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Abstract This paper presents a quantitative study of the size of representative volume
element (RVE) of random matrix-inclusion composites based on a scale-dependent
homogenization method. In particular, mesoscale bounds defined under essential or natural
boundary conditions are computed for several nonlinear elastic, planar composites, in
which the matrix and inclusions differ not only in their material parameters but also in their
strain energy function representations. Various combinations of matrix and inclusion phases
described by either a neo-Hookean or Ogden function are examined, and these are com-
pared to those of linear elastic types.
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1 Introduction

Random composites constitute an important group of natural (especially, biological) as well
as man-made modern materials. Such materials generally consist of fibres, particles,
nanoclusters, or grains randomly distributed in a solid matrix. The compelling questions
arising when dealing with such microstructures are: What are the effective properties of the
composite? Is it possible to predict the overall response of the material, knowing the
properties of its constituents? How large is the size of the representative volume element
(RVE) to represent the entire microstructure?

Consider three length scales: the heterogeneity size d (e.g., dispersion, void, single
grain); the size LRVE of the mesoscale or the representative volume element (RVE), at
which the composite appears to be a representative of the entire ensemble; the macroscale
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Lmacro (the size of the body). These three scales are related to each other through the
inequalities

d < LRVE � Lmacro; ð1Þ
also called a separation of scales, and commonly taken for granted in the homogenization
theory. The mesoscale links microscopic properties with the macroscopic behaviour and is a
convenient, intermediate scale to work with. In the absence of spatial periodicity in the
random microstructure, the RVE is achieved exactly only in the limiting case of δ → ∞,
where δ = L/d is a non-dimensional measure of the scale size.

In many cases, however, one does not need to consider infinitely large domains for the
determination of material properties, as these can be attained with a sufficient accuracy on a
finite scale. This scale (or the size of the RVE) has been a question of considerable attention
in the past decade. In the context of small deformation theory the advances in these area are
due to the work by Huet [1], Sab [2], Hazanov and Huet [3], Drugan and Willis [4], Gusev
[5], Moulinec and Suquet [6], Hazanov [7], Michel et al. [8], Drugan [9], Zohdi and
Wriggers [10, 11], Segurado and Llorka [12], Ren and Zheng [13], Soize [14], Lachihab
and Sab [15], Sab and Nedjar [16], Ostoja-Starzewski [17], see also references therein.

Nonlinear composites in the setting of finite elasticity have not been researched as
extensively as linear elastic materials due to the obvious reason of complexity of the
problem. The influence of the number of particles on the effective stress response of the
composite subjected to finite deformations was studied numerically by Löhnert and
Wriggers [18] and Löhnert [19]. Hohe and Becker [20] performed numerical homogeni-
zation of a periodic polymeric foams at finite strain. Second order homogenization scheme
was considered by Kouznetsova et al. [21].

The present study is concerned with an alternative approach to the determination of RVE
properties and the RVE size. As δ increases, the material properties approach effective
values with a certain rate that depends on the composite microstructure, properties’
mismatch of the constituents, their interaction on a microscale, the physics of the problem
(either elastic or plastic, etc.), the setting in 2-D (two-dimensional) or 3-D [17, 22]. In this
paper we quantitatively investigate the convergence trend (i.e., scale effects) in the
stochastic constitutive law of random composites, whose constitutive equations are
nonlinear elastic and large deformations are involved. Investigations of such a trend allow
to estimate the size of the RVE with a known error, and it is up to an engineer to decide
how large an error can be acceptable for a certain engineering application. In effect, the
present paper reports a computation of recently derived mesoscale upper and lower bounds
(based on uniform kinematic and static boundary conditions, respectively) for nonlinear
elastic, random composites at finite strains [23]. We compute such bounds for composites
of several different types, comparing both linear and nonlinear elasticity cases.

2 Theoretical Considerations

2.1 Problem Formulation

Consider a random heterogeneous material B = {B(w); w ∈ 4}, where each point w
corresponds to a sample space 4 and B(w) is a specific realization of some spatial (2-D or 3-D)
random process. Here we distinguish two phases: matrix B1(w) and inclusion B2(w), although the
results presented in the paper can readily be extended to multiphase materials. Generally speaking,

154 J Elasticity (2006) 85: 153–173



the randommedium is described by a distribution of phases, such that B1 (w) [ B2 (w) = B (w) and
B1 (w) \ B2 (w) = 0 [24], which can be set up on the basis of point fields. While in the periodic
homogenization one is usually concerned with phase distribution within the periodic window
directly taken as the RVE (Figure 1a), the homogenization in random media can be carried out
only if a spatial homogeneity assumption is imposed. This implies invariance of probability
distributions under arbitrary translations. Additionally, we require the random medium to be
ergodic:

Fh i ¼ lim
V0!1

1

V0

Z
V0

FdV ; ð2Þ

where h•i denotes ensemble average and V0 is material volume in reference state.

2.2 Mesoscale Bounds on Effective Strain Energy Function

The major difference between linear and nonlinear elasticity in terms of a bounding
problem is that the hierarchy of bounds on effective properties in nonlinear elasticity, except
for some special cases [7], cannot be obtained in the tensor form and the full strain energy
function has to be considered.

The equation of state of the material in nonlinear elasticity can be written in the
following form

Pij ¼ @ y
@Fij

; ð3Þ

where y is a strain energy function per unit volume of an undeformed body, Pij is the first
Piola-Kirchhoff stress tensor and Fij is the deformation gradient tensor. It must be noted that
the constitutive relation (3) is given in a material description. The reason for it is that the
average strain theorem in finite elasticity can be formulated for the deformation gradient
tensor only [25, 26]. Moreover, most of the strain energy functions commonly employed in
the literature are defined in a reference configuration.

The principal idea behind the derivation of mesoscale bounds is the introduction of two
types of boundary conditions – restricted (the boundary condition specified on the
boundary of a window of size δ0 ¼ δ

n, where n is nonnegative and nonzero) and unrestricted

Figure 1 (a) A disordered microstructure of a periodic composite with a periodic window of size L; (b) one
realization of a random composite Bδ (w) of size L.
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(the boundary condition specified on the boundary of window δ ), and subsequent
application of variational principles of minimum potential and complementary energies in
finite elasticity [27], as well as the Hill (or Hill-Mandel) condition [25]

PijFij � PijFij ¼ 1

V0

Z
S0

ti � Pijnj
� �

ui � Fij � δij
� �

Xj

� �
dV ¼ 0: ð4Þ

Here the superposed bar denotes the volume average, nj is an outward normal vector to the
boundary surface in the reference configuration, Xj denotes the coordinates of a particle
inside the body in the reference configuration, δij is the Kronecker delta, and indices i, j
range over the values 1, 2, 3. Condition (4) insures independence of volume-averaged
properties of the composite from the applied boundary conditions and can be satisfied in
three different cases:

(1) kinematic uniform boundary condition (KUBC):

u0i ¼ F0
ij � δij

� �
Xj; 8Xj2 S0 ; ð5Þ

(2) static uniform boundary condition (SUBC):

toi ¼ P0
ijnj; 8Xj2 S0 ; ð6Þ

(3) uniform orthogonal-mixed boundary condition (MIXED):

ti � P0
ijnj

� �
ui � F0

ij � δij
� �

Xj

� �
¼ 0; 8Xj2 S0; ð7Þ

where the averaging theorems [25, 26] have been used.
Following the procedure outlined in [23], one can derive two hierarchies of mesoscale

bounds on the effective strain energy function: the upper bound obtained under KUBC
Equation (5)

< F0
� �� �

$
� < F0

� �� �
d � < F0

� �� �
d0 � < F0

� �� �
1; for 1 < d0 < d < $; ð8Þ

where

< w;F0
� � ¼ Z

V0

< w;X ;Fð ÞdV

and Δ and 1 denote the RVE size and inhomogeneity size, respectively, and the lower
bound obtained under SUBC (6)

<* P0
� �D E

$
� <* P0

� �D E
d
� <* P0

� �D E
d0
� <* P0

� �D E
1
; for 1 < d0 < d < $; ð9Þ

where

<� w;P0
� � ¼ Z

V0

@<

@Uij
Uij �<

� 	
dV

and Uij is an admissible deformation gradient field.
At the macroscale Ψ (w, F0) = Ψ (w, P0) and Ψ*(w, P0) = Ψ*(w, F0) so that, we recover

the regular Legendre transformation

< ¼ P : F�<*: ð10Þ
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This property will allow us to estimate the lower bound on the strain energy function as
δ → ∞ (see “Numerical Experiments Section 3”).

It is important to mention, that, contrary to the linear theory, the hierarchy (8) is valid
only if certain restrictions are imposed on the strain-energy function, namely, ifZ

V0

@2y
@ui;k@up;q

di;kdp;qdV > 0 ð11Þ

for all nonzero di such that di = 0 on the part of the bounding surface S0 where
displacements are prescribed SU. On the other hand, the hierarchy (9) is valid if

Z
V0

@2y
@ui;k@up;q

dikdpqdV > 0 ð12Þ

for all nonzero dik satisfying
@
@xk

@2y
@ui;k@up;q

dpq
� �

¼ 0 in V0 and
@2y

@ui;k@up;q
dpqnk ¼ 0 on the part

of S0 where the traction is prescribed ST.
In the small deformation theory the effective strain energy function <eff ¼ 1

2 ɛ: Ceff : ɛ is
equal to the complementary energy function <*

eff ¼ 1
2σ: Seff : σ and hierarchies (8) and (9)

can be combined to give [17]:

Ss1
� ��1 � � � � � Ssd0

� ��1 � Ssd
� ��1 � � � � � S�1

eff ¼ Ceff � � � � � C"
d

� � � C"
d0

� � � � � �
� C"

1

� �
:

ð13Þ

Here the superscripts ɛ and σ define properties obtained under boundary conditions (5) and
(6), which in linear elasticity reduce to u0i ¼ ɛ0ijxj and t0i ¼ s0

ijnj, correspondingly. Here ɛ is
the strain tensor, σ is the Cauchy stress tensor, C is the stiffness tensor and S is the
compliance tensor.

2.3 Classical Bounds

Early theoretical studies on bounding of effective properties in linear elasticity were carried
out by Voigt and Reuss, who proposed approximations for the effective material properties
based on simplifying assumptions, respectively, of a uniform strain or uniform stress fields
inside the composite. A generalization of the above mentioned bounds in the context of finite
elasticity was first carried out by Ogden [28] for a convex strain energy function. A more
general assumption of polyconvexity of y was later considered by Ponte Castañeda [29].It
follows from the minimum potential energy theorem that under kinematic uniform
boundary conditions Z

V0

y ui;k ;Xj

� �
dV �

Z
V0

y ui;k
� �

dV ð14Þ

or

<h i$ � <; ð15Þ
which provides a strict upper bound on material properties. Indeed, as δ approaches zero,
the displacement gradient field within the composite becomes more and more uniform
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(Figure 2), which finally results in the strain energy function tending to a simple weighted
average of the energy functions of both phases:

< F0
� �� �

d!0 ¼ V1y1 F0
� �þ V2y2 F0

� �
: ð16Þ

The Reuss bound can be obtained in the same fashion from the complementary energy
theorem:

<*
D E

$
� <*: ð17Þ

In practice, the bound (17) is of little use since the complementary energy function in
nonlinear elasticity is generally unknown. We shall therefore investigate the strict lower
bound in a different way. Consider the complementary energy functional in the form

Q Uij


 � ¼
Z
V0

@y
@Uij

Uij � y

� 	
dV �

Z
SU

@y
@Uij

njx
0
i dS; ð18Þ

where x0i denotes the coordinates of a particle inside the body in the current configuration.
Under the kinematic uniform boundary condition SU = S0 and upon application of the
Green –Gauss theorem, the functional (18) reduces to

Q Uij


 � ¼ �
Z
V0

ydV : ð19Þ

At the same time, for an admissible stress field in the composite we have either

Q Pij


 � � Q Pij


 � ð20Þ
or

<h i$ � < P
� �

; ð21Þ
which provides a strict lower bound on the effective strain energy function.

Figure 2 Partitioning of a
window of scale δ into four
squares of scale δ′ < 1.
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Note, that the Voigt / Reuss bounds don’t give any information on the size of the RVE
and, while rigorous, provide a very bad estimate of the effective material properties. As is
well known, the Hashin–Shtrikman bounds [29, 30] also provide bad estimates as the
phases’ mismatch in the microstructure grows. By contrast, the bounds investigated in the
current study are progressively tight with the mesoscale growing.

3 Numerical Experiments

3.1 Material Model

To illustrate and investigate the convergence of mesoscale bounds to the RVE response, we
consider a material made of an elastomeric matrix with embedded, randomly distributed
nonlinear elastic inclusions. Such a composite is often employed in industry to enhance
mechanical properties of polymeric materials [31], to improve their toughness [32, 33],
impact strength [34], etc. It also models some biological tissues [35].

Here we study a two-dimensional nonlinear composite with the microstructure modeled
through a planar homogeneous Poisson point process with a probability mass function defined as

P N Að Þ ¼ kf g ¼ e�l Að Þ l Að Þk
k!

;A � R2; ð22Þ
where N(A) is a number of successful trials and 1(A) is a parameter defined as

l Að Þ ¼ f
Area B wð Þð Þ
Area Að Þ ; ð23Þ

where f is a prescribed volume fraction of inclusions. Poisson points are generated in such a
way that no two points may be closer than a certain distance D = 1.1d, where d is the diameter
of the inclusions. Imposing this non-overlap condition allows us to avoid numerical difficulties
associated with narrow necks between inclusions, which can be crucial in simulations involving
finite deformations.

For numerical simulations we consider a compressible isotropic hyperelastic material of
Ogden type [36] with the strain energy function given by

y ¼
XN
i¼1

2mi

a2
i

elai
1 þ elai

2 þ elai
3 � 3

� �
þ
XN
i¼1

1

Di
J � 1ð Þ2i;

ela ¼ J�
1
3la;

ð24Þ

where la are principal values of the deformation gradient, J is the Jacobian and N, μi, αi,
and Di are material parameters. Classical (initial) shear μ0 and bulk modulus κ0 in the
reference configuration for the Ogden form are related to the material parameters by the
expressions

m0 ¼
XN
i¼1

mi; ð25Þ

k0 ¼ 2

D1
: ð26Þ

When dealing with a nonlinear composite it is not clear how to define mismatch between
the phases, especially when they are described by two different forms of the strain energy
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function. While most engineering materials for which linear elasticity theory is applicable
are compressible, the hyperelastic response is characterized by near incompressibility. For a
typical elastomer the initial bulk modulus exceeds the shear modulus by 1,000 to 10,000
times and, therefore, a mismatch (or contrast) between two phases α in the hyperelastic
composite would be more logically defined in terms of the initial shear modulus rather than
in terms of the bulk modulus or material parameters in general.

The physical properties of the materials used in the illustrative examples of this paper are
listed in Table 1. Material 1 defines a typical rubber [36] and materials 2 and 3 are of neo-
Hookean type [37], which, as can be seen from the table, can be obtained as a special case
of a general Ogden strain energy potential (24). The neo-Hookean type strain energy
function is the simplest form of y and is a generalization of a linear stress–strain relation in
finite elasticity. It provides good agreements with experiments within a small strain domain
and therefore is preferable to be employed when deformations are relatively small.

It is worth mentioning that the strain energy potential (24) with parameters defined in
Table 1 satisfies inequalities (11) and (12) and therefore bounds (8) and (9) hold over all
admissible deformations.

To illustrate and compare the convergence of bounds (8) and (9), we investigate four
nonlinear elastic composites of the following types:

No. 1: neo-Hookean inclusions in Ogden matrix with
m ið Þ
0

m mð Þ
0

¼ 10,

No. 2: Ogden inclusions in neo-Hookean matrix with
m ið Þ
0

m mð Þ
0

¼ 0:1,

No. 3: neo-Hookean inclusions in neo-Hookean matrix with
m ið Þ
0

m mð Þ
0

¼ 10,

No. 4: neo-Hookean inclusions in neo-Hookean matrix with
m ið Þ
0

m mð Þ
0

¼ 0:1, as well as two
linear elastic composites:

No. 5: m ið Þ

m mð Þ ¼ 10, k ið Þ
k mð Þ ¼ 10,

No. 6: m ið Þ

m mð Þ ¼ 0:1, k ið Þ
k mð Þ ¼ 0:1,

where μ is the shear modulus and κ is the bulk modulus. The volume fraction of inclusions
is chosen to be 0.35; perfect bounding between matrix and inclusions is assumed.

3.2 Discretization

The finite element analysis is carried out using the software ABAQUS 6.5. The
discretization is performed with a non-uniform mesh (Figure 3), generated automatically
with the use of the ABAQUS scripting interface. Such a mesh shows a significantly better
convergence to the true solution with a smaller number of degrees of freedom (DOF)

Table 1 Material properties used in the computational examples

Material Material parameters Initial shear modulus (N/m2)

Ogden type N = 3, μ1 = 4.095 × 105 N/m2, α1 = 1.3 μ0 = 4.225 × 105

μ2 = 0.03 × 105 N/m2, α2 = 5.0
μ3 = 0.1 × 105 N/m2, α3 = −2.0
D1 = 4.733 × 10−8 N/m2, D2 = 0, D3 = 0

Neo-Hookean type N = 1, μ1 = 42.25 × 105 N/m2, α1 = 2.0 μ0 = 42.25 × 105

D1 = 4.733 × 10−8 N/m2

Neo-Hookean type N = 1, μ1 = 4.225 × 105 N/m2, α1 = 2.0 μ0 = 4.225 × 105

D1 = 4.733 × 10−8 N/m2
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compared to the square shaped uniform mesh. Over a series of repetitive refinements, an
average element size of 0.75 for d = 10 (approximately 450 DOF for δ = 1 and 70,500 DOF
for δ = 16) was found to produce mesh independent results. Four-node bilinear elements
with full integration are used in the analysis.

3.3 Ensemble Averaging

Before proceeding with numerical experiments, the number of microstructural assembles
for each window size δ must be investigated. As the window size is increasing, the
probability of occurrence of extremely high or small values of the stored strain energy
becomes smaller. As a result, the standard deviation σ decreases approaching zero as δ → ∞
(for the discussion of the dependence of the standard deviation on δ see “Statistical
Approach to the RVE Size Estimation Section 3.4.2”). Thus, the larger is the window size,
the lower is the number of numerical experiments required to obtain statistically
representative results. The following numbers of realizations of a random composite were
generated: 512 for δ = 1; 384 for δ = 2; 160 for δ = 4; 40 for δ = 8; 10 for δ = 16.

It is interesting to determine the probability density function that describes the energy
density distribution of the composite at different scales. Such an analysis was carried out for
the nonlinear composite No. 1. It was found that the distribution function does depend on
the scale, however averaging over all scales showed that, for both displacement and traction
boundary conditions, the Beta and Chi distributions give the best fit among all the classical
distributions with a 0.8% difference in the Kolmogorov–Smirnov test statistic. The plot of
the corresponding Beta functions for each scale is given in Figure 4. With the increasing
window size, the probability density function flows away from end points converging to the
Dirac delta as δ → ∞. Moreover, depending on the boundary conditions, the mean value
shifts to the right or to the left. The negative sign of the strain energy in Figure 4b is a result
of the way we calculate the energy density under traction boundary condition (10), and this
is described in more detail in the next section.

3.4 Numerical Results

3.4.1 Bounds on Effective Properties

If the microstructure statistics admits isotropy, then, upon ensemble averaging (which
involves integration over all the realizations of the random microstructure), the

Figure 3 The finite element mesh of a composite in (a) undeformed and (b) deformed (traction boundary
conditions) configurations.
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microstructure response is isotropic – no material direction has any preference. This
reasoning is implicitly involved in the development of constitutive laws of materials in
deterministic continuum mechanics. If sufficiently many realizations of a composite are
taken to remove the directional dependence, then isotropy of the ensemble-averaged response
is also very well supported by numerical simulations. For example, in linear elasticity com-
putational results show that 〈Cδ〉 is an isotropic forth-rank tensor [15], whereas in nonlinear
elasticity the ensemble average stress under KUBC has zero shear components, which can
be expected only for an isotropic response. Analogous results are obtained under static
uniform boundary conditions for the ensemble averaged deformation gradient tensor.

Hence, in the following, we take 〈yδ〉 to be an isotropic scalar valued function of F and
treat the ensemble averaged material response of the nonlinear composite as generally
isotropic. Consequently, the stored energy function 〈yδ〉 may be regarded as a symmetric
function of the three extension ratios la.

For a good description of hyperelastic materials, more than one type of test is required. If
only one test is performed, the non-uniqueness of material parameters fitted to the
experimental data may occur [38]. This is particularly important when the material is
defined by a complex strain-energy function, such as the one given by (24).

Generally, any deformation mode can be investigated. However, from the experimental
standpoint, the most common deformation modes are considered to be sufficient to
determine material coefficients [36]. Here we assume plane stress deformations and
consider three different deformation modes: uniaxial tension, equibiaxial tension and pure
shear, along with three types of boundary conditions summarized in Table 2.

It is very difficult to obtain pure shear response in the nonlinear composite under SUBC
specified in the reference configuration (see (6)) unless deformations of the material are
known a priori. Moreover, since the surface traction applied on the boundary of the sample
is a dead load, numerical difficulties associated with excessive finite element distortions in
shear and boundary contact make determination of the stress–strain curve almost im-
possible. Note, that the dead load assumption allows us to use variational principles in the
derivation of mesoscale bounds without placing any limitation on the choice of statically
admissible stress.

Figure 4 Probability densities for the stored strain energy density of the nonlinear composite No. 1 under
(a) uniform displacement and (b) uniform traction boundary conditions.
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Orthogonal-mixed boundary conditions specified in Table 2 reproduce a common
experimental setup, when displacements are applied without friction on all sides of the
specimen (Figure 5). These boundary conditions are important from a practical viewpoint as
they allow one to compare numerical simulations with experimental results.

Figures 6 and 7 present two examples of a nonlinear composite response under uniaxial
loading. From the stress–strain curves we observe that the effective response for both com-
posites is bounded from above by a response under displacement boundary conditions and
from below by a response under traction boundary conditions. Orthogonal-mixed boundary
conditions give an intermediate result for δ > 2 and tend to overestimate the effective response
for smaller window sizes. It is interesting to note that, while in the first composite (where
matrix is represented by a soft Ogden type material) the curves change their shape gradually
from the neo-Hookean to Ogden type response, in the second composite the curves are more
shifted toward the hard phase. Analogous results were obtained for all considered deformation
modes, which we do not present here for the sake of brevity.

Table 2 Boundary conditions used in the computational examples

Deformation
modes

Uniaxial tension Equibiaxial tension Pure shear

Static
uniform b.c.
(SUBC)

P0
11 ¼ P;

P0
22 ¼ P0

12 ¼ P0
21 ¼ 0

P0
11 ¼ P0

22 ¼ P

P0
12 ¼ P0

21 ¼ 0
; –

Kinematic
uniform b.c.
(KUBC)

F0
11 ¼ l1

� �P
; F0

22 ¼ l2
� �P

;

F0
12 ¼ F0

21 ¼ 0

F0
11 ¼ F0

22 ¼ l;

F0
12 ¼ F0

21 ¼ 0

F0
11 ¼ l; F0

22 ¼ 1
l ;

F0
12 ¼ F0

21 ¼ 0

Orthogonal-
mixed b.c.
(MIXED)

F0
11 ¼ l1

� �P
; F0

22 ¼ l2
� �P

;

P0
12 ¼ P0

21 ¼ 0

F0
11 ¼ F0

22 ¼ l;

P0
12 ¼ P0

21 ¼ 0

F0
11 ¼ l; F0

22 ¼ 1
l ;

P0
12 ¼ P0

21 ¼ 0

Figure 5 Loading under orthog-
onal-mixed boundary condition.
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The material coefficients were computed for each stress–strain data set using standard
fitting procedure and the Ogden model with N = 1, N = 2, N = 3 [38]. It was found that for
composite No. 1 the strain-energy function with three terms provides the best fit up to δ = 2
under KUBC, whereas the one term strain energy function and the neo-Hookean model
give better results for δ = 1 under KUBC and for the Voigt bound, respectively. An opposite
situation is encountered for the composite No. 2, where the three terms Ogden function is
slowly changing to a two terms function at δ = 2 under SUBC, and then to a neo-Hookean
model at δ = 16 under KUBC. Unfortunately, here we cannot mathematically describe the
transition of each material parameter from the lower to the upper bound. The reason for it is
that even a slight change in material response produces a completely different set of fitted
material parameters, and therefore there is no continuous transition for individual coefficient
from one scale to another. The only material parameter, for which the scale dependence can be
defined mathematically, is the initial shear modulus (Figure 8). Indeed, it was found that

m t
0 ¼ A exp md½ � � B exp �nd½ �; ð27Þ

m d
0 ¼ C exp �kd½ � þ D exp �pd½ �; ð28Þ

where A, m, B, n, C, k, D and p are parameters evaluated through a nonlinear least-square
fitting procedure (Table 3).

Figure 6 Stress – strain curves of a random composite No. 1 under uniaxial loading.
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Under KUBC for the composite No. 1 the difference of approximately 30% occurred
between the initial shear modulus of samples 2 and 16 times bigger than the heterogeneity
size, whereas under SUBC the difference is only 2%. An opposite result is encountered for
the composite with soft inclusions (No. 2): 9% difference under KUBC and 33% under
SUBC. It is interesting to note that the studies of a linear microstructure with random
distribution of pores, modeled as soft inclusions [10], revealed the difference of 2.6% for
effective shear response under KUBC. Our study shows, that results obtained under KUBC
only might lead to a wrong estimation of the RVE. Thus, for a reliable estimate one has to
consider the convergence of both bounds.

The curve fitting for neo-Hookean type composites showed that all the ensemble-
averaged responses are best represented by the neo-Hookean form. The slight deviations
from the neo-Hookean model are small compared to the other forms. Analogous
observations for the effective material response were made in [19].

A strain-energy density is a function of three principal stretches and therefore it has
different values for different boundary conditions. To demonstrate the convergent trends of
bounds (8) and (9) we will consider each deformation mode given in Table 2 and proceed
with the following steps:

1) Compute response under SUBC and obtain
�
<*ðP 0Þ�d;

2) Apply KUBC through l0i ¼ li
� �P

d¼ dmax
and obtain < F0ð Þ� �

d;

Figure 7 Stress – strain curves of a random composite No. 2 under uniaxial loading.
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3) Compute lower bound on the strain energy function using the following relation:

< P0
� �� �

d ¼ Pd¼dmax : Fd¼dmax � <* P 0
� �� �

d: ð29Þ

With increasing δ, the gap between < F 0
� �� �

d and < P 0
� �� �

d becomes smaller, and this can
then be used to estimate the size of the RVEwith a desired accuracy. In our numerical analysis
we choose δmax = 16, given the limitation of our computer (11 GB of random access memory).

The results for two nonlinear composites are shown in Figure 9. The values are normal-
ized with respect to the Voigt bound. The numerical simulations support theoretically
derived results (8) and (9): the natural boundary condition provides the upper bound, while
the essential boundary condition provides the lower bound. The comparison shows that for

Table 3 Parameters in equations (26) and (28) for different composite models

Composite A × 10−5 m B × 10−5 n C × 10−5 k D × 10−5 p

1 5.5 0.0004 0.3 0.766 6.2 0.0076 11.9 1.172
2 14.6 0.0065 10.3 0.472 18.7 0.0017 4.7 0.656
3 6.5 0.0010 0.8 0.635 7.6 0.0058 8.9 1.001
4 16.8 0.0054 10.7 0.587 20.6 0.0017 5.2 0.858
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Figure 8 Bounds on the initial shearmodulus for different composites: (a)No. 1, (b) No. 2, (c)No. 3, (d)No. 4.
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all deformation modes the hierarchical trends are similar. However, when the matrix is soft,
the lower bound converges faster, whereas for a composite with the hard matrix the lower
bound approaches the effective value slower than the upper one. An analogous conclusion
can be made for all the studied composites (see Figures 9, 10 and 11).

As expected from the stress–strain response, the mixed boundary condition yields an
intermediate result, which asymptotes rapidly. This can be used to estimate the effective
response without an initial determination of the RVE size.
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Figure 9 Energy bounds for the nonlinear random composite of Ogden – neo-Hookean type (No. 1 and No. 2)
under (a), (b) uniaxial tension, (c), (d) biaxial tension, (e), (f) pure shear.
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When δ → 0, samples can be considered to be homogeneous with the material corres-
ponding to either matrix or inclusions and mixed boundary conditions become identical to
displacement controlled boundary conditions. This is the reason why the response under the
mixed boundary condition also converges from above. It can be noticed that for composites
with

m ið Þ
0

m mð Þ
0

¼ 0:1, the response under the mixed boundary condition does not decay monoton-
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Figure 10 Energy bounds for the nonlinear random composite of neo-Hookean – neo-Hookean type (No. 3
and No. 4) under uniaxial tension.
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Figure 11 Bounds on the strain energy (a, b) and material properties (c, d) of the linear elastic composite
(No. 5 and No. 6) under uniaxial tension.
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ically: it shifts in the range of 1 < δ < 4 for all nonlinear materials under uniaxial and biaxial
tension.

In Figure 11 we compare mesoscale bounds on the strain energy function with the
bounds on the effective stiffness tensor in linear elasticity. These bounds represent different
quantities and are computed under different boundary conditions. To estimate the conver-
gence of the strain energy we first compute the response under SUBC and then apply the
ensemble-averaged strain in KUBC using only one set of boundary conditions defined
above. In order to estimate apparent moduli in linear in-plane elasticity one needs at least
three tests to determine six unknowns: C1111, C2222, C1212, C1122, C2211, C1211 under KUBC
and S1111, S2222, S1212, S1122, S2211, S1211 under SUBC [17]. Therefore, it is interesting to
find that the convergence rates in both cases are similar, which means that both methods
can be equally used in estimation of the RVE.

Another distinct feature of nonlinear elasticity is the dependence of the convergence rate
on deformation. We investigate such a dependence on the example of the nonlinear compos-
ite No. 1 (Figure 12). Here we define a discrepancy as

D ¼ Re
d � Rn

d

Re
d þ Rn

d

� ��
2
�100%; ð30Þ

where Re
d ¼ <eh id is the response under essential boundary conditions (KUBC) and Rn

d ¼
Pn : Fn �<nh id is the response under natural boundary conditions (SUBC). Due to high
scatter of numerical results for l ≤ 1.25, the discrepancy curve in this range is replaced by a
dashed line, approaching D ¼ me0�mn0

me0þmn
0ð Þ=2 as l → 1. The graph shows that the dependence of

the convergence rate on the stretch value is highly nonlinear with a large difference between
uniaxial and biaxial results for small l. Moreover, the normalized effective response changes
with the stretch ratio.

It is interesting to note that even for the neo-Hookean type composites there is a depen-
dence of the convergence rate on the deformation. Comparing different composites at δ = 16,
the discrepancy is increasing in the following order: linear elastic composite, neo-Hookean
composite and Ogden-neo-Hookean composite for the mismatch ratio α = 10, and in the
opposite order for the mismatch ratio α = 0.1. The comparative study of other cases can be
found in [39].

Thus, the RVE size will change depending on the quantity of interest: the maximum
stretch ratio, the deformation mode and the mismatch of properties of constituents. Based on
the energy bounds for composite No. 1, an approximate estimation of the RVE (under
uniaxial tension, for stretch ratio l = 5) is as follows: δ = 16 corresponds to 6.4%, δ = 8% to
11%, and δ = 4% to 18.8% error/discrepancy in overall effective properties. Hence, if
results with 6.4% accuracy are considered to be acceptable for a particular test or analysis,
δ = 16 can be chosen as the RVE.

3.4.2 Statistical Approach to the RVE Size Estimation

One of the methods of determination of the RVE often considered in the literature (see, for
example [5, 10, 11, 18–20]), is the investigation of a property or stress/strain field fluc-
tuation when the sample size is increased. The RVE size is then taken to be that size of the
composite at which increasing the number of realizations does not improve the estimation
of some particular property.

For the completeness of presentation, here, we consider such an approach and
investigate the influence of the composite type and boundary conditions on the coefficient
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of variation Cv of the corresponding strain energy and complementary energy (Figure 13).
As can be seen from the graphs, the coefficient of variation strongly depends on boundary
conditions and, with a few exceptions, is almost identical for different composites for δ > 8.

For the RVE size 16 times bigger than the heterogeneity size (δ = 16), the normalized standard
deviation of the random fluctuations of the effective strain energy is less than 2%, whereas
the discrepancy in strain energy, as it is calculated in the previous section, can be estimated
to be over 6%. Thus, the statistical approach generally underestimates the size of the RVE.

4 Conclusion

In this paper we present and apply the homogenization procedure to quantitatively estimate
the scale dependence of apparent responses of random composites for which the material
properties of matrix and inclusion differ not only in coefficients but also in strain energy
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function representations. The results obtained are compared with those where both matrix
and inclusion are described by a neo-Hookean strain energy function as well as with the
results of linear elasticity theory. The main findings and conclusions are summarized below:

(1) It is shown that the uniform displacement and traction boundary conditions provide,
respectively, the upper and lower bounds on the stress–strain response and on the
effective strain energy function for all the considered nonlinear elastic and linear
elastic composites. Thus, the proposed scale-dependent homogenization allows one to
estimate the RVE properties on finite scales within any desired precision.

(2) Convergence of bounds towards the RVE depends on the mismatchα, defined as the ratio
between initial shear modulus of inclusions and matrix, the deformation and the
deformation mode. For the mismatch ratio α = 10 (stiff inclusions in a soft matrix) the
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lower bound converges faster, whereas the mismatch ratio α = 0.1 (soft inclusions in a
stiff matrix) provides faster convergence of the upper bound.

(3) The orthogonal-mixed boundary conditions produce an intermediate response for all
the considered composites.

(4) The homogenization technique, based on the investigation of the properties’
fluctuations with the sample scale, provides a smaller RVE size than the technique
described in the present study.
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