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AbstracL A secret sharing scheme permits a secret to be shared among partici- 
pants in such a way that only qualified subsets of participants can recover the secret, 
but any nonqualified subset has absolutely no information on the secret. The set 
of all qualified subsets defines the access structure to the secret. Sharing schemes 
are useful in the management of cryptographic keys and in multiparty secure 
protocols. 

We analyze the relationships among the entropies of the sample spaces from 
which the shares and the secret are chosen. We show that there are access structures 
with four participants for which any secret sharing scheme must give to a partici- 
pant a share at least 50% greater than the secret size. This is the first proof that 
there exist access structures for which the best achievable information rate (i.e., the 
ratio between the size of the secret and that of the largest share) is bounded away 
from 1. The bound is the best possible, as we construct a secret sharing scheme for 
the above access structures that meets the bound with equality. 

Key words. Secret sharing, Ideal secret sharing schemes, Access structures, 
Perfect security. 

1. Introduction 

Secret sharing is an important tool in security and cryptography. In many cases 
there is a single master key that provides access to important secret information. 
Therefore, it would be desirable to keep the master key in a safe place to avoid 
accidental and malicious exposure. This scheme is unreliable: if the master key is 

* This work was partially supported by "Aigoritmi, Modelli di Calcoio e Sistemi Informativi" of 
M.U.R.S.T. and by"Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo" of C.N.R. under Grant 
Number 91.00939.PF69. 
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lost or destroyed, then all information accessed by the master key is no longer 
available. A possible solution would be that of storing copies of the key in different 
safe places or giving copies to trusted people. In such a case the system becomes 
more vulnerable to security breaches or betrayal 1,15], [9]. A better solution would 
be breaking the master key into pieces in such a way that only the concurrence of 
certain predefined trusted people can recover it. This has proven to be an important 
tool in the management of cryptographic keys and in multiparty secure protocols 
(see, for example, [11]). 

As a solution to this problem, Blakley 1,2] and Shamir 1,15] introduced (k, n) 
threshold schemes. A (k, n) threshold scheme allows a secret to be shared among n 
participants in such a way that any k of them can recover the secret, but any k - 1, 
or fewer, have absolutely no information on the secret (see [171 for a comprehensive 
bibliography on (k, n) threshold schemes). 

Ito et al. [12] described a more general method of secret sharing. An access 
structure is a specification of all the subsets of participants who can recover the 
secret and it is said to be monotone if any set which contains a subset that can 
recover the secret, can itself recover the secret, lto et al. gave a methodology to 
realize secret sharing schemes for arbitrary monotone access structures. Subse- 
quently, Benaloh and Leichter [1] gave a simpler and more efficient way to realize 
such schemes. 

An important issue in the implementation of secret sharing schemes is the size of 
shares, since the security of a system degrades as the amount of the information 
that must be kept secret increases. Unfortunately, in all secret sharing schemes the 
size of the shares cannot be less than the size of the secret. 1 Moreover, there are 
access structures for which any corresponding secret sharing scheme must give to 
some participant a share of size strictly bigger than the secret size. Indeed, Benaloh 
and Leichter 1,1] proved that there exists an access structure for which any secret 
sharing scheme must give to some participant a share which is from a domain larger 
than that of the secret. Recently, Brickell and Stinson 1,6] improved on I-1] by 
showing that, for the same access structure, the number of elements in the domain 
of the shares must be at least 21SI - 1 if the cardinality of the domain of the secret 
is ISI. Ideal secret sharing schemes, that is sharing schemes where the shares are 
taken from the same domain as that of the secret, were characterized by Brickell 
and Davenport 1,5] in terms of matroids. 

All above results regarding the size of the domain of the shares and that of the 
secret, can be interpreted as relations between the entropies of the corresponding 
sample spaces when only uniform probability distributions are involved. A more 
general approach has been considered by Karnin et al. [13] who initiated the 
analysis (limited to threshold schemes) of secret sharing schemes when arbitrary 
probability distributions are involved. 

We extend the approach of [13] to general access structures deriving several 
relations among the entropies of the secret and those of the shares even when partial 

1 This property holds since nonqualified subsets of participants have absolutely no information on 
the secret. If we relax this requirement (as is done in ramp schemes [3], [7]) the size of the shares might 
be less than the size of the secret. 
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informations is taken into account. When we restrict probability distributions to 
be uniform, our results imply an improvement over the above-mentioned results on 
the size of shares. 

In this paper we prove that, for any secret sharing scheme, for any set A of 
participants which are not qualified to recover the secret, the average uncertainty 
on each share of participants in another set B, given that the shares of A are known 
(A and B are sets of participants such that they can recover the secret by pooling 
their shares together), must be at least as great as the a priori uncertainty on the 
secret. This is a generalization and also a sharpening of a result in [13]. We also 
analyze the relationships between the size of the shares and that of the secret. We 
improve on the result of [6] proving that there are access structures with four 
participants for which any secret sharing scheme must give to some participant 
shares which are from a domain of size at least ISl x5, ISl being the secret domain 
size. In other words, we show that the number of bits needed for a single share is 
50% bigger than those needed for the secret. This is the first proof that there exist 
access structures for which the best achievable information rate (i.e., the ratio 
between the size of the secret and that of the largest share) is bounded away from 
1. We construct a secret sharing scheme for the above access structures which meets 
the bound with equality. Finally, the bound is generalized to access structures with 
any number of participants. 

2. Preliminaries 

In this section we review the information-theoretic concepts we use. For  a complete 
treatment of the subject the reader is advised to consult [8], [10], and [16]. 

Given a probability distribution {p(x)}x ~ x on a finite set X, define the entropy of 
X, H(X), as 

H(X) = - ~, p(x) log p(x). 2 
x e X  

The entropy H(X) is a measure of the average information content of the elements 
in X or, equivalently, a measure of the average uncertainty one has about which 
element of the set X has been chosen when the choices of the elements from X are 
made according to the probability distribution {p(x)}~x. It is well known that 
H(X) is a good approximation to the average number of bits needed to represent 
the elements of X faithfully. The following useful property of H(X) is used in what 
follows: 

0 < H(X) < loglXl, (1) 

where H(X) = 0 if and only if there exists Xo e X such that p(Xo) = 1; H(X) = 
loglXI if and only ifp(x) = I/IXI, u e X. 

Given two sets X and Y and a joint probability distribution {p(x, Y)}~x,y~ r on 
their cartesian product, the conditional entropy H(XI Y) of X given Y, also called 

2 All logarithms in this paper are of base 2 
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the equivocation of X given Y, is defined as 

H(XI Y) = - ~. ~ p(y)p(x[y) log p(xly). 
y e  u x ~ X  

The conditional entropy can bc written as 

H(XI Y) -- ~ p(y)H(XJ Y = y), 

where H(Xa Y = y ) =  -~.~exp(xly) log p(x[y) can be interpreted as the average 
uncertainty one has about which element of X has been chosen when the choices 
are made according to the probability distribution {p(xly)}~x, that is, when it is 
known that the value chosen from the set Y is y. From the definition of conditional 
entropy it is easy to see that 

H(XI Y) > O. (2) 

The entropy of the joint space X Y satisfies 

H(XY)  = H(X) + H(YIX) = H(Y) + H(XI Y). (3) 

Analogously, the conditional entropy of X Y given Z satisfies 

H(XYIZ)  = H(XIZ) + H(YIXZ)  = H(YIZ) + H(XI YZ). (4) 

The mutual information between X and Y is defined by 

I(X; Y) = H(X) - H(XI Y) (5) 

and enjoys the following properties: 

I(X; Y) = I(Y; X) (6) 
and 

l(X; Y) >_ 0, (7) 

with equality in (7) if and only if p(x, y) = p(x)p(y) for all x ~ X, y e Y. From 
inequality (7) the following important relation between the entropy of X and the 
conditional entropy of X given Y is obtained: 

H(X) >_ H(XI Y). (8) 

Inequality (8) formally proves the intuitive fact that the knowledge of Y, on average, 
can only decrease the uncertainty one has on X and there is no decrease if and only 
ifX and Yare statistically independent. The conditional mutual information between 
X and Y given Z is defined by 

I(X; YIZ) = H(XIZ) - H(X[ YZ). (9) 

Notice that H(X[ZY)  = ~y~ rp(y)H(X[Z, Y = y), where 

H(XIZ, Y = y) = - ~ p(xzly) log p(xlyz). 
X ) Z  

When no ambiguity arises we drop the comma in H(X[Z, Y = y). The conditional 
mutual information I(X; YIZ) satisfies three important properties: 

I(X; YIZ) >_ O, (10) 

I(X; YIZ) = I(Y; XIZ), (11) 
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and 

l(X; Yz) = l(X; z)  + l(X; YIZ), 

with equality in (10) if and only if, Vz such that p(z) > 0 and Vx, y, it holds that 
p(x, ylz) = p(x]z)p(y[z). Formulae (9) and (10) imply the following generalization of 
inequality (8): 

H(XIZ)  > H(X[ YZ). (12) 

3. Secret Sharing Schemes 

A secret sharing scheme permits a secret to be shared among n participants in such 
a way that only qualified subsets of them can recover the secret, but any nonqualified 
subset has absolutely no information on the secret. Secret sharing schemes satisfying 
the above two conditions are usually referred to as perfect as opposed to secret 
sharing schemes in which the concurrence of nonqualified subset of participants can 
obtain some information on the secret (e.g., the ramp schemes of [3]). 

Given a set P, an access structure on P is a family of subsets M _ 2 e. The closure 
of a family of subsets M _ 2 P is defined as closure(M) = {A': A r M, A ~_ A' ~ P}. 
A natural property for an access structure M is that of being monotone, i.e., M = 
closure(M). 

Let P be a set of participants, let M be a monotone access structure on P, and 
let S be the set of secrets. Following the information-theoretic approach of [13] and 
[14], we say that a secret sharing scheme is a sharing of secrets among participants 
in P such that: 

1. Any qualified subset can reconstruct the secret. For all A ~ M, H(S[A) = O. 
2. Any nonqualified subset has absolutely no information on the secret. For all 

A q~ M, H(SIA) = H(S). 

Remark 1. Notice that H(SIA) = 0 means that each set of values of the shares in 
A determines a unique value of the secret. In fact, by definition, H(SIA) -- 0 implies 
that, Va ~ A with p(a) ~ O, Is ~ S such that p(s[a) = 1. Moreover, H(SIA) = H(S) 
means that S and A are statistically independent, i.e., u ~ A, Vs ~ S, p(sla) = p(s) 
and therefore the knowledge of any a in A gives no information about the secret. 
Notice that the condition H(SIA)= H(S) is equivalent to saying that, Va ~ A, 
H(SIA = a) = H(S). 

Shares given to the participants are not necessarily taken from the same domain. 
For instance, let the set of participants be P = {A, B, C, D} and consider the access 
structure M ~  consisting of the closure of the set { {A, B}, {B, C}, {C, D} }. Let the 
secret s be a uniformly chosen n-bit string. A possible secret sharing scheme for M ~  
consists of uniformly chosing three pairs of strings whose XOR gives the secret s, 
that is, such that s = a ~ bl = b2 ~ cl = c2 ~ d and giving shares a to A, bl, b2 to 
B, Cl, c2 to C, and d to D. The size of the shares given to B and C is twice the size 
of the shares given to A and D, and the size of the secret itself, that is, we have 
H(B) = H(C) = 2H(A) = 2H(D) = 2H(S). 
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Karnin et al. 113] proved that, in any threshold scheme, any set X i from which 
the ith share is taken, satisfies H(X~) > H(S). What is the uncertainty on the shares 
for general access structures when other shares are known? Assume a set of partici- 
pants Y cannot determine the secret, but they could if another participant (or group 
of participants) X would be willing to pool its own share. Intuitively, for general 
access structures, the uncertainty on the shares given to X is at least as big as that 
on the secret itself, from the point of view of Y. Otherwise, the set of participants Y 
would have some information on the secret and could decrease their uncertainty 
on S. This is formally stated and proved in the next lemma which constitutes an 
extension and a sharpening on Theorem I of Karnin et al. [13]. 

Lemma 3.1. Let Y q~ ~t and X u Y e ~ .  Then H(XI Y) = H(S) + H(X[ YS). 

Proof. Consider the conditional mutual information I(X; SI Y) that can be written 
either as H(XI Y) - H(XISY)  or as H(SI Y) - H(SIX Y). Hence, 

n ( s l  Y) = H(SI Y) + H(XI YS) - H(S IXY)  

= H(S) + H(XI YS). [] 

Note that in the same way we can prove the slightly more general formula 

H(XI Y = y) = H(S) + H ( X I S Y  = y), Vy ~ Y, 

for X and Y satisfying the same hypothesis of Lemma 3.1. From Lemma 3.1, (8), 
and (2) we also obtain H(X) > H(S), for each X c P, which is essentially Theorem 
1 of [13] generalized to monotone access structures. 

The next lemma implies that the uncertainty on the shares of participants, who 
cannot recover the secret, cannot be decreased by knowledge of the secret. 

Lemma 3.2. I f  either X u Y ~ ~ or X ~ ~t, then H(YIX)  = H(YIXS).  

Proof. The conditional mutual information I(Y, SIX) between Y and S given X 
can be written either as H ( Y I X ) -  H(YIXS)  or as H ( S I X ) -  H(SIXY) .  Hence, 
H(YIX)  = H(YIXS)  + H(SIX) - H(SIXY) .  Because of H(SIXY)  = n(slx), for 
either X w Yr162 or X ~ ~', we have H(YIX)  = H(YIXS).  [] 

The proof of the above lemma shows that condition 2 of perfect secret sharing 
schemes, namely, H(SIA) = H(S), VA r ~r is equivalent to the condition H(AIS) = 
H(A), VA q~ ~ .  

4. Bounds on the Size of Shares 

Benaloh and Leichter [ l l  gave the first example of an access structure for which 
any secret sharing scheme must give to some participant shares which are from a 
domain larger than that of the secret. The access structure they considered was 
~6e  = closure{ {A, B}, {B, C}, {C, D} }. Recently, Briekell and Stinson [6] showed 
that there are only two access structures with four participants which are the closure 
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of the edge set of a graph (i.e., the closure of a family whose elements are pairs of 
participants), satisfying the above limitation. Such access structures are ~r and 
slba2 = closure { {A, B}, {B, C}, {C, D}, {B, D} }. In this section we first give a lower 
bound on the entropy of the spaces from which the shares for the access structure 
~r are taken. Then we use this result to prove an analogous lower bound for ~r 
and more general access structures. To maintain simpler notation, we denote both 
the participants and the sets of possible values of their shares with the same capital 
letter; therefore the letter A, for instance, will denote both the participant that can 
reconstruct the secret in coalition with B and the set from which the possible shares 
for A are taken. 

A secret sharing scheme for d ~  satisfies: 

1. H(SIAB) = H(SIBC) = H(SiCD) = O. 
2. H(SIA) = H(SIB) = H(SIC) = H(SID) = H(SIAC) = H(SIAD) = H(S). 

We also have H(SiBD) = H(S), but we do not make use of it. 

Theorem 4.1. Any secret sharinff scheme for slAr satisfies 

We have 

H(S) < H(CIAD) 

< H(CIA) 

= H(CIAS) 

Proof. 

H(BC) > 3H(S). 

(from Lemma 3.1 and (2)) 

(from (12)) 

(from Lemma 3.2) 

(from (4) and (2)) 

The following corollary to Theorem 4.1 is immediate from (3) and (8). 

Corollary 4.1. Any secret sharinff scheme for M$a satisfies 

H(B) + HtC) > 3H(S). 

A consequence of the above corollary is that either B or C must have entropy at 
least 1.5H(S), that is, 50% bigger than that of the secret. 

Benaloh and Leichter [1] proved that for the access structure MAe either [ B[ > I SI 
or ICl > ISl must hold, where by ISI we denote the number of different secrets and 
by IB[ (ICl) the number of different shares that can be given to B (C). Then Brickell 
and Stinson [6] improved on [ 1] proving that the number of possible shares either 
for B or for C must be at least 2]Sl - 1. Our Corollary 4.1 implies the following 
sharper lower bound. 

H(CBIAS) = H(BIAS) + H(CIABS) 

H(BIAS) + H(CIBS) (from (12)) 

= H(BIA) - H(S) + H(CIB) - H(S) (from Lemma 3.1) 

<_ H(BC) - 2H(S) (from (8) and (3)). [] 
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Corol lary  4.2. Suppose the secret is uniformly chosen in S. Any secret sharino scheme 
for MSe satisfies either IBI > IS[ Ls or [C[ > ISI Ls. 

ProoL If the secret is uniformly chosen in S we have that H(S) = loglSI, and from 
Corollary 4.1 it follows that H(B) + H(C) > 3 loglSI. Hence, either B or C have 
entropy at least 1.5 loglSI. Assume H(B) > 1.5 loglSI. From (1) we have [B] > 2 ma~, 
and thus the number of different shares for B must be greater than or equal to 
2L5 IoslSl, which implies that IBI -> ISI LS. [ ]  

Notice that Corollary 4.1 gives a more general result, since it takes into account 
the probability distribution according to which the secret and the shares are chosen. 

Remark 2. The bound given by Corollary 4.2 is the best possible. Indeed, consider 
the following secret sharing scheme for ~r For  a binary secret s e S = {0, 1}, 
uniformly choose two pairs of bits whose XOR give the secret s, this is, such that 
s = a ~ b = c ~ d and give share a to the participant A, bd to B, c to C, and d to 
D. It can be easily seen that this scheme meets all the requirements for a secret 
sharing scheme, and moreover that H ( A ) =  H ( C ) =  H ( D ) =  H ( S ) =  1, while 
H(B) = 2 and H(BC) = 3H(S). If a 2-bit secret SoS~ ~ {0, 1} 2 is to be shared, then 
the following scheme can be used. For  i = 0, 1, uniformly choose bits a~, b~, q,  d~, 
such that a~ ~ b i = ci ~ d i =  si and give share aoa I to A, bodob I to B, cocla 1 to C, 
and dodl to D. This is a secret sharing scheme which satisfies H(A) = H(D) = 
H(S) = 2 and H(B) = H(C) = 1.5H(S) = 3. The generalization to n-bit secrets, as 
well as to nonbinary cases, is straightforward. In general, if ISI = q2, q is an integer 
greater than 2, the above procedure yields a scheme for which IAI = IDI = q2 and 
IBI = ICI = qa = (q2)1.5. 

Assume that all shares for participants are chosen from the same space K. As a 
consequence of Corollary 4.2 we get that the information rate loglSI/loglKI (as 
defined in [61) for any secret sharing scheme for dS~ is at most 2/3. The scheme 
above described has an information rate of exactly 2/3 when ISI = qZ. Thus, the 
bound of 2/3 is optimal for ~r and settles a problem in [6]. 

In case S = {0, 1} the bound given by Corollary 4.1 is the best possible for 
nonuniform distributions as well. Let Pr(S = O) = p and Pr(S = 1) = 1 - p, p < 
1/2. We first construct a (2, 2) threshold scheme for A and B that satisfies H(A) = 
H(B) = H(S). The shares are given to A and B according to the following probability 
distribution: 

Pr(A = 0, n = 0IS = 0) = 1/2, 

er (A  = 1, B = l IS = 0 ) =  1/2, 

_ P 
Pr(A = 0, B = llS = I) 2(I - p-------)' 

P 
Pr(A = I , B = O I S =  I ) =  I 

2(1  - p)" 

It is clear that Pr(A = O) = p and Pr(B = O) = 1 - p. Therefore H(A) = H(B) = 
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H(S) and it is trivial to check that both H(StA) = H(SIB) = H(S) and H(SIAB) = 0 
hold. Independently, apply the same threshold scheme to C and D and give a copy 
of the share that has been given to D also to B. It is easily seen that the secret sharing 
scheme constructed satisfies all the required properties and that H(B) + H(C) = 
3H(S). 

Our lower bound also holds for d ~ 2  which is the closure of the family { {,4, B}, 
{B, C}, {C, D}, {B, D}}. It is easily seen that Theorem 4.1 also applies, since in the 
proof we did not make use of the relation H(SIBD) = H(S) for ( ~ e 2  it holds 
H(S[BD) = 0). Hence, the following theorem holds. 

Theorem 4.2. Any secret sharing scheme for ~A:2 satisfies 

H(BC) >_ 3H(S) and H(BD) >_ 3H(S). 

Remark 3. The bound given by Theorem 4.2 is the best possible for uniform 
distributions. Indeed, consider the following secret sharing scheme for ~ e 2 .  For a 
binary secret s e S = {0, 1}, uniformly choose two pairs of bits whose XOR give the 
secret s ~ S, that is, such that s = a ~ b = c ~ d and give share a to participant A, 
b to B, ad to C, and ad to D. This is a secret sharing scheme which satisfies 
H(BC) = H(BD) = 3H(S). The scheme can be easily generalized to any nonbinary 
space. 

An immediate consequence of Theorem 4.2 is the following corollary. 

Corollary 4.3. I f  the secret is uniformly chosen in S, then any secret sharing scheme 
for ~o '2  satisfies either 

IBI > ISI x5 
or 

ICl >-ISI x'5 and IDI > ISI t s .  

Remark 4. A close look at the proof of Theorem 4.1 reveals that exactly the same 
bound (i.e., H(BC) >_ 3H(S)) holds for any access structure F for four participants 
A, B, C, and D, satisfying {AB}, {BC}, {ACD} e F and {AC}, {B}, {AD} r F. 
The minimal such structure is the closure of { {AB}, {BC}, {ACD} }, which has 
]closure(F)l = 7. 

The reader may wonder why, to prove lower bounds on the entropy of sample 
spaces from which the shares are drawn, we consider pairs of participants with the 
consequence of being forced to assertions like %.. either the entropy o f . . .  or the 
entropy of . . .  is bigger than 1.5H(S)." It would certainly be more desirable to prove 
results which would imply that the entropy of a given participant is bigger than 
0tH(S), 0t > 1 (say). Actually, this cannot be achieved. Indeed, given an access 
structure z~t ~_ 2 r and a fixed participant X a bound on H(X) better than the trivial 
one H(X) > H(S) cannot be proved as the following result shows. 

Theorem 43. Let an access structure ~ ~_ 2 P and a participant X ~ P be fixed. 
Then there exists a secret sharing scheme for ~ such that H(X) = H(S). 
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Proof. Let A 1 . . . . .  A, be all subsets of P such that X e A~, i = 1 . . . . .  r, and suppose 
that the secrets s are chosen from the set S according to the probability distribution 
{p(s)}s~ s. Let S = {0, 1 . . . . .  q - 1} and Ia~l = n~, i = 1 . . . . .  r. Shares given to 
participant X are chosen from S according to the probability distribution {p(s)}s ~ s. 
Therefore H(X) = H(S). Now, if a given value x has been given to X, let y be such 
that x ~ y = s, where ~ is now the addition modulo q. Divide the value y among 
the remaining participants in A~, i = 1 . . . . .  r, giving randomly chosen values Yi,,.-., 
Y,,-1 such that yq ~ . . .  ~ Y,,-I = Y. The rest of the secret sharing scheme is com- 
pleted according to any protocol which assures perfect secrecy. []  

Note that the above construction, even though it achieves the optimal value of 
H(X), does not prevent the entropy of other participants from becoming very large. 
The same proof can be applied, mutatis mutandis, to show that in any access 
structure which is the closure of the edge set of some graph, if two participants X 
and Y are fixed, then no better bound than 3H(S) on the joint entropy H(X Y) can 
be proved. 

In some cases it is also useful to know the total amount of secret information that 
must be given to the participants of a secret sharing scheme. The following result 
shows that there are access structures in which the sum of the shares sizes is equal 
to 1.51P[ ISI. Thus, "on average," any participant must have a share of size at least 
1.5 times the size of the secret. 

Theorem 4.4. There is an access structure of n >_ 5 participants, for which any 
scheme requires a total entropy of 

i=l 

Proof. Consider the "circular" access structure defined as the closure of the follow- 
ing set: 

{{Xl ,  X2}, {X2, X3} . . . . .  {Xn- 1, Xn}, {Xn, Xx}}. 

For each pair of set of shares Xi and Xi+l, we have H(Xi) + H(Xi+t) > 3H(S). 
Moreover, H ( X x ) +  H ( X , ) >  3H(S). Summing over all pairs we get H ( X x ) +  
H(X.) + ~7~_ 1 H(Xi) + H(Xi+x) 2 3nil(S). Hence, ~7=x H(Xi) > (3n/Z)H(S). [] 
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