.1 (Schwartz-Zippel). Let 𝑓 ∈ 𝔽[𝑥1, . . . , 𝑥𝑛] be a nonzero polynomial with
deg(𝑓) ≤ 𝑑. Then

∣{𝑥 ∈ 𝔽
𝑛 ∣𝑓(𝑥) = 0}∣ ≤ 𝑑 ⋅ 𝑞𝑛−1.

Proof of Theorem 1.4. Suppose by contradiction that

∣𝐾∣ <
(
𝑑+ 𝑛− 1
𝑛− 1

)
.

Then, the number of monomials in 𝔽[𝑥1, . . . , 𝑥𝑛] of degree 𝑑 is larger than the size
of 𝐾. Therefore, there exists a homogeneous degree 𝑑 polynomial 𝑔 ∈ 𝔽[𝑥1, . . . , 𝑥𝑛]
such that 𝑔 is not the zero polynomial and

∀𝑥 ∈ 𝐾, 𝑔(𝑥) = 0

(this follows by solving a system of linear equations, one for each point in 𝐾, where
the unknowns are the coefficients of 𝑔). Our plan is to show that 𝑔 has too many
zeros and therefore must be identically zero (which is a contradiction).
Consider the set

𝐾 ′ ≜ {𝑐 ⋅ 𝑥 ∣𝑥 ∈ 𝐾, 𝑐 ∈ 𝔽}
containing all lines that pass through zero and intersect 𝐾 at some point. Since 𝑔
is homogeneous we have

𝑔(𝑐 ⋅ 𝑥) = 𝑐𝑑 ⋅ 𝑔(𝑥),
and so

∀𝑥 ∈ 𝐾 ′, 𝑔(𝑥) = 0.

Since 𝐾 is a (𝛿, 𝛾)-Kakeya set, there exists a set ℒ ⊂ 𝔽
𝑛 of size at least 𝛿 ⋅ 𝑞𝑛

such that for every 𝑦 ∈ ℒ there exists a line with direction 𝑦 that intersects 𝐾 in
at least 𝛾 ⋅ 𝑞 points.
Claim 2.2. For every 𝑦 ∈ ℒ we have 𝑔(𝑦) = 0.
Proof. Let 𝑦 ∈ ℒ be some nonzero vector (if 𝑦 = 0, then 𝑔(𝑦) = 0, since 𝑔 is
homogeneous). Then, there exists a point 𝑧 ∈ 𝔽

𝑛 such that the line

𝐿𝑧,𝑦 = {𝑧 + 𝑎 ⋅ 𝑦∣𝑎 ∈ 𝔽}
intersects 𝐾 in at least 𝛾 ⋅ 𝑞 points. Therefore, since 𝑑+ 2 ≤ 𝛾 ⋅ 𝑞, there exist 𝑑+ 2
distinct field elements 𝑎1, . . . , 𝑎𝑑+2 ∈ 𝔽 such that

∀𝑖 ∈ [𝑑+ 2], 𝑧 + 𝑎𝑖 ⋅ 𝑦 ∈ 𝐾.

If there exists 𝑖 such that 𝑎𝑖 = 0 we can remove this element from our set of 𝑑+ 2
points, and so we are left with at least 𝑑+1 distinct nonzero field elements (w.l.o.g.
𝑎1, . . . , 𝑎𝑑+1) such that

∀𝑖 ∈ [𝑑+ 1], 𝑧 + 𝑎𝑖 ⋅ 𝑦 ∈ 𝐾 and 𝑎𝑖 ∕= 0.
Let 𝑏𝑖 = 𝑎−1

𝑖 where 𝑖 ∈ [𝑑+ 1]. The 𝑑+ 1 points
𝑤𝑖 ≜ 𝑏𝑖 ⋅ 𝑧 + 𝑦, 𝑖 ∈ [𝑑+ 1]

are all in the set 𝐾 ′, and so

𝑔(𝑤𝑖) = 0, 𝑖 ∈ [𝑑+ 1].
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If 𝑧 = 0, then we have 𝑤𝑖 = 𝑦 for all 𝑖 ∈ [𝑑+1], and so 𝑔(𝑦) = 0. We can thus assume
that 𝑧 ∕= 0, which implies that 𝑤1, . . . , 𝑤𝑑+1 are 𝑑+ 1 distinct points belonging to
the same line (the line through 𝑦 with direction 𝑧). The restriction of 𝑔(𝑥) to this
line is a degree ≤ 𝑑 univariate polynomial, and so, since it has 𝑑 + 1 zeros (at the
points 𝑤𝑖), it must be zero on the entire line. We therefore get that 𝑔(𝑦) = 0, and
so the claim is proven. □

We now get a contradiction since

𝑑/𝑞 < 𝛿

and, using Lemma 2.1, a polynomial of degree 𝑑 can be zero on at most a 𝑑/𝑞
fraction of 𝔽𝑛. □

3. Proof of Theorem 1.5

Suppose, by contradiction, that 𝐾 ⊂ 𝔽
𝑛 is a Kakeya set such that

∣𝐾∣ <
(
𝑞 + 𝑛− 1

𝑛

)
.

Then, as is explained in the proof of Theorem 1.1, there exists a nonzero polynomial
𝑔 ∈ 𝔽[𝑥1, . . . , 𝑥𝑛] of degree 𝑑 ≤ 𝑞 − 1 so that 𝑔(𝑥) = 0 for all 𝑥 ∈ 𝐾 (notice that 𝑔
is not necessarily homogeneous). Let 𝑔 ∈ 𝔽[𝑥1, . . . , 𝑥𝑛] be the homogeneous part of
degree 𝑑 of 𝑔 so that 𝑔 is nonzero and homogeneous. Fix some 𝑦 ∈ 𝔽

𝑛. Then there
exists 𝑧 ∈ 𝔽

𝑛 so that the line {𝑧 + 𝑡 ⋅ 𝑦 ∣ 𝑡 ∈ 𝔽} is contained in 𝐾. Therefore,

𝑃𝑦,𝑧(𝑡) ≜ 𝑔(𝑧 + 𝑡 ⋅ 𝑦) = 0
for all 𝑡 ∈ 𝔽. Since 𝑃𝑦,𝑧(𝑡) is a univariate polynomial of degree 𝑑 ≤ 𝑞−1 this means
that 𝑃𝑦,𝑧(𝑡) is identically zero, and hence all its coefficients are zero. In particular,
the coefficient of 𝑡𝑑 is zero, but it is easy to see that this is exactly 𝑔(𝑦). Since 𝑦 is
arbitrary it follows that the polynomial 𝑔 is identically zero – a contradiction. This
concludes the proof. □
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