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ON THE SMOOTHNESS OF CONVEX ENVELOPES

A. GRIEWANK AND P. J. rabier

Abstract. We examine differentiability properties of the convex envelope
conv£  of a given function   E: R"  —>  (—oo, oo]   in terms of properties of

1 1     QE . It is shown that C   as well as optimal C '    regularity results, 0 < a < 1 ,
can be obtained under general conditions.

1. Introduction

Let F: R" —> (-00, 00] be any function. The convex envelope (or convex
hull) convF of F is unambiguously defined as the greatest convex function
majorized by F on R" . Under appropriate conditions, convF will be a proper
convex function, hence differentiable almost everywhere on the interior of its
domain.

Surprisingly, it does not appear that much more is known about the smooth-
ness of conv F, no matter what assumption is made on F (with the exception
of F smooth and convex). For instance, we note that in a recent paper, Ray-
mond [5] has sketched a proof of C regularity for the convex envelope of a
smooth enough function of two variables defined on the entire plane and sat-
isfying appropriate growth conditions. Since his purpose was clearly not to
establish regularity results for convex envelopes, this confirms that there is both
a need for and a lack of available references in this direction. Perhaps this is
due to the fact that elementary examples show that conv F does not in general
inherit the smoothness properties of E: even when E is analytic, it is easily
seen that conv F will not even be C   under nonexceptional circumstances.

Thus, if a convex envelope has particular smoothness properties not neces-
sarily shared by general convex functions, they do not exceed C ' regularity.
This observation is strongly reminiscent of a result by Brezis [1] on the regular-
ity threshold for solutions to the obstacle problem. Although a convex envelope
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692 A. GRIEWANK AND P. J. RABIER

is not obtained as a solution to a variational inequality, its very definition makes
it appear as a solution to a variant of the obstacle problem. Further analogy
can be found in that the solution to the classical obstacle problem satisfies a
second order elliptic inequality, while convexity may be thought of as positive
semidefiniteness of the Hessian.

Now, the regularity results for the obstacle problem are established in Sobolev
spaces and do not exceed ^''-regularity in general where s < 2 + - and
1 < p < oo is arbitrary. From Sobolev's embedding theorem, regularity in the
classes C '" then does not exceed C '" with a < 1 .

Put in very broad terms, it will be shown in this paper that a similar prop-
erty is true for convex envelopes, namely that general conditions can be given
under which local C '" regularity of E (0 < a < 1) is inherited by convF .
Naturally, this statement alone conceals not only the hypotheses to be made
on F, but also some limitations as to where convF is of class C1 or Cl'a.
Also, it does not stress that because the construction of conv F involves global
properties of F, appropriate smoothness of the boundary of dom(F), the
domain of F, may have to be required near the points of some subset of
<9(dom(F)) n dom(F). Finally, saying that convF is "as smooth as F" is
an understatement, for continuous differentiability of F is not necessary for
convF to be C , that is, convexification may have a smoothing effect. This
phenomenon, easily corroborated by elementary one-dimensional examples, is
accounted for in our analysis.

On the practical side, we note that inquiring about smoothness of convex
envelopes is not meant only to satisfy mathematical curiosity. For instance, the
operation of convexification is fundamental in the mathematical study of ther-
modynamic phase equilibria: a result of local C '" regularity for the convex
envelope of, say, a Helmholtz energy potential F, yields local C ' ' regularity
for the corresponding pressure, directly expressed in terms of V(convF). Even
more important is that differentiability of conv F , by guaranteeing uniqueness
of the subgradient, ensures that the pressure is uniquely determined. Applica-
tions of some of the results presented here to thermodynamic phase equilibrium
are discussed in [4].

Such smoothness results are also relevant regarding the convexification of
normal integrands (a finite dimensional problem, indeed), a procedure lying at
the bottom of the well-known relaxation technique in the calculus of variations.
In these matters, C1 regularity of the convex envelope is essential to ascertain
that the generalized solutions satisfy an associated Euler equation in the sense of
distributions. In turn, such a characterization can be used for various purposes,
such as determining whether the generalized solutions are or are not solutions
to the original problem. This is precisely the way the aforementioned regularity
result proved in [5] is used, and was actually used before in several circumstances
in problems involving convexification with respect to only one variable (a case
when C1 regularity of the convex envelope is rather obvious). That at least local
C1'1   regularity is also available should be important regarding derivatives in
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SMOOTHNESS OF CONVEX ENVELOPES 693

the sense of distributions and/or the use of Sobolev's embedding theorems,
especially in problems in which Lipschitz continuous solutions are sought.

The paper is organized as follows. General hypotheses are listed and technical
preliminaries are developed in §2. §3 contains the continuous differentiability
properties and C '" regularity of the gradient is established in §4 in a somewhat
less general framework, sufficient for many applications. Despite the analogy
emphasized above, our method is quite different from the one used to prove
smoothness of the solutions to variational inequalities. In particular, we shall
make no use of Sobolev spaces, and our approach remains quite classical.

All the known properties of convex functions that are used throughout can
be found in the book by Rockafellar [6]. For the convenience of the reader, we
have made precise reference to the relevant statement in [6] whenever we have
felt that it might not be common knowledge. Everywhere in the paper, " int"
and " dom " are abbreviations for "interior" and "domain", respectively.

2. Preliminaries

In this section, we shall assume that F: R" —♦ (-oo, oo] satisfies

(2.1) dom(F) = {S g R" ,  F(<5)<oo}/0,
(2.2) F is lower semicontinuous on R",
,,« ,-      E(5)(2.3) lim   —^ = oo,

l<5|—oo    |d|

where | • | denotes any norm on R". Other assumptions will be introduced in
§3.

Without any of the preceding assumptions, a formula for conv F, as it can
be found in [6, Corollary 17.1.5, p. 157], reads

n+\
(2.4) (conv E)(d) = inf £ XjE(di),

i=i
where the infimum is taken over all convex combinations with n + 1 elements
d = E"=i' Vi - ^, > ° > dj € R" , YTitl Xt=\. In this statement, it is under-
stood that the di 's need not be distinct and that XjE(di) = 0 whenever X- = 0
and E(dt) = oo . Yet another expression for convF is [6, p. 36]

(2.5) (conv£)(rf) = inf £ *,.£(</,.),
/=i

where now the infimum is taken over all convex combinations d = £)? . X d{
(q arbitrary). It is then immediate that a third definition of convF is given
by (2.5) with the infimum now being taken over all convex combinations with
q < n + 1 elements, X{ > 0 for \ < i <q and d{ ̂  d, for i ^ j. To see this,
it suffices to eliminate from (2.4) all the indices with Xl = 0 and collect all the
terms with X( > 0 corresponding to the same point di.
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694 A. GRIEWANK AND P. J. RABIER

The preliminary result we need is that assumptions (2.1) to (2.3) are sufficient
to guarantee that the infimum in (2.5) is actually a minimum for every d e
conv(dom(F)), the convex hull of dom(F). Under a somewhat stronger growth
condition at infinity, this result is already in Ekeland and Temam [2, Lemma 3.3,
p. 260] when dom(F) = R" .

Theorem 2.1. In the assumptions (2.1) to (2.3), convF is a proper convex func-
tion and dom(convF) = conv(dom(F)). Moreover, for d e dom(convF), one
has

(com E)(d) = J2XiE(di),
(=i

for some convex combination d = Y11=\ ̂jdj with q < n + 1, X > 0, df e
dom(F), and di ^ d  for i ^ j .
Proof. From assumptions (2.1) to (2.3) it follows that F is bounded from
below by a constant e e R, namely,

(2.6) E(8) >e, VJeR".
In particular, convF > e , so that convF is proper. As (convF)(af) < E(d) for
every d e Rn , it is clear that dom(F) c dom(convF) and hence conv(dom(F))
c dom(convF). Now, if a point d e R" cannot be expressed as a convex
combination of points of dom(F), then Xw=i ̂ jE(dj) — °° f°r every convex
combination d = SLi^i' hence (convF)(af) = oo from (2.5). This shows
that dom(convF) c conv(dom(F)).

The proof of the remaining part of the theorem is more involved. For d e
dom(conv F), consider a sequence of convex combinations

d^^df"
i=i

with  \<qk<n+\, X]^ > 0,  1 < i < qk , such that
<?*

(convF)(^)= lim ^xf ]E(d\k)).^°° ;=i

Existence of such a sequence follows from the comments preceding the theorem.
Since (comE)(d) 6 R, it is not restrictive to assume that d\ ' e dom(F) for
1 < i < Qk ■ Moreover, extracting a subsequence, we may assume that qk = q
is constant (as a result of 1 < qk < n + 1 ). Hence, the relations now read

(2.7) d = ±X\k)dlk)
;=l

and

(2.8) (conv£)(rf)= lim fTX1. ]E(d\ ]).
k—>oo ̂ ~'

i=l
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SMOOTHNESS OF CONVEX ENVELOPES 695

For every fixed index 1 < i < q, the sequence (d\ ) has accumulation
points or does not have any. When it has some, they may belong to dom(F)
or not. After extracting subsequences and rearranging indices, if necessary, we
may assume

(2.9) lim d(k) = d, e dom(F),        1 < i < q,
k—*oo

(2.10) lim d{k) = d; i dom(F),        q+l<i<q,
fc—»oo

(2.11) lim \d(k)\ = oo,        q' + \<i<q,
k-*oo

where 0 < q < q' <q (< n + l). Naturally, the values of q and q may depend
on the choice of the subsequences. Finally, extracting subsequences again (an
action that does not affect (2.7)—(2.11)), we may also assume

(2.12) lim X{k)=Xi >0,        1 < i <q.
k—*oo

Note that
(2.13) E(d.) < lim infE(df]),        \<i<q,

k—»oo

and
(2.14) lim E(d{k)) = oo,        q + l<i<q.

k—>oo

Indeed, (2.13) and (2.14) for q + 1 < /' < q follow from lower semicontinuity
of F whereas (2.14) for q + 1 < / < q is immediate from (2.11) and the
growth condition (2.3).

Now, it is clear from (2.14) that E(d\ ]) > 0 for q + 1 < / < q and k large
enough. With this observation and for every e > 0 fixed, (2.8) thus yields the
basic string of inequalities (recall (com E)(d) € R)
(2.15)

0 <   J2 *\k)E(d]k)) <  E *{,k)E(d-k)) < (comE)(d) - £A<*]E(d\k)) + e,
i=q' + \ i=q+\ 1=1

for k large enough. With no loss of generality, we can then assume that (2.15)
holds for every index k .

With (2.6) and (2.15), we find

(2.16) 0<   Y, A!   E(d{k))<  J2 ^ik)E(d{k))< (convE)(d) + \e\ + e<oo.
i=q' + \ 1=9+1

From (2.12), (2.14), and (2.16), it is clear that
(2.17) A, = 0,        q+l<i<q.
In particular, this shows that q > 1 , for the relations

/=i /=i
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696 A. GRIEWANK AND P. J. RABIER

could not hold if q = 0. Hence it follows with (2.17) that

(2.18) X>, = 1.
i=i

On the other hand, (2.11) and assumption (2.3) ensure that for every integer
m > 0

E(d(k))>m\d{k)\,        q' + l<i<q,

provided that k is large enough. Therefore, from (2.16) we find

E ^)\d[ik)\<^l(comE(d) + \e\ + e],i—i m
i=q +1

for k large enough. As m > 0 is arbitrary, this yields

lim   y Xik)d{k) = 0.
k^oo    ^        ' '

i=q'+\

But lim^^ £?l«+i ^df] = 0 is obvious from (2.10) and (2.17) and hence,
together with (2.7) and (2.9) we get

d = lim yx(k)d(k) = lim yx(k)d\k) = fu.
k—>oc '—~' k—>oo ̂ ^ '—~'

(=1 i=l i=l

Recalling (2.18), we see that d is a convex combination of dx, ... , d .
A last and obvious consequence of (2.15) is the inequality

yx{k)E(d(k)) < (convE)(d) + e.
/=i

From (2.13) we infer that

E^£(rf/)<(convF)(fiO+.e.
(=1

Hence

E^K)<(convF)(^),
(=i

since e > 0  is arbitrary.   But it was previously shown that d  is a convex
combination of dx , ... , d . Therefore

(convF)(</)<E^FK),

from the characterization (2.5) of (conv E)(d). As a result

(convF)(rf) = E^K-)-
/=i
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SMOOTHNESS OF CONVEX ENVELOPES 697

In this formula, the Xt 's need not be strictly positive (but the dl 's are in
dom(F) from (2.9)), and the d{ 's need not be distinct. Obviously, both con-
ditions can be met be decreasing q accordingly, and the proof is complete.   □

Remark 2.1. For d e dom(convF) = conv(dom(F)), let d = £?_, Xidi be any
convex combination with X; > 0 and dt e dom(F), satisfying

(com E)(d) = J2^E(dt)
i=i

(in particular, it is not necessary to assume q < n + 1). Then, (com E)(d{) =
E(di). Indeed, if (conv E)(dt) < E(di) for at least one index /, then convexity
of conv F and the inequality conv E < E together imply

(convE)(d) < £A,.(conv£)(</,.) < £>,£(«/,),
1=1 ;=1

a contradiction.
Also, convF is affine on conv{a'1, ... , dq}. Indeed, let d = Y?i=\ P-jdj,

Pi>0, 1 < ' <q, ULi V-i ~ 1> De anY point of convj^j, ... , dq) . From the
last inequality and by convexity

(convF)(c5)<E^K)^^)-
i=i

Obviously, <p is affine, and the convex function (conv E) — (f> achieves its max-
imum value at the point d of the relative interior of com{dx, ... , d } , hence
is constant on conv{<5fj, ... , d } . Moreover, (convE)(d) - <p(d) = 0, so that
convF = 4> is affine on conv{^j, ... , d }.   □

Remark 2.2. The growth condition (2.3) cannot be replaced by the weaker one
^mi<si-Kx> E(<>) — °° because it is no longer possible to ascertain (in the notation
of the proof of Theorem 2.1) that d is a convex combination of dx , ... , d .    □

3. Continuous differentiability of convex envelopes
In the remainder of this paper, we shall set

D = int(dom(F)).

Before we examine smoothness properties, we need the following theorem.

Theorem 3.1. Retain the assumptions (2.1) to (2.3). Then, for

d e int(dom(convF))

the subdifferential d(convE)(d) is nonempty. Moreover, let d = 2^t=i^/ be
any convex combination with Xi > 0 and di e dom(F) such that

(3.1) (conv E)(d) = yXiE(dl)
i=i
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698 A. GRIEWANK AND P. J. RABIER

(the existence of which, with q < n + 1, follows from Theorem 2.1). Then, for
every g g d(convE)(d), one has

(3.2) E(di)-g-di = (comE)(d)-g-d,        \<i<q,
and

(3.3) E(S)-g-S>E(di)-g-di,        MS e R",     1 </<<?.

In addition, suppose that E is differentiable at each point dt, 1 < / < q,
and that d(dom(E)) n dom(F) coincides with a differentiable manifold Mt
with dimension n - 1 near each point di G <9(dom(F)). Then, for every
g G d(convE)(d) and each i, one has

(3.4) g = VE(dt)     ifd,eD,
or

(3.5) g = VE(dt) + tlu(di)     if di G 3(dom(F)) n dom(F) ,
where v(d^ is a nonzero vector normal to Mi at di and ti G R.
Proof. Nonemptiness of d(convE)(d) for d G int(dom(convF)) follows from
[6, Theorem 23.4, p. 217]. To prove (3.2), note that since dt G dom(F)

(3.6) E(di)>(comE)(di)>(comE)(d) + g-(di-d),        l<i<q,

for every g G d (conv E)(d). But suppose that either of the above inequalities
is strict for some index iQ . Then, multiplying (3.6) by Xi > 0 and adding up
the resulting q inequalities, we find (recall X2f= i Aj = 1 and JZUi ̂ X = d )

y^E(d,)>(comE)(d),
i=i

in contradiction with (3.1). Hence, the inequalities in (3.6) are equalities for
1 < / < q, which proves (3.2). Relation (3.3) now follows from (3.2) and

E(8) > (comE)(S) > (com E)(d) + g ■ (S - d).
From (3.2) and (3.3) together, we infer that the mapping

(3.7) SeR" ^E(d)-g-Se(-oo,oo]

achieves its minimum value at dx, ... , d . The assumption that d{ e D and
F is differentiable at dl implies relation (3.4). As dt G dom(F), it is clear that
fif( G <9(dom(F)) ndom(F) whenever dt £ D. If F is differentiable at dt and
d(dom(E)) n dom(F) contains a differentiable manifold Mt with dimension
n - 1 near dt, equation (3.5) follows from the fact that the mapping (3.7)
achieves its minimum value on M{ at dl.   □

Remark 3.1. With the restrictions dom(F) compact, q < n + 1 , and d G
D, Theorem 3.1 can also be obtained as a corollary to a general result in

For  di € y(dom(£)), this means that on   dom(£) ,   E   is the restriction of a real-valued
function on R"  which is differentiable at dt .
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SMOOTHNESS OF CONVEX ENVELOPES 699

semi-infinite linear programming (cf. Glashoff and Gustafson [3, Theorem 1,
p. 135]).   □

The subset of dom(F) of those points at which the subdifferential of F is
not empty will play an important role. Accordingly, we shall set

(3.8) dom(F)* = {8 e dom(F); dE(S) / 0}.
In the assumption that <9(dom(F)) n dom(F) coincides with an (« - 1)-
dimensional manifold near each point of <9(dom(F)) n dom(F)* , the normal
line to d(dom(E)) ndom(F) at 8 G d(dom(E)) n dom(F)* is defined without
ambiguity. In this case, we shall denote by v(8) either of the two unit vectors
generating the normal line.

For every integer q > 1 , set

(3.9) Sq(E) = {d€ com{dx, ... , dq}; dt G d(dom(E)) n dom(F)*,
u(dt) = ±v(dj), u{dt) ■ (</,. -dj) = 0,l<i,j<q}

and

(3.10) S(E) = \J Sq(E).

In what follows, it will sometimes be convenient to refer to S(E) as the singular
set of F.

The main result regarding (continuous) differentiability of conv F is as fol-
lows.

Theorem 3.2. In addition to the assumptions (2.1)—(2.3), suppose that <9(dom(F))
n dom(F) coincides with a (n - \)-dimensional manifold near each point of
<9(dom(F)) n dom(F)*. Suppose also that E is differentiable at each point of
dom(F)* (in particular, this is true if E is differentiable at every point of
dom(F)). Then, conv F is differentiable at every point of the interior of its
domain, except possibly at points of the singular set S(E) in (3.10). In particu-
lar, conv F is continuously differentiable on any open subset of its domain not
intersecting S(E).

Note. If n = 1, S(E) = d(dom(E)) n dom(F).

Proof. Let d e int(dom(convF)), and let d = £)'=, Xjdl be a convex combi-
nation satisfying the assumptions of Theorem 3.1. With no loss of generality,
assume di / d] for / / j .

To prove that convF is differentiable at d , we need only show d(convE)(d)
contains exactly one element. As d(conv E)(d) ^ 0 is guaranteed by Theorem
3.1, let g G d(convE)(d). From relation (3.3) it is clear that g G dE(dj);
hence di G dom(F)*, and F is therefore differentiable at dl., \ < i < q .

If one of the dj 's is in D, relation (3.4) yields g = VE(d(), which specifies
g in a unique way. Thus, it remains only to examine the case when all the d 's
lie on d(dom(E)). Assuming that d ^ S(E), one has d $ SX(E) and hence
d g d(dom(E)) ndom(F)* which, in turn, implies q>2.
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700 A. GRIEWANK AND P. J. RABIER

Using previous notation, suppose first that v(dj) and v(df) are not collinear
for some pair of indices 1 < /, j < q. Obviously, one may assume / = 1 and
j = 2 and there is a vector x2 tangent to d(dom(F)) ndom(F)* at d2 which
is not tangent to f9(dom(F))ndom(F)* at dx,i.c, u(dx)-x2 ^ 0. From (3.5),
one has

g = VE(dx) + txu(dx) = VE(d2) + t2u(d2),
for some real numbers /, and t2. But then

VE(dx)-x2 + txu(dx)-x2 = VE(d2)-x2,

yielding
tx = (VE(d2)-VE(dx))-x2/u(dx)-x2,

which, again, specifies g in a unique way.
Finally, suppose that v(dt) — ±v(d) for every 1 < i, j < q. Since d <£

S(E), there is a pair of indices such that u(d() • (df - d.) ^ 0. Again, with no
loss of generality, assume i = 1 and j = 2. From relation (3.2), we get

E(d2) = E(dl) + g.(d2-dl).

But g = \7E(dx) + txv(dx) (cf. (3.5)) and hence

E(d2) = E(dx) + VE(dx)- (d2 -dx) + txu(dx)- (d2 -dx),

namely

tx = [E(d2) - E(dx) - VE(dx)-(d2- dx)]/!/(</,)-(d2~dx),

and g is thus specified in a unique way.
Above, we have seen that conv F is differentiable at every point of

int(dom(convF)) - S(E).

That conv F is necessarily continuously differentiable on every open subset of
its domain not intersecting 5(F) follows from [6, Corollary 25.5.1, p. 246].   □

Remark 3.2. The assumption that F is differentiable at every point of dom(F)*
can be weakened by requiring only that for 8 G dom(F)*, the following alter-
native holds:

(i) either 8 e D = int(dom(F)) and dE(8) contains exactly one element,
(ii) or 8 G <9(dom(F)) and dE(8) contains exactly one element modulo

the normal line to <9(dom(F)) through 8 .
Indeed, in this case, it is easy to obtain a modified version of Theorem 3.1
allowing for a proof of Theorem 3.2 similar to the one given above. An example
of when this generalization is relevant will be given later.   □

Many corollaries to Theorem 3.2 may be derived that ensure that convF is
continuously differentiable on the interior of its domain. For instance, this ap-
plies if <9(dom(F))ndom(F) = 0 so that dom(F) is open (or, more generally,
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SMOOTHNESS OF CONVEX ENVELOPES 701

^-^^ S(E) = 0

Figure 3.1. Two examples when D n 5(F) = 0 irre-
spective of d(dom(E)) n dom(F)*

if <9(dom(F))ndom(F)* = 0 ). If so, Theorem 3.2 puts no restriction on the ge-
ometry of <9(dom(F)), and the assertion follows from S(E) = 0. Note in par-
ticular that dom(F) needs not be connected (but assumptions (2.1)—(2.3) must,
of course, be satisfied). Also, dom(F) is trivially open when dom(F) = R" .

Other corollaries to Theorem 3.2 will guarantee that conv F is continuously
differentiable on certain open subsets of the interior of its domain. For in-
stance, continuous differentiability of convF on D = int(dom(F)) follows
from the assumption D n S(E) = 0 which, also, can be realized irrespective
of <9(dom(F)) n dom(F)* (except for smoothness of 9(dom(F)) n dom(F)*)
without assuming that dom(F) is convex or connected, as shown on Figure 3.1.

While these observations emphasize that convexity of dom(F) is not neces-
sary for conv F to be continuously differentiable, nevertheless it is an important
sufficient condition.

Corollary 3.1. In addition to the assumptions of Theorem 3.1, suppose that
dom(F) is convex. Then, convF is continuously differentiable on

D = int(dom(F)) = int(dom(convF)).
Proof. The relation int(dom(convF)) = int(dom(F)) follows from dom(F)
convex and Theorem 2.1. Thus, to prove the claim, it suffices to show that
D n 5(F) = 0 . We henceforth assume D / 0 with no loss of generality.

Let then q > 1 be a given integer, and pick d e 5 (E). For some unit vector
i/eR", one then has i>(fl?-) = ±v, 1 < j < q , and (dt - dj) ■ v = 0 for 1 < /,
j < q . Hence

{d-di)-u = {d-dJ)-v,       \<i,j<q.

Writing d = £?=i V/» Ejli Xi = 1' */ - °» l - ' ^ 1 > multiplying the above
relation by Xt, and next summing over 1 < / < q yield

(d-dj)-u = 0,        \<j<q.
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702 A. GRIEWANK AND P. J. RABIER

In other words, (d - dA lies on the tangent space of <9(dom(F)) n dom(F)*
at dj, which is also the tangent space to d(dom(E)) at d from convexity of
dom(F). Recall that the boundary of a convex set with nonempty interior is
locally the graph of a Lipschitz continuous function. Here, near d}, this graph
contains the graph of a C   function by hypothesis and hence coincides with it.

As a result, d = d- + (d - df) lies in the (unique) hyperplane supporting
dom(F) at dj, which does not intersect D = int(dom(F)) and hence d <£
D.    D

Remark 3.3. Corollary 3.1 can be extended, with the .ame proof, to the case
when dom(F) convex is replaced by d(dom(E)) c <9D with D open and
convex. If so, the conclusion is that convF is continuously differentiable on
D. This version allows for dom(F) c d(dom(F)); i.e., F is finite only on
(part of) the boundary <9D.   D

To complete this section, we shall now give an example when the general-
ization of Theorem 3.2 mentioned in Remark 3.2 is relevant. First, consider
F as in Theorem 3.2, and suppose also that <9(dom(F)) n dom(F)* = 0. For
this, it suffices that the graph of F have a "vertical tangent" at every point
of d(dom(E)) n dom(F), which can be realized even when dom(F) is closed.
Since 5(F) = 0 in this case, convF is continuously differentiable on the in-
terior of its domain.

Now, consider Ex and F, as above, and set

F = min(F,, E2).

Then, dom(F) = dom(F,)udom(F2) ^ 0. Also, F is lower semicontinuous on
R" and verifies the growth condition (2.3). Unlike differentiability properties
at points of dom(F)* which, even if true, are hard to check, the conditions (i)
and (ii) in Remark 3.2 are easy to verify. Indeed, let d e dom(F)*, so that
there is g G R" with

E(8)>E(d) + g-(8-d),        V<5gR".
As E(d) = Ea(d) for a = 1 or 2, say E(d) = Ex(d), one has

Ex(8)>E(8)>Ex(d) + g-(8-d),        V<5 g R" .
In other words, d G dom(F()*. But d(dom(Ex)) n dom(F,)* = 0, so that
d G int(dom(F,)) c int(dom(F)). Since F, is differentiable on the interior of
its domain, g-VE(dx) is uniquely determined. It follows that <9(dom(F))n
dom(F)* =0 and that dE(8) contains exactly one element whenever dE(8) ^
0 . The hypotheses of Theorem 3.2 are satisfied with S(E) = 0 , so that convF
is continuously differentiable on the interior of its domain.

4. Holder continuity of the gradient

Since only C ' regularity of conv F may be expected no matter how smooth
F is, it is quite natural to investigate whether general conditions can be found
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that do guarantee that conv F is (locally at least) of class C '' , or more gen-
erally of class C '" , 0 < a < 1 .

Existence of such conditions will be established in this section. We have
found technical obstacles that have prevented us from being able to investigate
these matters with as much generality as the continuous differentiability prop-
erty. For both brevity and clarity, and also because the current applications do
not seem to require a more general framework, we have limited our exposition
to the case when

(4.1) 3(dom(F))ndom(F)* =0,

or, equivalently,

(4.1') dom(F)*cD.

Of course, we shall retain the hypotheses (2.1) to (2.3) and require some
smoothness of F. Precisely, we shall assume

F is locally of class C ,a, 0 < a < 1, on some open neighborhood of

dom(F)*,

a condition that makes sense in view of (4.l').
As a result of these hypotheses, Theorem 3.2 yields C regularity of convF.

Moreover, since 5(F) = 0 from (4.1), one has

(4.3) convF G C (convD).

To avoid endless repetition, we shall once and for all decide that d G conv D
is written in the form

(4.4) d = yxtdt,
i=i

with Xi > 0, XXi ki = 1 > l ^ 9 < n + 1, dl,e dom(F), dt ^ dj for i ^ j
and

(4.5) (conv E)(d) = yXiE(di).
i=i

Existence of such a convex combination follows from Theorem 2.1. But since
its uniqueness is not true in general, the Xl 's and dt 's will henceforth refer to
any such combination.

As observed in the proof of Theorem 3.2, one has

(4.6) di G dom(F)*,        1 < i < q.

Thus, from (4.1'), dl■ € D and hence

(4.7) V(convE)(d) = VE(dt),        1 < i < q,

from Theorem 3.1.
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Remark 4.1. Note that (4.1) holds if domF = R" and (4.2) is fulfilled as soon
as F is locally C '" on R" , an important case in practice. These hypotheses
are also satisfied by many thermodynamic potentials F with dom(F) ^ R".   □

Our aim is to prove that convF is locally C1'" on convD (global properties
will be examined, too) namely that V(convF) is locally C0'" on convD. This
result relies on a sequence of preliminary lemmas.

Lemma 4.1. Let M and G be arbitrary constants. Let

r = T(M, G) = {8 e dom(E)*; E(8) < M,  \VE(8)\<G}.

Then, T is a compact subset of dom(F)*.
Proof. With no loss of generality, assume Y ̂  0. Since T is bounded because
of the growth condition (2.3), it suffices to prove that T is closed in R" .

Let then (8k) be a sequence of points in Y and 8 G R" such that lim^oo ^
= 8 . From F being lower semicontinuous in R"

(4.8) E(8) < liminfF(^) <M.
k—*oo

Next, from (4.2), it is clear that dE(8k) = {VE(8k)}. Therefore,

(4.9) E(Z)>E(8k) + VE(8k)-(Z-8k),        V(eR", VL
Because \VE(8k)\ < G by hypothesis, and after extracting a subsequence, one
may assume that lim^^ VE(8k) = g . Obviously,

(4.10) \g\<G.
Using again lower semicontinuity of F, it follows from (4.9) that

E(Z) > E(8) + g-(Z-8),        V£ G R" .

This shows that 8 G dom(F)* and that g e dE(8). But, from (4.2) again,
dE(8) = {VE(8)} so that g = VE(8) and (4.10) reads \VE(S)\<G. Together
with (4.8) and 8 G dom(F)*, this shows that 8 G T.    □

Remark 4.2. Clearly, the proof goes through with F g C'(dom(F)*) instead
of (4.2). Also, note that the set {8 G dom(F)*, E(8) < M) is not compact in
general, so that involving VF in the definition of T is essential.   □

The next lemma exhibits a property of a different nature which plays a fun-
damental role in obtaining some uniform estimates.

Lemma 4.2. Let k c conv D be compact. Then, there are constants M and G
such that (in the notation (4.4)-(4.5)) for every d e k , there is \ < i0 < q such
that X   > \l(n + 1) and d, e Y(M, G), with Y(M, G) as in Lemma 4.1.

'o 'o

Proof. Since convF g C'(convD ) (see (4.3)), there is a constant G such that

|V(convF)(</)| < G,        Vdex.
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Thus, with (4.6) and (4.7), one has di 6 dom(F)* and \VE(dj)\ < G for
1 < i < q , and it remains to find a constant M such that Xi > \l(n + 1) and

'o
E(di ) < M for some index 1 < iQ < q. Of course, the index iQ may depend
on d, but not the constant M.

Since conv F is continuous on conv D, there is a constant MQ > 0 such
that

(4.12) (convE)(d) <MQ,        yd G K.

On the other hand, recall that F is bounded from below by a constant e as
a result of (2.2) and (2.3). Then, one may take

(4.13) M = (n + l)(M0 + \e\).

Indeed, since q < n + 1, there is an index 1 < iQ < q such that Xt > l/(n + 1)
since the X, 's sum to one. For convenience of notation, suppose /0 = 1. Now,
rewrite (4.5) in the form

XxE(dx) = comE(d) -y^E(d,) < MQ -^^.).
1=2 i=2

For each index 2 < i < q such that E(dj) > 0, zero is a majorant of
-XjE(dl). If E(di) < 0, then e < E(dt) < 0 and -XjE(di) < -Xte = Xt\e\.
Thus, in any case, one has -XjE(dj) < Xt\e\ and hence

XxE(dx)<M0 + y*M\<M0 + \e\.
1=2

As X{ > \/(n + 1) by hypothesis, it follows that E(dx) < M with M as in
(4.13).   □

The third lemma contains nothing of a new nature. We give its proof for
completeness.

Lemma 4.3. Let L c dom(F)* be compact. Then, there are constants C —
C(L) > 0 and e > 0 such that, for every Z0 e F, the open ball B(ZQ, e) with
center Z0 and radius e is contained in D, VF is defined on B(Z0, e), and

(4.14) E(Z') < E(Z) + VE(Z) ■ (Z' ~Z) + C\Z' - Z\l+" ,
for every Z, Z' ̂  B(Z0 , e).
Proof. Given Z0 S dom(F)*, it follows from (4.17) and (4.2) that there is p0 > 0
such that the open ball F(£0, p0) with center Z0 and radius p0 is contained
in D, VF is defined on B(Z0, p0) and

\VE(Z') - VE(Z)\ < C(Z0)\Z' - Z\a,      vZ,Z'e B(Z0, pQ),
where C(Z0) > 0 is a constant.

As F is compact, one may cover F by finitely many such balls B(Zt, pt).
Call C > 0 the largest corresponding constant C(Z,). It is a standard result
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that e > 0 can be found such that for every Z0 € L, B(Z0, e) c B(Zt, p{) for
some /. With such a choice, it is obvious that

\VE(Z')-VE(Z)\<C\Z'-Z\\        VZ,Z'eB(Z0,e),        VZ0&L.
That inequality (4.14) holds, with the same constant C as above, follows

from a straightforward application of the mean value theorem.   □

We are now ready to establish our fourth and last preliminary lemma, whose
proof relies on the results proved in the first three.

Lemma 4.4. Let k c convD be compact. Then, there is a constant C = C(k) >
0 and t] > 0 such that, for every d G k , the open ball B(d, rj) with center d
and radius r\ is contained in conv D and

(convE)(8) < (convE)(d) + V(convE)(d) ■ (8 - d) + C\8 - d\i+" ,

for every 8 G B(d, n).
Proof. First, use Lemma 4.2 to obtain constants M and G such that, for
every d gk and in the notation (4.4)-(4.5), there is an index 1 < i0 < q such
that X,   > \/(n + 1)  and d,   G Y(M, G) with Y(M, G) as in Lemma 4.1,

'o 'o
hence compact. In what follows, we set Y(M, G) = L and, for notational
convenience, we assume that the ordering of the dt 's is consistent with the
choice iQ = 1 for every d G k , namely

(4.15) dxeL,        Xy >l/(« + l).
Now, pick ae as in Lemma 4.3. With d G k being arbitrary, it follows from

(4.15) that

\8-d\< —£— ^dx + 6-^- g B(dx , e)(c D).n + 1        '       /, '
Since k is compact, one can choose r\ > 0 independent of d such that 8 g
convD whenever \8 - d\ < t], In addition, taking t] < e/(n + 1), one finds

(4.16) \8-d\ < n=>SeconvD    and     dx + —r— e B(dx, e)(c D) .

For 8 G B(d, rj) write, consistently with (4.4)

8 = Xi (dx + 3^-J+X2d2+-+Xqdq,

so that

(4.17) (comE)(8) < XXE (dx + ^-^-\ + X2E(d2) + ■ ■ ■ + XqE(dq).

Now, from (4.15) and (4.16), one may use inequality (4.14) of Lemma 4.3
with Z0 = Z = dx and Z' = dx + (S - d)/Xx to get (with C = C(L))

E(dx + S^)<E(dx) + VE(dx).^ + c\S^+a .
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Upon substituting this into (4.17), one arrives at

(convE)(8) < yX^idi) + VE(dx). (8 - d) + ~|<5 - d\l+a .
1=1 ^i

But ELi k,E(dt) = comE(d), VE(dx) = V(convF)(<i) (see (4.7)), and Xx >
\/(n + 1). Thus, the assertion follows upon changing C = C(L) above into
C(K) = (n + \)x+aC(L).   D

After all these preliminaries, we are in a position to prove the main result of
this section.

Theorem 4.2. In addition to assumptions (2.1)—(2.3), suppose that conditions
(4.1) and (4.2) hold. Then, convF is locally of class C 'a on convD.
Proof. Let d0 G convD be fixed and let R > 0 be such that the closed ball
B(d0, R) is contained in convD. For short, set k = B(d0, R) and choose
r] > 0 and C > 0 as in Lemma 4.4. Thus, for every d G k and every
8 G B(d, n), one has

(4.18)     (convF)(<5) - (comE)(d) - V(comE)(d) ■ (8 - d) < C\8 - d\Ua .

Since this inequality holds for every d G k , it holds for every d in any subset
of k . In particular, it is true for d G B(d0, 7>r) where r < min(i?/3, rj/6).
With this choice, inequality (4.18) holds with arbitrary pairs d, 8 G B(d0, 3r)
since diamfi(^0, 3r) < 6r < r\.

We shall achieve our goal by combining inequality (4.18) with an argument
already used by Stoer and Witzgall [7] for showing that a convex function dif-
ferentiable at every point is automatically continuously differentiable.

Fix d G B(d0, r), and pick Z with \Z - d\ < r. Denoting by 5« the sphere
with center d and radius 2\Z - d\ < 2r, one has 5{ c B(d0, 3r) and hence
(4.18) holds with 8 e 5{ . On the other hand,

(convF)(r5) > (convF)(£) + V(convF)(£) ■ (8 - Z) ■

Hence, subtracting V(convF)(of) ■ (8 - Z) from both sides, one easily obtains

(conv E)(8) - (conv E)(Z) - V(conv E)(d) ■ (8 - Z)
> [V(conv E)(Z) - V(conv E)(d)] ■ (8 - Z).

Writing 8~Z = 8-d + d-Z on the left-hand side and using

V(convF)(cY) • (Z -d) < (convE)(Z) - (comE)(d),

one arrives at
[Vfconv E)(Z) - V(convE)(d)] -(8-Z)

< (convE)(8) - (comE)(d) - V(comE)(d) ■ (8 - d) < C\8 - d\l+a,
where the last inequality follows from (4.18). Dividing both sides by \8 - Z\
and since

\8-Z\>\S-d\-\d-Z\ = \d-Z\,
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one finds

[V(convF)(£) - V(conv£)(</)] • i-^i < 2l+aC\Z - d\° .

This inequality holds with 8 G 5^ arbitrary. Taking (5 6 5^ such that 8 - Z
is the appropriate positive multiple of V(convF)(£) - V'(convE)(d) yields'

|V(convF)(£) - V(conv£)(rf)| < 2l+aC\Z - d\" ,

for every Z with \d - Z\ < r and every d G B(d0, r). In particular, one may
take d and <!; arbitrary in the ball B(d0 , r/2) and the proof is complete,    n

We shall conclude with a few remarks. First, suppose that VF satisfies a uni-
form Holder condition in the sense that for every Z0 in the open neighborhood
of dom(F)* referred to in condition (4.2), one has

(4.19) \VE(Z')-VE(Z)\<C\Z'-Z\'\
for Z' and Z close enough to £0 (possibly depending on £0), where C >
0 is independent of £0. Then, the same constant C can be taken as C(L)
in Lemma 4.3, namely independently of F (although e may depend on F).
In turn, the constant C(k) (=(n + 1)1+"C(F)) in Lemma 4.4 can be taken
independently of k (although n may depend on k ).

From the proof of Theorem 4.1 and the above observations, one finds that
for every d0 G conv D, one has

(4.20) |V(convF)(<5)-V(convF)(rf)| <[2(n+ \)]X+"C\8 - d\a ,
for 8 and d close enough to dQ (possibly depending on d0), with C as in
(4.19). In other words, a uniform choice can be made for the Holder constants
associated with V(convF).

More particularly, if a = 1 , then (4.20) holds for every pair 8, d e convD
(so that convF is Lipschitz continuous with constant 4(« + l) C on convD).
Indeed, it suffices to cover the line segment [d, 8] c convD with finitely many
open subsets in which (4.20) holds with a = 1 and consider a subdivision (Zt),
0</< N+ l,of [d,8] such that Z0 = d, ZN+i = 8, and

|V(convF)(£/+1) - V(convF)(^)| < 4(« + l)2C\Zl+x - Z,\,

for 0 < I < N. The result follows from \8-d\- VJ/=0 |^/+1 -Zt\ since the Z\ 's
are aligned.

As an example, when this situation is encountered, take D = dom(F) = R"
with £eC'''(R") (in practice, F asymptotically quadratic at infinity).

Remark 4.3. In any case, with nothing more than the assumptions of Theorem
4.1, one has for every compact subset L c convD that there is a constant
C(L) > 0 such that

(4.21) |V(conv£)(<*)- V(convF)(d)| < C(L)\8-d\" ,

2That such a multiple exists is straightforward, although S,  is centered at d . not i .
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for every pair 8, d in F. To see this, one may assume that F is convex by re-
placing F by conv F (compact) if necessary. One may then cover F by finitely
many, say N, open subsets in which the analog of (4.21) holds, and define a con-
stant C0(L) as the largest constant involved in the corresponding inequalities.
As above, one may consider a subdivision of the line segment [d, 8]. Observ-
ing that the number of points in this subdivision can be uniformly bounded
by N, and through repeated use of the inequality a" + b" < 2 ~a(a + b)" for
a, b > 0 and 0 < a < 1 (a number of times bounded in terms N ), one obtains
C(L) from a and CQ(L). Note that even if C0(L) is independent of F, this
procedure does not yield C(L) independent of F, unless a = 1 .   □

Finally, let us mention that despite local C 'a regularity of convF can be
proved in a variety of other situations when condition (4.1) is not fulfilled, it
is not clear that a genuine extension of Theorem 3.2 exists. The corresponding
proof of such a result would definitely require going through considerable tech-
nicalities to classify all the possible boundary phenomena. Rather fortunately,
it seems that the simplifying assumption (4.1) is sufficient in most applications,
at least for the time being.
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