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Abstract

The possibility that primordial black holes constitute a fraction of dark matter motivates a

detailed study of possible mechanisms for their production. Black holes can form by the collapse

of primordial curvature fluctuations, if the amplitude of their small scale spectrum gets amplified

by several orders of magnitude with respect to CMB scales. Such enhancement can for example

occur in single-field inflation that exhibit a transient non-attractor phase: in this work, we make

a detailed investigation of the shape of the curvature spectrum in this scenario. We make use of

an analytical approach based on a gradient expansion of curvature perturbations, which allows

us to follow the changes in slope of the spectrum during its path from large to small scales.

After encountering a dip in its amplitude, the spectrum can acquire steep slopes with a spectral

index up to ns − 1 = 8, to then relax to a more gentle growth with ns − 1 . 3 towards its

peak, in agreement with the results found in previous literature. For scales following the peak

associated with the presence of non-attractor phase, the spectrum amplitude then mildly decays,

during a transitional stage from non-attractor back to attractor evolution. Our analysis indicates

that this gradient approach offers a transparent understanding of the contributions controlling

the slope of the curvature spectrum. As an application of our findings, we characterise the

slope in frequency of a stochastic gravitational wave background generated at second order from

curvature fluctuations, using the more accurate information we gained on the shape of curvature

power spectrum.
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1 Introduction

Primordial black holes might constitute a fraction of dark matter [1–3]. This possibility has

been reinvigorated by the works [4–6], after the LIGO-Virgo detection of gravitational waves

from black hole merging events. See e.g. [7] for a thoughtful discussion of arguments in favour

of this hypothesis. The production of primordial black holes (PBHs) is associated with the

collapse of curvature perturbations at small scales. Starting with [8, 9], many works over the

years investigated the possibility to produce PBHs during cosmological inflation. One needs

dedicated mechanisms to amplify the curvature power spectrum by several orders of magnitude

between the large CMB scales, and the smaller scales associated with PBH formation. See e.g.

[10, 11] for reviews. Given that CMB observations are consistent with single-field inflation, it

is important to clarify the conditions to obtain a growth of the curvature power spectrum in

single-field scenarios, see e.g. [12–16]. A possibility is that the scalar field driving inflation first

rolls through a slow-roll phase – while it produces curvature fluctuations at the scales probed by

the CMB observations – to then pass over a inflection (or near-inflection) point of its potential,

leading to a transient non-attractor inflationary phase associated with PBH production. The

inflationary dynamics during such phases are dubbed as ultra or constant-roll inflation and have

been explored for example in [17–25].

Given the importance of this subject for connecting the physics of the early universe with the

dark matter problem, it is important to develop a reliable formalism, which allows one to acquire

an analytical understanding of the features of the growing curvature power spectrum during non-

attractor inflation. Ideally, such formalism should be physically transparent, and flexible enough

to be applied also to cases where the inflationary potential is non-monotonic, being characterised

by local maxima and minima that can lead to a rich inflationary dynamics. The appearance of

these kind of features in the scalar potential are motivated and explored in explicit string theory

constructions [26–28]. A possible framework to study these possibilities in string theory is axion

monodromy [29, 30], which realise natural inflation potentials [31] (see also [32–38]). In these sce-

narios, the inflationary evolution can pass through non-attractor phases, during which one of the

slow-roll conditions are not satisfied [16], and the amplitude of curvature perturbation becomes

several orders of magnitude larger than its amplitude at CMB scales. A consistent approach for

analysing the behaviour of curvature fluctuations during transitions between attractor and non-

attractor phases has been implemented in the interesting work [39], making use of Israel junction

conditions [40, 41] to match the mode functions of curvature perturbation at different epochs.

The study performed in [39] provides an analytical understanding for the presence of a spiky

dip, that usually precedes a rapid growth in the power spectrum of curvature perturbation in

inflationary scenarios where the transition to a transient non-attractor phase is realised through

monotonic potentials [39] then finds that the maximal slope of the curvature power spectrum

growth, well far from the dip, is characterised by a spectral index ns − 1 = 4, before reaching

a peak associated with the non-attractor era. The more recent work [42] found that a slightly

steeper growth is possible if a prolonged intermediate stage of non-slow-roll expansion occurs

between the standard slow-roll attractor, and the non-attractor epochs.

In this work we propose to study the problem adopting a method based on a gradient expansion

for solving the mode equation of curvature perturbation. This method, first introduced in [43] and
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extended here, is especially appropriate to accurately investigate the behaviour of the curvature

spectrum in models where the inflationary dynamics is characterised by non-attractor phases of

evolution. In particular:

• In Section 2 we present and develop our formalism, and we make use of it for describing the

behaviour of the would-be decaying mode of curvature fluctuations. We show that in models

characterised by non-attractor epochs during inflation the would-be decaying mode actually

grows, and influences the spectrum of curvature fluctuations at super-horizon scales. The

spectrum of fluctuations acquires interesting features as a spiky dip followed by a rapid

growth in the amplitude as a function of the scale, which can be qualitatively understood

in terms of the formulas we provide.

• In Section 3 we apply our general formalism to various concrete scenarios. We show that

our method allows us to accurately describe the behaviour of the curvature spectrum. For

a range scales following the dip in the spectrum – whose extension usually depends on the

model parameters – growth of the spectrum is characterized by a large spectral index (up

to ns − 1 = 8), that then reduces to smaller values, (i.e. ns − 1 . 3) towards the peak. A

good analytic control on these regimes can be important to fully characterise the growth

rate of the curvature spectrum in generic scenarios of inflation with non-attractor epochs.

Furthermore, the method on gradient expansion we adopt here allows us to re-derive the

results of [39, 42] on the asymptotic slope of the spectrum well after the dip occurs, in

terms of easy-to-handle analytic formulas.

• Our findings can find several applications. For definiteness, in Section 4 we investigate how

the new features that further characterise the slope of the curvature spectrum (the steeper

growth right after the dip, the gentle decrease after the peak in the spectrum) affect the

spectrum of gravitational waves generated at second order by the strong amplification of

curvature fluctuations [44–46]. Making use of duality arguments developed in [43, 47–51],

we also get analytic control, in representative scenarios, on the behavior of the scalar power

spectrum after the peak in the power occurs: i.e. for modes associated with the transition

from non-attractor to final attractor phase that we dub as graceful exit epoch.

We conclude in Section 5. Four technical Appendixes contain details of our calculations.

2 Enhanced curvature perturbations in single field inflation:

the role of the decaying mode

On a background described by the FRW line element, ds2 = a2(τ)
(
−dτ2 + d~x2

)
, the comoving

curvature perturbation obeys the following equation in Fourier space [52]:

1

z2(τ)

[

z2(τ)R′
k(τ)

]′

= −k2Rk(τ) , (2.1)
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where for a scalar field minimally coupled to gravity, the ‘pump field’ 1 is defined as z ≡ a φ̇/H.

It is a well known fact that in a standard slow-roll background, the growing mode solution of

eq. (2.1) is conserved on super horizon scales. This can be readily seen from the formal integral

solution of (2.1), which can be written up to order O(k2) for small but finite wave-numbers as

Rk(τ) ≃ R(0)

[

1 + C2
∫ τ dτ ′

z2(τ ′)
− k2

∫ τ dτ ′

z2(τ ′)

∫ τ ′

dτ ′′z2(τ ′′)

]

, (2.2)

where we obtained the last term by solving iteratively the inhomogeneous part of eq. (2.1) using

the leading growing mode which we identify as R(0). The constant behavior of Rk shortly after

its scale crosses the horizon can be seen from the solution (2.2), by realizing that – in a slow-roll

background where z ∝ (−τ)−1 – the second and the third term in (2.2) decay respectively as (−τ)3

and (−τ)2 in the late time limit −τ → 0. Therefore, in a slow-roll background we can immediately

identify the second and third term in (2.2) as the decaying modes 2. However, the form of the

“decaying” solutions in (2.2) can already guide us when the mode evolution does not follow

the slow-roll trajectory we described above. For example, if a mode experiences a background

evolution in which the pump field z(τ) quickly decays (i.e. non-attractor backgrounds) after the

horizon exit, we can no longer assume a constant Rk on super-horizon scales as the would be the

“decaying” mode can contaminate the constant growing solution substantially. In this case, Rk

will not become constant until the background switches back to the slow-roll attractor regime

(where z(τ) grows) such that the decaying solutions in (2.2) die out. The important point in

this example is that the second and third term in (2.2) can only be identified as “decaying”

asymptotically in the far future but they do not have to monotonically decay right after horizon

exit.

In what follows, we take eq. (2.1) as our starting point to analytically investigate the spectral

behavior of comoving curvature perturbation in models that include phases of non-attractor in-

flation, where the would-be decaying mode starts to grow instead of rapidly decay after horizon

exit. This phenomenon can lead to a steep growth of the curvature spectrum which can reach

a sufficiently large amplitude for the production of primordial black holes (see e.g. [11] for a

review). On the other hand, accurate characterization the behavior of curvature perturbation in

these scenarios requires solving (2.1) in backgrounds where slow-roll conditions are strongly vio-

lated [16] and therefore is less amenable to analytic 3 descriptions. In this Section, we therefore

wish to develop a formalism to analytically capture the behaviour of the curvature spectrum in

scenarios that include a phase of non-attractor evolution. For this purpose, we structured the

following sub-sections as follows:

1In more general single-field scenarios of inflation including a scalar field with non-canonical kinetic terms or
non-minimal couplings between φ and the metric, the mode equation for Rk is identical to the eq. (2.1), but with
a more general definition for the pump field: see e.g. [53]. As we will comment further in Section 4, our findings
in this paper can be directly applied to such generalized models as well.

2In fact, the standard decaying mode is given by the last term as it decays slowly, i.e. ∝ (−kτ)2, compared to
the second.

3If certain conditions are satisfied, the statistics of curvature fluctuations both during the attractor and non-
attractor eras of inflation can be analytically related in terms of Wands’ duality [47].
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• In Sections 2.1 and 2.2, we review and further develop the formalism of [43], which adopts

a convenient gradient approach to study solutions of the curvature perturbation equation

(2.1) at super-horizon scales. We organize the structure of the solutions in a way that will

be useful to investigate their features precisely.

• In Section 2.3 we apply this approach to derive compact formulas for the evolution of the

spectrum of curvature fluctuations at super-horizon scales. We explain how these formulas

can lead to an amplification of spectrum if certain conditions (i.e. non-attractor eras) are

met. More in general, such formulas allow one to describe inflationary phases where slow-

roll conditions are violated, and to describe features of the power spectrum that have not

been much analytically investigated in the literature so far.

• In Section 2.4 we make general comments on physical implications of the derived results.

We point out that our formulas suggest the presence of a dip in the amplitude of the power

spectrum as a function of scale, followed by a rapid growth whose slope can be accurately

described with our approach. These general considerations will then be supported by the

study of concrete scenarios in Section 3.

2.1 Growing and decaying mode: general considerations

In this Section, we review an approach based on gradient expansion to the solution of the evolution

equation (2.1) of curvature perturbation, first introduced in [43]. For the purpose of improved

accuracy in describing the long wavelength solutions of the curvature perturbation, we will extend

the expansion at next order with respect to [43] as we shall see in the next Section.

We begin by realizing that the second order equation (2.1) has two independent solutions uk(τ)

and vk(τ). We can then express the general solution for curvature fluctuation as a combination

of uk(τ), vk(τ):

Rk(τ) = αk uk(τ) + βk vk(τ) , (2.3)

where αk, βk are arbitrary complex numbers, which can be chosen to satisfy αk + βk = 1.

For any wave-number |~k| = k, the Wronskian Wk = v′kuk − u′kvk associated with the two

independent solutions of (2.1) satisfies the following relation4

W ′

W
= −2

z′

z
=⇒

(
vk
uk

)′

=
Wk

u2k
∝ 1

z2u2k
. (2.4)

In (2.4), without loss of generality, we can identify uk as the late time asymptotic solution (i.e. the

growing mode) for τ → τ∗, with τ∗ indicating an arbitrary late time during inflation. Using the

relation in (2.4), we can then relate the growing mode uk solution to the second solution vk as

vk(τ) ∝ uk(τ)

∫ τ∗

τ

dτ ′

z2(τ ′)u2k(τ
′)
, vk(τ) −→

τ→τ∗
0 (2.5)

where, by using eq. (2.5), we identify vk as the decaying mode, i.e. the mode that vanishes

asymptotically in the future, for τ → τ∗, while it is well outside the horizon. However, as we

4This follows directly from the mode equation (2.1).
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discussed in the beginning of Section 2, this situation does not necessarily imply vk should start to

decay right after horizon crossing, which we identify as τ = τk below. Without loss of generality,

we set both solutions to be equal at this initial time, i.e.

vk(τk) = uk(τk) , (2.6)

where τk denotes a initial time after the mode crosses the horizon, beyond which vk mode starts

to differ from uk. This identification allows us to concretely relate the two solutions as

vk(τ) = uk(τ)
D(τ)

D(τk)
, (2.7)

where we defined the function D(τ) as

D(τ) ≡ 3Hk

∫ τ∗

τ
dτ ′

z2(τk)u
2
k(τk)

z2(τ ′)u2k(τ
′)

, (2.8)

where the factor of 3Hk (with Hk = a(τk)H(τk)) is introduced to render the function D(τ)

dimensionless. In the light of our discussion so far, we return to our general expression (2.3) for

the curvature fluctuation and re-write it as

Rk(τ) =

[

αk + (1− αk)
D(τ)

D(τk)

]

uk(τ), (2.9)

and make the following important observations:

• In cases where |αk| ≫ 1 (or equivalently |βk| = |1−αk| ≫ 1), the amplitude of the curvature

perturbation at around horizon crossing is given by Rk(τk) = uk(τk), and therefore can

differ significantly from the total growing mode contribution αkuk(τk). In this situation,

the contribution from both terms in eq. (2.9) almost cancel each other at τ = τk, leaving

a small initial amplitude Rk(τk) = u(τk).

• On the other hand, this situation would lead to a large final amplitude for the curvature

fluctuationRk after the decaying mode becomes negligible (notice thatD(τ∗) = 0). In other

words, the late time amplitude of curvature perturbation Rk(τ∗) = αkuk(τ∗), can differ

significantly from its initial amplitude, Rk(τk) = uk(τk), either because uk(τ∗) ≫ uk(τk)

with |αk| ∼ O(1), or because |αk| ≫ 1 while uk(τ∗) = uk(τk). This is good news because

this condition allows us to describe scenarios where, due to the non-trivial dynamics of the

decaying mode, the amplitude of curvature fluctuations considerably grow at super-horizon

scales, as required for primordial black hole production. As we will show later in Section

2.2, we can exploit the ambiguity in defining the mode functions on super-horizon scales

to focus on the uk(τ∗) = uk(τk) case which allows us to relate the late time amplitude

of the curvature perturbation to that of the initial amplitude at τk, purely in terms of a

k-dependent complex number αk, i.e.
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Rk(τ∗) = αkRk(τk). (2.10)

• Curvature perturbation in (2.9) acquires k dependence through the appearance of the com-

plex factor αk, uk(τ), and in particular through the appearance of uk(τ
′) and uk(τk) (See

e.g. eq. (2.14)) in the definition of D(τ) (2.8). It should be therefore clear that in order

to obtain a consistent gradient expansion for Rk, the two terms inside the square brackets

in (2.9) must be of the same order in k. This immediately implies that we need focus on

the leading order expression for D(τ) in k. In Section 2.2, we will derive the leading order

expression for D(τ) defined in (2.8).

On the other hand, in terms of Rk and its derivative at the initial time τ = τk, an explicit

expression for αk can be found starting from the following relations

Rk(τk) = uk(τk), (2.11)

R′
k(τk) = u′k(τk)−

3(1− αk)Hkuk(τk)

D(τk)
, (2.12)

where to obtain eq. (2.12) we have used eqs. (2.8) and (2.9). Combining the two expressions

above, αk can be described in terms of the initial conditions at τ = τk as

αk = 1 +
D(τk)

3Hk

[R′
k

Rk
− u′k

uk

]

τ=τk

. (2.13)

In agreement with our earlier discussion, the form of this equation clearly demonstrates that

|αk| (and hence |βk|) can become large if the curvature perturbation in (2.9) is not solely controlled

by the growing mode αkuk at around horizon crossing 5. In other words, this situation arise

when Rk is contaminated by a large “decaying” mode, i.e. through a large second term inside

the brackets in (2.9).

The closed form formula we obtained for αk in eq. (2.13) stands as our main result of this

section. In the next section, we will develop an explicit analytic formula for αk by studying the

evolution of the mode functions at super-horizon scales.

2.2 Solving the mode equations at super-horizon scales

In order to obtain the explicit k dependence of the curvature perturbation in (2.9) and hence

physically capture its spectral behavior at late times, we need to dissect further the terms appear-

ing in the growing mode uk(τ) and the enhancement factor (2.13) and arrange them in terms of

wavenumber dependent quantities. For this purpose, we will make use of the gradient expansion

method introduced in [43, 54] 6 to find an explicit expression for the growing mode function on

long wavelengths, which in turn will provide us the k dependence of the enhancement factor αk

in (2.13). In order to better characterise the spectral behavior, we will extend what is done in

5Notice that αk = 1 (βk = 0) for [R′

k/Rk − u′

k/uk]τ=τk
= 0, i.e. when Rk = αkuk.

6Similar solutions for the cosmological perturbations are also discussed in [52, 55].
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[43] to obtain an expansion at higher orders in the gradient expansion. In passing, we will also

discuss the ambiguity in defining the mode functions on super-horizon scales and how we can use

it to our advantage to focus on the case implied by eq. (2.10).

Following the discussion above, we start our discussion with the following Ansatz

uk(τ) =
∞∑

n=0

u(2n)(τ) k2n , (2.14)

and plug it into the evolution equation (2.1) to get

z−2

(
[

z2u(0)
′

(τ)
]′
+

∞∑

n=1

[

z2u(2n)
′

(τ)
]′
k2n

)

= −
∞∑

n=1

u(2n−2)(τ)k2n. (2.15)

At very large scales (or very late times τ → τ∗ ), we take the leading order solution of the growing

mode function to be a constant quantity, u(0), as can be seen from the eq. (2.15) setting k = 0
7. With this identification, we immediately note the following simplification for D(τ) in (2.8)

D(τ) ≃ 3Hk

(
uk(τk)

u(0)

)2 ∫ τ∗

τ
dτ ′

z2(τk)

z2(τ ′)
, (2.16)

where we replaced uk(τ
′) → u(0) at leading order in k expansion inside the integrand of (2.8).

Using the leading order solution u(0) on very large scales, we can generate solutions to the

growing mode function for small but finite k, by solving the following equation at any desired

order in k

z−2(τ)
[

z2(τ)u(2n)
′

(τ)
]′

= −u(2n−2)(τ), n = 1, 2, . . . . (2.17)

It should be noted that, the solutions to (2.17) can be in principle obtained to arbitrary order in

k2n expansion to better characterize the long wavelength behavior of the growing mode. Using the

same approach an expansion up to order k2 is implemented in [43]. In this work, we need to extend

it to order k4 to accurately capture the long-wavelength behavior of curvature perturbation. The

general expression for u(2n)(τ) is given by the homogeneous plus a particular solution of of eq.

(2.17):

u(2n)(τ) = C(2n)
1 + C(2n)

2 D(τ) + F (2n)(τ), n = 1, 2, . . . (2.18)

where we expressed the second term in terms of the decaying function D(τ) in (2.16) and C(2n)
1

and C(2n)
2 are arbitrary integration constants. The particular solution F (2n) of (2.17) is defined

as

F (2n)(τ) ≡
∫ τ∗

τ

dτ ′

z2(τ ′)

∫ τ ′

τk

dτ ′′z2(τ ′′)u(2n−2)(τ ′′), n = 1, 2, . . . . (2.19)

In order to proceed, we need to fix the value of the constant parameters C(2n)
1, 2 in a physically

sensible way, depending on the system under investigation. In this work, we intend to focus on

single field modes where any non-standard behavior for the inflationary dynamics – as a non-

7Note that with this statement we assume that the second integral solution of (2.15) is proportional to
∫ τ∗

τ
. . .

similar to the second term in eq. (2.18).
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attractor phase of evolution – is a short, transitory phenomenon which occurs within the time

interval τk < τ < τ∗, i.e. when the fluctuations are outside the horizon. In other words, we

assume that the inflationary dynamics is well described by single-field, slow-roll inflation both

around τk – shortly after the mode horizon crossing – and around τ∗ – towards the end of inflation.

This implies that around these epochs the decaying mode decays sufficiently fast at super-horizon

scales, as typical in standard single-field, slow-roll inflation. Therefore around both times τk and

τ∗, the growing mode is well described by a constant solution of the k → 0 limit of eq. (2.15).

Following our discussion below eq. (2.15), it is natural to impose uk(τ∗) = u(0) at the late

time boundary τ∗, and this fixes one of the integration constants to C(2n)
1 = 0. On the other

hand, there are no similarly compelling arguments that may guide us to fix the constants C(2n)
2 at

super-horizon scales. In the remaining part of this work we take inspiration from what happens in

standard slow-roll backgrounds for which uk(τ) ≃ u(0) is valid for the whole interval τk < τ < τ∗
(on super-horizon scales), and in all examples that we consider we set

uk(τk) = uk(τ∗) = u(0) . (2.20)

Nevertheless – to maintain full generality and to provide results useful for other researchers

wishing to consider different boundary conditions – in Appendix A we derive general formulas

to describe the curvature perturbation on large scales for a general choice of initial condition on

uk(τk).

Using the criterium of eq (2.20), the second boundary condition uk(τk) = u(0) selects the

following condition

C(2n)
2 = −

[

D(0)(τk)
]−1

F (2n)(τk), (2.21)

where using uk(τk) = u(0), we simplified D(τ) in (2.16) to arrive at the leading order expression

D(0) we will use in the rest of this work:

D(0)(τ) ≃ 3Hk

∫ τ∗

τ
dτ ′

z2(τk)

z2(τ ′)
. (2.22)

Up to arbitrary order in k we can then write the solution for the mode functions as uk(τ) =

u(0) +
∑

n u
(2n)(τ)k2n where

u(2n)(τ) =

(

− D(0)(τ)

D(0)(τk)
+

F (2n)(τ)

F (2n)(τk)

)

F (2n)(τk),

and F (2n) is defined in (2.19). In this work, extending the work in [43], we will push our formulas

up to order k4 (n = 2). In this case, one needs to evaluate the following integrals to describe the

growing mode uk(τ),

9



D(0)(τ) = 3Hk

∫ τ∗

τ
dτ ′

z2(τk)

z2(τ ′)
,

F (2)(τ)

u(0)
≡ F (τ) =

∫ τ∗

τ

dτ ′

z2(τ ′)

∫ τ ′

τk

dτ ′′z2(τ ′′) ,

F (4)(τ)

u(0)
≡ G(τ) =

∫ τ∗

τ

dτ ′

z2(τ ′)

∫ τ ′

τk

dτ ′′z2(τ ′′)

[

−D(0)(τ ′′)

D(0)(τk)
+

F (τ ′′)

F (τk)

]

F (τk) , (2.23)

which involve integrations of combinations of the pump field z(τ) over a possibly large time

interval between τk and τ∗. We would like to emphasize again that the integrals in (2.23)

parametrizes the influence terms that look like the standard “decaying” mode (recall our dis-

cussion following eq. (2.2)) on the growing mode. For the non-trivial backgrounds we will focus

in this work (see Section (3)), these terms will influence the behavior of the growing mode uk (See

e.g. eq. (2.23)) which in turn can be translated on the k dependence of the enhancement factor

αk through the formula (2.13) we derived earlier. As a final remark, we note that the choice

uk(τk) = u(0) together with the expansion (2.14) ensures that the expression D(0) we identified

in (2.23)( or in (2.22)) is the correct leading order expression in k for the full decaying function

we defined in (2.8).

2.3 The spectrum of curvature perturbations on super-horizon scales

We now apply the results obtained so far to the problem of characterising the behavior of Rk

towards the end of inflation at τ → τ∗. In what follows, we focus on the gradient expansion

method we developed earlier to find an explicit expression for the complex enhancement factor

αk in (2.13). For this purpose, we first use the expansion of the growing mode in (2.14) together

with eq. (2.23) and note the following relation,

u′k(τ)

uk(τ)

∣
∣
∣
∣
τ=τk

= 3Hk
F (τk)

D(0)(τk)
k2 + 3Hk

G(τk)

D(0)(τk)
k4, (2.24)

where we have used F ′(τk) = G′(τk) = 0 and D(0)′(τk) = −3Hk. As a final ingredient we define

the fractional complex velocity of the curvature perturbation at the initial time τ = τk

R′
k

3HkRk

∣
∣
∣
∣
τ=τk

≡ vR . (2.25)

and plugging eq. (2.24) in the general expression of the enhancement factor in (2.13), up to order

k4 we obtain the final form of the αk as

αk = 1 +D(0)(τk) vR − F (τk) k
2 −G(τk) k

4, (2.26)

This remarkably simple expression for αk will guide us in understanding the behavior of the

curvature perturbation on super horizon scales. For this purpose, the only extra input that

we require is the fractional velocity vR of the curvature perturbation, which can be estimated
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analytically for the backgrounds we consider in Section 3 (See Appendix B). We can consider two

qualitatively different situations:

• In a standard slow-roll background, the pump field z ≡ aφ̇/H increases rapidly with time,

proportionally to the scale factor a. For modes that leave the horizon during such regime,

typically R′
k/(3HkRk) ≪ 1 (See e.g. eq. (B.7)). On the other hand, as can be verified

explicitly, the functions satisfy D(τk), F (τk), G(τk) ≪ 1 in the regime where the pump field

is increasing monotonically. This implies that αk ≈ 1, leading to the conclusion that no

enhancement in the curvature perturbation can occur for an always slow-roll background.

• However, there can be situations where the coefficients of the O(k2) and O(k4) corrections

to (2.26) can become important after horizon crossing.

This happens if the slow-roll conditions are violated for a certain interval during which the

amplitude of the pump field z(τ) decreases substantially. Since the quantities in eq. (2.23)

involve integrations over time intervals that include this epoch, this fact can considerably

increase the value of αk, and lead to a sizeable growth in the curvature spectrum.

For example, if the modes experience a short epoch of background evolution where the

pump field is decreasing over time, i.e. a non-attractor inflationary phase where z ∝ τp

with p > 0 during τk < τ < τ0 (with τ0 < τ∗), then the integrands in (2.23) can grow large

during τk < τ < τ0, leading to D(0)(τk), F (τk), G(τk) ≫ 1 and hence αk ≫ 1 in (2.26).

Hence, the curvature perturbation Rk can evolve between horizon exit τk and the asymptotic

limit τ∗, due to a contamination of potentially large contributions, that would correspond to

the would-be decaying modes in standard slow-roll backgrounds. In such cases, it is convenient

to evaluate the power-spectrum after the end of the non-slow-roll era, which we identify by τ∗.

Therefore using eq. (2.10), we can relate the dimensionless curvature power spectrum at late

times τ∗ to the power spectrum at time τ = τk around horizon crossing as

PR(τ∗) ≡
k3

2π2
〈Rk(τ∗)Rk′(τ∗)〉 = |αk|2 PR(τk) , (2.27)

where |αk|2 = (αR
k )

2 + (αI
k)

2 and we split αk into its real and imaginary parts using vR =

vRR + i vIR. Up to order O(k4) in the gradient expansion, the real and the imaginary part of the

enhancement factor are given by

αR
k = 1 +D(0)(τk) v

R
R − F (τk) k

2 −G(τk) k
4, (2.28)

αI
k = D(0)(τk) v

I
R. (2.29)

2.4 General comments on the results so far

Our approach based on a gradient expansion lead us to general formulas describing the solutions

of curvature fluctuation equations. Although the solutions depend on the details of the homoge-

neous background during inflation, most notably on the pump field z(τ), we can provide general

11



considerations on what to expect about shape and slope of the curvature spectrum. Indeed before

considering any specific set-up in the next Sections, we can make three general comments on the

formulas obtained so far:

• The method introduced in [43], that we use and extend in this work, allows one to system-

atically study the spectrum of curvature perturbations on super-horizon scales in scenarios

that violate slow-roll. It represents an alternative approach with respect to a method based

on Israel matching conditions among different phases, as implemented in [39], although the

two methods give the same results when applied to the same situations.

Formulas in (2.27), (2.28) and (2.29) clearly shows that the spectrum of curvature fluctu-

ations can change after crossing the horizon, acquiring scale-dependent contributions that

can be large outside a slow-roll regime. In particular, the amplitude of the curvature spec-

trum can grow and reach levels sufficient to the production of primordial black holes, hence

it is very interesting to study in detail its shape. An accurate understanding of the momen-

tum profile of the resulting curvature spectrum (with powers up to k8 in certain regimes)

is possible using our extension of the method of [43] (See e.g. Section 3.).

• Expressions (2.27) and (2.28) suggest that when the combination of terms proportional to

D(0)(τk), F (τk), G(τk) is negative and sufficiently large in, there is a critical scale k at which

the contributions depending on momentum k become of order one, leading to a sharp dip in

the power spectrum where αR
k = 0 (See eq. (2.28)). This phenomenon was already pointed

out in various works (see e.g. [12, 43, 56–58]) and understood analytically in [39] using the

aforementioned method of matching conditions. The formulas (2.27), (2.28) allow us to

understand in a transparent way the physical origin of such a dip. They inform us that

at the dip the spectrum acquires the minimal value PR(τ∗) = |αI
k|2 PR(τk), with αI

k given

in eq. (2.29). The value of the scale where the dip occurs, kdip, can be found accurately

solving an algebraic equation: we shall discuss it in Section 3.1 in terms of a representative

example.

• The formulas we developed in Section (2.3) are suitable to study the spectral behavior

of curvature perturbation on large scales for backgrounds that include transitions between

attractor and non-attractor phases (and vice versa). In the models we are considering in this

work, most of the enhancement in the power spectrum occurs during the transition between

an attractor (slow-roll) to non-attractor (non slow-roll) and therefore we will mostly apply

the formulas in Section (2.3) to this case though they can be applied to study the epoch

after the spectrum reaches its peak. On the other hand, as we will show, the behavior

of curvature perturbation in this regime can also be investigated using duality arguments

that generalize the results of [43, 47] (see also [58] for a detailed analysis of the physical

implications of Wands’ duality). We will explore this topic in specific scenarios of constant-

roll inflation in Section 3.3.

3 Enhancement of Rk in Single Field Inflationary Scenarios

As an application for the formulas that can account for the amplification of the curvature pertur-

bation on large scales, in this section we focus on examples in the context of single field canonical
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inflation where the scalar potential exhibits a feature (see e.g. [26–28], as well as the set of arti-

cles discussed in the Introduction). Our aim is to analytically characterize spectral shape of the

curvature spectrum, including the initial phase of very steep growth that follows a spiky dip in

the amplitude. In this way, we aim to get an alternative, physically transparent understanding

of the results of [39, 42] concerning the asymptotic slope of the growing power spectrum using

the gradient approach of Section 2.3.

In the context of single field canonical inflation, a pronounced peak in the power spectrum

can be achieved if the scalar field overshoots a local minimum followed by a local maximum

as it rolls over its potential. When the scalar field encounters with such a feature, the system

enters into a non-attractor era8 called constant roll inflation until the field traverses the local

maximum. Contrary to the standard slow-roll case, during such an era, the acceleration of the

scalar is mainly balanced by the Hubble friction term in the Klein Gordon equation, implying a

violation of one of the slow-roll conditions [23, 48, 63],

φ̈+ 3Hφ̇+ V ′(φ) = 0 =⇒ δ ≡ − φ̈

φ̇H
= 3 +

V ′

φ̇H
≥ 3, (3.1)

where the slope of the potential is negative between the minimum and the maximum V ′ < 0.

Here, we adopt the convention that φ̇ < 0, so the scalar field rolls from large to small values.

In terms of the more conventional notation of the slow-roll parameters, this phase corresponds

to a large negative η = 2ǫ− 2δ ≃ −2δ ≤ −6 where the second equality follows from the fact that

for a constant η
d ln ǫ

dN
≡ η =⇒ ǫ ∝ eηN , (3.2)

where N denotes the elapsed number of e-folds during this phase. Therefore, as long as this phase

proceeds, ǫ will become exponentially small and negligible.

In our analysis of the enhancement of the power-spectrum on super-horizon scales, we con-

sider two different scenarios, that are analogues of the Starobinsky’s model [64]. First, we match

an initial slow-roll era with η = 0 to a constant roll era with η ≤ −6 (Model 1). Although

quantitatively sufficient to capture the enhancement, this model requires an instant match be-

tween two phases. In a more realistic setup, the transition between two phases should be more

gradual. Therefore, we also consider a three phase model where there exist an intermediate stage

characterized by an constant −6 ≤ ηi < 0 between the slow-roll and constant-roll phase (Model

2). In both cases, to characterize the enhancement of the spectrum, we match the pump field

z = a(τ)
√

2ǫ(τ)Mpl between phases of constant η.

8The scalar potential has a very small slope between the location of the minimum and maximum during this
phase, i.e. |V ′|/V → 0. As the field traverses this flat portion of the potential, it slows down en enormous amount
during which stochastic effects may become important [58–62].
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3.1 Model 1: an instant transition between a slow-roll and a non-attractor phase

We consider a scenario that smoothly connects an initial slow-roll era ηsr = 0 to a non-attractor

era with a constant ηc < −6. The pump field z is assumed to have a profile:

z(τ) =







z0

(
τ

τ0

)−1 τ

τ0
≥ 1 ,

z0

(
τ

τ0

)−(ηc+2)/2 τf
τ0

≤ τ

τ0
≤ 1 ,

(3.3)

where we defined τ0 as the transition time to the constant-roll era, τf as the conformal time

when the constant-roll era ends, z0 = −a0
√
2ǫsrMpl with constant ǫsr and a = −1/(Hτ) with a

constant Hubble rate H during inflation.

We wish to determine the corresponding growth rate of the power spectrum. For this pur-

pose, we focus on modes that leave the horizon during the initial slow-roll era where most the

enhancement in the power spectrum occurs, i.e. modes satisfying τk/τ0 > 1 or equivalently

k/H0 < ck ≤ 1,

where −kτk = ck ≤ 1 is a fixed number that sets the size of a mode k with respect to the size of

its corresponding horizon at the initial time τ = τk (See e.g. the discussion on this parameter in

Appendix F). To determine the shape of the power spectrum, we re-write the general formula in

(2.27) for the model under consideration as

PR(τf ) ≡ |αk|2As(τk) , (3.4)

where we evaluated the final power spectrum at τ∗ → τf , i.e. at the end of the non-attractor

era and the amplitude of the power spectrum at τk is denoted by PR(τk) ≡ As(τk). Using the

formula9 in eq. (B.6), it is given by

As(τk) =
k3

2π2
|Rk(τk)|2 =

H2

8π2ǫsrM2
pl

(
1 + c2k

)
. (3.5)

To quantify the enhancement and characterize the shape of the power spectrum, we calculate

the integrals appearing in the complex enhancement factor αk (2.26). Details on this analytic

calculation of functions D(0)(τk), F (τk) and G(τk) appearing in (2.26) are given in Appendix B.

The values of these functions depend on τk, on the slow-roll parameters, and are exponentially

sensitive to the duration (in e-folds) of the non-attractor era. As we shall see concretely in an

example, for relatively small values of the wavenumber k there is an interval in k where the

contributions weighted by F (τk) or even G(τk) in eq. (2.28) dominate.

The first important consequence of this fact is a dip in the spectrum. This feature has been

anticipated by the general considerations of Section 2.4, and is due to the fact that scale-dependent

contributions to the curvature spectrum, see our general equations (2.27), (2.28), can become large

9The reader may find the Appendixes useful where we provide most of the technical details of the calculations
presented here.
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Figure 1. The shape of the power spectrum in Model 1 for modes that leave the horizon during the slow-
roll era, i.e. xk > 1 → k/H0 < ck (Left). Comparison of individual terms in the enhancement factor αk in
(2.28) and (2.29) for the same model. In both plots, we take ηc = −6.8 during ∆N = 2.76 e-folds of non-
attractor evolution and set the initial time τk such that all modes we consider satisfy −kτk ≡ ck = 0.7. In
these plots, the vertical dashed gray line represents the wave-number at which a dip in the power spectrum
occurs.

if the functions F , G are large in size as it can happen in the presence of non-attractor phases of

inflation. Then, various contributions to the quantity αR
k can compensate each other and reduce

its size as well as the spectrum amplitude. In fact, the dip in the spectrum occurs at the critical

scale kdip where the real part of the enhancement factor αR
k vanishes. Using the analytic formulas

we derived, we found that the precise location of kdip corresponds to the positive real root of the

following algebraic equation for the k/H0 variable:

αR
k ≃ 1 + αR

0 − αR
2

(
kdip
H0

)2

− αR
3

(
kdip
H0

)3

− αR
4

(
kdip
H0

)4

− αR
5

(
kdip
H0

)5

= 0, (3.6)

where we included terms up to k5 for accuracy and the coefficients of αR can be found in Appendix

E making use of Appendix C and D. Interestingly, this formula applies to any model where the

dip in the power spectrum is associated with modes that leave the horizon during the initial

slow-roll era.

For scales following the dip, k > kdip, a dramatic enhancement of the spectrum occurs, with

a spectral index ns − 1 = 8, before relaxing to more gentle slopes at larger values of k towards

the peak in the spectrum. To understand better this phenomenon, we focus on the final value of

the power spectrum with respect to its value at around horizon crossing τk ,

PR(τf )

As(τk)
= |αk|2 = (αR

k )
2 + (αI

k)
2 (3.7)

where αR
k and αI

k are given as in (2.28). For convenience, we re-write the modulus square of the
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enhancement factor |αk|2 in (3.7) as

PR(τf )

As(τk)
=
(

αR
k (Gk = 0)

)2
− 2 αR

k (Gk = 0) Gk k4 + (Gk)
2 k8

︸ ︷︷ ︸
(

αR
k

)2

+
(

D
(0)
k vIR

)2

︸ ︷︷ ︸
(

αI
k

)2

, (3.8)

where we use a shorthand notation for the functions evaluated at τk as fk ≡ f(τk), and define

the real part of the enhancement factor excluding higher order k4 corrections (i.e. Gk = 0) as

αR
k (Gk = 0) ≡ 1 + D

(0)
k vRR − Fkk

2. Recall that a similar analysis on the shape of the power

spectrum is discussed in [43], where the authors considered inflationary scenarios that exhibit a

transient ultra-slow roll era ηc = −6 [64]. Compared to [43], in our formulas we include higher

order k corrections that are parametrized by the function G(τk) in (3.8). These contributions lead

to the larger slopes of the spectrum right after the dip, precisely due to the contributions of Gk.

Our approach emphasizes the importance of such higher order corrections in precisely establishing

the shape of the power spectrum in inflationary scenarios that include a non-attractor era with

ηc ≤ −6 – for example motivated by non-monotonic potentials where local minima is followed

by local maxima [27, 28]. Although the phase of initial dramatic enhancement after the dip is

typically a transient stage that dies off fast, it would be interesting to use the general formulas we

provide in the Appendixes for determining explicit models where its duration can be prolonged.

We comment on these possibilities towards the end of this Section, and we next concentrate on

a representative example to concretely understand the behaviour of the spectrum.

We plot the final power spectrum (3.8) in Figure 1 for a scenario describing a slow-roll era

smoothly connected to a non-attractor era with ηc = −6.8, lasting ∆N = 2.76 e-folds. These

values are chosen in order to have an enhancement of the power spectrum of order 107, as required

for generating Primordial Black Holes (PBHs) during a radiation dominated era.

Let us discuss our results:

• In Figure 1, as anticipated above, we notice a dip in the power spectrum at a critical wave-

number kdip (shown by vertical dashed gray line) before the growth in the scalar spectrum

begins. This phenomenon occurs when the real part of the enhancement factor in (3.7)

approaches to its zero in k space (see e.g. (3.6)), in particular, when the sum of terms

proportional to the functions D
(0)
k , Fk, Gk cancels out the order one number in the real part

of enhancement factor (2.28). This can be seen clearly from the right panel of Figure 1

when the sum of dominant terms approaches to unity.

• The power spectrum is characterised by high powers of k soon after the dip occurs, which

gradually relaxes to smaller slopes towards the peak. The reason for this behaviour is visible

in the right panel of Figure 1: the presence of the function Gk in (3.8) introduces higher

order corrections in the enhancement factor and when it becomes the dominant term for

the range of scales shown in the right panel of Figure 1, it leads to the behaviour where

the slope of the power spectrum behaves as ∝ k8 → k6 → k4 → k3. On the other hand,

towards the peak, i.e. k/H0 → ck, higher order k corrections in (3.8) become less important

compared to the other terms, i.e. D
(0)
k vRR, D

(0)
k vIR, Fkk

2 ≫ Gkk
4, see e.g. brown curve in

the right panel of Figure 1. Armed with this knowledge, we plot the expression in (3.8),
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Figure 2. The shape of the power spectrum in Model 1 for modes that leave the horizon close to the
transition time τ0 to the non-attractor era, i.e. xk → 1 or k/H0 → ck and a reference curve (red dashed)
with a slope of k4. In this plot, we have set Gk = 0 in the formula (3.8) as higher order corrections are
sub-dominant towards the peak of the spectrum.

setting Gk = 0 which amounts to neglecting the last two terms proportional to k4 and k8 in

(3.8). Figure 2 shows the resulting power spectrum towards the peak, i.e. for modes that

exit the horizon close to the transition time (τ0) to the non-attractor era. As a reference,

we plot the red dashed line with a slope proportional to k4, the maximal slope found in [39]

that can be attained in this kind of scenarios. Our plot confirms that the power spectrum

of Model 1 acquires at most a slope proportional to k4 towards the peak of the spectrum,

as k/H0 → ck [39]; on the other hand, our formulas are able to analytically catch the

sub-leading effects that control the spectral evolution right after the dip.

In summary, this representative example shows that our analytic approach based on a gradient

expansion allows one to precisely characterise the spectrum of curvature fluctuations for scenarios

whose pump field can be described in terms of the profile in eq. (3.3). When considering the slope

right after the dip of the power spectrum, higher order corrections proportional to the function

G(τk) dominate over other terms appearing in |αk|2 (see eq. (3.8)). This leads to a spectrum

with a slope as high as k8 which gradually relaxes to smaller slopes for larger k values, eventually

reaching (at most) a k4 behaviour towards the peak [39]. The corrections that we are able to

analytically control can be important in characterising spectra also in the regions right after the

dip of the spectrum.

A natural question is whether we can parametrically extend the size of the interval in k-space

where the very steep initial slope holds, before relaxing to a more gentle k4 behaviour in proximity

of the peak. The answer depends on the parameters chosen, although we find hard to provide

an analytical formula for the size of such interval. In Appendix F, we show that the duration

of steeper slopes is associated with our parameter ck (the larger it is, the longer the steeper

slopes last). It would be interesting to investigate this topic in more general situations with more

a richer structure for the pump field – possibly motivated by potentials with feature – to see

whether with more parameters the duration of the steeper slopes can be made arbitrarily long.

In fact, the pump field profile for the Model 1 we are considering in this Section assumes an
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instant transition between the slow-roll and the non-attractor phase. However, in many scenarios

that appeared in the literature, there exist intermediate phases between the slow-roll and non-

attractor era (see e.g. [27, 28]), and this fact can enhance the slope of the spectrum towards

the peak [42]. Therefore, an analysis including intermediate phase(s) between slow-roll and non-

attractor era is important to fully determine the shape of the power spectrum, especially for

modes that are close to the peak of the spectrum as such modes are expected to exit the horizon

during the intermediate stage. For this purpose, we will now turn to analyze the shape of power

spectrum in a three phase model, that we call Model 2.

3.2 Model 2: an intermediate phase between attractor and non-attractor

We now focus on a three phase background model, where the pump field is defined continuously

through the transitions between an initial slow-roll era with ηsr = 0, an intermediate era with

a constant ηi ≤ −1, and the final non-attractor era with constant ηc < −6. The pump field is

assumed to have a profile

z(τ) =







z0 e∆N2

(
τ

τ0

)−1

τ ≤ τi

z0 e(ηi+2)∆N2/2

(
τ

τ0

)−(ηi+2)/2

τi ≤ τ ≤ τ0

z0 e(ηi+2)∆N2/2

(
τ

τ0

)−(ηc+2)/2

τ0 ≤ τ ≤ τf

(3.9)

where we normalize the τ dependence of the pump field with respect to τ0 (the transition time

to constant-roll era), and log(τi/τ0) = ∆N2 gives the duration of the intermediate stage. The τi
denotes the transition time when the system enters into the intermediate phase after slow-roll

era.

In this model, to determine the shape of the power spectrum towards its peak, we again focus

on modes that exit the horizon before the background transitions into the final non-attractor

phase, i.e. τk/τ0 > 1. In order to capture the growth rate of the power spectrum in the current

three phase model, this implies that we need to distinguish two distinct cases: modes that exit

the horizon during the initial slow-roll era, i.e. τk/τ0 > τi/τ0 > 1; and modes that exit the horizon

during the intermediate phase, i.e. τi/τ0 > τk/τ0 > 1. Therefore, we split the formula in (2.27)

as

PR(τf ) = |αk|2
{

k3

2π2

∣
∣
∣Rsr

k (τk)
∣
∣
∣

2
}

= |αk|2
{

H2

8π2ǫsrM2
pl

(
1 + c2k

)

}

,
τk
τ0

≥ τi
τ0

≥ 1 (3.10)

where we use the solution of the curvature perturbation during the slow-roll era (see e.g. equation

(B.6) in Appendix A). On the other hand, for modes exiting the horizon during the intermediate

phase, the power spectrum evaluated at the end of non-attractor era takes the following form

PR(τf ) = |αk|2
{

k3

2π2

∣
∣
∣Rint

k (τk)
∣
∣
∣

2
}

, (3.11)
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Figure 3. Comparison of individual terms in the enhancement factor αk in (2.28) and (2.29) where we
assumed a non-attractor era with ηc = −6.8, ∆N3 = 2 and an intermediate phase with ηi = −1 and a
duration of ∆N2 = 7 (Left). Comparison of individual terms contributing to the higher order corrections
parametrized by G(τk) in (3.12) (Right). In both plots we take −kτk ≡ ck = 0.3 and the dashed vertical red
line indicates the separation for wave-numbers exiting the horizon during slow-roll vs intermediate phase.

= |αk|2
{

H2

8π2ǫsrM2
pl

(
τk
τi

)2ν
[

f2
3 − 2yif3f4 + y2i (f

2
3 + f2

4 )

f3(yi, yi, ν)2

]

τ=τk

}

,
τi
τ0

≥ τk
τ0

≥ 1

where y = −kτ , ν = (3 + ηi)/2. The functions fα are defined in Appendix B and they arise

due to a mode-by-mode matching procedure we employed for the curvature perturbation Rk(τ)

across the transition between slow-roll and intermediate phase. In this way, we make sure that

the expression given above is continuous across the transition, i.e. at τk = τi, as can be checked

from (3.11) and (3.10). In Appendix C we shall provide the necessary formulas for the functions

D(0)(τk), F (τk), G(τk) appearing in the enhancement factor αk, for the three phase model we

consider in this section.

3.2.1 On the steepest slope of the power spectrum

Recently, by considering a three phase model including a long-lasting (∆N2 ≫ O(1)) intermediate

ηi = −1 phase, the work [42] determined the (so far) steepest slope of the power spectrum towards

the peak (i.e. well far from the dip), evading the conclusions of [39]. In this Section we present a

proof of this result using our approach, including a detailed account of why and how this happens.

For this purpose, the first point to make in this case is that the higher order corrections

parametrized by the function G(τk) = Gk are sub-leading compared to the other terms appearing

in the enhancement factor αk for the all range of k values. This is particularly true towards the

peak of the spectrum during the intermediate phase, i.e. cke
−∆N2 < k/H0 < ck as k/H0 → ck as

both terms contributing to the function Gk, i.e. the first and the second term in

G(τk) = G1(τk)−
F (τk)

D(0)(τk)
G2(τk) (3.12)
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Figure 4. Full power spectrum using (3.10) and (3.11) (black solid line) where we include k4 corrections
parametrized by Gk function in the enhancement factor αk vs the approximated power spectrum using the
expression (3.15) with (3.14) (dashed pink line) (Left). On the right, we show the same setup towards the
peak of the power spectrum, where k5 ln(k)2 behavior implied by (3.18) can be seen clearly. In these plots,
the power spectrum is normalized with Ās ≡ H2/(8π2ǫsrM

2
pl) and we have the following choices for the

parameters: ∆N2 = 7,∆N3 = 2, ck = 0.3, ηc = −6.8, ηi = −1.

approximately cancel each other, resulting with a small final value for Gk
10:

G1(τk) ≃
F (τk)

D(0)(τk)
G2(τk) −→ G(τk) ≪ 1, for

k

H0
→ ck. (3.13)

These observations are illustrated in Figure 3, where we focus on a three phase model with the

following parameter choices: ∆N2 = 7,∆N3 = 2, ck = 0.3, ηc = −6.8, ηi = −1. Therefore, for

the whole range of k values, modulus square of the enhancement factor can be simplified by the

following expression,

|αs
k|2 ≃

(

1 +Dk vRR − Fk k2
)2

︸ ︷︷ ︸
(

αR
k
(Gk = 0)

)2

+
(

Dk vIR

)2

︸ ︷︷ ︸
(

αI
k

)2

. (3.14)

Using the simplified expression for the enhancement factor in (3.14), we can calculate the power

spectrum using the formula

PR(τf ) = |αs
k|2
{

k3

2π2

∣
∣
∣Rint

k (τk)
∣
∣
∣

2
}

(3.15)

and compare it with the full result, including higher order corrections induced by theGk functions.

The resulting shape of the full power spectrum (black solid line), together with the approximation

(pink-dashed line) we undertake, is shown in Figure 4. The perfect overlap of the approximated

expression (3.15) with the complete expression in (3.11) including the higher order corrections

justifies our approximation in neglecting such corrections including Gk function. Therefore we

conclude that we can safely assume that (3.14) can be used to parametrize the enhancement

factor αk in this model.

10Note the definitions of functions G1 and G2 in (C.12) and (C.14).
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Using the approximate expression (3.14), one can show that towards the peak of the spectrum,

k/H0 → ck, |αk|2 behaves in the following way

lim
k/H0→ck

|αs
k|2 −→

(
k

H0

)4
[(

C̃F
0 + C̃D

2 vRR + C̃F
ln(k/H0)

ln

(
k

H0

))2

+
(

C̃D
2 vRR

)2
]

(3.16)

where the exact coefficients C̃ can be read from the equations (D.3) and (D.9) in Appendix C. Note

that a super-index indicates which function (among D(0)(τk), F (τk), G(τk)) the coefficient belongs

to, whereas the the sub-index indicates the order the coefficient belongs to in terms of k/H0. On

the other hand, we notice in the double limit of a long lasting intermediate phase, ∆N2 ≫ 1 and

k/H0 → ck ≃ O(1) (towards the peak of the spectrum), the variable yi = −kτi ≡ (k/H0) e∆N2

becomes much greater compared to unity, i.e. yi ≫ 1. In this regime, the modulus square of the

curvature perturbation during the intermediate phase is given by

k3

2π2

∣
∣
∣Rint

k (τk)
∣
∣
∣

2 ∆N2≫1, k/H0→ck−−−−−−−−−−−−→
yi≫1

y3−2ν
i × [Oscillating terms] ∝

(
k

H0

)3−2ν

, (3.17)

where we have used the expression (B.17) for |Rk|2 during the intermediate phase and ν =

(3+ηi)/2. We note that behaviour of the curvature perturbation we obtained in (3.17) is general,

i.e. valid for any intermediate phase with a constant ηi value as far as ∆N2 ≫ 1 and k/H0 → ck.

Combining the two limiting behaviours we derived in eqs. (3.16) and (3.17), towards the peak of

the spectrum and for ηi = −1 (ν = 1), the power spectrum as defined in (3.15) therefore behaves

as,

lim
k/H0→ck

PR(τf ) ∝
(

k

H0

)5
[(

C̃F
0 + C̃D

2 vRR + C̃F
ln(k/H0)

ln

(
k

H0

))2

+
(

C̃D
2 vRR

)2
]

. (3.18)

For wave-numbers close to the peak of the spectrum, the behaviour of the full power spectrum

(black solid line) together with expected behaviour (pink dashed line) predicted by the expression

(3.18) are shown in the right panel of Figure 4. In accord with our discussion above, the perfect

overlap between two curves establishes how and why the power spectrum obtains the steepest

slope11, k5 ln(k)2 in a model where there exist a long-lasting intermediate phase (ηi = −1) followed

by a non-attractor phase (ηc = −6.8) with ∆N2 > ∆N3. Finally, we emphasize that the results

we have obtained in this subsection are not sensitive on the details of non-attractor era, as far

as it last for a few e-folds ∆N3 ≃ O(1) with ηc ≤ −6. This is simply because, in the regime

where the duration of the intermediate phase is significantly larger than non-attractor phase, the

behaviour of the functions (See Appendix D) appearing in the enhancement factor (3.14) dictated

predominantly by ∆N2 dependent terms.

3.2.2 The slope of the power spectrum towards the peak in realistic models

In the previous subsection, we proved that in the presence of a long-lasting intermediate phase

(ηi = −1) that is followed by a short non-attractor phase, the three phase model we identified

11Note that this slope is larger than k4 but smaller than k5.
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Figure 5. The shape of the power spectrum normalized by Ās ≡ H2/(8π2ǫsrM
2
pl) for wave-numbers that

exit the horizon before the transition to the non-attractor era, i.e. k/H0 < ck using eqs. (3.10) and (3.11)
(solid brown curve) (Left). Competing terms in the enhancement factor αk in (2.28) and (2.29) using the
same parameter choices (Right). In these plots, we have the following choices for model parameters in
Model 2: ∆N2 = 1.0,∆N3 = 2.2, ck = 0.7, ηc = −6.8, ηi = −3.

earlier is able to produce a slope that is higher than k4 towards the peak of the power spectrum

of curvature perturbation.

However, this is an exceptional result in the sense that it is not realized in realistic models

that are able to produce a pronounced peak for the power spectrum during inflation, aimed to

generate PBHs later in the radiation dominated era [27, 28]. In most of known models with this

property, the typical duration of the intermediate phase is about one e-folding 12 during which

the slow-roll parameter η quickly decreases from ηsr = 0 to ηc ≤ −6.

In this subsection, according to the three phase model (Model 2) we identified earlier, we

will approximate the background during the intermediate phase with a constant −6 < ηi < −3

that lasts about one e-fold. In this way, our aim is to establish the slope of the power spectrum

towards the peak for modes that exit the horizon immediately before the transition to final non-

attractor era. As before, the power spectrum for the whole range of k space is defined through

the expressions (3.10) and (3.11). Utilizing these formulas together with the help of expressions

we derived in Appendix C, we discuss our results with some representative models below.

Figure 5 shows the evolution of the power spectrum for modes exiting the horizon before the

transition to the final non-attractor era. Similar to the two phase model we discussed in Section

3.1, power spectrum posses a spectral index with ns − 1 > 4 for a short range of modes following

the dip kdip. As we stated before, this behavior stems from the higher order k4 corrections

proportional to Gk function appearing in the expression for the enhancement factor. On the other

hand, we see that the scalar spectrum obtains a slope less than k3 towards the peak, as k/H0 → ck.

One obvious reason for this small slope is that as k/H0 → ck, D
(0)
k vRR, D

(0)
k vIR, Fkk

2 ≫ Gkk
4,

similar to the model we discussed in Section 3.1. Therefore, towards the peak, modulus square

of the enhancement factor can be approximated by the expression given in (3.14). We can then

determine the slope of the power spectrum towards the peak using (3.15) where k3|Rint
k (τk)|2/2π2

12See for example Figure 4 of [27] noting the relation −2δ ≃ η between the slow-roll parameter used there with
η used in this work.
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Figure 6. Approximated power spectrum (green dotted curve) using (3.14) with (3.15) and the full result
of the power spectrum (solid brown curve) using (3.11) are shown. Both spectrum are normalized by
Ās ≡ H2/(8π2ǫsrM

2
pl). The dashed black line (Left) serves as a reference to indicate that the growth of the

power spectrum is less then k3 towards the peak. Non-monotonic behavior of the |Rk(τk)|2 for modes that
leave the horizon during the intermediate stage (Right). In these plots, we have the following choices for
the parameters: ∆N2 = 1.0,∆N3 = 2.2, ck = 0.7, ηc = −6.8, ηi = −3.
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Figure 7. The shape of the power spectrum normalized by Ās ≡ H2/(8π2ǫsrM
2
pl) for wave-numbers that

exit the horizon before the transition to the non-attractor era, i.e. k/H0 < ck where we have used (3.10)
and (3.11) (solid brown curve) (Left). Competing terms in the enhancement factor αk in (2.28) and
(2.29) using the same parameter choices (Right). In these plots, we have the following choices for model
parameters in Model 2: ∆N2 = 1.0,∆N3 = 2.0, ck = 0.7, ηc = −6.8, ηi = −4.

during the intermediate stage can be obtained using (B.17). The resulting behavior of the slope

is shown in Figure 6 (green dotted curve). We see that compared to the full expression (brown

curve), it describes the spectral dependence accurately.

We however note that with the parameter choices we made in these plots, it is not possible

to make general analytic predictions for the spectral behavior of k3|Rk(τk)|2/2π2 during the

intermediate phase from the expression provided in (B.17). As shown in the right panel of Figure

6, this is due to the fact that oscillatory terms appearing in the expression (B.17) makes the

behavior of k3|Rk(τk)|2/2π2 non-monotonic for the short range of scales associated with the

intermediate stage of the background evolution.

In Figure 7 and 8, we present a similar three phase model where the intermediate stage has
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Figure 8. Approximated power spectrum (green dotted curve) using (3.14) with (3.15) and the full result
of the power spectrum (solid brown curve) using (3.11) are shown where both spectrum are normalized by
Ās ≡ H2/(8π2ǫsrM

2
pl) (Left). Non-monotonic behavior of the |Rk(τk)|2 for modes that leave the horizon

during the intermediate stage (Right). In these plots, we have the following choice of parameters: ∆N2 =
1.0,∆N3 = 2.0, ck = 0.7, ηc = −6.8, ηi = −4.

ηi = −4 and lasts ∆N2 = 2 e-folds. The conclusions one can make from these plots are identical

to the case we considered above. In particular, it is clearly visible that towards the peak of the

scalar power spectrum, the spectral index behaves as ns − 1 . 3.

To summarize our findings, we emphasize that in a three phase model as inModel 2, the power

spectrum reaches its peak for modes exiting the horizon during the intermediate stage. Therefore,

one needs to focus on these modes in order to determine the slope of the power spectrum in

scenarios exhibiting a non-attractor phases. In these scenarios, an important observation is that

the intermediate stage before the power spectrum reaches its peak generically lasts a short amount

of time, typically an e-fold where the background can be parametrized by a large negative η in

the range −6 ≤ ηi ≤ 3. Armed with this information, we assumed that the intermediate stage

can be approximately described by a constant η phase where −6 ≤ ηi ≤ −3 and used our master

formulas (3.10) and (3.11) to determine the slope towards the peak. As we show in Figure 6 and

8, in this way we conclude that the power spectrum obtains a slope less than k3. On the other

hand, similar to the two phase model we focused in Section 3.1, we have seen that power spectrum

can obtain large slopes after the dip which gradually relaxes to smaller slopes for smaller scales

(See e.g. the left panel in Figure 5 and 7).

It is important to emphasize that the spectral behaviors we identified here is typically arises in

realistic models that has a pronounced peak in the scalar power spectrum, required to generate

PBHs in the post-inflationary universe. To guide the eye, in Figure 9 we plot the power spectrum

for modes that exit the horizon before the non-attractor era (ηc ≃ −6.8) in the model of [27].

3.3 On the final transition between non-attractor and slow-roll phase

So far, we have learned that the method we use, based on a gradient expansion, allows us for an

analytic understanding of the behaviour of the curvature power spectrum during the transition

between attractor and non-attractor eras, alternative to approaches based on Israel junction

conditions as in [39]. Such method is useful for studying in detail the shape of the spectrum right
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after the dip in the amplitude of the spectrum, and its slope on its way towards the non-attractor

phase.

It is also interesting to ask what happens during and right after the non-attractor phase: in

many realistic scenarios based on single field inflation, the phase of non-attractor only lasts at

most few e-folds, and then the inflationary evolution is connected again to a prolonged slow-roll

epoch, before inflation ends. Usually, this transitional stage between non-attractor and final

attractor epochs does not dramatically change the spectral slope, and the spectral profile expe-

riences only mild changes in amplitude (although it can be characterized by decaying oscillatory

features). In principle, one can study this phase adapting the calculations of Appendix B and C

for the modes leaving the horizon in this time interval. However, focussing on a simplified setting,

we can acquire some information in a less time-consuming way, applying duality arguments as

developed in [43, 47–50] to a representative class of scenarios.

We assume that, after the spiky peak in the curvature spectrum associated with a non-attractor

inflationary phase in the scenarios of Model 1 and Model 2 above, the background inflationary

dynamics gracefully exits to a final slow-roll phase, with 13 ǫ ≪ 1 and η ≫ ǫ, that will slowly

lead the inflationary process towards to its end. We label this phase as GE, and safely assume

ǫge → 0 due to the hierarchy ǫ ≪ ηge similar to the non-attractor phase. We make the hypothesis

that the non-attractor phase is described in terms of constant roll (CR) dynamics. Then both

in the constant roll CR and graceful exit phases GE, the Mukhanov-Sasaki variable Qk = zRk

follows the equation

Q′′
k +

(

k2 − ν2 − 1/4

τ2

)

Qk = 0, (3.19)

13Recall that this condition is guaranteed as ǫ decreases very fast, ǫ ∝ (−τ)−ηc during the non-attractor phase
(ηc) to tiny values.
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where

ν2 ≃ 9

4
+

3

2
η +

1

4
η2 =

(
3 + η

2

)2

(3.20)

for constant η, and negligible ǫ. Furthermore (as we will show in a moment) during the transition

from CR to GE phase the second slow-roll parameter evolves from η → −6−η, and the square of

the index ν2 in (3.20) does not change [51, 65]. As ν2 is constant in the transition between CR to

GE, such duality automatically implies the following relation between the slow-roll parameters

of these stages,

ηc = −6− ηge. (3.21)

We illustrate these facts in Figure 10 for the model introduced in [27]. The invariance of ν2

through the transition between non-attractor and graceful exit phase imply that in both phases,

the solution to (3.19) is given by

Qk =

√
π

2
ei(ν+1/2)π/2

√
−τH(1)

ν (−kτ), (3.22)

where the normalization is chosen to ensure that the solution approaches the Bunch Davies

vacuum in the far past −kτ → ∞. At late times, this implies that the power spectrum PR is

given by the following expression

lim
−kτ→0

k3

2π2

|Qk|2
z2

∝ k3(−τ)2ν
(

−2 cot(πν)

πν
+ (−kτ)−2ν 4

νΓ(ν)2

π2
+ (−kτ)2ν

4−ν csc2(πν)

Γ(ν + 1)2

)

,

∝ k3−2ν (3.23)

The term in the brackets in the first line of (3.23) originates from the late time limit of |Qk|2 and

ensures the invariance of k-dependence of the power spectrum when we move from a non-attractor
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Figure 11. Power spectrum of curvature perturbation Rk for modes associated with the non-attractor and
final graceful exit phase in the string inspired model studied in [27]. The success of the simple formula in
eq. (3.24) in explaining spectral slope during the transition from the non-attractor to final slow-roll phase
is shown by the dashed black line. The vertical dashed and dotted dashed lines separates the modes that
are associated with the different stages of the background evolution.

background with ν to a graceful exit phase where ν → −ν as implied by the transformation

η → −6 − η. This is due to the fact that, depending on the sign of ν, the dominant term in

the −kτ → 0 regime alternates between the second and last term for the contributions within

brackets in (3.23) – but this does not affect the overall k dependence of the expression in (3.23).

These arguments establish the k dependence of the power spectrum for modes that exit the

horizon after the transition to the non-attractor phase: therefore for both the non-attractor era

and for the graceful exit phase that follows, the spectral k-dependence is given by

PR ∝ k3−2ν ∝ k3−|3+η| (3.24)

thanks to the properties we discussed above. The success of the prediction appearing in (3.24)

when applied to the non-attractor model discussed in [27] is shown in Figure 11, and implies a

mild spectral slope in the transition between non-attractor and subsequent attractor phases.

4 Implications for stochastic gravitational wave backgrounds

We now discuss some phenomenological implications of our findings. Our method based on a

gradient expansion provides us with a better analytical control of the slope of the spectrum

right after the dip and towards the peak, including transient periods of very steep growth of

the spectrum with spectral index ns − 1 well larger than 4 which then relaxes to a slope with

spectral index ns−1 . 3 in the proximity of the peak. Such an information can be quite valuable

to quantify the relevance of initial ‘kicks’ to the power spectrum in increasing its amplitude,

before its slope relaxes to smaller values as we showed in Section 3.2.2. Moreover, the very same

method could be used to estimate the final regime of transition from non-attractor to attractor
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inflationary expansion, though in some cases a simpler description using duality arguments can

be applied (as we learned in Section 3.3).

Although the first motivation to study inflationary models with non-attractor stages of ex-

pansion is the production of primordial black holes (PBH), it is not immediately clear whether

our findings can lead to observable consequences for PBH formation. It is known that the PBH

mass function14 is exponentially sensitive on the properties of the power spectrum around the

peak region (see e.g. [75]), but it is less sensitive to what happens outside it [39]. In this context,

it is highly unlikely that large slopes we obtained after the dip has any consequences for PBH

mass function. However, the analytic control we offer on the shape of the power spectrum in the

vicinity of the peak is certainly relevant for the abundance of PBHs which we leave for future

work. On the other hand, the properties of the window function relating the curvature spectrum

to the matter power spectrum (that is relevant for PBH formation) can smooth out the steeper

features one may obtain in the slope of the former. It would be certainly interesting to explore

models where the steeper slopes, which occur right after the dip in the spectrum, can be extended

until regions nearby the peak, so to directly influence the physics PBH. This goes beyond the

scope of this article, and we leave the subject to future work.

Instead, in this Section we prefer to set aside the interesting but delicate topic of PBH forma-

tion, and focus our attention on the consequences of our findings for the properties of primordial

stochastic gravitational wave backgrounds (SGWB). The question of the possible profile for the

energy density Ωgw as a function of the frequency is important since determining the frequency

profile of this quantity – in case of SGWB detection – can allow to distinguish between astro-

physical and primordial sources of SGWBs (see e.g. the recent works [76, 77]).

First-order GWs: We start commenting on the fact that the results of Sections 2 and 3 can

be applied with almost no change to single-field inflationary models based on G-inflation [53],

which are known to exhibit non-attractor solutions [78–80]. In these models, the structure of the

evolution equations for scalar and tensor modes have the same structure as in standard scenarios

with canonical kinetic terms – only the relation between the pump field z and the inflationary

scalar field is more involved [53]. It has been recently shown [79, 80] that also the spectrum Ph

associated with primordial tensor modes can have a rapid growth in such scenarios. This since

the corresponding tensor pump field can have discontinuities in its derivatives, in a way that is

very similar to what occurs at curvature fluctuations in models with inflection point potentials

(we refer the reader to [79, 80] for full details on these scenarios). Hence, we conclude that the

methods and results of [79, 80] and of Sections 2 and 3 can be applied to the tensor sector as

well, and the maximal tensor spectral index nT in single field inflation can reach values of order

nT ≃ 4 in non-attractor models (although its more natural value in these scenarios is nT ≃ 3).

Second-order GWs: We continue discussing the consequences of our findings for second-order

GWs sourced during radiation-domination by an enhanced spectrum of scalar fluctuations: see

e.g. [44–46, 81–87]. Recently, convenient semi-analytic formulas to estimate the amplitude of

the induced tensor spectrum Ph produced during radiation and matter domination have been

provided [88] (see also [89–92] for studies of related phenomena). Following these works, by

14See e.g. recent explorations on the calculation of PBH abundance [66–69] and its dependence on primordial
and intrinsic non-gaussianity that scalar fluctuations may exhibit [51, 70–74].
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Figure 12. The behavior of the scalar power spectrum profile (4.5) inspired by our results in Sections 2
and 3 (Left). The corresponding GW density spectrum during the radiation dominated era derived via eqs.
(4.1) and (4.2). In the right panel, the spectral dependence of GW energy density in the IR, Ωgw ∝ k2.3

and UV, Ωgw ∝ P2
R

∝ k−1.6 is shown by dashed purple and blue lines respectively.

neglecting the non-Gaussianity15 of primordial fluctuations, the amplitude of the tensor power

spectrum at conformal time τ and a scale k can be written as a convolution of the two copies of

curvature power spectrum,

Ph(τ, k) =

∫ ∞

0
dv

∫ 1+v

|1−v|
du K(τ, u, v)PR(u k)PR(v k) (4.1)

with K(τ, u, v) a function whose complete expression can be found in [88], and PR is the curvature

power spectrum. Using the formula provided in (4.1), GW energy density can then be calculated

through [44, 95–97],

Ωgw(τ, k) =
1

24

(
k

a(τ)H(τ)

)2

Ph(τ, k) , (4.2)

where the overline indicates time averaging over oscillations of the tensor power spectrum. The

expressions in (4.1) and (4.2) implies that if the curvature spectrum is enhanced by the mech-

anisms discussed in the previous Sections, the tensor power spectrum can be enhanced as well,

and provide a SGWB directly detectable with GW experiments. The case of secondary GWs pro-

duced during radiation domination is interesting because the corresponding SGWB corresponds

to a range of frequencies that can be detected with PTA experiments (see e.g. [98, 99]); at the

same time, the curvature perturbation spectrum itself (that sources the GWs through second-

order effects) is enhanced at scales such that can lead to the formation of PBH with masses in

the LIGO-Virgo band. Focussing then on the case of radiation domination, and making use of

eq. (4.1), we are going to compute the amplitude of the GW energy density (4.2) in the SGWB

for three different choices of spectral slopes:

PR(k) = As δ (ln (k/kp)) , (4.3)

PR(k) = 4As (k/kp)
4 for k ≤ kp , 0 otherwise, (4.4)

15The spectrum of GWs induced by non-Gaussian scalar perturbations is studied in [93, 94].
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Figure 13. Spectral dependence of Ωgw induced during the radiation dominated era by different choices
of primordial scalar power spectrum provided in eqs. (4.3) (Black), (4.4) (Dashed-red) and (4.5) (solid-
orange).

PR(k) =
2.674 As

[

c4(k/kp)−4 + c3 (k/kp)−3 + c3/2 (k/kp)−3/2 + c−0.4 (k/kp)0.4
]2 (4.5)

with an aim to compare our results with the results of [39]. In the last choice of power spectrum

in eq. (4.5), we have the following parameter choices c4 = 2.42× 10−5, c3 = 2.94× 10−4, c3/2 =

5.7 × 10−1, c−0.4 = 2.15. For the power law profile in (4.4), we make the hypothesis that

the spectral slope decay abruptly at the peak k = kp, whereas in (4.5) the parameters are

chosen such that spectra decays as k−0.8 as in the model we discussed in Section 3.3. All the

three spectra shown above are normalised to As when integrated over all momenta in log-space,

i.e.
∫
d(ln k) PR = As.

The power spectrum in eq. (4.3) corresponds to a delta-like spectrum peaked to a given

frequency in log-space, whereas (4.4) corresponds to a spectrum characterised at all frequencies

by the maximal slope allowed by [39]. (Choices (4.3) and (4.4) were already compared in [39].) To

represent realistic models, the scalar power spectrum in (4.5) is engineered to allow for a cascade

decay of powers in the slope: from k7 to k3 as scales increase towards the peak of the spectrum

(as motivated for example by the results of Section 3.1). Moreover, after the peak, (4.5) provides

a gentle decrease in power k−0.8 that is meant to represent the transition from non-attractor to

final attractor phase in realistic models, as investigated in Section 3.3. Such spectral profile is

represented in the left panel of Figure 12.

Evaluating the integrals associated with expressions (4.1) and (4.2) numerically, we present

our results on ΩGW
16 in the right panel of Figure 12 for the corresponding power spectrum profile

in (4.5) whereas in Figure 13 we compare this results on Ωgw with the ones obtained from the

first two profiles provided in (4.3) and (4.4). The black and red curves (already discussed in [39])

16Notice that we represent the amplitude of ΩGW at the time of production during radiation domination. The
amplitude of the GW energy density today can be obtained making use of appropriate scalings and transfer
functions, see e.g. the detailed review in [100].
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correspond to choices in eqs. (4.3) and (4.4), and show that GW spectra scale respectively as k2

and k3 in the IR (small k limit), and the GW spectral amplitude for the case of delta-function

curvature spectrum has a much broader support than the power-law example of eq. (4.4), see

[39]. Our choice (4.5) is represented with the orange curve. We found that the different power

that characterizes the small-k limit of PR with respect to eq. (4.4) does not lead to a drastic

change in the GW density profile. However, we found that GW density scales with Ωgw ∝ k2.3 in

the IR, i.e. with a slope less than the induced Ωgw in the presence of a power-law scalar power

spectrum with k4 behavior all the way towards the peak (See the k3 IR scaling of red-dashed

curve in Figure 13). We would like to emphasize that in the light of our discussions in Section

3.2.2, we expect that IR scaling we found for the GW profile is a common feature for realistic

non-attractor inflationary scenarios that exhibit a pronounced peak in the scalar power spectrum.

On the other hand, the decaying slope k−0.8 characterizing the curvature spectrum in eq. (4.5)

for k > kp makes the domain of the GW energy domain much broader compared to the choices in

(4.3) and (4.4). In particular, after the peak has reached, the resulting GW density induced by

this profile continues to have support on the UV tail of the momenta and it decays with a slope

characterized by square of the scalar power spectrum [101] Ωgw ∝ (PR)
2 ∝ k1.6 as clearly shown

in the right panel of Figure 12. Moreover it is characterized by a a less pronounced peak with

respect the previous two examples: this is due to the fact that scalar power spectrum – although

it has the same normalization than the other cases – it has smaller amplitude around its peak.

It would be interesting to study in detail the implications of these findings for actual bounds,

in particular to understand whether by lowering the amplitude of Ωgw at the peak we can more

easily evade constraints on SGWB from PTA experiments. Moreover, it would also be interesting

to study implications for anisotropies of the SGWB [102, 103] induced by PBH formation [104].

We plan to investigate this topic in a future work.

Note that the IR behavior we obtained here, i.e. Ωgw ∝ k2.3, is not in conflict with the

universal IR scaling, Ωgw ∝ k3, obtained in [105] for GW density profile from generic sources.

In this respect, the results of [105] relies on the assumption that the IR region of Ωgw has to be

smaller than the peak width of the source, i.e. k ≪ ∆k. However, for the power spectrum we

consider in Figure 12, the width of the region ∆k that significantly contributes to GW density

profile has a comparable length to the wave-numbers of the induced GWs in the IR, i.e. k ∼ ∆k

(as shown in the right panel of Figure 12). In other words, in realistic non-attractor scenarios we

consider in this work, the scalar power spectrum that sources GWs is broad enough to violate

the condition k ≪ ∆k.

5 Summary

In this work we analysed the the slope of the curvature power spectrum in single field inflation

that exhibit transient non-attractor phases. We made use of an approach based on a gradient

expansion for solving the mode equation of curvature perturbation. This method, first introduced

in [43] and extended here, allowed us to follow the changes in slope of the spectrum during its way

from large to small scales. We found that, after encountering a dip in its amplitude, the curvature

spectrum can acquire steep slopes with a spectral index up to ns−1 = 8, to then relax to a more

gentle growth towards its peak. In agreement with the realistic models of non-attractor inflation
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found in the literature (See e.g. Figure 9), these results indicate that the growth of the spectrum

between the dip and the peak is not an uniform power law. Moreover, modelling each phase

with a constant slow-roll parameter η, we studied realistic non-attractor models including a short

intermediate stage before the onset of the non-attractor era and found that towards its peak,

the scalar power spectrum obtains a spectral index of ns − 1 . 3 consistent with the maximum

slope ns − 1 = 4 found in [39, 42]. Making use of duality arguments developed in [43, 47], in a

representative scenario, we also investigated the behaviour of the spectrum after encountering the

peak associated with the non-attractor phase, i.e. during a transitional stage from non-attractor

back to final attractor evolution. In this way, we found that the amplitude of the power spectrum

decays mildly with ns − 1 = 3− |3+ ηc| where ηc . −6 is the value of η during the non-attractor

era. Finally, as an application, we investigated how these results on the curvature spectrum affect

the spectrum of gravitational waves induced by the strong amplification of curvature fluctuations.

Motivated by the realistic models we discuss in Section 3.2.2 and 3.3, we made use of the example

curvature spectrum in (4.5) (see also Figure 12) to show that the resulting GW density obtains

a spectral index 2 < nT < 3 in the IR whereas in the UV, it decays mildly proportional to the

square of the scalar power spectrum, i.e. with a spectral index of nT = 2(ns − 1) = 6− 2|3+ ηc|.
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A The solution for Rk with more general initial conditions

In Section 2.2, we have adopted uk(τk) = u(0) as an initial condition to describe the super-

horizon behavior of growing mode function using gradient expansion formalism (see eq. (2.20)).

Although this choice of boundary condition is appropriate for the models we investigate in this

work, different choices are also possible. In this Appendix, we therefore generalize the formulas

we have developed in Section 2.2 and 2.3 to describe the curvature perturbation Rk at large

scales without specifying the value of uk(τk). For this purpose, we generalise the discussion of

Section 2.2 and 2.3.

As in the main text, we first use the generic boundary condition at late times, uk(τ∗) = u(0),

to set C(2n)
1 = 0 and note the general solution to (2.17) as

u(2n)(τ) = C(2n)
2 D(τ) + F (2n)(τ), n = 1, 2, . . . , (A.1)

where the k dependent coefficients C(2n)
2 can be determined solving the following quadratic equa-
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tion for uk(τk)/u
(0), i.e. using (2.14):

uk(τk)

u(0)
= 1 +

∞∑

n=1

u(2n)(τk)

u(0)
k2n

= 1 +

(
uk(τk)

u(0)

)2

D(0)(τk)
∞∑

n=1

C(2n)
2

u(0)
k2n +

∞∑

n=1

F (2n)(τk)

u(0)
k2n, (A.2)

where we used the fact the D(τ) in (2.16) can be re-written as

D(τ) =

(
uk(τk)

u(0)

)2

D(0)(τ). (A.3)

For a given ratio of uk(τk)/u
(0) one can easily solve for the coefficients C(2n)

2 in terms of the

integrals D(0)(τk), F
(2n)(τk) (See e.g. eqs. (2.23)) using (A.2). For example, the initial condition

uk(τk) = u(0) we focus in this work automatically implies u(2n)(τk) = 0 in (A.2), leading to the

choice given in eq. (2.21) for C(2n)
2 as can be also realized from the second line of (A.2).

In the following, leaving C(2n)
2 as free coefficients yet to be determined by a desired condition

on uk(τk), we will derive a general formula for Rk on super-horizon scales in terms C(2n)
2 and

uk(τk)/u
(0) which are related to each other by the non-linear relation (A.2). In this way, we will

parametrize our ignorance on the boundary condition of the growing mode at the initial time τk.

For this purpose, we first use (A.2), (A.1) and (2.16) to obtain

u′k(τk)

uk(τk)
= −3Hk

(
uk(τk)

u(0)

) ∞∑

n=1

C(2n)
2

u(0)
k2n. (A.4)

Therefore the complex enhancement factor in (2.13) becomes

αk = 1 +D(0)(τk)

(
uk(τk)

u(0)

)2
[

vR +

(
uk(τk)

u(0)

) ∞∑

n=1

C(2n)
2

u(0)
k2n

]

, (A.5)

where vR is defined in (2.25) which can be determined a background of interest using the pro-

cedure we discuss in Appendix B. Plugging (A.5) into the general expression for the curvature

perturbation (2.9), we have

Rk(τ) =

{

1 +
(

D(0)(τk)−D(0)(τ)
)(uk(τk)

u(0)

)2
[

vR +

(
uk(τk)

u(0)

) ∞∑

n=1

C(2n)
2

u(0)
k2n

]}

uk(τ), (A.6)

where using eqs. (A.1) and (A.3), the growing mode function is given by

uk(τ) = u(0) +D(0)(τ)

(
uk(τk)

u(0)

)2 ∞∑

n=1

C(2n)
2 k2n +

∞∑

n=1

F (2n)(τ) k2n. (A.7)

The eq. (A.6) together with (A.7) constitutes a general expression for the curvature perturbation

Rk on super-horizon scales as an expansion over small k at arbitrary order. In order to reach
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to an explicit expression for Rk solely in terms of the background dynamics, one then needs to

specify an initial condition, i.e. uk(τk)/u
(0) in (A.2) to solve for the coefficients C(2n)

2 in terms of

the integrals D(0)(τ), F (2n)(τ) of the pump field which contains the information on background

evolution. In this way, one can study the full time evolution of Rk on super-horizon scales to

compute the power spectrum at a desired moment within the τk < τ < τ∗ interval for a given

initial condition on uk(τk). Finally, we emphasize that it is not possible to relate the late time

amplitude Rk(τ∗) = αku
(0) to the initial one Rk(τk) = uk(τk) for a general initial condition

that specifies uk(τk)/u
(0). This can be seen clearly from (A.5), (A.6) and (A.7). On the other

hand, this fact also signifies the convenience of the choice uk(τk) = u(0) we undertake in this

work, which simply allows us to relate initial and the final amplitude of Rk purely in terms of a

complex enhancement factor we denote by αk, as in (2.10).

B The curvature perturbation Rk and fractional velocity vR

The expression we derived earlier for the enhancement factor αk in (2.26) suggests that we require

a knowledge of the fractional velocity vR in (2.25) to determine the shape of the power spectrum

for modes that leave the horizon before the transition (τ0) constant-roll (η = ηc) era. In this

appendix, we therefore aim to derive an expressions for vR for the models we identified in the

main text, i.e. for Model 1 and Model 2. For this purpose, we resort to Mukhanov-Sasaki

equation for the canonically normalized variable Qk(τ) ≡ z(τ)Rk(τ),

Q′′
k +

(

k2 − z′′

z

)

Qk = 0, (B.1)

where
z′′

z
= (aH)2

[

2− ǫ+
3

2
η +

1

4
η2 − 1

2
ǫη +

1

2

η̇

H

]

, (B.2)

which is exact to all orders in slow-roll parameters. For constant values of slow-roll parameters

ǫ, η, an exact solution for Qk can be found in terms of the Hankel functions. In order to see this,

we re-write the the Mukhanov-Sasaki equation (B.1) as

Q′′
k +

(

k2 − ν2 − 1/4

τ2

)

Qk = 0, (B.3)

where

ν2 ≃ 9

4
+

3

2
η +

1

4
η2 =

(
3 + η

2

)2

(B.4)

for constant η and ǫ ≪ 1. In this case, equation (B.3) has the general solution in terms of Hankel

functions of the first and second kind

Qk = A
√
−τH(1)

ν (−kτ) +B
√
−τH(2)

ν (−kτ). (B.5)

Using Rk(τ) = Qk(τ)/z(τ) and ǫ ∝ (−τ)−η, expression for the curvature perturbation for a phase

with constant η (where ǫ ≪ 1) can be found.
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Model 1: Slow-roll (SR) (ηsr = 0) → Constant-roll (CR) (ηc ≤ −6)

For a two phase model, we need an expression for the fractional velocity vR during the initial

slow-roll phase as we are interested in the enhancement of the modes that exit the horizon before

the transition to the constant-roll phase. Requiring that all modes are in their Bunch-Davies

vacuum initially (−kτ → ∞) in (B.5), the solution to the curvature perturbation during slow-roll

era (ηsr = 0 → ν = 3/2) is given by

Rsr
k =

iH

Mpl

e−ikτ

√
4ǫsrk3

(1 + ikτ), (B.6)

where we have used z = (−Hτ)−1
√
2ǫsrMpl. The solution above immediately implies

R′
k

3HkRk
= −(−kτ)2 + i(−kτ)3

3(1 + (−kτ)2)
. (B.7)

This result makes it clear why the curvature perturbation settles to a constant solution shortly

after the horizon exit in standard slow-roll inflation, which can be understood in the −kτ → 0

limit of eq. (B.7). For our purposes, we are interested in the fractional velocity at the initial time

τ = τk at around horizon crossing. With this in mind, we split the fractional velocity at τ = τk
to a real and imaginary part,

vRR = − (−kτ)2

3(1 + (−kτ)2)

∣
∣
∣
∣
∣
τ=τk

= − c2k
3(1 + c2k)

, (B.8)

vIR =
(−kτ)3

3(1 + (−kτ)2)

∣
∣
∣
∣
∣
τ=τk

= − c3k
3(1 + c2k)

(B.9)

where we defined a positive number −kτk = k/Hk ≡ ck ≤ 1 to identify the size of the each mode

with respect to the horizon size at the initial time, i.e. at τ = τk. It is clear from this expression

that the imaginary part of vR includes an extra factor of ck compared to the real part. We

note that unless ck = 1, this translates into an extra suppression for the imaginary part of the

fractional velocity.

Model 2: SR (ηsr = 0) → ηi → CR (ηc ≤ −6)

For the three phase model, we need to develop a continous expression for the fractional ve-

locity through the transition at τ = τi. For this purpose, we will use a matching procedure for

Rk and its derivative between the initial slow-roll era, i.e. (B.6) to a general solution during the

intermediate stage which is given by

Rint
k =

iH

Mpl

(τ/τi)
ηi/2

√
4ǫsrk3

(−kτ)3/2
[

AiH
(1)
ν (−kτ) +BiH

(2)
ν (−kτ)

]

, (B.10)
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Figure 14. Evolution of the real (Left) and imaginary part (Right) of the fractional velocity according to
(B.8), (B.9), (B.13) and (B.14) for modes exiting the horizon during the initial slow-roll era with ηsr = 0
and during the intermediate stage with ηi = −1 where we took −kτk ≡ ck = 0.3 and ∆N2 = 7 as in the
model we present in Figure 3 and 4.

where ν = (3 + ηi)/2. Matching Rk and R′
k at τ = τi in both phases we obtain

Ai = (−kτi)
3/2e−ikτi

(−kτi)
(

H
(2)
ν (−kτi) + iH

(2)
ν−1(−kτi)

)

−H
(2)
ν−1(−kτi)

H
(1)
ν−1(−kτi)H

(2)
ν (−kτi)−H

(1)
ν (−kτi)H

(2)
ν−1(−kτi)

, (B.11)

Bi = (−kτi)
3/2e−ikτi

(−kτi)
(

H
(1)
ν (−kτi) + iH

(1)
ν−1(−kτi)

)

−H
(1)
ν−1(−kτi)

H
(1)
ν (−kτi)H

(2)
ν−1(−kτi)−H

(2)
ν (−kτi)H

(1)
ν−1(−kτi)

. (B.12)

Using these coefficients in the solution (B.17), the real and the imaginary part of the fractional

velocity can be written as

vint,RR = −y

3

[

f1f3 − yi (f1f4 + f2f3) + y2i (f1f3 + f2f4)

f2
3 − 2yif3f4 + y2i

(
f2
3 + f2

4

)

]

, (B.13)

vint,IR = −y

3

[

y2i (f1f4 − f2f3)

f2
3 − 2yif3f4 + y2i

(
f2
3 + f2

4

)

]

, (B.14)

where we defined y ≡ −kτ and functions fα = fα(y, yi, ν) with α = 1, 2, 3, 4 in terms of the Bessel

function of the first and second kind as

f1(y, yi, ν) = Jν−1(yi)Yν−1(y)− Yν−1(yi)Jν−1(y), (B.15)

f2(y, yi, ν) = Jν(yi)Yν−1(y)− Yν(yi)Jν−1(y) (B.16)

and f4 = f1(y, yi, ν + 1), f3 = −f2(yi, y, ν). Using these expressions, the modulus square of the

36



��-� ��-� ����� ����� �����

�

�
��

��
���

�/ℋ�

� ϵ�� ������ ℛ� �

��

k/ℋ0

Horizon exit during

intermediate phase

Horizon exit during

slow-roll

Figure 15. Evolution of k3|Rk|2 according to equation (B.6) and (B.17) for modes exiting the horizon
during the initial slow-roll era with ηsr = 0 and during the intermediate stage with ηi = −1. The linear
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curvature perturbation during the intermediate phase reads as

|Rint
k |2 = H2

4ǫsrk3M2
pl

(
τ

τi

)2ν [f2
3 − 2yif3f4 + y2i (f

2
3 + f2

4 )

f3(yi, yi, ν)2

]

. (B.17)

Continuity of the real and the imaginary part of the fractional velocity can be confirmed

explicitly from the eqs in (B.13) and (B.14) as they reduce to their expressions (B.8) and (B.9)

during the slow-roll phase at τ = τi, i.e. at y = yi.

On the other hand, evaluating (B.13) and (B.14) at τ = τk and noting −kτi = (k/H0) e
∆N2 ,

we can find a k dependent expression for the fractional velocity for modes that exit the horizon

in the intermediate stage, namely for ck e−∆N2 ≤ k/H0 ≤ ck. Recall that for a fixed −kτk = ck,

fractional velocity during slow-roll phase is constant for the range of modes that exit the horizon

during slow-roll phase, i.e. k/H0 ≤ cke
−∆N2 < ck. We represent these facts in Figure 14. for

an example model including a transition from slow-roll to an intermediate phase with ηi = −1

(ν = 1) and a duration of ∆N2 = 7 representing the model we discussed in Figure 3 and 4.

Similarly, one can verify that the modulus square of the curvature perturbation in the interme-

diate stage (B.17) reduces to one in the slow-roll era at the transition time τ = τi (see e.g. (B.6)).

Following the same steps earlier for the fractional velocity, we can determine k dependence of the

modulus square of the curvature perturbation through the transition:i.e. for modes exiting the

horizon during the initial slow-roll and intermediate stage. The behaviour of k3|Rk|2 is shown in

Figure 15 where we have used the same model parameters as in Figure 14.

C Model 1: Calculation of D(τk), Fk(τk) and G(τk)

In this appendix, we present the details on the calculation of the integrals associated with the

functions D(0)(τk),F (τk), G1(τk) and G2(τk) in the background model given in eq. (3.3): Model
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1. For convenience, we start by defining a new variable

x ≡ τ/τ0, (C.1)

to re-parametrize the background pump field as

z(τ) =

{

z0 x−1, x ≥ 1

z0 x−(ηc+2)/2 xf ≤ x ≤ 1.
(C.2)

We begin our calculations with the function D(0)(τk) in (??). For xk > 1, i.e. for modes leaving

the horizon during the slow-roll era, we split the integral in (??) as

D(0)(τk) ≃ 3Hkz
2(τk)τ0

{∫ xf

1

dx′

z2(x′)
+

∫ 1

xk

dx′

z2(x′)

}

. (C.3)

Using, (D.1), we get

D(0)(τk) = 1− 3

(ηc + 3)

[

e−(ηc+3)∆N +
ηc
3

]

x−3
k , xk > 1,

≡ CD
0 + CD

3 x−3
k (C.4)

where we have used the fact that τf/τ0 = xf = e−∆N . Next we focus on F (τk) in (2.23) and

re-write it as

F (τk) = (τ0)
2

∫ xf

xk

dx′

z2(x′)
f(x′). (C.5)

where we defined the inner most integral f(x′) as

f(x′) ≡
∫ x′

xk

dx′′z2(x′′) =

∫ 1

xk

dx′′z2(x′′) +

∫ x′

1
dx′′z2(x′′). (C.6)

where the upper limit of the integral should be always treated as an intermediate time whereas

xk to be the initial. The outcome of these integrals depends on the value of the x′ w.r.t unity.

Now we first pick the case with xk > 1 where x′ > 1 (xk > x′ > 1). In this case, we get

f(x′) = z20

(
1

xk
− 1

x′

)

, x′ > 1. (C.7)

In the opposite case where x′ < 1 (xk > 1 > x′), we have

f(x′) = z20

(

−x′−(ηc+1)

ηc + 1
+ x−1

k − ηc
ηc + 1

)

, x′ < 1. (C.8)

Since we have obtained piecewise expression for f(x′), we can simply split F (τk) conveniently as

F (τk) = (τ0)
2

{∫ x∗

1

dx′

z2(x′)
f(x′) +

∫ 1

xk

dx′

z2(x′)
f(x′)

}

. (C.9)
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to get

F (τk) ≡ CF
−2 x2k + CF

1 x−1
k + CF

0 ,

≃ (τ0)
2

{

− ηc
ηc + 3

[

e−(ηc+3)∆N

(ηc + 1)
+

1

2

]

+
1

(ηc + 3)

[

e−(ηc+3)∆N +
ηc
3

]

x−1
k

+
x2k
6

− e−2∆N

2(ηc + 1)

}

, xk > 1. (C.10)

We now move on to the details of the calculation of G(τk) for xk > 1. We start by re-writing

Gk as

G(τk) = G1(τk)−
F (τk)

D(0)(τk)
G2(τk) (C.11)

where we defined

G1(τk) = (τ0)
2

∫ xf

xk

dx′

z2(x′)

∫ x′

xk

dx′′z2(x′′)F (x′′) = (τ0)
2

∫ xf

xk

dx′

z2(x′)
I(F )(x′), (C.12)

with

I(F )(x′) ≡
∫ x′

xk

dx′′z2(x′′)F (x′′), (C.13)

and

G2(τk) = (τ0)
2

∫ xf

xk

dx′

z2(x′)

∫ x′

xk

dx′′z2(x′′)D(x′′) = (τ0)
2

∫ xf

xk

dx′

z2(x′)
I(D)(x′), (C.14)

with

I(D)(x′) ≡
∫ x′

xk

dx′′z2(x′′)D(0)(x′′). (C.15)

We can split the integrals in G1(τk) as

G1(τk) = (τ0)
2

{∫ xf

1

dx′

z2−(x
′)
I
(F )
− (x′) +

∫ 1

xk

dx′

z2+(x
′)
I
(F )
+ (x′)

}

, (C.16)

where ± subscript in I(F )(x′) denotes the change in its argument x′ > 1(x′ < 1) and z+ and z−
are given by the first and second line of (D.1), respectively. Similarly, we write

G2(τk) = (τ0)
2

{∫ xf

1

dx′

z2−(x
′)
I
(D)
− (x′) +

∫ 1

xk

dx′

z2+(x
′)
I
(D)
+ (x′)

}

. (C.17)

We also note the following expressions that are required for the calculation of the integrals I(F )(x′)
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in (C.13),

F (x) ≃ (τ0)
2

{

− ηc
ηc + 3

[

e−(ηc+3)∆N

(ηc + 1)
+

1

2

]

+
1

(ηc + 3)

[

e−(ηc+3)∆N +
ηc
3

]

x−1
k

− e−2∆N

2(ηc + 1)
− x−1

k x3

3
+

x2

2

}

, x > 1.

(C.18)

F (x) ≃ (τ0)
2

{

− ηc e−(ηc+3)∆N

(ηc + 3)(ηc + 1)
+

x−1
k

ηc + 3
e−(ηc+3)∆N − e−2∆N

2(ηc + 1)

+
x2

2(ηc + 1)
+

x(ηc+3)

ηc + 3

[
ηc

ηc + 1
− x−1

k

]}

, x < 1. (C.19)

It is useful to keep in mind that we evaluated the integrals above assuming xk > 1. Namely,

the first expression (C.18) is valid for xk > x > 1 whereas the second one in (C.19) is valid

for xk > 1 > x. Similarly, required by the integral I(D)(x′) in (C.15), we note the following

expressions

D(0)(x) = − 3 x−3
k

(ηc + 3)

[

e−(ηc+3)∆N +
ηc
3

]

+ x−3
k x3, xk > x > 1. (C.20)

and

D(0)(x) = − 3 x−3
k

(ηc + 3)

[

e−(ηc+3)∆N − x(ηc+3)
]

, x < 1 < xk. (C.21)

Finally, we use (C.18), (C.19) in (C.13) and (C.20),(C.21) in (C.15) to obtain the functions

I(F )(x′) and I(D)(x′). The resulting expressions can be plugged in the final integrals in (C.12)

and (C.14) to determine G1(τk) and G2(τk) as

G1(τk)

(τ0)4
=

η2c e−(2ηc+6)∆N

(ηc + 3)2(ηc + 1)2
+

η2c (3ηc + 1) e−(ηc+3)∆N

2(ηc + 3)2(ηc − 1)(ηc + 1)
+

ηc (3ηc + 11) e−(ηc+5)∆N

2(ηc + 1)2(ηc + 5)(ηc + 3)

+
ηc
(
3η2c + 19ηc + 18

)

4(ηc + 3)2(ηc + 5)
+

ηc e−2∆N

4(ηc + 3)(ηc + 1)
+

(ηc − 3) e−4∆N

8(ηc + 1)2(ηc − 1)

+ x−2
k

[

e−(2ηc+6)∆N

(ηc + 3)2
+

2ηc e−(ηc+3)∆N

3(ηc + 3)2
+

η2c
9(ηc + 3)2

]

+ x−1
k

[

− 2ηc e−(2ηc+6)∆N

(ηc + 3)2(ηc + 1)
− ηc(11ηc + 9) e−(ηc+3)∆N

6(ηc + 3)2(ηc + 1)
− (3ηc + 11) e−(ηc+5)∆N

2(ηc + 5)(ηc + 3)(ηc + 1)

− ηc
(
22η2c + 122ηc + 48

)

60(ηc + 3)2(ηc + 5)
− ηc e−2∆N

6(ηc + 3)(ηc + 1)

]
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+ xk

[

− e−(ηc+3)∆N

6(ηc + 3)
− ηc

18(ηc + 3)

]

+ x2k

[

− ηc e−(ηc+3)∆N

6(ηc + 3)(ηc + 1)
− ηc

12(ηc + 3)
− e−2∆N

12(ηc + 1)

]

+
7x4k
360

, (C.22)

≡ CG1

0 + CG1

2 x−2
k + CG1

1 x−1
k + CG1

−1 xk + CG1

−2 x2k +
7x4k
360

, xk > 1.

G2(τk)

(τ0)2
= x−4

k

[

−3 e−(2ηc+6)∆N

(ηc + 3)2
− 2ηc e−(ηc+3)∆N

(ηc + 3)2
− η2c

3(ηc + 3)2

]

(C.23)

+ x−3
k

[
3ηc e−(2ηc+6)∆N

(ηc + 3)2(ηc + 1)
+

3ηc e−(ηc+3)∆N

(ηc + 3)2
+

3 e−(ηc+5)∆N

(ηc + 5)(ηc + 1)

+
6
(
η2c + 6ηc + 4

)
ηc

10(ηc + 3)2(ηc + 5)

]

+ x−1
k

[

−e−(ηc+3)∆N

(ηc + 3)
− ηc

3(ηc + 3)

]

+
x2k
15

,

≡ CG2

4 x−4
k + CG2

3 x−3
k + CG2

1 x−1
k +

x2k
15

, xk > 1.

For modes that leave the horizon during the initial slow-roll era, i.e. xk > 1, shape of the

power spectrum in Model 1 can be determined solely through the k dependence of the functions

D(0)(τk) F (τk), G1(τk) G2(τk) in (C.4), (C.10), (C.22) and (C.23) as they appear inside the

enhancement factor in (3.7) and (3.8).

In these expressions, it is important to realize that k dependent terms have coefficients that

can be organized in a hierarchal way in powers (determined by ηc) of a(τf )/a(τ0) = e∆N where

∆N is the duration of non-attractor era in number of e-folds. This result reflects the fact that

modes that leave during the slow-roll era are enhanced due to the presence of non-attractor era

that follows it. It should be also noted that for modes that leave the horizon during slow-roll

phase, k dependence of the functions D(0)(τk) F (τk), G1(τk) G2(τk) is fixed and do not depend

on the properties of the background model (such as the value of ηc) during the non-attractor era

that follows it.

D Model 2: Calculation of D(τk), Fk(τk) and G(τk)

In this appendix, we present the details on the calculation of the integrals associated with the

functions D(0)(τk),F (τk), G1(τk) and G2(τk) in the background model given in eq. (3.9): Model

2. Using the notation of the previous appendix, we re-write the pump field as

z(τ) =







z0 e∆N2x−1, x ≥ xi

z0 e(ηi+2)∆N2/2 x−(ηi+2)/2, x0 ≤ x ≤ xi

z0 e(ηi+2)∆N2/2 x−(ηc+2)/2, xf ≤ x ≤ x0.

(D.1)
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where xi = τi/τ0 = e∆N2 and xf = τf/τ0 = e−∆N3 with ∆N2 and ∆N3 is the duration of the

intermediate and the constant-roll phase respectively.

In Model 2, calculation of the functions D(0)(τk), F (τk), G1(τk) and G2(τk) is much more

involved compared to the case in Model 1. In particular, the integrals in (C.3) (C.5), (C.12)

and (C.14) should be evaluated for each case of xk > xi > 1 and xi > xk > 1 separately, in

order to capture the behavior of the functions both for modes leaving the horizon in the initial

slow-roll stage (xk > xi > 1) and intermediate stage (xi > xk > 1). On the other hand,

when calculating the integrals, we need to be careful in taking into account different values of ηi
during the intermediate stage. Keeping these facts in mind, we follow similar steps shown in the

Appendix B for calculating the integrals. In this way, we present our results for the functions

D(0)(τk), F (τk), G1(τk) and G2(τk) below.

For ηi 6= −3, we have

D(0)(τk) = 1− 3e−ηi∆N2

ηc + 3

[

e−(ηc+3)∆N3 +
ηc − ηi
ηi + 3

+
ηi(ηc + 3)e(ηi+3)∆N2

3(ηi + 3)

]

x−3
k (D.2)

≡ CD
0 + CD

3 x−3
k xk > xi > 1,

and

D(0)(τk) =
3

ηi + 3
− 3

ηc + 3

[

e−(ηc+3)∆N3 +
ηc − ηi
ηi + 3

]

x
−(ηi+3)
k (D.3)

≡ C̃D
0 + C̃D

ηi+3 x
−(ηi+3)
k xi > xk > 1.

On the other hand, for ηi = −3, we have

D(0)(τk) = 1− 3e3∆N2

ηc + 3

[

e−(ηc+3)∆N3 +
ηc
3

− (ηc + 3)∆N2

]

x−3
k (D.4)

≡ CD
0 + CD

3 x−3
k xk > xi > 1,

and

D(0)(τk) = − 3

ηc + 3

[

e−(ηc+3)∆N3 − 1
]

+ 3 ln(xk) (D.5)

≡ C̃D
0 + C̃D

ln(xk)
lnxk xi > xk > 1.

For ηi 6= −3,−1, we have

F (τk)

τ20
=

x2k
6

+ e−ηi∆N2

[

e−(ηc+3)∆N3 − 1

ηc + 3
+

3 + ηi e
(ηi+3)∆N2

3(ηi + 3)

]

x−1
k (D.6)
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+
(e−(ηc+3)∆N3 − 1)

ηc + 3

[

ηi − ηc
(ηi + 1)(ηc + 1)

− ηie
−(ηi+1)∆N2

ηi + 1

]

− ηi(e
−(ηi+1)∆N2 − e2∆N2)

(ηi + 3)(ηi + 1)

− (1 + ηi e
2∆N2)

2(ηi + 1)
− (e−2∆N3 − 1)

2(ηc + 1)

≡ CF
−2 x2k + CF

1 x−1
k + CF

0 xk > xi > 1,

and

F (τk)

τ20
=

x2k
2(ηi + 3)

+

[

e−(ηc+3)∆N3 − 1

(ηc + 3)(ηi + 1)
+

1

(ηi + 3)(ηi + 1)

]

x
−(ηi+1)
k (D.7)

+
(e−(ηc+3)∆N3 − 1)(ηi − ηc)

(ηc + 3)(ηi + 1)(ηc + 1)
− 1

2(ηi + 1)
− (e−2∆N3 − 1)

2(ηc + 1)

≡ C̃F
−2 x2k + C̃F

ηi+1 x
−(ηi+1)
k + C̃F

0 xi > xk > 1.

For ηi = −1, we have

F (τk)

τ20
=

x2k
6

+

[

e∆N2−(ηc+3)∆N3

ηc + 3
+

e∆N2(ηc + 1)

2(ηc + 3)
− e3∆N2

6

]

x−1
k (D.8)

− (e−(ηc+3)∆N3 − 1)(∆N2(ηc + 1) + ηc)

(ηc + 3)(ηc + 1)
+

(e2∆N2 − 2∆N2 − 3)

4

− (e−2∆N3 − 1)

2(ηc + 1)

≡ CF
−2 x2k + CF

1 x−1
k + CF

0 xk > xi > 1,

and

F (τk)

τ20
=

x2k
4

−
[

(e−(ηc+3)∆N3 − 1)

ηc + 3
+

1

2

]

ln(xk) +
(e−(ηc+3)∆N3 − 1)

(ηc + 3)(ηc + 1)
(D.9)

− 1

4
− (e−2∆N3 − 1)

2(ηc + 1)

≡ C̃F
−2 x2k + C̃F

ln(xk)
ln(xk) + C̃F

0 xi > xk > 1.

On the other hand, for ηi = −3, F (τk) is given by

F (τk)

τ20
=

x2k
6

+ e3∆N2

[

e−(ηc+3)∆N3 − 1

ηc + 3
−∆N2 +

1

3

]

x−1
k (D.10)
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+
(e−(ηc+3)∆N3 − 1)

(ηc + 3)

[
ηc + 3

2(ηc + 1)
− 3e2∆N2

2

]

+
3e2∆N2(2∆N2 − 1)

4

+
1

4
− (e−2∆N3 − 1)

2(ηc + 1)

≡ CF
−2 x2k + CF

1 x−1
k + CF

0 xk > xi > 1,

and

F (τk)

τ20
= −

[

(e−(ηc+3)∆N3 − 1)

2(ηc + 3)
+

1

4

]

x2k +
x2k
2

ln(xk) +
(e−(ηc+3)∆N3 − 1)

2(ηc + 1)
(D.11)

+
1

4
− (e−2∆N3 − 1)

2(ηc + 1)

≡ C̃F
−2 x2k + C̃F

x2

k
ln(xk)

x2k ln(xk) + C̃F
0 xi > xk > 1.

Note that in the formulas above, we have not distinguished different cases of constant ηc as we

always assume that ηc ≤ −6.

We now present our results for the functions G1(τk) and G2(τk) below. For modes leaving the

horizon during the initial slow-roll era G1(τk) obtains the following form

G1(τk)

τ40
= CG1

0 + CG1

2 x−2
k + CG1

1 x−1
k + CG1

−1 xk + CG1

−2 x2k +
7x4k
360

xk > xi > 1, (D.12)

where the coefficients C are functions of the parameters of the background model, i.e. C =

C(ηi, ηc,∆N2,∆N3) and the sub-index indicates which k dependent term the coefficient belongs

to (Recall that xk ∝ k−1). For ηi 6= −1,−3,−5, they are given by

CG1

0 =
ηi
(
3η2i + 19ηi + 18

)
e4∆N2

8(ηi + 3)2(ηi + 5)
− η2i (3ηi + 1)(ηi − ηc) e

−(ηi−1)∆N2

2(ηi − 1)(ηi + 1)(ηi + 3)2(ηc + 3)

+
ηi(ηi − ηc)

(
η2i ηc + 7η2i − 3ηiη

2
c − 12ηiηc + 23ηi − 11η2c − 61ηc − 24

)
e−(ηi+1)∆N2

2(ηi + 1)2(ηi + 3)(ηi + 5)(ηc + 3)2(ηc + 5)

+
(ηi − ηc)

(
η2i ηc + 7η2i − ηiη

2
c − 4ηiηc + 5ηi + 3η2c + 19ηc + 18

)

8(ηi − 1)(ηi + 1)2(ηc + 3)2(ηc + 5)

+
ηi e

2∆N2−2∆N3

4(ηi + 3)(ηc + 1)
+

(ηc − ηi) e
−2∆N3

4(ηi + 1)(ηc + 1)(ηc + 3)
+

(ηc − 3) e−4∆N3

8(ηc − 1)(ηc + 1)2

+
η2i e−2(ηi+1)∆N2−2(ηc+3)∆N3

(ηi + 1)2(ηc + 3)2
− ηi(ηi − ηc) e

−(ηi+1)∆N2−2∆N3

2(ηi + 1)(ηi + 3)(ηc + 1)(ηc + 3)

− 2η2i (ηi − ηc) e
−2(ηi+1)∆N2−(ηc+3)∆N3

(ηi + 1)2(ηi + 3)(ηc + 3)2
+

η2i (ηi − ηc)
2 e−2(ηi+1)∆N2

(ηi + 1)2(ηi + 3)2(ηc + 3)2

− ηi(ηi − ηc)(3ηiηc + ηi + 11ηc + 9) e−(ηi+1)∆N2−(ηc+3)∆N3

2(ηi + 1)2(ηi + 3)(ηc + 1)(ηc + 3)2
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+
(ηc − ηi)

(
−3η2i ηc − η2i + ηiη

2
c − 4ηiηc − 5ηi − 3η2c − ηc

)
e−(ηc+3)∆N3

2(ηi − 1)(ηi + 1)2(ηc − 1)(ηc + 1)(ηc + 3)2

+
(ηi − ηc)

2 e−2(ηc+3)∆N3

(ηi + 1)2(ηc + 1)2(ηc + 3)2
− 2ηi(ηi − ηc) e

−(ηi+1)∆N2−2(ηc+3)∆N3

(ηi + 1)2(ηc + 1)(ηc + 3)2

+
η2i (3ηi + 1) e−(ηi−1)∆N2−(ηc+3)∆N3

2(ηi − 1)(ηi + 1)(ηi + 3)(ηc + 3)
− ηi(ηi − ηc) e

2∆N2

4(ηi + 1)(ηi + 3)(ηc + 3)

+
ηi(3ηc + 11) e−(ηi+1)∆N2−(ηc+5)∆N3

2(ηi + 1)(ηc + 1)(ηc + 3)(ηc + 5)
+

(3ηc + 11)(ηc − ηi) e
−(ηc+5)∆N3

2(ηi + 1)(ηc + 1)2(ηc + 3)(ηc + 5)

+
ηi(ηc − ηi) e

2∆N2−∆N3(ηc+3)

2(ηi + 1)(ηi + 3)(ηc + 1)(ηc + 3)
(D.13)

CG1

2 =
e−2(ηi∆N2+(ηc+3)∆N3)

(ηc + 3)2
− 2(ηi − ηc) e

−2ηi∆N2−(ηc+3)∆N3

(ηi + 3)(ηc + 3)2
− 2ηi(ηi − ηc) e

−(ηi−3)∆N2

3(ηi + 3)2(ηc + 3)

+
η2i e6∆N2

9(ηi + 3)2
+

2ηi e
−(ηi−3)∆N2−(ηc+3)∆N3

3(ηi + 3)(ηc + 3)
+

(ηi − ηc)
2 e−2ηi∆N2

(ηi + 3)2(ηc + 3)2
(D.14)

CG1

1 = − ηi e
3∆N2−2∆N3

6(ηi + 3)(ηc + 1)
− 2ηi e

−(2ηi+1)∆N2−2(ηc+3)∆N3

(ηi + 1)(ηc + 3)2
+

2(ηi − ηc) e
−ηi∆N2−2(ηc+3)∆N3

(ηi + 1)(ηc + 1)(ηc + 3)2

+
4ηi(ηi − ηc) e

−(2ηi+1)∆N2−(ηc+3)∆N3

(ηi + 1)(ηi + 3)(ηc + 3)2
− 2ηi(ηi − ηc)

2 e−(2ηi+1)∆N2

(ηi + 1)(ηi + 3)2(ηc + 3)2

+
ηi(ηi − ηc) e

3∆N2−(ηc+3)∆N3

3(ηi + 1)(ηi + 3)(ηc + 1)(ηc + 3)
− ηi

(
11η2i + 61ηi + 24

)
e5∆N2

30(ηi + 3)2(ηi + 5)

+
(ηi − ηc) e

−ηi∆N2−2∆N3

2(ηi + 3)(ηc + 1)(ηc + 3)
− (3ηc + 11) e−ηi∆N2−(ηc+5)∆N3

2(ηc + 1)(ηc + 3)(ηc + 5)

+
ηi(ηi − ηc) e

3∆N2

6(ηi + 1)(ηi + 3)(ηc + 3)
− ηi(11ηi + 9) e−(ηi−2)∆N2−(ηc+3)∆N3

6(ηi + 1)(ηi + 3)(ηc + 3)

+
(ηi − ηc)(3ηiηc + ηi + 11ηc + 9) e−ηi∆N2−(ηc+3)∆N3

2(ηi + 1)(ηi + 3)(ηc + 1)(ηc + 3)2
+

ηi(11ηi + 9)(ηi − ηc) e
−(ηi−2)∆N2

6(ηi + 1)(ηi + 3)2(ηc + 3)

− e−∆N2ηi(ηi − ηc)
(
η2i ηc + 7η2i − 3ηiη

2
c − 12ηiηc + 23ηi − 11η2c − 61ηc − 24

)

2(ηi + 1)(ηi + 3)(ηi + 5)(ηc + 3)2(ηc + 5)
(D.15)

CG1

−1 = −e−ηi∆N2−(ηc+3)∆N3

6(ηc + 3)
+

(ηi − ηc) e
−ηi∆N2

6(ηi + 3)(ηc + 3)
− ηi e

3∆N2

18(ηi + 3)
(D.16)

CG1

−2 = −ηi e
−(ηi+1)∆N2−(ηc+3)∆N3

6(ηi + 1)(ηc + 3)
+

(ηi − ηc) e
−(ηc+3)∆N3

6(ηi + 1)(ηc + 1)(ηc + 3)
− e−2∆N3

12(ηc + 1)

+
ηi(ηi − ηc) e

−∆N2(ηi+1)

6(ηi + 1)(ηi + 3)(ηc + 3)
− ηi e

2∆N2

12(ηi + 3)
+

ηi − ηc
12(ηi + 1)(ηc + 3)

(D.17)
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On the other hand, for modes leaving the horizon in the intermediate stage, i.e. xi > xk > 1

G1(τk)

τ40
= C̃G1

0 + C̃G1

−2 x2k + C̃G1

−4 x4k + C̃G1

2(1+ηi)
x
−2(1+ηi)
k + C̃G1

(ηi−1) x
−(ηi−1)
k + C̃G1

(ηi+1) x
−(ηi+1)
k

xi > xk > 1,

C̃G1

0 =
(ηi − ηc)

2 e−2(ηc+3)∆N3

(ηi + 1)2(ηc + 1)2(ηc + 3)2
+

(3ηc + 11)(ηc − ηi) e
−(ηc+5)∆N3

2(ηi + 1)(ηc + 1)2(ηc + 3)(ηc + 5)

+
(ηc − ηi) e

−2∆N3

4(ηi + 1)(ηc + 1)(ηc + 3)
+

(ηc − 3) e−4∆N3

8(ηc − 1)(ηc + 1)2

+
e−∆N3(ηc+3)

(
−3η2i ηc − η2i + ηiη

2
c − 4ηiηc − 5ηi − 3η2c − ηc

)
(ηc − ηi)

2(ηi − 1)(ηi + 1)2(ηc − 1)(ηc + 1)(ηc + 3)2

+
(ηi − ηc)

(
η2i ηc + 7η2i − ηiη

2
c − 4ηiηc + 5ηi + 3η2c + 19ηc + 18

)

8(ηi − 1)(ηi + 1)2(ηc + 3)2(ηc + 5)
(D.18)

C̃G1

−2 =
(ηi − ηc) e

−(ηc+3)∆N3

2(ηi + 1)(ηi + 3)(ηc + 1)(ηc + 3)
− e−2∆N3

4(ηi + 3)(ηc + 1)
+

ηi − ηc
4(ηi + 1)(ηi + 3)(ηc + 3)

,

C̃G1

−4 =
ηi + 7

8(ηi + 3)2(ηi + 5)
(D.19)

C̃G1

2(1+ηi)
=

2(ηc − ηi) e
−(ηc+3)∆N3

(ηi + 1)2(ηi + 3)(ηc + 3)2
+

e−2(ηc+3)∆N3

(ηi + 1)2(ηc + 3)2
+

(ηi − ηc)
2

(ηi + 1)2(ηi + 3)2(ηc + 3)2
,

C̃G1

(ηi−1) =
(3ηi + 1) e−(ηc+3)∆N3

2(ηi − 1)(ηi + 1)(ηi + 3)(ηc + 3)
+

(3ηi + 1)(ηc − ηi)

2(ηi − 1)(ηi + 1)(ηi + 3)2(ηc + 3)
(D.20)

C̃G1

(ηi+1) =
(ηi − ηc) e

−2∆N3

2(ηi + 1)(ηi + 3)(ηc + 1)(ηc + 3)
+

2(ηi − ηc) e
−2(ηc+3)∆N3

(ηi + 1)2(ηc + 1)(ηc + 3)2

− (3ηc + 11) e−(ηc+5)∆N3

2(ηi + 1)(ηc + 1)(ηc + 3)(ηc + 5)

− (ηc − ηi)(3ηiηc + ηi + 11ηc + 9) e−(ηc+3)∆N3

2(ηi + 1)2(ηi + 3)(ηc + 1)(ηc + 3)2

− (ηi − ηc)
(
η2i ηc + 7η2i − 3ηiη

2
c − 12ηiηc + 23ηi − 11η2c − 61ηc − 24

)

2(ηi + 1)2(ηi + 3)(ηi + 5)(ηc + 3)2(ηc + 5)
(D.21)

For ηi = −1, G1(τk) follows the same expression given in (D.12) for xk > xi > 1. However the

coefficients C are different and are given by

CG1

0 =
(∆N2ηc +∆N2 + ηc)

2 e−2(ηc+3)∆N3

(ηc + 1)2(ηc + 3)2
− e2∆N2−2∆N3

8(ηc + 1)
− e4∆N2

64
+

(ηc − 3)e−4∆N3

8(ηc − 1)(ηc + 1)2

+
(3ηc + 11)(∆N2ηc +∆N2 + ηc) e

−(ηc+5)∆N3

2(ηc + 1)2(ηc + 3)(ηc + 5)
+

(2∆N2 + 3) e−2∆N3

8(ηc + 3)
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− (∆N2ηc +∆N2 + 2ηc + 1) e2∆N2−(ηc+3)∆N3

4(ηc + 1)(ηc + 3)
− (5 + 2∆N2)(1 + ηc) e

2∆N2

16(ηc + 3)

+

(
4∆N2

2 (η
2
c − 1) + ∆N2

(
11η2c − 2ηc − 9

)
+ 8η2c − ηc − 3

)
e−(ηc+3)∆N3

4(ηc − 1)(ηc + 3)2

+
(ηc + 1)

(
16∆N2

2 (η
2
c + 6ηc + 5) + 4∆N2(13η

2
c + 82ηc + 81) + 45η2c + 298ηc + 345

)

64(ηc + 3)2(ηc + 5)

(D.22)

CG1

2 =
e2∆N2−2(ηc+3)∆N3

(ηc + 3)2
+

(ηc + 1)2 e2∆N2

4(ηc + 3)2
− (ηc + 1) e4∆N2

6(ηc + 3)
+

e6∆N2

36

+
(ηc + 1) e2∆N2−∆N3(ηc+3)

(ηc + 3)2
− e4∆N2−∆N3(ηc+3)

3(ηc + 3)
(D.23)

CG1

1 = −2(∆N2ηc +∆N2 + ηc) e
∆N2−2(ηc+3)∆N3

(ηc + 1)(ηc + 3)2
+

e3∆N2−2∆N3

12(ηc + 1)
− 13 e5∆N2

240

+
(2∆N2(ηc + 1) + 11ηc + 9) e3∆N2−(ηc+3)∆N3

12(ηc + 1)(ηc + 3)
− e∆N2−2∆N3

4(ηc + 3)
− (3ηc + 11) e∆N2−(ηc+5)∆N3

2(ηc + 1)(ηc + 3)(ηc + 5)

+
(∆N2 + 6)(ηc + 1) e3∆N2

12(ηc + 3)
− (8∆N2(ηc + 1) + 11ηc + 9) e∆N2−(ηc+3)∆N3

4(ηc + 3)2

− (ηc + 1)
(
8∆N2(ηc + 1)(ηc + 5) + 13η2c + 82ηc + 81

)
e∆N2

16(ηc + 3)2(ηc + 5)
(D.24)

CG1

−1 = −e∆N2−(ηc+3)∆N3

6(ηc + 3)
− (ηc + 1) e∆N2

12(ηc + 3)
+

e3∆N2

36

CG1

−2 = −(∆N2ηc +∆N2 + ηc) e
−∆N3(ηc+3)

6(ηc + 1)(ηc + 3)
+

e2∆N2

24
− e−2∆N3

12(ηc + 1)

− (2∆N2 + 3)(ηc + 1)

24(ηc + 3)
(D.25)

On the other hand, for ηi = −1 and xi > xk > 1, G1(τk) has the following form,

G1(τk)

τ40
= C̃G1

0 + C̃G1

ln(xk)
ln(xk) + C̃G1

ln(xk)2
ln(xk)

2 + C̃G1

−2 x2k + C̃G1

x2

k
ln(xk)

x2k ln(xk) +
3x4k
64

xi > xk > 1,

where

C̃G1

0 =

(
η2c + ηc + 2

)
e−(ηc+3)∆N3

4(ηc − 1)(ηc + 3)2
+

(ηc − 3) e−4∆N3

8(ηc − 1)(ηc + 1)2
+

e−2(ηc+3)∆N3

(ηc + 1)2(ηc + 3)2

− (3ηc + 11) e−(ηc+5)∆N3

2(ηc + 1)2(ηc + 3)(ηc + 5)
+

e−2∆N3

8(ηc + 3)
+

(ηc + 1)
(
9η2c + 66ηc + 101

)

64(ηc + 3)2(ηc + 5)
(D.26)
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C̃G1

ln(xk)
=

(3ηc + 11) e−(ηc+5)∆N3

2(ηc + 1)(ηc + 3)(ηc + 5)
− 2e−2(ηc+3)∆N3

(ηc + 1)(ηc + 3)2
+

(ηc + 1)
(
5η2c + 34ηc + 41

)

16(ηc + 3)2(ηc + 5)

+
(3ηc + 1) e−(ηc+3)∆N3

4(ηc + 3)2
+

e−2∆N3

4(ηc + 3)
(D.27)

C̃G1

ln(xk)2
=

(ηc + 1) e−(ηc+3)∆N3

(ηc + 3)2
+

e−2(ηc+3)∆N3

(ηc + 3)2
+

(ηc + 1)2

4(ηc + 3)2
,

C̃G1

−2 = − ηc e−(ηc+3)∆N3

4(ηc + 1)(ηc + 3)
− e−2∆N3

8(ηc + 1)
− 3(ηc + 1)

16(ηc + 3)
,

C̃G1

x2

k
ln(xk)

= −e−(ηc+3)∆N3

4(ηc + 3)
− ηc + 1

8(ηc + 3)
(D.28)

For ηi = −3 and xk > xi > 1, G1(τk) again follows the form given in (D.12). The coefficients C
of each term in this case are as follows,

CG1

0 =
9e4∆N2−2(ηc+3)∆N3

4(ηc + 3)2
+

(ηc − 3) e−4∆N3

8(ηc − 1)(ηc + 1)2
− e−2∆N3

8(ηc + 1)
+

e−2(ηc+3)∆N3

4(ηc + 1)2
− 3e2∆N2−2(ηc+3)∆N3

2(ηc + 1)(ηc + 3)

+
3(3ηc + 11) e2∆N2−(ηc+5)∆N3

4(ηc + 1)(ηc + 3)(ηc + 5)
− (3ηc + 11) e−(ηc+5)∆N3

4(ηc + 1)2(ηc + 5)
+

3ηc + 11

64(ηc + 5)
+

(3ηc − 1) e−(ηc+3)∆N3

16 (η2c − 1)

+
3(∆N2(ηc + 3)− 2(ηc + 1)) e2∆N2−(ηc+3)∆N3

4(ηc + 1)(ηc + 3)
− 3(2∆N2(ηc + 3)− (ηc + 1)) e2∆N2−2∆N3

8(ηc + 1)(ηc + 3)

+
3
(
2∆N2

(
η2c + 8ηc + 15

)
− 3η2c − 18ηc − 19

)
e2∆N2

16(ηc + 3)(ηc + 5)

− 9(8∆N2(ηc + 3)− 5ηc − 7) e4∆N2−(ηc+3)∆N3

16(ηc + 3)2

+
3
(
48∆N2

2 (ηc + 3)2 − 12∆N2

(
5η2c + 22ηc + 21

)
+ 19η2c + 54ηc + 39

)
e4∆N2

64(ηc + 3)2
(D.29)

CG1

2 =
e6∆N2−2(ηc+3)∆N3

(ηc + 3)2
− 2(3∆N2(ηc + 3)− ηc) e

6∆N2−(ηc+3)∆N3

3(ηc + 3)2
+

(3∆N2(ηc + 3)− ηc)
2 e6∆N2

9(ηc + 3)2

(D.30)

CG1

1 = −3e5∆N2−2(ηc+3)∆N3

(ηc + 3)2
− (3ηc + 11) e3∆N2−(ηc+5)∆N3

2(ηc + 1)(ηc + 3)(ηc + 5)
+

e3∆N2−2(ηc+3)∆N3

(ηc + 1)(ηc + 3)

+
(−6∆N2(ηc + 3) + 11ηc + 9) e3∆N2−(ηc+3)∆N3

12(ηc + 1)(ηc + 3)

− (−24∆N2(ηc + 3) + 11ηc + 9) e5∆N2−(ηc+3)∆N3

4(ηc + 3)2

+
(3∆N2(ηc + 3)− ηc) e

3∆N2−2∆N3

6(ηc + 1)(ηc + 3)
+

(
−3∆N2

(
η2c + 8ηc + 15

)
+ 4η2c + 23ηc + 21

)
e3∆N2

12(ηc + 3)(ηc + 5)
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−
(
60∆N2

2 (ηc + 3)2 − 5∆N2

(
11η2c + 42ηc + 27

)
+ 14η2c + 29ηc + 21

)
e5∆N2

20(ηc + 3)2
(D.31)

CG1

−1 =
(3∆N2(ηc + 3)− ηc) e

3∆N2

18(ηc + 3)
− e3∆N2−(ηc+3)∆N3

6(ηc + 3)
,

CG1

−2 = −e2∆N2−(ηc+3)∆N3

4(ηc + 3)
+

(2∆N2(ηc + 3)− (ηc + 1)) e2∆N2

8(ηc + 3)
− e−2∆N3

12(ηc + 1)
+

e−(ηc+3)∆N3

12(ηc + 1)
+

1

24

(D.32)

On the other hand, for ηi = −3 and xi > xk > 1, G1(τk) has the following form,

G1(τk)

τ40
= C̃G1

0 + C̃G1

−2 x2k + C̃G1

−4 x4k + C̃G1

x4

k
ln(xk)

x4k ln(xk) +
x4k
4

ln(xk)
2 xi > xk > 1,

C̃G1

0 =
1

8

(

(ηc − 3) e−4∆N3

(ηc − 1)(ηc + 1)2
+

(3ηc − 1) e−(ηc+3)∆N3

2(ηc − 1)(ηc + 1)
+

2e−2(ηc+3)∆N3

(ηc + 1)2

− 2(3ηc + 11) e−(ηc+5)∆N3

(ηc + 1)2(ηc + 5)
+

3ηc + 11

8(ηc + 5)
− e−2∆N3

ηc + 1

)

,

C̃G1

−2 =
e−2∆N3

8(ηc + 3)
− e−(ηc+3)∆N3

2(ηc + 3)
+

(3ηc + 11) e−(ηc+5)∆N3

4(ηc + 1)(ηc + 3)(ηc + 5)

− e−2(ηc+3)∆N3

2(ηc + 1)(ηc + 3)
− 3η2c + 18ηc + 19

16(ηc + 3)(ηc + 5)
,

C̃G1

−4 =
(5ηc + 7) e−(ηc+3)∆N3

16(ηc + 3)2
+

e−2(ηc+3)∆N3

4(ηc + 3)2
+

9η2c + 34ηc + 37

64(ηc + 3)2
, (D.33)

and

C̃G1

x4

k
ln(xk)

= −e−(ηc+3)∆N3

2(ηc + 3)
− 5ηc + 7

16(ηc + 3)
. (D.34)

For ηi 6= −1,−3,−5 and xk > xi > 1, G2(τk) has the following form,

G2(τk)

τ20
= CG2

4 x−4
k + CG2

3 x−3
k + CG2

1 x−1
k +

x2k
15

xk > xi > 1, (D.35)

where C = C(ηi, ηc,∆N2,∆N3). The coefficients of the first three terms above are given by

CG2

4 = −3e−2ηi∆N2−2(ηc+3)∆N3

(ηc + 3)2
+

6(ηi − ηc) e
−2ηi∆N2−(ηc+3)∆N3

(ηi + 3)(ηc + 3)2
− 2ηi e

−(ηi−3)∆N2−(ηc+3)∆N3

(ηi + 3)(ηc + 3)

+
2ηi(ηi − ηc) e

−(ηi−3)∆N2

(ηi + 3)2(ηc + 3)
− η2i e6∆N2

3(ηi + 3)2
− 3(ηi − ηc)

2 e−2ηi∆N2

(ηi + 3)2(ηc + 3)2
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CG2

3 = −3(ηi − ηc) e
−ηi∆N2−2(ηc+3)∆N3

(ηi + 1)(ηc + 1)(ηc + 3)2
+

3ηi e
−(2ηi+1)∆N2−2(ηc+3)∆N3

(ηi + 1)(ηc + 3)2
+

3e−ηi∆N2−(ηc+5)∆N3

(ηc + 1)(ηc + 5)

− 3(ηi − ηc) e
−ηi∆N2−(ηc+3)∆N3

(ηi + 1)(ηc + 3)2
− 6ηi(ηi − ηc) e

−(2ηi+1)∆N2−(ηc+3)∆N3

(ηi + 1)(ηi + 3)(ηc + 3)2

+
3ηi e

−(ηi−2)∆N2−(ηc+3)∆N3

(ηi + 3)(ηc + 3)
+

3
(
ηi − η2c − 6ηc − 4

)
(ηi − ηc) e

−ηi∆N2

(ηi + 1)(ηi + 5)(ηc + 3)2(ηc + 5)

+
3ηi(ηi − ηc)

2 e−(2ηi+1)∆N2

(ηi + 1)(ηi + 3)2(ηc + 3)2
− 3(ηi − ηc) ηie

−(ηi−2)∆N2

(ηi + 3)2(ηc + 3)
+

3ηi
(
η2i + 6ηi + 4

)
e5∆N2

5(ηi + 3)2(ηi + 5)

CFD
1 = −e−ηi∆N2−(ηc+3)∆N3

ηc + 3
+

(ηi − ηc) e
−ηi∆N2

(ηi + 3)(ηc + 3)
− ηi e

3∆N2

3(ηi + 3)
(D.36)

On the other hand, for ηi 6= −1,−3,−5 and xi > xk > 1, G2(τk) has the following form,

G2(τk)

τ20
= C̃G2

−2 x2k + C̃G2

(2ηi+4) x
−(2ηi+4)
k + C̃G2

(ηi+1) x
−(ηi+1)
k + C̃G2

(ηi+3) x
−(ηi+3)
k xi > xk > 1,

where the coefficient of each term is given by

C̃G2

(2ηi+4) =
6(ηi − ηc) e

−(ηc+3)∆N3

(ηi + 1)(ηi + 3)(ηc + 3)2
− 3e−2(ηc+3)∆N3

(ηi + 1)(ηc + 3)2
− 3(ηi − ηc)

2

(ηi + 1)(ηi + 3)2(ηc + 3)2
,

C̃G2

(ηi+1) =
3(ηi − ηc)

(ηi + 3)2(ηc + 3)
− 3e−(ηc+3)∆N3

(ηi + 3)(ηc + 3)
,

C̃G2

(ηi+3) =
3(ηc − ηi) e

−2(ηc+3)∆N3

(ηi + 1)(ηc + 1)(ηc + 3)2
+

3(ηc − ηi) e
−(ηc+3)∆N3

(ηi + 1)(ηc + 3)2
+

3 e−(ηc+5)∆N3

(ηc + 1)(ηc + 5)

+
3
(
η2i − ηi(η

2
c + 7ηc + 4) + ηc(η

2
c + 6ηc + 4)

)

(ηi + 1)(ηi + 5)(ηc + 3)2(ηc + 5)
,

C̃G2

−2 =
3

(ηi + 3)2(ηi + 5)
(D.37)

For ηi = −1 and xk > xi > 1, G2(τk) takes the same form in (D.35) where the coefficients are

given by

CG2

4 = −3(ηc + 1) e2∆N2−(ηc+3)∆N3

(ηc + 3)2
+

e4∆N2−(ηc+3)∆N3

ηc + 3
− 3e2∆N2−2(ηc+3)∆N3

(ηc + 3)2

− 3(ηc + 1)2 e2∆N2

4(ηc + 3)2
+

(ηc + 1) e4∆N2

2(ηc + 3)
− e6∆N2

12
(D.38)

CG2

3 =
3(2∆N2 + 3)(ηc + 1) e∆N2−(ηc+3)∆N3

2(ηc + 3)2
+

3(∆N2ηc +∆N2 + ηc) e
∆N2−2(ηc+3)∆N3

(ηc + 1)(ηc + 3)2

+
3e∆N2−(ηc+5)∆N3

(ηc + 1)(ηc + 5)
− 3e3∆N2−(ηc+3)∆N3

2(ηc + 3)
− 3(ηc + 1)(ηi + 5) e3∆N2

8(ηi + 3)(ηc + 3)
+

3e5∆N2
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+

3(ηc + 1) e∆N2

(

ηi
(
−8∆N2(ηc + 5) + 5η2c + 30ηc + 21

)

16(ηi + 3)(ηc + 3)2(ηc + 5)

+

(8∆N2 + 19)η2c + 2(20∆N2 + 61)ηc + 123

)

16(ηi + 3)(ηc + 3)2(ηc + 5)
(D.39)

CG2

1 = −e∆N2−(ηc+3)∆N3

ηc + 3
− (ηc + 1) e∆N2

2(ηc + 3)
+

e3∆N2

6
.

On the other hand, for ηi = −1 and xi > xk > 1, G2(τk) has the following form,

G2(τk)

τ20
= C̃G2

0 + C̃G2

2 x−2
k + C̃G2

x−2

k
ln(xk)

x−2
k ln(xk) +

3x2k
16

xi > xk > 1,

where

C̃G2

0 = −3e−∆N3(ηc+3)

2(ηc + 3)
− 3(ηc + 1)

4(ηc + 3)
,

C̃G2

x−2

k
ln(xk)

=
3(ηc + 1)e−∆N3(ηc+3)

(ηc + 3)2
+

3e−2∆N3(ηc+3)

(ηc + 3)2
+

3(ηc + 1)2

4(ηc + 3)2
,

C̃G2

2 =
3(ηc + 1) e−∆N3(ηc+3)

2(ηc + 3)2
+

3e−∆N3(ηc+5)

(ηc + 1)(ηc + 5)
− 3e−2∆N3(ηc+3)

(ηc + 1)(ηc + 3)2

+
3
(
3η3c + 25η2c + 53ηc + 31

)

16(ηc + 3)2(ηc + 5)
(D.40)

Finally, for ηi = −3 and xk > xi > 1, G2(τk) follows the same form in (D.35) where the

coefficients are given by

CG2

4 =
2(3∆N2(ηc + 3)− ηc) e

6∆N2−(ηc+3)∆N3

(ηc + 3)2
− 3e6∆N2−2(ηc+3)∆N3

(ηc + 3)2
− (3∆N2(ηc + 3)− ηc)

2 e6∆N2

3(ηc + 3)2
,

CG2

3 = −3 e3∆N2−2(ηc+3)∆N3

2(ηc + 1)(ηc + 3)
+

9 e5∆N2−2(ηc+3)∆N3

2(ηc + 3)2
+

3 e3∆N2−(ηc+5)∆N3

(ηc + 1)(ηc + 5)
− 3 e3∆N2−(ηc+3)∆N3

2(ηc + 3)

− 9(2∆N2(ηc + 3)− (ηc + 1)) e5∆N2−(ηc+3)∆N3

2(ηc + 3)2
− 3

(
η2c + 6ηc + 7

)
e3∆N2

4(ηc + 3)(ηc + 5)

+
9
(
10∆N2

2 (ηc + 3)2 − 10∆N2(ηc + 1)(ηc + 3) + 3η2c + 8ηc + 7
)
e5∆N2

20(ηc + 3)2

CG2

1 =
e3∆N2

3

(

3∆N2 −
ηc

ηc + 3

)

− e3∆N2−(ηc+3)∆N3

ηc + 3
, (D.41)

and for ηi = −3 and xi > xk > 1, G2(τk) has the following form

G2(τk)

τ20
= C̃G2

0 + C̃G2

−2 x2k + C̃G2

x2

k
ln(xk)

x2k ln(xk) +
3x2k
2

ln(xk)
2 xi > xk > 1,
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where the coefficients are given by

C̃G2

0 = −3 e−(ηc+3)∆N3

2(ηc + 3)2
+

3 e−(ηc+5)∆N3

(ηc + 1)(ηc + 5)
− 3 e−2(ηc+3)∆N3

2(ηc + 1)(ηc + 3)

− 3
(
η2c + 6ηc + 7

)

4(ηc + 3)(ηc + 5)
,

C̃G2

−2 =
3(ηc + 1) e−(ηc+3)∆N3

2(ηc + 3)2
+

3 e−2(ηc+3)∆N3

2(ηc + 3)2
+

3
(
η2c + 4ηc + 5

)

4(ηc + 3)2
,

C̃G2

x2

k
ln(xk)

= −3 e−(ηc+3)∆N3

ηc + 3
− 3(ηc + 1)

2(ηc + 3)
. (D.42)

Some comments on the results of this Appendix are in order: First and foremost, due to

the presence of intermediate and non-attractor phase, modes that leave the horizon during the

slow-roll phase, xk > xi > 1, experience enhancement which appear as powers of e∆N2 and

e∆N3 in the coefficients C of the functions D(0)(τk), F (τk), G1(τk) and G2(τk). Another important

point is that similar to the case in Model 1, k dependence of the functions D(0)(τk), F (τk),

G1(τk), G2(τk) in Model 2 does not depend on the value of η during the intermediate (ηi) and

final non-attractor phase (ηc) for modes that leave the horizon during the initial slow-roll era,

xk > xi > 1. On the other hand, enhancement factors for modes that leave the horizon during

the intermediate stage does only depend on ∆N3. This observation tells us that enhancement

factors in our formulas appear in a cumulative sense: the appearance of large exponential factors

in the functions D(0)(τk), F (τk), G1(τk), G2(τk) in any era stems from the presence of an era with

a non-trivial η 6= 0 ( η < 0) that follows it. More importantly, contrary to the modes that leave

the horizon during the slow-roll era, k dependence of the functions D(0)(τk), F (τk), G1(τk), G2(τk)

now depends on the value of ηi for modes that leave the horizon during the intermediate stage,

xi > xk > 1.

E Coefficients to determine the location of kdip

In this short appendix, we provide the coefficients of αR
k in (3.6) that parametrizes the dependence

of kdip on the background model one is considering. The precise dependence of these coefficients

on the background model can be determined reading the coefficients C below from Appendix C

and D in the xk > 1 regime, i.e. for modes that leave the horizon in the slow-roll regime.

αR
0 = CD

0 vRR − c2k CF
−2 − c4k

(

7

360
− CF

−2

15 CD
0

)

, (E.1)

αR
2 =

[

CF
0 + c2k

(

CG1

−2 −
CF
0

15 CD
0

)]

, (E.2)

αR
3 =

[CF
1

ck
+ ck

(

CG1

−1 −
1

CD
0

(

CF
−2 CG2

1 +
CF
1

15

))]

, (E.3)

αR
4 = CG1

0 , (E.4)

αR
5 = c−1

k

(

CG1

1 − CF
−2 CG2

3

CD
0

)

. (E.5)
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Figure 16. Comparison of the power spectrum in Figure 1 (ck = 0.7) (brown curve) with the same model
where we take ck = 0.9 and ∆N = 2.73 (pink curve). These parameter choices are made to match kdip
in both curves. Blue (Cyan) colored points indicate the point in k space where k6 behaviour in the power
spectrum cease to exist.

We note that these formulas apply to both Model 1 and Model 2 as the functions D(0)(τk),

F (τk), G1(τk) and G2(τk) takes a universal form for both models for modes that exit the horizon

in the initial slow-roll era, xk > 1.

F Remarks on the high slopes after kdip and ck = −kτk

As we showed in Figure 1, for a short range of scales following the dip, power spectrum obtains

large spectral indices, as large as ns − 1 = 8 and ns − 1 = 6. Although, we find it hard to guess

the duration of this type of behavior using the general formulas we developed in this work, we

show below that its range in k space can be prolonged depending on the choice of the parameter

ck = −kτk. In particular, we will establish a relation between the choice of ck and the existence

of higher order spectral evolution after the dip.

We start with the observation that evaluated at the initial time τ = τk at around horizon

crossing, the relation −kτk = k/Hk = ck sets the minimum size of all the super-horizon modes

that can be considered within the gradient expansion formalism. In this sense, it applies to all k

modes on super-horizon scales and can be seen as a measure on the minimum softness of super-

horizon modes we consider. As it is clear from its definition, ck takes its maximal value of unity

if we take the initial time τk to be the horizon crossing time exactly, i.e. −kτk = k/Hk = 1.

In this sense, smaller choices of ck corresponds to an initial time τk that is identified after

horizon crossing time for each individual mode. In light of this discussion, it is natural tie a

choice of large ck = O(1) ≤ 1 to the order of gradient expansion in terms of k we undertake in

Section 2.2. For example, truncating the gradient expansion to k2 order, the authors assumed

ck ≃ 0.35, whereas in this work since we move to higher order in the gradient expansion, it

is justified to adapt a larger value of ck = 0.7 in models where higher order k terms play a

significant role. We demonstrate this natural relation between the choice of ck and higher order
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Figure 17. Comparison of G(τk) between the model in Figure 1 (Left) and the same model with the
parameter choices ck = 0.9 and ∆N = 2.73 (Right).

k corrections (parametrized by the function G(τk)) in Figure 16 where we plot the same model

shown in Figure 1 for a larger choice of ck = 0.9 (pink curve) to compare it with the same

scenario with ck = 0.7. For the ease of comparison, we choose slightly different duration for the

non-attractor phase (for the choice of ck = 0.9) to align the scales where kdip in both curves

occur. In this plot, blue (cyan) dot on the ck = 0.9 (ck = 0.7) curve indicates the point k

space beyond which slope of the spectral index is less than 6, i.e. ns − 1 < 6. The difference

between the location of these points implies that larger choices for ck leads to more enhanced and

longer lasting higher order k dependent terms (parametrized by G(τk)) inside the enhancement

factor in (3.7) and (3.8). We support these findings by a plot (Figure 17) of the dominant term

G(τk)k
4 together with F (τk)k

2 appearing the enhancement factor αk (2.28) for both scenarios.

For ck = 0.9 case, it is clearly visible that the range of scales for which the spectral behavior given

by k8 → k6 → k4 → k3 (labeled by ∆(k/H0)cascade)
17 is longer compared to the ck = 0.7 case.

More importantly, the difference between coloured dots (blue and cyan) in this plot indicates

that higher order corrections represented by the function G(τk) are more enhanced and extends

to wider range of scales compared to the ck = 0.7 case. All these facts we present here indicate

the strong link between the large slopes obtained for scales k > kdip in the scalar power spectrum

and the parameter choice of ck in the gradient expansion formalism we undertake.
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[85] J. Garćıa-Bellido, M. Peloso, and C. Unal, “Gravitational wave signatures of inflationary models

from primordial black hole dark matter,” Journal of Cosmology and Astroparticle Physics 2017

no. 09, (Sep, 2017) 013–013. http://dx.doi.org/10.1088/1475-7516/2017/09/013.

[86] N. Orlofsky, A. Pierce, and J. D. Wells, “Inflationary theory and pulsar timing investigations of

primordial black holes and gravitational waves,” Physical Review D 95 no. 6, (Mar, 2017) .

http://dx.doi.org/10.1103/PhysRevD.95.063518.

[87] K. Ando, K. Inomata, M. Kawasaki, K. Mukaida, and T. T. Yanagida, “Primordial black holes for

the ligo events in the axionlike curvaton model,” Physical Review D 97 no. 12, (Jun, 2018) .

http://dx.doi.org/10.1103/PhysRevD.97.123512.

[88] K. Kohri and T. Terada, “Semianalytic calculation of gravitational wave spectrum nonlinearly

induced from primordial curvature perturbations,” Phys. Rev. D97 no. 12, (2018) 123532,

arXiv:1804.08577 [gr-qc].

[89] E. Bugaev and P. Klimai, “Induced gravitational wave background and primordial black holes,”

Physical Review D 81 no. 2, (Jan, 2010) . http://dx.doi.org/10.1103/PhysRevD.81.023517.

59

http://dx.doi.org/10.1103/physrevlett.122.141302
http://dx.doi.org/10.1103/PhysRevLett.122.141302
http://dx.doi.org/10.1088/1475-7516/2018/11/038
http://arxiv.org/abs/1807.00786
http://arxiv.org/abs/1807.00786
http://arxiv.org/abs/1906.09244
http://dx.doi.org/10.1103/PhysRevD.94.103515
http://dx.doi.org/10.1103/PhysRevD.94.103515
http://arxiv.org/abs/1604.00141
http://dx.doi.org/10.1088/1475-7516/2018/12/024
http://arxiv.org/abs/1808.10475
http://dx.doi.org/10.1088/1475-7516/2019/09/036
http://arxiv.org/abs/1902.04976
http://arxiv.org/abs/1902.04976
http://dx.doi.org/10.1103/physrevlett.102.161101
http://dx.doi.org/10.1103/PhysRevLett.102.161101
http://dx.doi.org/10.1103/physrevd.94.043507
http://dx.doi.org/10.1103/PhysRevD.94.043507
http://dx.doi.org/10.1088/1475-7516/2016/12/031
http://dx.doi.org/10.1088/1475-7516/2016/12/031
http://dx.doi.org/10.1088/1475-7516/2016/12/031
http://dx.doi.org/10.1103/physrevd.95.123510
http://dx.doi.org/10.1103/physrevd.95.123510
http://dx.doi.org/10.1103/PhysRevD.95.123510
http://dx.doi.org/10.1088/1475-7516/2017/09/013
http://dx.doi.org/10.1088/1475-7516/2017/09/013
http://dx.doi.org/10.1088/1475-7516/2017/09/013
http://dx.doi.org/10.1103/physrevd.95.063518
http://dx.doi.org/10.1103/PhysRevD.95.063518
http://dx.doi.org/10.1103/physrevd.97.123512
http://dx.doi.org/10.1103/PhysRevD.97.123512
http://dx.doi.org/10.1103/PhysRevD.97.123532
http://arxiv.org/abs/1804.08577
http://dx.doi.org/10.1103/physrevd.81.023517
http://dx.doi.org/10.1103/PhysRevD.81.023517


[90] K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada, and T. T. Yanagida, “Inflationary Primordial

Black Holes as All Dark Matter,” Phys. Rev. D96 no. 4, (2017) 043504, arXiv:1701.02544

[astro-ph.CO].

[91] J. Espinosa, D. Racco, and A. Riotto, “A cosmological signature of the sm higgs instability:

gravitational waves,” Journal of Cosmology and Astroparticle Physics 2018 no. 09, (Sep, 2018)

012–012. http://dx.doi.org/10.1088/1475-7516/2018/09/012.

[92] N. Bartolo, V. De Luca, G. Franciolini, M. Peloso, D. Racco, and A. Riotto, “Testing primordial

black holes as dark matter with lisa,” Physical Review D 99 no. 10, (May, 2019) .

http://dx.doi.org/10.1103/PhysRevD.99.103521.

[93] R.-g. Cai, S. Pi, and M. Sasaki, “Gravitational Waves Induced by non-Gaussian Scalar

Perturbations,” Phys. Rev. Lett. 122 no. 20, (2019) 201101, arXiv:1810.11000 [astro-ph.CO].

[94] C. Unal, “Imprints of Primordial Non-Gaussianity on Gravitational Wave Spectrum,” Phys. Rev.

D99 no. 4, (2019) 041301, arXiv:1811.09151 [astro-ph.CO].

[95] D. Baumann, P. J. Steinhardt, K. Takahashi, and K. Ichiki, “Gravitational Wave Spectrum

Induced by Primordial Scalar Perturbations,” Phys. Rev. D76 (2007) 084019,

arXiv:hep-th/0703290 [hep-th].

[96] L. Alabidi, K. Kohri, M. Sasaki, and Y. Sendouda, “Observable Spectra of Induced Gravitational

Waves from Inflation,” JCAP 1209 (2012) 017, arXiv:1203.4663 [astro-ph.CO].

[97] K. Inomata, M. Kawasaki, K. Mukaida, Y. Tada, and T. T. Yanagida, “Inflationary primordial

black holes for the LIGO gravitational wave events and pulsar timing array experiments,” Phys.

Rev. D95 no. 12, (2017) 123510, arXiv:1611.06130 [astro-ph.CO].

[98] L. Lentati, S. R. Taylor, C. M. F. Mingarelli, A. Sesana, S. A. Sanidas, A. Vecchio, R. N.

Caballero, K. J. Lee, R. van Haasteren, S. Babak, and et al., “European pulsar timing array limits

on an isotropic stochastic gravitational-wave background,” Monthly Notices of the Royal

Astronomical Society 453 no. 3, (Aug, 2015) 2577–2599.

http://dx.doi.org/10.1093/mnras/stv1538.

[99] Z. Arzoumanian, A. Brazier, S. Burke-Spolaor, S. J. Chamberlin, S. Chatterjee, B. Christy, J. M.

Cordes, N. J. Cornish, K. Crowter, P. B. Demorest, and et al., “The nanograv nine-year data set:

Limits on the isotropic stochastic gravitational wave background,” The Astrophysical Journal 821

no. 1, (Apr, 2016) 13. http://dx.doi.org/10.3847/0004-637X/821/1/13.

[100] M. Maggiore, Gravitational Waves. Vol. 2: Astrophysics and Cosmology. Oxford University Press,

2018. https://global.oup.com/academic/product/gravitational-waves-9780198570899?

cc=de&lang=en&#.

[101] J. R. Espinosa, D. Racco, and A. Riotto, “A Cosmological Signature of the SM Higgs Instability:

Gravitational Waves,” JCAP 1809 no. 09, (2018) 012, arXiv:1804.07732 [hep-ph].

[102] C. R. Contaldi, “Anisotropies of Gravitational Wave Backgrounds: A Line Of Sight Approach,”

Phys. Lett. B771 (2017) 9–12, arXiv:1609.08168 [astro-ph.CO].

[103] N. Bartolo, D. Bertacca, S. Matarrese, M. Peloso, A. Ricciardone, A. Riotto, and G. Tasinato,

“Anisotropies and non-Gaussianity of the Cosmological Gravitational Wave Background,”

arXiv:1908.00527 [astro-ph.CO].

[104] N. Bartolo, D. Bertacca, V. De Luca, G. Franciolini, S. Matarrese, M. Peloso, A. Ricciardone,

A. Riotto, and G. Tasinato, “Gravitational Wave Anisotropies from Primordial Black Holes,”

arXiv:1909.12619 [astro-ph.CO].

60

http://dx.doi.org/10.1103/PhysRevD.96.043504
http://arxiv.org/abs/1701.02544
http://arxiv.org/abs/1701.02544
http://dx.doi.org/10.1088/1475-7516/2018/09/012
http://dx.doi.org/10.1088/1475-7516/2018/09/012
http://dx.doi.org/10.1088/1475-7516/2018/09/012
http://dx.doi.org/10.1103/physrevd.99.103521
http://dx.doi.org/10.1103/PhysRevD.99.103521
http://dx.doi.org/10.1103/PhysRevLett.122.201101
http://arxiv.org/abs/1810.11000
http://dx.doi.org/10.1103/PhysRevD.99.041301
http://dx.doi.org/10.1103/PhysRevD.99.041301
http://arxiv.org/abs/1811.09151
http://dx.doi.org/10.1103/PhysRevD.76.084019
http://arxiv.org/abs/hep-th/0703290
http://dx.doi.org/10.1088/1475-7516/2012/09/017
http://arxiv.org/abs/1203.4663
http://dx.doi.org/10.1103/PhysRevD.95.123510
http://dx.doi.org/10.1103/PhysRevD.95.123510
http://arxiv.org/abs/1611.06130
http://dx.doi.org/10.1093/mnras/stv1538
http://dx.doi.org/10.1093/mnras/stv1538
http://dx.doi.org/10.1093/mnras/stv1538
http://dx.doi.org/10.3847/0004-637x/821/1/13
http://dx.doi.org/10.3847/0004-637x/821/1/13
http://dx.doi.org/10.3847/0004-637X/821/1/13
https://global.oup.com/academic/product/gravitational-waves-9780198570899?cc=de&lang=en&#
https://global.oup.com/academic/product/gravitational-waves-9780198570899?cc=de&lang=en&#
http://dx.doi.org/10.1088/1475-7516/2018/09/012
http://arxiv.org/abs/1804.07732
http://dx.doi.org/10.1016/j.physletb.2017.05.020
http://arxiv.org/abs/1609.08168
http://arxiv.org/abs/1908.00527
http://arxiv.org/abs/1909.12619


[105] R.-G. Cai, S. Pi, and M. Sasaki, “Universal infrared scaling of gravitational wave background

spectra,” arXiv:1909.13728 [astro-ph.CO].

61

http://arxiv.org/abs/1909.13728

	1 Introduction
	2 Enhanced curvature perturbations in single field inflation: the role of the decaying mode
	2.1 Growing and decaying mode: general considerations
	2.2 Solving the mode equations at super-horizon scales
	2.3 The spectrum of curvature perturbations on super-horizon scales 
	2.4 General comments on the results so far

	3 Enhancement of Rk in Single Field Inflationary Scenarios
	3.1 Model 1: an instant transition between a slow-roll and a non-attractor phase
	3.2 Model 2: an intermediate phase between attractor and non-attractor
	3.2.1 On the steepest slope of the power spectrum
	3.2.2 The slope of the power spectrum towards the peak in realistic models

	3.3 On the final transition between non-attractor and slow-roll phase

	4 Implications for stochastic gravitational wave backgrounds
	5 Summary
	A The solution for Rk with more general initial conditions
	B The curvature perturbation Rk and fractional velocity vR
	C Model 1: Calculation of D(k), Fk(k) and G(k)
	D Model 2: Calculation of D(k), Fk(k) and G(k)
	E Coefficients to determine the location of kdip
	F Remarks on the high slopes after kdip and ck = -kk
	References

